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ABSTRACT

k-subset sampling is ubiquitous in machine learning, enabling regularization and
interpretability through sparsity. The challenge lies in rendering k-subset sampling
amenable to end-to-end learning. This has typically involved relaxing the reparam-
eterized samples to allow for backpropagation, with the risk of introducing high
bias and high variance. In this work, we fall back to discrete k-subset sampling
on the forward pass. This is coupled with using the gradient with respect to the
exact marginals, computed efficiently, as a proxy for the true gradient. We show
that our gradient estimator, SIMPLE, exhibits lower bias and variance compared to
state-of-the-art estimators, including the straight-through Gumbel estimator when
k = 1. Empirical results show improved performance on learning to explain and
sparse linear regression. We provide an algorithm for computing the exact ELBO
for the k-subset distribution, obtaining significantly lower loss compared to SOTA.

1 INTRODUCTION

k-subset sampling, sampling a subset of size k of n variables, is omnipresent in machine learning. It
lies at the core of many fundamental problems that rely upon learning sparse features representations
of input data, including stochastic high-dimensional data visualization (van der Maaten, 2009),
parametric k-nearest neighbors (Grover et al., 2018), learning to explain (Chen et al., 2018), discrete
variational auto-encoders (Rolfe, 2017), and sparse regression, to name a few. All such tasks involve
optimizing an expectation of an objective function with respect to a latent discrete distribution
parameterized by a neural network, which are often assumed intractable. Score-function estimators
offer a cloyingly simple solution: rewrite the gradient of the expectation as an expectation of the
gradient, which can subsequently be estimated using a finite number of samples offering an unbiased
estimate of the gradient. Simple as it is, score-function estimators suffer from very high variance
which can interfere with training. This provided the impetus for other, low-variance, gradient
estimators, chief among them are those based on the reparameterization trick, which allows for biased,
but low-variance gradient estimates. The reparameterization trick, however, does not allow for a
direct application to discrete distributions thereby prompting continuous relaxations, e.g. Gumbel-
softmax (Jang et al., 2017; Maddison et al., 2017), that allow for reparameterized gradients w.r.t
the parameters of a categorical distribution. Reparameterizable subset sampling (Xie & Ermon,
2019) generalizes the Gumbel-softmax trick to k-subsets which while rendering k-subset sampling
amenable to backpropagation at the cost of introducing bias in the learning by using relaxed samples.

In this paper, we set out with the goal of avoiding all such relaxations. Instead, we fall back to discrete
sampling on the forward pass. On the backward pass, we reparameterize the gradient of the loss
function with respect to the samples as a function of the exact marginals of the k-subset distribution.
Computing the exact conditional marginals is, in general, intractable (Roth, 1996). We give an
efficient algorithm for computing the k-subset probability, and show that the conditional marginals
correspond to partial derivatives, and are therefore tractable for the k-subset distribution. We show
that our proposed gradient estimator for the k-subset distribution, coined SIMPLE, is reminiscent of
the straight-through (ST) Gumbel estimator when k = 1, with the gradients taken with respect to the
unperturbed marginals. We empirically demonstrate that SIMPLE exhibits lower bias and variance
compared to other known gradient estimators, including the ST Gumbel estimator in the case k = 1.

*These authors contributed equally to this work.

1



Published as a conference paper at ICLR 2023

Exact SoftSub IMLE SFE SIMPLE-FSIMPLE-B SIMPLE
0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15Bias
Variance

Exact SoftSub IMLE SFE SIMPLE-F SIMPLE-B SIMPLE
0.00

0.25

0.50

0.75

1.00

1.25

Figure 1: A comparison of the bias and variance of the gradient estimators (left) and the average and
standard deviation of the cosine distance of a single-sample gradient estimate to the exact gradient.
We used the cosine distance, defined as (1− cosine similarity), in place of the euclidean distance as
we only care about the direction of the gradient, not magnitude. The bias, variance and error were
estimated using a sample of size 10,000. The details of this experiment are provided in Section 5.1.

We include an experiment on the task of learning to explain (L2X) using the BEERADVOCATE
dataset (McAuley et al., 2012), where the goal is to select the subset of words that best explains the
model’s classification of a user’s review. We also include an experiment on the task of stochastic
sparse linear regression, where the goal is to learn the best sparse model, and show that we are able to
recover the Kuramoto–Sivashinsky equation. Finally, we develop an efficient computation for the
calculation of the exact variational evidence lower bound (ELBO) for the k-subset distribution, which
when used in conjunction with SIMPLE leads to state-of-the-art discrete sparse VAE learning.

Contributions. In summary, we propose replacing relaxed sampling on the forward pass with
discrete sampling. On the backward pass, we use the gradient with respect to the exact conditional
marginals as a proxy for the true gradient, giving an algorithm for computing them efficiently. We
empirically demonstrate that discrete samples on the forward pass, coupled with exact conditional
marginals on the backward pass leads to a new gradient estimator, SIMPLE, with lower bias and
variance compared to other known gradient estimators. We also provide an efficient computation of
the exact ELBO for the k-subset distribution, leading to state-of-the-art discrete sparse VAE learning.

2 PROBLEM STATEMENT AND MOTIVATION

We consider models described by the equations
θ = hv(x), z ∼ pθ(z |

∑
i zi = k), ŷ = fu(z,x), (1)

where x ∈ X and ŷ ∈ Y denote feature inputs and target outputs, respectively, hv : X → Θ and
fu : Z × X → Y are smooth, parameterized maps and θ are logits inducing a distribution over the
latent binary vector z. The induced distribution pθ(z) is defined as

pθ(z) =

n∏
i=1

pθi(zi), with pθi(zi = 1) = sigmoid(θi) and pθi(zi = 0) = 1− sigmoid(θi). (2)

The goal of our stochastic latent layer is not to simply sample from pθ(z), which would yield samples
with a Hamming weight between 0 and n (i.e., with an arbitrary number of ones). Instead, we are
interested in sampling from the distribution restricted to samples with a Hamming weight of k, for any
given k. That is, we are interested in sampling from the conditional distribution pθ(z |

∑
i zi = k).

