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Abstract

Large language models (LLMs) are revolution-001
izing natural language processing (NLP), but002
their creation comes at a significant environ-003
mental cost. This research investigates the car-004
bon emissions produced by pre-training BERT-005
based language models and situates these find-006
ings within the broader context of global car-007
bon emissions. Climate change disproportion-008
ately affects low- and middle-income coun-009
tries (LMICs), so we weigh LLMs’ impact010
within the context of these disadvantaged com-011
munities. We explore methodologies for esti-012
mating the carbon footprint of model training.013
We contemplate trade-offs between model ef-014
ficiency and potential bias, considering how015
such side effects could exacerbate existing in-016
equalities, particularly in LMICs. Further-017
more, this research emphasizes the necessity of018
transparency and accountability in NLP. LLMs019
should be developed with clear purposes and a020
focus on both efficiency and mitigating poten-021
tial harms, particularly in climate-vulnerable022
communities.023

1 Introduction024

LLMs are gaining prominence in both NLP re-025

search and everyday use. However, creating these026

models comes with significant computational costs.027

Industry rivals continuously invest in developing028

LLMs, which incurs financial expenses and con-029

tributes to environmental degradation through car-030

bon emissions. This environmental impact is often031

overlooked.032

Global climate change is a crisis, and carbon033

emissions actively contribute to it. Consequently,034

when developing LLMs, researchers should think035

of both accuracy and efficiency, as the energy re-036

quired to train models can be traced to greenhouse037

gas emissions.038

This research aims to estimate the carbon emis-039

sions produced by pretraining widely used LLMs,040

and to ground these findings in the broader con-041

Figure 1: Global surface temperatures in January 2024
compared to the 1991-2020 average. Most areas exhib-
ited warmer-than-average temperatures (depicted in red),
with scattered colder-than-average regions (depicted in
blue)1.

text of carbon emissions. We will determine how 042

much the LLMs emit and provide insights into cur- 043

rent industry practices and LLM applications to 044

recommend action in the wake of climate change. 045

Alongside all other carbon-intensive industries, 046

LLM development contributes to global climate 047

change. We focus on how such climate conse- 048

quences disproportionately harm historically disad- 049

vantaged communities worldwide. NLP’s climate 050

impact is felt globally, but its benefits do not follow 051

suit. 052

2 Related Work 053

2.1 Green AI 054

The method for calculating model pretraining car- 055

bon emissions is derived from Strubell et al. (2019), 056

where the authors reported the training carbon im- 057

pacts of four LLMs: T2T, BERT, ELMo, and GPT- 058

2. We train a different set of models. We follow 059

the same methodology of querying for machine 060

power usage, averaging such results, and comput- 061

ing carbon dioxide and monetary estimates. How- 062

ever, we diverge in the qualitative aspects of this 063

research and seek greater context to such carbon 064

1Source:https://www.climate.gov/
news-features/understanding-climate/
global-climate-summary-january-2024
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emission estimates, considering global systems for065

