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Abstract

Large language models (LLMs) are revolution-
izing natural language processing (NLP), but
their creation comes at a significant environ-
mental cost. This research investigates the car-
bon emissions produced by pre-training BERT-
based language models and situates these find-
ings within the broader context of global car-
bon emissions. Climate change disproportion-
ately affects low- and middle-income coun-
tries (LMICs), so we weigh LLMs’ impact
within the context of these disadvantaged com-
munities. We explore methodologies for esti-
mating the carbon footprint of model training.
We contemplate trade-offs between model ef-
ficiency and potential bias, considering how
such side effects could exacerbate existing in-
equalities, particularly in LMICs. Further-
more, this research emphasizes the necessity of
transparency and accountability in NLP. LLMs
should be developed with clear purposes and a
focus on both efficiency and mitigating poten-
tial harms, particularly in climate-vulnerable
communities.

1 Introduction

LLMs are gaining prominence in both NLP re-
search and everyday use. However, creating these
models comes with significant computational costs.
Industry rivals continuously invest in developing
LLMs, which incurs financial expenses and con-
tributes to environmental degradation through car-
bon emissions. This environmental impact is often
overlooked.

Global climate change is a crisis, and carbon
emissions actively contribute to it. Consequently,
when developing LLMs, researchers should think
of both accuracy and efficiency, as the energy re-
quired to train models can be traced to greenhouse
gas emissions.

This research aims to estimate the carbon emis-
sions produced by pretraining widely used LLMs,
and to ground these findings in the broader con-
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Figure 1: Global surface temperatures in January 2024
compared to the 1991-2020 average. Most areas exhib-
ited warmer-than-average temperatures (depicted in red),
with scattered colder-than-average regions (depicted in
blue)'.

text of carbon emissions. We will determine how
much the LLMs emit and provide insights into cur-
rent industry practices and LLM applications to
recommend action in the wake of climate change.

Alongside all other carbon-intensive industries,
LLM development contributes to global climate
change. We focus on how such climate conse-
quences disproportionately harm historically disad-
vantaged communities worldwide. NLP’s climate
impact is felt globally, but its benefits do not follow
suit.

2 Related Work
2.1 Green Al

The method for calculating model pretraining car-
bon emissions is derived from Strubell et al. (2019),
where the authors reported the training carbon im-
pacts of four LLMs: T2T, BERT, ELMo, and GPT-
2. We train a different set of models. We follow
the same methodology of querying for machine
power usage, averaging such results, and comput-
ing carbon dioxide and monetary estimates. How-
ever, we diverge in the qualitative aspects of this
research and seek greater context to such carbon
1Source:https://www.climate.gov/

news-features/understanding-climate/
global-climate-summary-january-2024
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emission estimates, considering global systems for
valuating emissions and the ultimate goals of train-
ing LLMs. We emphasize interdisciplinary eval-
uation on whether LLMs’ carbon footprints are
appropriately offset by their impact, specifically in
healthcare applications in the communities most
impacted by climate change.

Schwartz et al. (2019) discuss Green Al in the
exponential growth of computational requirements
for deep learning research and the resulting environ-
mental and financial costs. The authors advocate
for integrating efficiency, alongside accuracy and
other relevant metrics as an evaluation criteria for
research.

Kaack et al. (2022) discuss the Information
and Communication Sector (ICT)’s environmen-
tal impact and emphasize the need for Al research
to align with climate change mitigation efforts
through transparent, comprehensive reporting on
compute costs and emissions. They address con-
cerns that efficiency gains in machine learning may
lead to rebound effects, where reduced emissions
per-run could be countered by increased consump-
tion, undermining environmental benefits.

2.2 Emissions & Climate Change

Climate change has driven concerns about the im-
pact of data centers and their ever-growing com-
pute demands. A single data center can consume
as much electricity, and emit subsequent carbon,
as 50,000 homes (Monserrate, 2022). Siddik et al.
(2021) calculate the carbon and water footprints of
data centers in the U.S, referencing how U.S. data
centers use 1.8% of national electricity and account
for about 25% of global data centers.

In 2021, electricity and heat generation made
up almost 44% of global carbon dioxide emissions
from fuel combustion, and coal accounted for 73%
of such emissions (IEA, 2023). Fossil fuels, such
as coal, oil, and natural gas, are carbon-based, non-
renewable energy sources that release carbon into
the atmosphere upon combustion (Eurostat).