Conditioning the distribution pθ(z) on this k-subset constraint introduces intricate dependencies
between each of the zi’s. The probability of sampling any given k-subset vector z, therefore, becomes

pθ(z |
∑

i zi = k) = pθ(z)/pθ(
∑

i zi = k) · J
∑

i zi = kK
where J·K denotes the indicator function. In other words, the probability of sampling each k-subset is
re-normalized by pθ (

∑
i zi = k) – the probability of sampling exactly k items from the unconstrained

distribution induced by encoder hv . The quantity pθ(
∑

i zi = k) =
∑

z pθ (z) · J
∑

i zi = kK appears
to be intractable. We show that not to be the case, providing a tractable algorithm for computing it.

Given a set of samples D, we are concerned with learning the parameters ω = (v,u) of the
architecture in (1) through minimizing the training error L, which is the expected loss:

L(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)] with θ = hv(x), (3)
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Figure 2: The problem setting considered in our paper. On the forward pass, a neural network hv

outputs θ parameterizing a discrete distribution over subsets of size k of n items, i.e., the k-subset
distribution. We sample exactly, and efficiently, from this distribution, and feed the samples to a
downstream neural network. On the backward pass, we approximate the true gradient by the product
of the derivative of marginals and the gradient of the sample-wise loss.

TASK MAP hv MAP fu LOSS ℓ

Discrete VAE (Sec. 5.2) Encoder Decoder ELBO
Learn To Explain (Sec. 5.3) Embedding Regression RMSE
Sparse Regression (Sec. 5.4) Identity Linear Regression RMSE

Table 1: Architectures of the three experiment settings.

where ℓ : Y ×Y → R+ is a point-wise
loss function. This formulation, illus-
trated in Figure 2, is general and sub-
sumes many settings. Different choices
of mappings hv and fu, and sample-
wise loss ℓ define various tasks. Table 1
presents some example settings used in
our experimental evaluation.

Learning then requires computing the gradient of L w.r.t. ω = (v,u). The gradient of L w.r.t. u is

∇uL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)], (4)

where ŷ = fu(z,x) is the decoding of a latent sample z. Furthermore, the gradient of L w.r.t. v is

∇vL(x,y;ω) = ∂vhv(x)
⊤∇θL(x,y;ω), (5)

where ∇θL(x,y;ω) := ∇θEz∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)], the loss’ gradient w.r.t. the encoder.

One challenge lies in computing the expectation in (3) and (4), which has no known closed-form
solution. This necessitates a Monte-Carlo estimate through sampling from pθ(z |

∑
i zi = k).

A second, and perhaps more substantial hurdle lies in computing ∇θL(x,y;ω) in (5) due to the
non-differentiable nature of discrete sampling. One could rewrite ∇θL(x,y;ω) as

∇θL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)∇θ log pθ (z |
∑

i zi = k)]

which is known as the REINFORCE estimator (Williams, 1992), or the score function estimator
(SFE). It is typically avoided due to its notoriously high variance, despite its apparent simplicity.
Instead, typical approaches (Xie & Ermon, 2019; Plötz & Roth, 2018) reparameterize the samples as
a deterministic transformation of the parameters, and some independent standard Gumbel noise, and
relaxing the deterministic transformation, the top-k function in this case, to allow for backpropagation.

3 SIMPLE: SUBSET IMPLICIT LIKELIHOOD ESTIMATION

Our goal is to build a gradient estimator for ∇θL(x,y;ω). We start by envisioning a hypothetical
sampling-free architecture, where the downstream neural network fu is a function of the marginals,
µ := µ(θ) := {pθ(zj |

∑
i zi = k)}nj=1, instead of a discrete sample z, resulting in a loss Lm s.t.

∇θLm(x,y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y). (6)

When the marginals µ(θ) can be efficiently computed and differentiated, such a hypothetical pipeline
can be trained end-to-end. Furthermore, Domke (2010) observed that, for an arbitrary loss function
ℓm defined on the marginals, the Jacobian of the marginals w.r.t. the logits is symmetric, i.e.

∇θLm(x,y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y) = ∂θµ(θ)∇µℓm(fu(µ,x),y). (7)

Consequently, computing the gradient of the loss w.r.t. the logits, ∇θLm(x,y;ω), reduces to
computing the directional derivative, or the Jacobian-vector product, of the marginals w.r.t. the
logits in the direction of the gradient of the loss. This offers an alluring opportunity: the conditional
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Algorithm 1 PrExactlyk(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: pθ(
∑

i zi = k)

// a[i, j] = pθ(
∑i

m=1 zm = j) for all i, j
initialize a to be 0 everywhere
a[0, 0] = 1 // pθ(

∑0
m=1 zm = 0) = 1

for i = 1 to n do
for j = 0 to k do

// cf. constructive proof of Prop. 1
a[i, j] = a[i− 1, j] · pθi(zi = 0)

+ a[i− 1, j − 1] · pθi(zi = 1)
return a[n, k]

Algorithm 2 Sample(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: z = (z1, . . . , zn) ∼ pθ(z |
∑

i zi = k)
sample = [ ], j = k
for i = n to 1 do

// cf. proof of Prop. 2
p = a[i− 1, j − 1]
zi ∼ Bernoulli(p · pθi(zi = 1)/a[i, j])

// Pick next state based on value of sample
if zi = 1 then j = j − 1
sample.append(zi)

return sample

marginals characterize the probability of each zi in the sample, and could be thought of as a
differentiable proxy for the samples. Specifically, by reparameterizing z as a function of the
conditional marginal µ under approximation ∂µz ≈ I as proposed by Niepert et al. (2021), and using
the straight-through estimator for the gradient of the sample w.r.t. the marginals on the backward
pass, we approximate our true ∇θL(x,y;ω) as

∇θL(x,y;ω) ≈ ∂θµ(θ)∇zL(x,y;ω), (8)

where the directional derivative of the marginals can be taken along any downstream gradient, render-
ing the whole pipeline end-to-end learnable, even in the presence of non-differentiable sampling.