valuating emissions and the ultimate goals of train-066

ing LLMs. We emphasize interdisciplinary eval-067

uation on whether LLMs’ carbon footprints are068

appropriately offset by their impact, specifically in069

healthcare applications in the communities most070

impacted by climate change.071

Schwartz et al. (2019) discuss Green AI in the072

exponential growth of computational requirements073

for deep learning research and the resulting environ-074

mental and financial costs. The authors advocate075

for integrating efficiency, alongside accuracy and076

other relevant metrics as an evaluation criteria for077

research.078

Kaack et al. (2022) discuss the Information079

and Communication Sector (ICT)’s environmen-080

tal impact and emphasize the need for AI research081

to align with climate change mitigation efforts082

through transparent, comprehensive reporting on083

compute costs and emissions. They address con-084

cerns that efficiency gains in machine learning may085

lead to rebound effects, where reduced emissions086

per-run could be countered by increased consump-087

tion, undermining environmental benefits.088

2.2 Emissions & Climate Change089

Climate change has driven concerns about the im-090

pact of data centers and their ever-growing com-091

pute demands. A single data center can consume092

as much electricity, and emit subsequent carbon,093

as 50,000 homes (Monserrate, 2022). Siddik et al.094

(2021) calculate the carbon and water footprints of095

data centers in the U.S, referencing how U.S. data096

centers use 1.8% of national electricity and account097

for about 25% of global data centers.098

In 2021, electricity and heat generation made099

up almost 44% of global carbon dioxide emissions100

from fuel combustion, and coal accounted for 73%101

of such emissions (IEA, 2023). Fossil fuels, such102

as coal, oil, and natural gas, are carbon-based, non-103

renewable energy sources that release carbon into104

the atmosphere upon combustion (Eurostat).105

The Paris Agreement, established in 2015, seeks106

to limit global warming to 1.5°C above pre-107

industrial levels to mitigate severe climate impacts108

(Nations). Climate change results in rising sea lev-109

els, intensified storms and droughts, and dwindling110

sea ice. These effects cascade through ecosystems111

and human activities, impacting health, agricul-112

ture, and infrastructure (NASA, 2024). To reach113

the Paris Agreement’s goal, global emissions must114

decrease by 45% by 2030 and reach net-zero by 115

2050 (Nations). Carbon emissions must be reduced 116

because they contribute to the greenhouse effect, 117

which traps heat in the atmosphere and warms the 118

planet (NRDC, 2023). 119

2.3 Racial Justice & Climate Change 120

Climate change affects the entire globe, but some 121

regions are impacted more. Developing countries, 122

or LMIC, often face the greatest climate-related 123

risks and are the least equipped to manage such 124

events. 125

For instance, Haiti, which lacks the infrastruc- 126

ture for adequate disaster preparedness, has faced 127

great devastation from earthquakes and hurricanes, 128

where the 2010 earthquake cost $8 billion– more 129

than the country’s GDP. The population is heavily 130

reliant on agriculture, but as sea levels rise, saltwa- 131

ter may permeate farmland and fresh water, leaving 132

a large portion of the country without a livelihood 133

(Law, 2019). 134

Additionally, rising sea levels threaten Kiribati’s 135

existence, as the country’s islands are only six feet 136

above sea level. Rising sea levels may contaminate 137

fresh water supplies and soil, and ocean acidifica- 138

tion and rising ocean temperatures harm Kiribati’s 139

vital fishing industry (Law, 2019). 140

In the face of climate change, equitable climate 141

resilience is necessary. Environmental destruction 142

disproportionately harms certain racial, ethnic, and 143

national groups. Historical abuse and colonialism 144

have left these communities most vulnerable to and 145

least equipped to handle such events (Achiume, 146

2022). 147

To consider human health specifically, Berbe- 148

rian et al. (2022) report that U.S. communities 149

of color, including Black, LatinX, Native Amer- 150

ican, Pacific Islander, and Asian communities, face 151

higher risks of climate-related health impacts than 152

Whites. These disparities manifest in increased 153

mortality, respiratory and cardiovascular diseases, 154

mental health issues, and heat-related illnesses. Cli- 155

mate change exacerbates existing social and eco- 156

nomic inequalities, compounding racial health dis- 157

parities in marginalized communities. 158

2.4 AI & Healthcare in LMIC 159

Ciecierski-Holmes et al. (2022) write how artifi- 160

cial intelligence, including LLMs, has the capacity 161

to improve health systems by supporting and stan- 162

dardizing clinical judgments and applying health- 163

care processes with an objective, data-oriented ap- 164