The Paris Agreement, established in 2015, seeks
to limit global warming to 1.5°C above pre-
industrial levels to mitigate severe climate impacts
(Nations). Climate change results in rising sea lev-
els, intensified storms and droughts, and dwindling
sea ice. These effects cascade through ecosystems
and human activities, impacting health, agricul-
ture, and infrastructure (NASA, 2024). To reach
the Paris Agreement’s goal, global emissions must

decrease by 45% by 2030 and reach net-zero by
2050 (Nations). Carbon emissions must be reduced
because they contribute to the greenhouse effect,
which traps heat in the atmosphere and warms the
planet (NRDC, 2023).

2.3 Racial Justice & Climate Change

Climate change affects the entire globe, but some
regions are impacted more. Developing countries,
or LMIC, often face the greatest climate-related
risks and are the least equipped to manage such
events.

For instance, Haiti, which lacks the infrastruc-
ture for adequate disaster preparedness, has faced
great devastation from earthquakes and hurricanes,
where the 2010 earthquake cost $8 billion— more
than the country’s GDP. The population is heavily
reliant on agriculture, but as sea levels rise, saltwa-
ter may permeate farmland and fresh water, leaving
a large portion of the country without a livelihood
(Law, 2019).

Additionally, rising sea levels threaten Kiribati’s
existence, as the country’s islands are only six feet
above sea level. Rising sea levels may contaminate
fresh water supplies and soil, and ocean acidifica-
tion and rising ocean temperatures harm Kiribati’s
vital fishing industry (Law, 2019).

In the face of climate change, equitable climate
resilience is necessary. Environmental destruction
disproportionately harms certain racial, ethnic, and
national groups. Historical abuse and colonialism
have left these communities most vulnerable to and
least equipped to handle such events (Achiume,
2022).

To consider human health specifically, Berbe-
rian et al. (2022) report that U.S. communities
of color, including Black, LatinX, Native Amer-
ican, Pacific Islander, and Asian communities, face
higher risks of climate-related health impacts than
Whites. These disparities manifest in increased
mortality, respiratory and cardiovascular diseases,
mental health issues, and heat-related illnesses. Cli-
mate change exacerbates existing social and eco-
nomic inequalities, compounding racial health dis-
parities in marginalized communities.

2.4 Al & Healthcare in LMIC

Ciecierski-Holmes et al. (2022) write how artifi-
cial intelligence, including LLMs, has the capacity
to improve health systems by supporting and stan-
dardizing clinical judgments and applying health-
care processes with an objective, data-oriented ap-



proach. This power would be particularly benefi-
cial in LMIC, where medical care is often limited,
by improving the efficiency of existing labor and
reducing training needed when expanding the work-
force (Weissglass, 2022). However, the effective
deployment of Al in LMICs faces significant chal-
lenges. Ciecierski-Holmes et al. (2022) reference
how training data from LMIC is limited and may
not be accessible, current, or expansive enough.
Further, in low-resource settings, Al tools are only
effective if they can be used or integrated into the
existing infrastructure. Yet, these low-resource set-
tings may not have the means to support such tools;
for instance, some have no or unstable internet ac-
cess. Al’'s promise in LMIC healthcare hinges on
addressing data gaps, infrastructure hurdles, and
integration challenges.

2.5 Bias in Model Compression

Ramesh et al. (2023) investigate how model com-
pression techniques such as pruning, quantization,
and distillation affect bias in language models. It
explores intrinsic and extrinsic measures of fair-
ness evaluation in language models and identifies
the impact of compression techniques on fairness.

Gongalves and Strubell (2023) study the propa-
gation of social biases and tradeoffs between bias
reduction and efficiency in LLMs, highlighting the
challenges of addressing biases in pretrained mod-
els due to the computational expense of retraining.

3 Data

We use a subset of the AllenAl C4 English dataset.
The AllenAl C4 dataset is a cleaned version of
Common Crawl’s web crawl corpus and is com-
monly used for training NLP models due to its fast
coverage and quality. The C4 English dataset is
305 GB and 364,868,892 entries, consisting of an
entry’s URL, text, and timestamp (for Al, 2024).

Due to memory constraints, we use a small sub-
set of the dataset. As we will discuss later, the
experiment focuses on the act of training, not the
training outcomes themselves, as we limit pretrain-
ing time to 8 hours. The subset was preprocessed
to use only the text with each sentence formatted
to the models’ criteria.

4 Models

Devlin et al. (2019)’s Bidirectional Encoder Repre-
sentations from Transformers (BERT) leverages a

deep multi-layered Transformer encoder with self-
attention to analyze all words in a sentence bidirec-
tionally, capturing richer context compared to uni-
directional models. Pre-training with masked lan-
guage modeling further strengthens BERT’s abil-
ity to understand word relationships and meaning.
The original authors trained BERT-base on 16 TPU
chips for 4 days. In 2019, AWS reportedly trained
BERT-base in 62 minutes on 2,048 32GB V100
GPUs (Bindal et al., 2019).