Now, estimating the gradient of the loss w.r.t. the parameters can be thought of as decomposing into
two sub-problems: (P1) Computing the derivatives of conditional marginals ∂θµ(θ), which requires
the computation of the conditional marginals, and (P2) Computing the gradient of the loss w.r.t. the
samples ∇zL(x,y;ω) using sample-wise loss, which requires drawing exact samples. These two
problems are complicated by conditioning on the k-subset constraint, which introduces intricate
dependencies to the distribution, and is infeasible to solve naively, e.g. by enumeration. We will show
simple, efficient, and exact solutions to each problem, at the heart of which is the insight that we need
not care about the variables’ order, only their sum, introducing symmetries that simplify the problem.

3.1 DERIVATIVES OF CONDITIONAL MARGINALS

In many probabilistic models, marginal inference is #P-hard (Roth, 1996; Zeng et al., 2020). However,
we observe that it is not the case for the k-subset distribution. We notice that the conditional marginals
correspond to the partial derivatives of the log-probability of the k-subset constraint. To see this, note
that the derivative of a multi-linear function with respect to a single variable retains all the terms
referencing that variable, and drops all other terms; this corresponds exactly to the unnormalized
conditional marginals. By taking the derivative of the log-probability, this introduces the k-subset
probability in the denominator, leading to the conditional marginals. Intuitively, the rate of change of
the k-subset probability w.r.t. a variable only depends on that variable through its length-k subsets.
Theorem 1. Let pθ(

∑
j zj = k) be the probability of exactly-k of the unconstrained distribution

parameterized by logits θ. For every variable Zi, its conditional marginal is

pθ

(
zi |

∑
j zj = k

)
=

∂

∂θi
log pθ(

∑
j zj = k). (9)

We refer the reader to the appendix for a detailed proof of the above theorem. To establish the
tractability of the above computation of the conditional marginals, we need to show that the probability
of the exactly-k constraint pθ(

∑
i zi = k) can be obtained tractably, which we demonstrate next.

Proposition 1. The probability pθ (
∑

i zi = k) of sampling exactly k items from the unconstrained
distribution pθ(z) over n items as in Equation 2 can be computed exactly in time O(nk).

Proof. Our proof is constructive. As a base case, consider the probability of sampling k = −1 out of
n = 0 items. We can see that the probability of such an event is 0. As a second base case, consider
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the probability of sampling k = 0 out of n = 0 items. We can see that the probably of such an event
is 1. Now assume that we are given the probability pθ

(∑n−1
i zi = k′

)
, for k′ = 0, . . . , k, and we

are interested in computing pθ (
∑n

i zi = k). By the partition theorem, we can see that

pθ (
∑n

i zi = k) = pθ

(∑n−1
i zi = k

)
· pθn(zn = 0) + pθ

(∑n−1
i zi = k − 1

)
· pθn(zn = 1)

as events
∑n−1

i zi = k and
∑n−1

i zi = k − 1 are disjoint and, for any k, partition the sample space.
Intuitively, for any k and n, we can sample k out of n items by choosing k of n− 1 items, and not
the n-th item, or choosing k − 1 of n− 1 items, and the n-th item. The above process gives rise to
Algorithm 1, which returns pθ (

∑
i zi = k) in time O(nk).

By the construction described above, we obtain a closed-form pθ(
∑n

i zi = k), which allows us to
compute conditional marginals pθ(zi |

∑
j zj = k) by Theorem 1 via auto-differentiation. This

further allows the computation of the derivatives of conditional marginals ∂θµ(θ)i = ∂θ pθ(zi |∑
j zj = k) to be amenable to auto-differentiation, solving problem (P1) exactly and efficiently.

3.2 GRADIENTS OF LOSS W.R.T. SAMPLES

As alluded to in Section 3, we approximate ∇θL(x,y;ω) by the directional derivative of the
marginals along the gradient of the loss w.r.t. discrete samples z, ∇zL(x,y;ω), where z is drawn
from the k-subset distribution pθ(z |

∑
i zi = k). What remains is to estimate the value of the loss,

necessitating faithful sampling from the k-subset distribution, which might initially appear daunting.

Exact k-subset Sampling Next we show how to sample exactly from the k-subset distribution
pθ(z |

∑
i zi = k). We start by sampling the variables in reverse order, that is, we sample zn through

z1. The main intuition being that, having sampled (zn, zn−1, · · · , zi+1) with a Hamming weight of
k − j, we sample Zi with a probability of choosing k − j of n− 1 variables and the n-th variable
given that we choose k − j + 1 of n variables. We formalize our intuition below.
Proposition 2. Let Sample be defined as in Algorithm 2. Given n random variables Z1, · · · , Zn, a
subset size k, and a k-subset distribution pθ(z |

∑
i zi = k) parameterized by log probabilities θ,

Algorithm 2 draws exact samples from pθ(z |
∑

i zi = k) in time O(n).

Proof. Assume that variables Zn, · · · , Zi+1 are sampled and have their values to be zn, · · · , zi+1

with
∑n

m=i+1 zm = k − j. By Algorithm 2 we have that the probability with which to sample Zi is

pSample(zi = 1 | zn, · · · , zi+1) =
pθ(

∑n
m=i zm = k − j + 1 |

∑
m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

=
pθ(

∑n
m=i+1 zm = k − j | zi = 1,

∑
m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

= pθ(zi = 1 |
∑n

m=i+1 zm = k − j,
∑

m zm = k) (by Bayes’ theorem)

It follows that samples drawn from Algorithm 2 are distributed according to pθ(z |
∑

i zi = k).