2



proach. This power would be particularly benefi-165

cial in LMIC, where medical care is often limited,166

by improving the efficiency of existing labor and167

reducing training needed when expanding the work-168

force (Weissglass, 2022). However, the effective169

deployment of AI in LMICs faces significant chal-170

lenges. Ciecierski-Holmes et al. (2022) reference171

how training data from LMIC is limited and may172

not be accessible, current, or expansive enough.173

Further, in low-resource settings, AI tools are only174

effective if they can be used or integrated into the175

existing infrastructure. Yet, these low-resource set-176

tings may not have the means to support such tools;177

for instance, some have no or unstable internet ac-178

cess. AI’s promise in LMIC healthcare hinges on179

addressing data gaps, infrastructure hurdles, and180

integration challenges.181

2.5 Bias in Model Compression182

Ramesh et al. (2023) investigate how model com-183

pression techniques such as pruning, quantization,184

and distillation affect bias in language models. It185

explores intrinsic and extrinsic measures of fair-186

ness evaluation in language models and identifies187

the impact of compression techniques on fairness.188

Gonçalves and Strubell (2023) study the propa-189

gation of social biases and tradeoffs between bias190

reduction and efficiency in LLMs, highlighting the191

challenges of addressing biases in pretrained mod-192

els due to the computational expense of retraining.193

3 Data194

We use a subset of the AllenAI C4 English dataset.195

The AllenAI C4 dataset is a cleaned version of196

Common Crawl’s web crawl corpus and is com-197

monly used for training NLP models due to its fast198

coverage and quality. The C4 English dataset is199

305 GB and 364,868,892 entries, consisting of an200

entry’s URL, text, and timestamp (for AI, 2024).201

Due to memory constraints, we use a small sub-202

set of the dataset. As we will discuss later, the203

experiment focuses on the act of training, not the204

training outcomes themselves, as we limit pretrain-205

ing time to 8 hours. The subset was preprocessed206

to use only the text with each sentence formatted207

to the models’ criteria.208

4 Models209

Devlin et al. (2019)’s Bidirectional Encoder Repre-210

sentations from Transformers (BERT) leverages a211

deep multi-layered Transformer encoder with self- 212

attention to analyze all words in a sentence bidirec- 213

tionally, capturing richer context compared to uni- 214

directional models. Pre-training with masked lan- 215

guage modeling further strengthens BERT’s abil- 216

ity to understand word relationships and meaning. 217

The original authors trained BERT-base on 16 TPU 218

chips for 4 days. In 2019, AWS reportedly trained 219

BERT-base in 62 minutes on 2,048 32GB V100 220

GPUs (Bindal et al., 2019). 221

Sanh et al. (2020)’s DistilBERT inherits the core 222

architecture of BERT but achieves a smaller size 223

and faster inference by employing knowledge dis- 224

tillation. This technique trains a smaller "student" 225

model (DistilBERT) to mimic the outputs of a 226

larger, pre-trained "teacher" model (BERT). Dis- 227

tilBERT achieves this through a combination of a 228

reduced number of layers and a specialized loss 229

function that incorporates knowledge distillation 230

alongside traditional language modeling objectives. 231

The authors trained DistilBERT for 90 hours on 8 232

16GB V100 GPUs. 233

Lan et al. (2020)’s ALBERT builds upon BERT’s 234

architecture, maintaining strong performance, but 235

reduces parameters and training time via two key 236

modifications. First, ALBERT employs a fac- 237

torized parameterization technique, which breaks 238

down the self-attention mechanism into smaller, 239

more manageable components. Second, ALBERT 240

uses a cross-layer parameter sharing, where the 241

weights of specific layers are shared across the 242

entire encoder. AWS reportedly trained ALBERT- 243

base in 20 hours on 64 32GB V100 GPUs, or in 244

39 hours on 64 16GB V100 GPUs (Nielsen et al., 245

2020). 246

5 Method 247

We assess the models’ environmental impacts by 248

quantifying their total carbon and financial costs 249

from training. Our process and calculations are 250

adapted from Strubell et al. (2019). 251

We pre-train the previously referenced models, 252

BERT-base, DistilBERT, and ALBERT, using “out- 253

of-box,” default settings for a set period. Each 254

model was trained for 8 hours on 1 32GB V100 255

GPU. While training, we repeatedly query for GPU 256

power draw in watts using nvidia-smi. nvidia-smi 257

reports the last measured power-draw for the en- 258

tire board, which includes the GPU chip, memory 259

modules, power delivery circuitry, cooling solu- 260

tion, connectors, and supporting components, and 261
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Model Hardware ngpu t (hours) pgpu Ptotalpower CCO2 (lbs) Cfin