Sanh et al. (2020)’s DistilBERT inherits the core
architecture of BERT but achieves a smaller size
and faster inference by employing knowledge dis-
tillation. This technique trains a smaller "student"
model (DistilBERT) to mimic the outputs of a
larger, pre-trained "teacher" model (BERT). Dis-
tilIBERT achieves this through a combination of a
reduced number of layers and a specialized loss
function that incorporates knowledge distillation
alongside traditional language modeling objectives.
The authors trained DistilBERT for 90 hours on 8
16GB V100 GPUs.

Lan et al. (2020)’s ALBERT builds upon BERT’s
architecture, maintaining strong performance, but
reduces parameters and training time via two key
modifications. First, ALBERT employs a fac-
torized parameterization technique, which breaks
down the self-attention mechanism into smaller,
more manageable components. Second, ALBERT
uses a cross-layer parameter sharing, where the
weights of specific layers are shared across the
entire encoder. AWS reportedly trained ALBERT-
base in 20 hours on 64 32GB V100 GPUs, or in
39 hours on 64 16GB V100 GPUs (Nielsen et al.,
2020).

5 Method

We assess the models’ environmental impacts by
quantifying their total carbon and financial costs
from training. Our process and calculations are
adapted from Strubell et al. (2019).

We pre-train the previously referenced models,
BERT-base, DistilBERT, and ALBERT, using “out-
of-box,” default settings for a set period. Each
model was trained for 8 hours on 1 32GB V100
GPU. While training, we repeatedly query for GPU
power draw in watts using nvidia-smi. nvidia-smi
reports the last measured power-draw for the en-
tire board, which includes the GPU chip, memory
modules, power delivery circuitry, cooling solu-
tion, connectors, and supporting components, and



Model Hardware Ngpu  t (hours) Pgpu Protalpower Cco, (1bs) Ctin
BERT-base 32GB V100 GPU 2048 1.03333 0.268854 898.968 770.416 6722.67
DistilBERT 16GB V100 GPU 8 90 0.154449 175.701 150.576  2349.6
ALBERT 16GB V100 GPU 64 39 0.198559 783.054 671.077 8145.28
ALBERT 32GB V100 GPU 64 20 0.198559 401.566 344.142 4066.13

Table 1: Estimated carbon and financial costs of complete training for three models. Listed hardware, ¢, and ngpu
are derived from instances of complete training. pg,,, is calculated from experiments run on 1 32GBV100 GPU.

is accurate within +/- 5 watts?.

After training, we estimate the total power draw,
in kilowatt-hours (kWh), of training each model
P to completion using our experimental average
power draws and the training specifications re-
ported in instances of complete training. The ex-
perimental average GPU power-draw in kilowatts
(kW), pg, is derived from the data points collected
using nvidia-smi during training. We multiply this
value by the global PUE coefficient e and the hours
t and number of GPUs n,, reported in instances of
complete training. The PUE coefficient measures
data center efficiency, where 1.0 is the ideal, indi-
cating that all energy consumed by the data center
is used to power computing devices. Energy used
for non-computing components, such as lighting
and cooling, increases PUE above 1.0. The 2023
global average PUE is 1.58 (Bizo, 2023).

P=expgxXnguXxt

After calculating the total power P consumed in
training each model, we can convert it to pounds
of carbon dioxide Czpo. For each kWh of elec-
tricity generated in the U.S., an average of 0.857
pounds of CO?2 is released at the power plant (Cen-
ter for Sustainable Systems, University of Michi-
gan, 2023). So, we calculate Ccp9 as follows.

Cco2 = P x 0.857

Then, we can estimate the financial cost of train-
ing each model using cloud computing resources,
C'tinancial- We approximate the average hourly
compute cost Cjoyq 0f one 16GB or 32GB V100
GPU across three major cloud providers: AWS,
Google Cloud Platform, and Microsoft Azure’.
Then, depending on the hardware reported in com-
plete trainings, we calculate the financial cost using

ZSource: https://developer.download.nvidia.com/
compute/DCGM/docs/nvidia-smi-367.38.pdf

3Average Cioug for one 32GB V100 GPU is 3.18, and

average Cliouq for one 16GB V100 GPU is 3.06. Source:
https://www.paperspace.com/gpu-cloud-comparison

the referenced GPU’s hourly rates and the quantity
of GPUs employed n4p,,.