4 CONNECTION TO STRAIGHT-THROUGH GUMBEL-SOFTMAX

One might wonder if our gradient estimator reduces to the Straight-Through (ST) Gumbel-Softmax
estimator, or relates to it in any way when k = 1. On the forward pass, the ST Gumbel Softmax
estimator makes use of the Gumbel-Max trick (Maddison et al., 2014), which states that we can
efficiently sample from a categorical distribution by perturbing each of the logits with standard
Gumbel noise, and taking the MAP, or more formally z = OneHot(argmaxi∈{1,...,k} θi + gi) ∼ pθ
where the gi’s are i.i.d Gumbel(0, 1) samples, and OneHot encodes the sample as a binary vector.

Since argmax is non-differentiable, Gumbel-Softmax uses the perturbed relaxed samples, y =
Softmax(θ+gi) as a proxy for discrete samples z on the backward pass, using differentiable Softmax
in place of the non-differentiable argmax, with the entire function returning (z − y).detach() + y
where detach ensures that the gradient flows only through the relaxed samples on the backward pass.
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Algorithm 3 The proposed algorithm for the k-subset distribution

function FORWARDPASS(θ)
// pθ(

∑i
m=1 zm = j) for all i, j

a = PrExactlyk(θ, n, k)
// Sample from pθ(z |

∑
i zi = k)

z = Sample(θ, n, k)
save a for the backward pass
return z

function BACKWARDPASS(∇zℓ(fu(z,x),y))
load θ from the forward pass
// derivatives of pθ(z |

∑
i zi = k)

µ = ∇θ log a[n, k] // by auto-diff
// Return the directional derivative of the
// marginals along the downstream gradients
return JVP(µ,∇zℓ(fu(z,x))

Exact ST Gumbel Softmax SIMPLE
0.00
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0.125Bias
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Figure 3: Bias and variance of SIMPLE
and Gumbel Softmax over 10k samples

That is, just like SIMPLE, ST Gumbel-Softmax returns
exact, discrete samples. However, whereas SIMPLE back-
propagates through the exact marginals, ST Gumbel Soft-
max backpropagates through the perturbed marginals that
result from applying the Gumbel-max trick. As can be seen
in Figure 3, such a minor difference means that, empiri-
cally, SIMPLE exhibits lower bias and variance compared
to ST Gumbel Softmax while being exactly as efficient.

5 EXPERIMENTS

We conduct experiments on four different tasks: 1) A synthetic experiment designed to test the bias
and variance, as well as the average deviation of SIMPLE compared to a variety of well-established
estimators in the literature. 2) A discrete k-subset Variational Auto-Encoder (DVAE) setting, where
the latent space models a probability distribution over k-subsets. We will show that we can compute
the evidence lower bound (ELBO) exactly, and that, coupled with exact sampling and our SIMPLE
gradient estimator, we attain a much lower loss compared to state of the art in sparse DVAEs. 3) The
learning to explain (L2X) setting, where the aim is to select the k-subset of words that best describe
the classifier’s prediction, where we show an improved mean-squared error, as well as precision,
across the board. 4) A novel, yet simple task, sparse linear regression, where, in a vein similar to
L2X, we wish to select a k-subset of features that give rise to a linear regression model, avoiding
overfitting the spurious features present in the data. Table 1 details the architecture with the objective
functions. Our code will be made publicly available at github.com/UCLA-StarAI/SIMPLE.

5.1 SYNTHETIC EXPERIMENTS

We carried out a series of experiments with a 5-subset distribution, and a latent space of dimension 10.
We set the loss to L(θ) = Ez∼pθ(z|

∑
i zi=k)[∥z − b∥2], where b is the groundtruth logits sampled

from N (0, I). Such a distribution is tractable: we only have
(
10
5

)
= 252 k-subsets, which are easily

enumerable and therefore, the exact gradient, the golden standard, can be computed in closed form.

In this experiment, we are interested in three metrics: bias, variance, and the average error of each
gradient estimator, where the latter is measured by averaging the deviation of each single-sample
gradient estimate from the exact gradient. We used the cosine distance, defined as 1− cosine similarity
as the measure of deviation in our calculation of the metrics above, as we only care about direction.

We compare against four different baselines: exact, which denotes the exact gradient; SoftSub (Xie &
Ermon, 2019), which uses an extension of the Gumbel-Softmax trick to sample relaxed k-subsets on
the forward pass; I-MLE, which denotes the IMLE gradient estimator (Niepert et al., 2021), where
approximate samples are obtained using perturb-and-map (PAM) on the forward pass, approximating
the marginals using PAM samples on the backward pass; and score function estimator, denoted SFE.

We tease apart SIMPLE’s improvements by comparing three different flavors: SIMPLE-F, which only
uses exact sampling, falling back to estimating the marginals using exact samples; SIMPLE-B, which
uses exact marginals on the backward pass with approximate PAM samples on the forward pass; and
SIMPLE, coupling exact samples on the forward pass with exact marginals on the backward pass.

6

https://github.com/UCLA-StarAI/SIMPLE


Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Epochs

175

200

225

250

EL
BO

Discrete 10-Subset VAE

SoG I-MLE
Gumbel I-MLE
SIMPLE

0 20 40 60 80 100
Epochs

240

260

EL
BO

Discrete 1-Subset VAE
Gumbel Softmax
SIMPLE

Figure 4: ELBO against # of epochs. (Left) Comparison of SIM-
PLE against different flavors of IMLE on the 10-subset DVAE,
and (Right) against ST Gumbel Softmax on the 1-subset DVAE.