BERT-base 32GB V100 GPU 2048 1.03333 0.268854 898.968 770.416 6722.67

DistilBERT 16GB V100 GPU 8 90 0.154449 175.701 150.576 2349.6

ALBERT 16GB V100 GPU 64 39 0.198559 783.054 671.077 8145.28

ALBERT 32GB V100 GPU 64 20 0.198559 401.566 344.142 4066.13

Table 1: Estimated carbon and financial costs of complete training for three models. Listed hardware, t, and ngpu
are derived from instances of complete training. pgpu is calculated from experiments run on 1 32GBV100 GPU.

is accurate within +/- 5 watts2.262

After training, we estimate the total power draw,263

in kilowatt-hours (kWh), of training each model264

P to completion using our experimental average265

power draws and the training specifications re-266

ported in instances of complete training. The ex-267

perimental average GPU power-draw in kilowatts268

(kW), pg, is derived from the data points collected269

using nvidia-smi during training. We multiply this270

value by the global PUE coefficient e and the hours271

t and number of GPUs ngpu reported in instances of272

complete training. The PUE coefficient measures273

data center efficiency, where 1.0 is the ideal, indi-274

cating that all energy consumed by the data center275

is used to power computing devices. Energy used276

for non-computing components, such as lighting277

and cooling, increases PUE above 1.0. The 2023278

global average PUE is 1.58 (Bizo, 2023).279

P = e× pg × ngpu × t280

After calculating the total power P consumed in281

training each model, we can convert it to pounds282

of carbon dioxide CCO2. For each kWh of elec-283

tricity generated in the U.S., an average of 0.857284

pounds of CO2 is released at the power plant (Cen-285

ter for Sustainable Systems, University of Michi-286

gan, 2023). So, we calculate CCO2 as follows.287

CCO2 = P × 0.857288

Then, we can estimate the financial cost of train-289

ing each model using cloud computing resources,290

Cfinancial. We approximate the average hourly291

compute cost Ccloud of one 16GB or 32GB V100292

GPU across three major cloud providers: AWS,293

Google Cloud Platform, and Microsoft Azure3.294

Then, depending on the hardware reported in com-295

plete trainings, we calculate the financial cost using296

2Source: https://developer.download.nvidia.com/
compute/DCGM/docs/nvidia-smi-367.38.pdf

3Average Ccloud for one 32GB V100 GPU is 3.18, and
average Ccloud for one 16GB V100 GPU is 3.06. Source:
https://www.paperspace.com/gpu-cloud-comparison

the referenced GPU’s hourly rates and the quantity 297

of GPUs employed ngpu. 298

Cfinancial = ngpu × t× ccloud 299

6 Results 300

Table 1 lists the estimated carbon and financial 301

costs of training the models referenced in 4. Our 302

experimental average power draw, pg, is derived 303

from a 32GB V100 GPU, while some instances 304

of complete training, which contain ngpu and t, 305

were trained on 16GB V100 GPU. We observed 306

that BERT-base is the most carbon-intensive model, 307

and DistilBERT is the least. 308

7 Discussion around contextualizing CO2 309

emissions 310

7.1 Carbon Valuation 311

Existing cap-and-trade systems worldwide attribute 312

a monetary value to an “allowance” of one metric 313

tonne of carbon dioxide emissions or the equiva- 314

lent of other greenhouse gases. This market-driven 315

approach curtails pollution by establishing an an- 316

nual ceiling, or "cap," on the greenhouse gas emis- 317

sions within a given region. Participating enti- 318

ties are allotted specific carbon allowances, within 319

which they must confine their emissions. They can 320

trade surplus allowances via auctions, akin to a 321

carbon open market. The system’s cap diminishes 322

annually, directing companies to reduce their car- 323

bon footprints and invest in cleaner technologies 324

(Comission). 325

The European Union’s Emissions Trading Sys- 326

tem (ETS), the Regional Greenhouse Gas Initiative 327

(RGGI), and California’s Cap-and-Trade Program 328

are three implemented Cap-and-Trade programs. 329

The ETS applies to electricity and heat, energy- 330

intensive (oil refineries, etc.), aviation, and mar- 331

itime transport industries in the European Union 332

(Comission). In 2024, one allowance is traded 333
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at an average of C89.60 (approximately $95.48)334