Cfinancial = Ngpu X t X Celoud
6 Results

Table 1 lists the estimated carbon and financial
costs of training the models referenced in 4. Our
experimental average power draw, pg, is derived
from a 32GB V100 GPU, while some instances
of complete training, which contain ng,, and ¢,
were trained on 16GB V100 GPU. We observed
that BERT-base is the most carbon-intensive model,
and DistilBERT is the least.

7 Discussion around contextualizing CO2
emissions

7.1 Carbon Valuation

Existing cap-and-trade systems worldwide attribute
a monetary value to an “allowance” of one metric
tonne of carbon dioxide emissions or the equiva-
lent of other greenhouse gases. This market-driven
approach curtails pollution by establishing an an-
nual ceiling, or "cap," on the greenhouse gas emis-
sions within a given region. Participating enti-
ties are allotted specific carbon allowances, within
which they must confine their emissions. They can
trade surplus allowances via auctions, akin to a
carbon open market. The system’s cap diminishes
annually, directing companies to reduce their car-
bon footprints and invest in cleaner technologies
(Comission).

The European Union’s Emissions Trading Sys-
tem (ETS), the Regional Greenhouse Gas Initiative
(RGQI), and California’s Cap-and-Trade Program
are three implemented Cap-and-Trade programs.
The ETS applies to electricity and heat, energy-
intensive (oil refineries, etc.), aviation, and mar-
itime transport industries in the European Union
(Comission). In 2024, one allowance is traded
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at an average of €89.60 (approximately $95.48)
(Chen, 2023). Less robust, the RGGI applies to
fossil-fuel-fired power generators in the northeast-
ern U.S.*(RGGI, 2024a). In March 2024, one
allowance cleared for an average of $16 (RGGI,
2024b). Additionally, California’s Cap-and-Trade
Program encompasses 80% of the state’s emissions
(CA.gov, 2024). In February 2024, one allowance
was auctioned at an average of $41.76.

With these systematic valuations of carbon emis-
sions, we can examine LL.Ms’ carbon footprints’
costs. In our experiment (see section 6, we es-
timate the financial cost of training the models
on cloud resources, but we do not consider the
financial cost of the emissions produced. Using
the ETS allowance value, emissions from training
the most expensive model, BERT-base, would cost
Cro2 * 95.48 = 33.37. Under RGGI, BERT-base
emissions would cost C.p2 * 16.00 = 5.59. Under
California’s Cap-and-Trade Program, BERT-base
emissions would cost Clp9 * 41.76 = 14.59

So, if LLM developers participated in such Cap-
and-Trade systems, they would have to pay a re-
spective $33.37, $5.59, or $14.59 to account for
their carbon emissions. Imposing Cap-and-Trade
rates could act as a deterrent to inefficient training
or finetuning for LLMs. However, one tonne of car-
bon dioxide is not consistently valued high enough
to provoke a significant change in action. If we
were to train BERT-base in Massachusetts, using
our experimental averages, it would cost $6723 us-
ing cloud resources, and the proposed additional
emissions fee of $5.59 would be merely 0.083% of
the estimated compute cost.

Incorporating a standardized system for assign-
ing prices to tonnes of greenhouse gas emissions
could spur more energy-efficient LLLMs, but this
solution is dependent on how such systems set the
price. Too low of an evaluation would have a negli-
gible impact on LLM development.

7.2 TImpact of LLMs in LMIC

As previously mentioned in Section 2, climate
change is a global crisis, and it disproportionately
affects historically disadvantaged groups. To con-
sider only one aspect, Berberian et al. (2022) de-
scribes how communities of color in the U.S. face
a greater risk of climate-related health impacts than
Whites. To expand internationally, inequalities in
the distribution of basic resources expose the eco-

*CT, ME, MD, MA, NH, NJ, NY, PA, RL, VT

nomically disadvantaged to disability, disease, and
premature death at a higher rate than the wealthy
(Weissglass, 2022). So, there is a need for greater
access to healthcare, and LLMs could be beneficial
tools in labor and resource-lacking environments.
However, implementing such tools faces fundamen-
tal challenges including access to training data and
infrastructure in LMIC.

In the wake of climate change, there is an even
greater need for healthcare in LMIC. LLMs are
a promising solution, but we first must consider
potential side effects.

LLMs are powerful tools, and they require a
lot of power to build them. Our research experi-
ment aims to assess just how much energy is re-
quired in training and to calculate the subsequent
carbon emissions. These greenhouse gas emissions
contribute to climate change, which in turn harms
LMIC. To justify the carbon-cost of training, the
LLMs produced must be usable and beneficial to
their users.