Algorithm 4 Entropy(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: H(z) = −Ez∼pθ(z|
∑

i zi=k)[log p(z)]

h = zeros(n, k)
for i = k to n do

for j = 0 to k do
// p(zi |

∑i
m=1 zm = j)

p = a[i− 1, j − 1] ∗ pθi(zi = 1)/a[i, j]
// cf. proof of Prop. 3 in Appendix
h[i, j] = Hb(p) + p ∗ h[i− 1, j]+

(1− p) ∗ h[i− 1, j + 1]

return h

Our results are shown in Figure 1 As expected, we observe that SFE exhibits no bias, but high
variance whereas SoftSub suffers from both bias and variance, due to the Gumbel noise injection
into the samples to make them differentiable. We observe that I-MLE exhibits very high bias, as
well as very low variance. This can be attributed to the PAM sampling, which in the case of k-subset
distribution does not sample faithfully from the distribution, but is instead biased to sampling only the
mode of the distribution. This also means that, by approximating the marginals using PAM samples,
there is a lot less variance to our gradients. On to our SIMPLE gradient estimator, we see that it
exhibits less bias as well as less variance compared to all the other gradient estimators. We also see
that each estimated gradient is, on average, much more aligned with the exact gradient. To understand
why that is, we compare SIMPLE, SIMPLE-F, and SIMPLE-B. As hypothesized, we observe that exact
sampling, SIMPLE-F, reduces the bias, but increases the variance compared to I-MLE, this is since,
unlike the PAM samples, our exact sample span the entire sample space.We also observe that, even
compared to I-MLE, SIMPLE-B, reduces the variance by marginalizing over all possible samples.

5.2 DISCRETE VARIATIONAL AUTO-ENCODER

Next, we test our SIMPLE gradient estimator in the k-subset discrete variational auto-encoder
(DVAE) setting, where the latent variables model a probability distribution over k-subsets, and has a
dimensionality of 20. Similar to prior work (Jang et al., 2017; Niepert et al., 2021), the encoding and
decoding functions of the VAE consist of three dense layers (encoding: 512-256-20x20; decoding:
256-512-784). The DVAE is trained to minimize the sum of reconstruction loss and KL-divergence of
the k-subset distribution and the constrained uniform distribution, known as the ELBO, on MNIST.

In prior work, the KL-divergence was approximated using the unconditional marginals, obtained
simply through a Softmax layer. Instead we show that the KL-divergence between the k-subset distri-
bution and the uniform distribution can be computed exactly. First note that, through simple algebraic
manipulations, the KL-divergence between the k-subset distribution and the constrained uniform dis-
tribution can be rewritten as the sum of negative entropy, −H(z), where z ∼ pθ (z |

∑
i zi = k) and

log the number of k-subsets, log
(
n
k

)
(see appendix for details), reducing the hardness of computing

the KL-divergence, to computing the entropy of a k-subset distribution, for which Algorithm 4 gives
a tractable algorithm. Intuitively, the uncertainty in the distribution over a sequence of length n, k of
which are true, decomposes as the uncertainty over Zn, and the average of the uncertainties over the
remainder of the sequence. We refer the reader to the appendix for the proof of the below proposition.
Proposition 3. Let Entropy be defined as in Algorithm 4. Given variables, Z1, · · · , Zn, and a
k-subset distribution pθ(z |

∑
i zi = k), Algorithm 4 computes entropy of pθ (z |

∑
i zi = k).

We plot the loss ELBO against the number of epochs, as seen in Figure 4. We compared against
I-MLE using sum-of-gamma noise as well as Gumbel noise for PAM sampling, on the 10-subset
DVAE, and against ST Gumbel Softmax on the 1-subset DVAE. We observe a significantly lower loss
on the test set on the 10-subset DVAE, partly attributable to the exact ELBO computation, but also on
the 1-subset DVAE compared to ST Gumbel Softmax, where the sole difference is the backward pass.

5.3 LEARNING TO EXPLAIN

The BEERADVOCATE dataset (McAuley et al., 2012) consists of free-text reviews and ratings for
4 different aspects of beer: appearance, aroma, palate, and taste. The training set has 80k reviews
for the aspect APPEARANCE and 70k reviews for all other aspects. In addition to the ratings for all
reviews, each sentence in the test set contains annotations of the words that best describe the review

7
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Method Appearance Palate Taste

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.35 ± 0.28 66.81 ± 7.56 2.68 ± 0.06 44.78 ± 2.75 2.11 ± 0.02 42.31 ± 0.61
L2X (t = 0.1) 10.70 ± 4.82 30.02 ± 15.82 6.70 ± 0.63 50.39 ± 13.58 6.92 ± 1.61 32.23 ± 4.92

SoftSub (t = 0.5) 2.48 ± 0.10 52.86 ± 7.08 2.94 ± 0.08 39.17 ± 3.17 2.18 ± 0.10 41.98 ± 1.42
I-MLE (τ = 30) 2.51 ± 0.05 65.47 ± 4.95 2.96 ± 0.04 40.73 ± 3.15 2.38 ± 0.04 41.38 ± 1.55

Table 2: Results for three aspects with k = 10: test MSE and subset precision, both ×100

Method k = 5 k = 10 k = 15

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.27 ± 0.05 57.30 ± 3.04 2.23 ± 0.03 47.17 ± 2.11 3.20 ± 0.04 53.18 ± 1.09
L2X (t = 0.1) 5.75 ± 0.30 33.63 ± 6.91 6.68 ± 1.08 26.65 ± 9.39 7.71 ± 0.64 23.49 ± 10.93

SoftSub (t = 0.5) 2.57 ± 0.12 54.06 ± 6.29 2.67 ± 0.14 44.44 ± 2.27 2.52 ± 0.07 37.78 ± 1.71
I-MLE (τ = 30) 2.62 ± 0.05 54.76 ± 2.50 2.71 ± 0.10 47.98 ± 2.26 2.91 ± 0.18 39.56 ± 2.07

Table 3: Results for aspect Aroma: test MSE and subset precision, both ×100, for k ∈ {5, 10, 15}.

score with respect to the various aspects. We address the problem introduced by the L2X paper (Chen
et al., 2018) of learning a k-subset distribution over words that best explain a given rating. We follow
the architecture suggested in the L2X paper, consisting of four convolutional and one dense layer.