(Chen, 2023). Less robust, the RGGI applies to335

fossil-fuel-fired power generators in the northeast-336

ern U.S.4(RGGI, 2024a). In March 2024, one337

allowance cleared for an average of $16 (RGGI,338

2024b). Additionally, California’s Cap-and-Trade339

Program encompasses 80% of the state’s emissions340

(CA.gov, 2024). In February 2024, one allowance341

was auctioned at an average of $41.76.342

With these systematic valuations of carbon emis-343

sions, we can examine LLMs’ carbon footprints’344

costs. In our experiment (see section 6, we es-345

timate the financial cost of training the models346

on cloud resources, but we do not consider the347

financial cost of the emissions produced. Using348

the ETS allowance value, emissions from training349

the most expensive model, BERT-base, would cost350

Cco2 ∗ 95.48 = 33.37. Under RGGI, BERT-base351

emissions would cost Cco2 ∗ 16.00 = 5.59. Under352

California’s Cap-and-Trade Program, BERT-base353

emissions would cost Cco2 ∗ 41.76 = 14.59354

So, if LLM developers participated in such Cap-355

and-Trade systems, they would have to pay a re-356

spective $33.37, $5.59, or $14.59 to account for357

their carbon emissions. Imposing Cap-and-Trade358

rates could act as a deterrent to inefficient training359

or finetuning for LLMs. However, one tonne of car-360

bon dioxide is not consistently valued high enough361

to provoke a significant change in action. If we362

were to train BERT-base in Massachusetts, using363

our experimental averages, it would cost $6723 us-364

ing cloud resources, and the proposed additional365

emissions fee of $5.59 would be merely 0.083% of366

the estimated compute cost.367

Incorporating a standardized system for assign-368

ing prices to tonnes of greenhouse gas emissions369

could spur more energy-efficient LLMs, but this370

solution is dependent on how such systems set the371

price. Too low of an evaluation would have a negli-372

gible impact on LLM development.373

7.2 Impact of LLMs in LMIC374

As previously mentioned in Section 2, climate375

change is a global crisis, and it disproportionately376

affects historically disadvantaged groups. To con-377

sider only one aspect, Berberian et al. (2022) de-378

scribes how communities of color in the U.S. face379

a greater risk of climate-related health impacts than380

Whites. To expand internationally, inequalities in381

the distribution of basic resources expose the eco-382

4CT, ME, MD, MA, NH, NJ, NY, PA, RI, VT

nomically disadvantaged to disability, disease, and 383

premature death at a higher rate than the wealthy 384

(Weissglass, 2022). So, there is a need for greater 385

access to healthcare, and LLMs could be beneficial 386

tools in labor and resource-lacking environments. 387

However, implementing such tools faces fundamen- 388

tal challenges including access to training data and 389

infrastructure in LMIC. 390

In the wake of climate change, there is an even 391

greater need for healthcare in LMIC. LLMs are 392

a promising solution, but we first must consider 393

potential side effects. 394

LLMs are powerful tools, and they require a 395

lot of power to build them. Our research experi- 396

ment aims to assess just how much energy is re- 397

quired in training and to calculate the subsequent 398

carbon emissions. These greenhouse gas emissions 399

contribute to climate change, which in turn harms 400

LMIC. To justify the carbon-cost of training, the 401

LLMs produced must be usable and beneficial to 402

their users. 403

Thus, compressed, more efficient models are 404

preferred when developers aim to limit emissions. 405

However, such compression techniques may intro- 406

duce bias in LLMs (Ramesh et al., 2023). By chas- 407

ing efficient models, we risk deploying biased tools 408

in disadvantaged communities that have already 409

been systematically subjected to and damaged by 410

societal prejudices and biases. To this, we pose but 411

do not answer the question: is poor help better than 412

no help? 413

To limit contributions to climate change, LLMs 414

must be built with energy, and therefore carbon, ef- 415

ficiency in mind. However, we warn against tunnel 416

vision in pursuing this metric, as an efficient model 417

will have no use in a setting that cannot support 418

basic technology, and a biased yet efficient model 419

may have a greater capacity for harm than good. 420

8 Conclusion 421

In our experiment, we propose a method for calcu- 422

lating the carbon impact of training BERT-based 423

LLMs. 424

Recently, there have been greater efforts for 425

transparency and reporting on the carbon impacts 426

of LLMs and other computer science applica- 427

tions in the industry. Researchers more frequently 428

report their pretraining carbon emissions (Meta, 429

2024; Luccioni et al., 2022). Further, major cloud 430

providers include an account’s carbon emissions in- 431

sights (AWS, 2024; Microsoft, 2024; Cloud, 2024). 432
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Model Hardware ngpu t (hours) pgpu Ptotalpower CCO2 (lbs) Cfin