Thus, compressed, more efficient models are
preferred when developers aim to limit emissions.
However, such compression techniques may intro-
duce bias in LLMs (Ramesh et al., 2023). By chas-
ing efficient models, we risk deploying biased tools
in disadvantaged communities that have already
been systematically subjected to and damaged by
societal prejudices and biases. To this, we pose but
do not answer the question: is poor help better than
no help?

To limit contributions to climate change, LLMs
must be built with energy, and therefore carbon, ef-
ficiency in mind. However, we warn against tunnel
vision in pursuing this metric, as an efficient model
will have no use in a setting that cannot support
basic technology, and a biased yet efficient model
may have a greater capacity for harm than good.

8 Conclusion

In our experiment, we propose a method for calcu-
lating the carbon impact of training BERT-based
LLMs.

Recently, there have been greater efforts for
transparency and reporting on the carbon impacts
of LLMs and other computer science applica-
tions in the industry. Researchers more frequently
report their pretraining carbon emissions (Meta,
2024; Luccioni et al., 2022). Further, major cloud
providers include an account’s carbon emissions in-
sights (AWS, 2024; Microsoft, 2024; Cloud, 2024).



Model Hardware Ngpu t (hours) Pgpu Protatpower Cco, (1bs) Ctin
BERT-base 32GB V100 GPU 1 8 0.268854 3.39832 291236 25.4133
DistilBERT 16GB V100 GPU 1 0.154449 1.95223 1.67307 26.1067
ALBERT 16GB V100 GPU 1 8 0.198559 2.50979 2.15089 26.1067
ALBERT 32GB V100 GPU 1 8 0.198559 2.50979 2.15089 25.4133

Table 2: Estimated carbon and financial costs of experimental training for three models. Our experiments were run
for 8 hours on 1 32GB V100 GPU. Costs were calculated as described in Section 5.

However, industry leaders like OpenAl still do not
report their carbon emissions and overall lack trans-
parency in their models (de Bolle, 2024).

While the community is moving in the right di-
rection, the lack of transparency in company emis-
sions leads to a lack of accountability. We em-
phasize the need for regulations to mandate emis-
sions reporting and, ideally, limit it. As industry
researchers compete to build the best LLMs, mod-
els are growing in size, and their energy use follows
(Sundberg, 2023).

The National Institute of Standards and Technol-
ogy’s Al Risk Management Framework outlines
how the environmental impact of Al model train-
ing and management should be assessed and docu-
mented (NIST, 2024). Most radically, we suggest
not only strict enforcement of the NIST Frame-
work, but to enact regulations on researchers’ total
carbon emissions, including any emissions com-
panies claim to have offset. While this aim for
transparency regulation and emissions constraints
may be extreme, the sentiment is a core value.

Climate change is a global crisis that dispropor-
tionately affects disadvantaged groups, both within
the U.S. and internationally. We assess LLMs’ cli-
mate impact with the understanding that not all
people are affected equally. This problem is com-
plex and highly interdisciplinary; merely building
"green" models will not help LMICs that lack basic
resources. To truly benefit disadvantaged commu-
nities, LLMs must be developed with carbon effi-
ciency, fairness, and context in mind, avoiding the
pitfalls of deploying biased models. LLMs are pow-
erful tools, but many communities are not equipped
to use them, rendering these tools powerless.

In tandem with promoting efficiency, trans-
parency, and accountability, we emphasize the ne-
cessity of reflection and careful evaluation in devel-
oping LLMs. Developing and finetuning LLMs to
serve unclear purposes will contribute to climate

change, while the model may sit unused. LLMs are
powerful tools with a great capacity for good, but
aimless, expensive development should not become
commonplace.

9 Ethics Statement

We acknowledge that our experiments are not ex-
empt from carbon emissions. So, we report the
carbon and financial costs of our 8-hour experimen-
tal trainings (Table 2) to promote transparency and
accountability.

10 Limitations

We were constrained by GPU memory and uptime
while obtaining our experimental average power
draws. The original models were trained on far
larger datasets, which may impact energy usage.
Further, we were unable to record the CPU and
dynamic random access memory (DRAM) statis-
tics, which contribute to overall power usage, so
our estimated power consumption is incomplete.

11 Future Work

Research could be expanded to consider additional
power metrics, models, and hardware. Our experi-
ment calculates carbon cost based solely on GPU
power draw, but including CPU and DRAM statis-
tics would provide a more comprehensive energy
analysis. This experiment focuses only on BERT-
based models, but we could include newer LLMs
with different architectures. Additionally, we could
explore differences in hardware, such as TPUs and
A100 GPUs. Finally, we aim to consider the carbon
footprint of downstream training.
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