We compare to relaxation-based baselines L2X (Chen et al., 2018) and SoftSub (Xie & Ermon, 2019)
as well as to I-MLE which uses perturb-and-MAP to both compute an approximate sample in the
forward pass and to estimate the marginals. Prior work has shown that the straight-through estimator
(STE) did not work well and we omit it here. We used the standard hyperparameter settings of Chen
et al. (2018) and choose the temperature parameter t ∈ {0.1, 0.5, 1.0, 2.0} for all methods. We used
the standard Adam settings and trained separate models for each aspect using MSE as point-wise loss
ℓ. Table 3 lists results for k ∈ {5, 10, 15} for the AROMA aspect. The mean-squared error (MSE) of
SIMPLE is almost always lower and its subset precision never significantly exceeded by those of the
baselines. Table 2 shows results on the remaining aspects Appearance, Palate, and Taste for k = 10.

5.4 SPARSE LINEAR REGRESSION

Given a library of feature functions, the task of sparse linear regression aims to learn from data which
feature subset best describes the nonlinear partial differential equation (PDE) that the data are sampled
from. We propose to tackle this task by learning a k-subset distribution over the feature functions.
During learning, we first sample from the k-subset distribution to decide which feature function
subset to choose. With k chosen features, we perform linear regression to learn the coefficients of the
features from data, and then update the k-subset distribution logit parameters by minimizing RMSE.

To test our proposed approach, we follow the experimental setting in PySINDy (de Silva et al.,
2020; Kaptanoglu et al., 2022) and use the dataset collected by PySINDy where the samples are
collected from the Kuramoto–Sivashinsky (KS) equation, a fourth-order nonlinear PDE known for its
chaotic behavior. This PDE takes the form vt = −vxx − vxxxx − vvx, which can be seen as a linear
combination of feature functions V = {vxx, vxxxx, vvx} with the coefficients all set to a value of −1.
At test time, we use the MAP estimation of the learned k-subset distribution to choose the k feature
functions. For k = 3, our proposed method achieves the same performance as the state-of-the-art
solver on this task, PySINDy. It identifies the KS PDE from data by choosing exactly the ground
truth feature function subset V , obtaining an RMSE of 0.00622 after applying linear regression on V .

6 COMPLEXITY ANALYSIS

In Proposition 1, we prove that computing the marginal probability of the exactly-k constraint can be
done tractably in time O(nk). In the context of deep learning, we often care about vectorized com-
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plexity. We demonstrate an optimized algorithm achieving a vectorized complexity O(log k log n),
assuming perfect parallelization. The optimization is possible by computing the marginal probability
in a divide-and-conquer way: it partitions the variables into two subsets and compute their marginals
respectively such that the complexity O(n) is reduced to O(log n); the summation over the k terms
also has its complexity reduced to O(log k) in a similar manner. We refer the readers to Algorithm 5
in Appendix for the optimized algorithm. We further modify Algorithm 2 to perform divide-and-
conquer such that sampling k-subsets achieves a vectorized complexity being O(log n), shown as
Algorithm 6 in the Appendix. As a comparison, SoftSub (Xie & Ermon, 2019) has its complexity to
be O(nk) due to the relaxed top-k operation and its vectorized complexity to be O(k log n) stemming
from the fact that softmax layers need O(log n) rounds of communication for normalization.

7 RELATED WORK

There is a large body of work on gradient estimation for categorical random variables. Maddison et al.
(2017); Jang et al. (2017) propose the Gumbel-softmax distribution (named the concrete distribution
by the former) to relax categorical random variables. For more complex distributions, such as the
k-subset distribution which we are concerned with in this paper, existing approaches either use the
straight-through and score function estimators or propose tailor-made relaxations (see for instance
Kim et al. (2016); Chen et al. (2018); Grover et al. (2018)). We directly compare to the score function
and straight-through estimator as well as the tailored relaxations of Chen et al. (2018); Grover et al.
(2018) and show that we are competitive and obtain a lower bias and/or variance than these other
estimators. Tucker et al. (2017); Grathwohl et al. (2018) develop parameterized control variates
based on continuous relaxations for the score-function estimator. Lastly, Paulus et al. (2020) offers a
comprehensible work on relaxed gradient estimators, deriving several extensions of the softmax trick.
All of the above works, ours included, assume the independence of the selected items, beyond there
being k of them. That is with the exception of Paulus et al. (2020) which make use of a relaxation
using pairwise embeddings, but do not make their code available. We leave that to future work.

A related line of work has developed and analyzed sparse variants of the softmax function, motivated
by their potential computational and statistical advantages. Representative examples are Blondel et al.
(2020a); Peters et al. (2019); Correia et al. (2019); Martins & Astudillo (2016). SparseMAP (Niculae
et al., 2018) has been proposed in the context of structured prediction and latent variable models,
also replacing the softmax with a sparser distribution. LP-SparseMAP (Niculae & Martins, 2020) is
an extension that uses a relaxation of the optimization problem rather than a MAP solver. Sparsity
can also be exploited for efficient marginal inference in latent variable models (Correia et al., 2020).
Contrary to our work, they cannot control the sparsity level exactly through a k-subset constraint or
guarantee a sparse output. Also, we aim at cases where samples in the forward pass are required.

Integrating specialized discrete algorithms into neural networks is a line of research with increasing
popularity. Examples are sorting algorithms (Cuturi et al., 2019; Blondel et al., 2020b; Grover
et al., 2018), ranking (Rolinek et al., 2020; Kool et al., 2019), dynamic programming (Mensch &
Blondel, 2018; Corro & Titov, 2019), and solvers for combinatorial optimization problems Berthet
et al. (2020); Rolínek et al. (2020); Shirobokov et al. (2020); Niepert et al. (2021); Minervini et al.
(2023); Zeng et al. or even probabilistic circuits over structured output spaces (Ahmed et al., 2022;
Blondel, 2019). There has also been work on making common programming language expression
such as conditional statements, loops, and indexing differentiable through relaxations (Petersen et al.,
2021). Xie et al. (2020) proposes optimal transport as a way to obtain differentiable sorting methods
for top-k classification. In contrast, we focus on the k-subset sampling problem and provide exact
discrete sampling and marginal inference algorithms, obtaining a gradient estimator for the k-subset
distribution with a favorable bias-variance trade-off.