BERT-base 32GB V100 GPU 1 8 0.268854 3.39832 2.91236 25.4133

DistilBERT 16GB V100 GPU 1 8 0.154449 1.95223 1.67307 26.1067

ALBERT 16GB V100 GPU 1 8 0.198559 2.50979 2.15089 26.1067

ALBERT 32GB V100 GPU 1 8 0.198559 2.50979 2.15089 25.4133

Table 2: Estimated carbon and financial costs of experimental training for three models. Our experiments were run
for 8 hours on 1 32GB V100 GPU. Costs were calculated as described in Section 5.

However, industry leaders like OpenAI still do not433

report their carbon emissions and overall lack trans-434

parency in their models (de Bolle, 2024).435

While the community is moving in the right di-436

rection, the lack of transparency in company emis-437

sions leads to a lack of accountability. We em-438

phasize the need for regulations to mandate emis-439

sions reporting and, ideally, limit it. As industry440

researchers compete to build the best LLMs, mod-441

els are growing in size, and their energy use follows442

(Sundberg, 2023).443

The National Institute of Standards and Technol-444

ogy’s AI Risk Management Framework outlines445

how the environmental impact of AI model train-446

ing and management should be assessed and docu-447

mented (NIST, 2024). Most radically, we suggest448

not only strict enforcement of the NIST Frame-449

work, but to enact regulations on researchers’ total450

carbon emissions, including any emissions com-451

panies claim to have offset. While this aim for452

transparency regulation and emissions constraints453

may be extreme, the sentiment is a core value.454

Climate change is a global crisis that dispropor-455

tionately affects disadvantaged groups, both within456

the U.S. and internationally. We assess LLMs’ cli-457

mate impact with the understanding that not all458

people are affected equally. This problem is com-459

plex and highly interdisciplinary; merely building460

"green" models will not help LMICs that lack basic461

resources. To truly benefit disadvantaged commu-462

nities, LLMs must be developed with carbon effi-463

ciency, fairness, and context in mind, avoiding the464

pitfalls of deploying biased models. LLMs are pow-465

erful tools, but many communities are not equipped466

to use them, rendering these tools powerless.467

In tandem with promoting efficiency, trans-468

parency, and accountability, we emphasize the ne-469

cessity of reflection and careful evaluation in devel-470

oping LLMs. Developing and finetuning LLMs to471

serve unclear purposes will contribute to climate472

change, while the model may sit unused. LLMs are 473

powerful tools with a great capacity for good, but 474

aimless, expensive development should not become 475

commonplace. 476

9 Ethics Statement 477

We acknowledge that our experiments are not ex- 478

empt from carbon emissions. So, we report the 479

carbon and financial costs of our 8-hour experimen- 480

tal trainings (Table 2) to promote transparency and 481

accountability. 482

10 Limitations 483

We were constrained by GPU memory and uptime 484

while obtaining our experimental average power 485

draws. The original models were trained on far 486

larger datasets, which may impact energy usage. 487

Further, we were unable to record the CPU and 488

dynamic random access memory (DRAM) statis- 489

tics, which contribute to overall power usage, so 490

our estimated power consumption is incomplete. 491

11 Future Work 492

Research could be expanded to consider additional 493

power metrics, models, and hardware. Our experi- 494

ment calculates carbon cost based solely on GPU 495

power draw, but including CPU and DRAM statis- 496

tics would provide a more comprehensive energy 497

analysis. This experiment focuses only on BERT- 498

based models, but we could include newer LLMs 499

with different architectures. Additionally, we could 500

explore differences in hardware, such as TPUs and 501

A100 GPUs. Finally, we aim to consider the carbon 502

footprint of downstream training. 503
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