8 CONCLUSION

We introduced a gradient estimator for the k-subset distribution which replaces relaxed and approxi-
mate sampling on the forward pass with exact sampling. It sidesteps the non-differentiable nature of
discrete sampling by estimating the gradients as a function of our distribution’s marginals, for which
we prove a simple characterization, showing that we can compute them exactly and efficiently. We
demonstrated improved empirical results on a number of tasks: L2X, DVAEs, and sparse regression.
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A PROOFS

Proposition 2. Let pθ(
∑

i zi = k) be the probability of exactlty-k of the unconstrained distribution
parameterized by log probabilities θ. For every Zi, the conditional marginal is

pθ

(
zi |

∑
j zj = k

)
=

∂

∂θi
log pθ(

∑
j zj = k). (10)

Proof. We first rewrite the marginal pθ(
∑

i zi = k) into a summation as the probability for all
possible events by definition as follows.

pθ(
∑

j zj = k) =
∑

z:
∑

j zj=k

∏
j:zj=1 exp(θj)

∏
j:zj=0(1− exp(θ̄j)) (11)

Here we assume that the probability of zj = 0 is a constant term w.r.t. parameter θj , i.e., ∂
∂θj

(1−
exp(θ̄j)) = 0.* Further, the derivative of pθ(

∑
j zj = k) w.r.t. θi is as follows,

∂

∂θi
pθ(

∑
j zj = k) =

∂

∂θi

∑
z:
∑

j zj=k∧zi=1

∏
j:zj=1

exp(θj)
∏

j:zj=0

(1− exp(θ̄j))

=
∂

∂θi
exp(θi)

∑
z:
∑

j zj=k∧zi=1

∏
j:zj=1,j ̸=i

exp(θj)
∏

j:zj=0

(1− exp(θ̄j))

= exp(θi)
∑

z:
∑

j zj=k∧zi=1

∏
j:zj=1,j ̸=i

exp(θj)
∏

j:zj=0

(1− exp(θ̄j))

= pθ(
∑

j zj = k ∧ zi = 1),

where the first equality holds since terms corresponding to zi ̸= 1 has their derivative to be zero w.r.t.
θi. It further holds that

∂

∂θi
log pθ(

∑
j zj = k) =

∂
∂θi

pθ(
∑

j zj = k)

pθ(
∑

j zj = k)

=
pθ(

∑
j zj = k ∧ zi = 1)

pθ(
∑

j zj = k)

= pθ

(
zi |

∑
j zj = k

)
which finishes our proof.

Proposition 3. Let Entropy be defined as in Algorithm 4. Given variables Z1, · · · , Zn and a
k-subset distribution pθ(z |

∑
i zi = k) parameterized by θ, Algorithm 4 computes entropy of

pθ (z |
∑

i zi = k).

Proof. In a slight abuse of notation, let zn denote zn = 1, and let z̄n denote zn = 0. Furthermore,
we denote by σk

n, σ
k
n−1 and σk−1

n−1 the events
∑n

i=0 = k,
∑n−1

i=0 = k and
∑n−1

i=0 = k−1, respectively.

The entropy of the k-subset distribution is given by

H(Z) = −Ez∼pθ(z|σk
n)

[log p(z)] = −
∑
z:σk

n

pθ(z | σk
n) log pθ(z | σk

n)

We start by simplifying the expression for pθ(z | σk
n), where, by the chain rule , the above is∑

z:σk
n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) + pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)

*In practice, this can be easily implemented. For example, in framework Tensorflow, it can be done by
setting tf.stop_gradients.
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Plugging the above in the expression for the entropy, distributing the sum over the product, we get

= −
∑
z:σk

n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n)

· log
[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn)

]
+ pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)

· log
[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn)

]
,

where, since the two events z̄n and zn are mutually exclusive, we can simplify the above to

−
∑
z:σk

n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) · log

[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n)
]

+ pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn) · log

[
pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)
]
.

Expanding the logarithms, rearranging terms, and using that conditional probabilities sum to 1 we get

pθ(z̄n | σk
n) log pθ(z̄n | σk

n) + pθ(zn | σk
n) log pθ(zn | σk

n)

+ pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) log pθ(σ

k
n−1 | σk

n, z̄n)

+ pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn) log pθ(σ

k−1
n−1 | σk

n, zn)

= −Ezn∼pθ(zn|σk
n)

[
− log pθ(zn | σk

n)
]
+ Ezn∼pθ(zn|σk

n)

[
H(Z:n−1|σk

n, zn)
]

= Hb(Zn | σk
n) + Ezn∼pθ(zn|σk

n)

[
H(Z:n−1|σk

n, zn)
]
.

That is, simply stated, the entropy of the k-subset distribution decomposes as the entropy of the
constrained distribution over Zn, and average entropy of the distribution on the remaining variables.

As the base case, the entropy of the k-subset distribution when k = n is 0; there is only one way in
which to pick to choose n of n variables, and the k-subset distribution is therefore deterministic.

B OPTIMIZED ALGORITHMS

Algorithm 5 is the optimized version of Algorithm 1, both of which compute the marginal probability
of the exactly-k constraint. Algorithm 6 is the optimized version of Algorithm 2, both of which
sample faithfully from the k-subset distribution.

Algorithm 5 PrExactlyk(θ, l, u, k)

Input: The logits θ of the distribution, range of
variable indices [l, u], and the subset size k

Output: The exact marginal probability of vari-
ables summing up to k, P (

∑u
i=l Xi = k)

if l > u then return 0
if l = u then return pθ(Xl = k)
for m = 0 to k do
pm = PrExactlyk(θ, l, ⌊u/2⌋,m)∗

PrExactlyk(θ, ⌊u/2⌋+ 1, u, k −m)

return
∑k

m=0 pm

Algorithm 6 Sample(θ, l, u, k)

Input: The logits θ of the distribution, range of
variable indices [l, u], and the subset size k

Output: A sample z = (z1, . . . , zn) from pθ(z |∑
i zi = k)

define p(x = m) = pm, m = 0, · · · , k
// with pm as defined in Algorithm 5
sample m∗ from p
zl:⌊u/2⌋ = Sample(θ, l, ⌊u/2⌋,m∗)
z⌊u/2⌋+1:u = Sample(θ, ⌊u/2⌋+1, u, k−m∗)
return Concat(zl:⌊u/2⌋, z⌊u/2⌋+1:u)

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC EXPERIMENTS

In this experiment we analyzed the behavior of various discrete gradient estimators for the k-subset
distribution. We were interested in three different metrics: the bias of the the gradients estimators,
the variance of the gradient estimators, as well as the average deviation of each estimated gradient
from the exact gradient. We used cosine distance, defined as 1− cosine similarity as our measure of
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distance, as we typically care about the direction, not the magnitude of the gradient; the latter can be
recovered using an appropriate learning rate. Following Niepert et al. (2021), we chose a tractable
5-subset distribution, where n = 10, and were therefore limited to

(
10
5

)
= 252 possible subsets. We

set the loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[∥z − b∥2], where b is the groundtruth logits sampled from
N (0, I). We used a sample size of 10000 to estimate each of our metrics.

C.2 DISCRETE VARIATIONAL AUTO-ENCODER

We tested our SIMPLE gradient estimator in the discrete k-subset Variational Auto-Encoder (VAE)
setting, where the latent variables model a probability distribution over k-subsets, and has a dimen-
sionality of 20. The experimental setup is similar to those used in prior work on the Gumbel softmax
tricks (Jang et al., 2017) and IMLE (Niepert et al., 2021) The encoding and decoding functions of
the VAE consist of three dense layers (encoding: 512-256-20x20; decoding: 256-512-784). As is
commonplace in discrete VAEs, the loss is the sum of the reconstruction loss (binary cross-entropy
loss on output pixels) and KL divergence of the k−subset distribution and the uniform distribution,
known as the evidence lower bound, or the ELBO. The task being to learn a sparse generative model
of MNIST. As in prior work, we use a batch size of 100 and train for 100 epochs, plotting the test
loss after each epoch. We use the standard Adam settings in Tensorflow 2.x, and do not employ
any learning rate scheduling. The encoder network consists of an input layer with dimension 784
(we flatten the images), a dense layer with dimension 512 and ReLu activation, a dense layer with
dimension 256 and ReLu activation, and a dense layer with dimension 400(20× 20) which outputs
θ and no non-linearity SIMPLE takes θ as input and outputs a discrete latent code of size 20× 20.
The decoder network, which takes this discrete latent code as input, consists of a dense layer with
dimension 256 and ReLu activation, a dense layer with dimension 512 and ReLu activation, and
finally a dense layer with dimension 784 returning the logits for the output pixels. Sigmoids are
applied to these logits and the binary cross-entropy loss is computed. To obtain the best performing
model of each of the compared methods, we performed a grid search over the learning rate in the range
[1×10−3, 5×10−4], λ in the range [1×10−3, 1×10−2, 1×10−1, 1×100, 1×101, 1×102, 1×103],
and for SoG I-MLE, the temparature τ in the range [1× 10−1, 1× 100, 1× 101, 1× 102]

We will now present a formal proof on how to compute the KL-divergence between the k-subset
distribution and a uniform distribution tractably and exactly.
Proposition 4. Let pθ (z |

∑
i zi = k) be a k-subset distribution parameterized by θ and U(z) be

a uniform distribution on the constrained space C = {z |
∑

i zi = k}. Then the KL-divergence
between distribution pθ (z |

∑
i zi = k) and U(z) can be computed by

D(pθ(z |
∑
i

zi = k) || U(z)) = −H(z) + log

(
n

k

)
,

where H denote the entropy of distribution pθ (z |
∑

i zi = k).

Proof. By the definition of KL divergence, it holds that

D(pθ(z |
∑
i

zi = k) || U(z))

=
∑
z∈C

pθ(z |
∑
i

zi = k) · log
pθ(z |

∑
i zi = k)

U(z)

= (
∑
z∈C

pθ(z |
∑
i

zi = k) log pθ(z |
∑
i

zi = k))−
∑
z∈C

pθ(z |
∑
i

zi = k) logU(z)

= −H(z) + log

(
n

k

)
.

The last equality holds since U(z) ≡ 1/
(
n
k

)
.

C.3 LEARNING TO EXPLAIN

The BEERADVOCATE dataset (McAuley et al., 2012) consists of free-text reviews and ratings for 4
different aspects of beer: appearance, aroma, palate, and taste. The training set has 80k reviews for
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the aspect APPEARANCE and 70k reviews for all other aspects. The maximum review length is 350
tokens. We follow Niepert et al. (2021) in computing 10 different evenly sized validation/test splits
of the 10k held out set and compute mean and standard deviation over 10 models, each trained on
one split. In addition to the ratings for all reviews, each sentence in the test set contains annotations
of the words that best describe the review score with respect to the various aspects. Following the
experimental setup of recent work (Paulus et al., 2020; Niepert et al., 2021), we address the problem
introduced by the L2X paper (Chen et al., 2018) of learning a k-subset distribution over words that
best explain a given aspect rating. Subset precision was computed using a set of 993 annotated
reviews. We use pre-trained word embeddings from Lei et al. (2016)† We use the standard neural
network architecture from prior work Chen et al. (2018); Paulus et al. (2020) with 4 convolutional
and one dense layer. This neural network outputs the parameters θ of the k-subset distribution over
k-hot binary latent masks with k ∈ {5, 10, 15}. We train for 20 epochs using the standard Adam
settings in Tensorflow 2.x, and no learning rate schedule. We always evaluate the model with the best
validation MSE among the 20 epochs.

†http://people.csail.mit.edu/taolei/beer/.
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