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ABSTRACT

In this paper we present a practical Bayesian self-supervised learning method
with Cyclical Stochastic Gradient Hamiltonian Monte Carlo (cSGHMC). Within
this framework, we place a prior over the parameters of a self-supervised learn-
ing model and use cSGHMC to approximate the high dimensional and multi-
modal posterior distribution over the embeddings. By exploring an expressive
posterior over the embeddings, Bayesian self-supervised learning produces in-
terpretable and diverse representations. Marginalizing over these representations
yields an improvement in performance, calibration and out-of-distribution detec-
tion in downstream task. We provide experimental results on multiple classifi-
cation tasks on five challenging datasets. Moreover, we demonstrate the effec-
tiveness of the proposed method in out-of-distribution detection using the SVHN
dataset.

1 INTRODUCTION

Self-supervised learning is a learning strategy where the data themselves provide the labels (Jing &
Tian (2020)). The aim of self-supervised learning is to learn useful representations of the input data
without relying on human annotations (Zbontar et al. (2021)). Since they do not rely on annotated
data, they have been used as an essential step in many areas such as natural language processing,
computer vision and biomedicine(Jospin et al. (2020)).

Contrastive methods (Chen et al. (2020)) are one of the promising self-supervised learning ap-
proaches which learn representations by maximizing the similarity between embeddings obtained
from different distorted versions of an image (Zbontar et al. (2021)). Several tricks are proposed to
overcome the issue of feature collapse. These include using negative samples in simCLR (Zbontar
et al. (2021)) and stop gradient in BYOL (Grill et al. (2020)).

Self-supervised models are often trained using stochastic optimization methods which approximate
the distribution over the parameters with a point mass ignoring the uncertainty in the parameter
space. Indeed if the regularizer imposed on the model parameters is viewed as the the log of a prior
on the distribution of the parameters, optimizing the cost function may be viewed as a maximum
a-posteriori (MAP) estimate of model parameters (Li et al. (2016)). Bayesian methods provide
principled alternatives that model the whole posterior over the parameters and account for model
uncertainty in the parameter space (Zhang et al. (2020)).

Exact Bayesian learning of Deep Neural Networks is generally intractable, hence Bayesian deep
learning models use approximation methods like variational inference (VI, Blundell et al. (2015))
or MCMC methods (Neal (2012)) to capture the posterior over the parameters and estimate model
uncertainty. While VI methods usually approximate a single mode, MCMC methods are used for
sampling from different modes (Jospin et al. (2020)). In a recent line of work, Stochastic Gradient
Markov Chain Monte Carlo (SG-MCMC) methods (Welling & Teh (2011), Chen et al. (2014), Ma
et al. (2015)) were proposed which couple MCMC with SGD to provide a promising sampling
approach to inference in Bayesian deep learning for large datasets (Welling & Teh (2011)). In
another work, Zhang et al. (2020) proposed Cyclical Stochastic Gradient MCMC (cSG-MCMC) in
order to explore a highly multimodal parameter space given a realistic computational budget (Zhang
et al. (2020)).
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In this paper we aim to adapt Bayesian supervised learning concepts to self-supervised learning to
make a self-supervised learning model fully probabilistic using cSG-MCMC. Our motivation comes
from the fact that the posterior distribution over the parameters of a self-supervised learning model
may be multimodal and thus insufficiently represented by a single point estimate. By exploring the
posterior distribution over the parameters instead of point mass we aim to improve performance in
downstream tasks. Moreover, the optimization step in cSG-MCMC involves injection of Gaussian
noise to the parameter update of SGD which helps to alleviate the feature collapse issue in the
contrastive methods and make the features more informative (Li et al. (2016)).

In this paper, we propose a simple Bayesian formulation for self-supervised learning with a specific
family of cSG-MCMC methods called Cyclical Stochastic Gradient Hamiltonian Monte Carlo (cS-
GHMC) (Zhang et al. (2020)). Within this framework, we use BYOL as a self-supervised learning
model which allows to incorporate Bayesian learning of an approximate posterior over the param-
eters instead of MAP. Our experimental results indicate that by integrating a Bayesian learning we
can achieve better performance in downstream tasks including classification and out-of-distribution
detection. The simplicity of the proposed approach is one of its greatest strengths.

2 PROBLEM STATEMENT

Given a dataset D, a self-supervised learning model Fθ parameterized by θ, aims to produce a rep-
resentation Zθ by solving a predefined proxy task. In this paper we wish to learn a distribution over
the embeddings Zθ by placing a prior over the parameters θ and using Bayesian learning instead
of MAP estimation. For learning the representations we use BYOL, a recent self-supervised learn-
ing method based on contrastive learning. To obtain the distribution over the embeddings, we use
cSGHMC. In the following, first we describe the self-supervised learning model to learn represen-
tations. Then, we describe cSGHMC and highlight how it allows to obtain a distribution over the
embeddings.

2.1 SELF SUPERVISED LEARNING

The aim of contrastive learning is to learn representations by contrasting two augmented views of
an image. Particularly BYOL learns representations by reducing a contrastive loss between two
neural networks referred to as online network Fθ (parameterized by θ) and target network Fξ (pa-
rameterized by ξ). Each network consists of three components, an encoder f(.) (e.g., Resnet-18),
a projection head g(.) (e.g., an MLP) and a prediction head q(.) (e.g., an MLP). For a given mini-
batch X = {xi}Ni=1 sampled from a dataset D it produces two distorted views, t(X) and t′(X), via
a distribution of data augmentations T . The two batches of distorted views then are fed to the online
network and the target network, producing batches of embeddings, Zθ and Zξ, respectively. These
features are then transformed with the projection heads into Yθ and Yξ. The online network then
outputs a prediction Qθ of Yξ using the prediction head qθ(.). Finally the following mean squared
error between the normalized predictions Q̄θ and target projections Yξ is defined:

Lθ,ξ = ∥Q̄θ − Ȳξ∥2 = 2− 2.
⟨Q̄θ, Ȳξ⟩
∥Q̄θ∥.∥Ȳξ∥

. (1)

L̃θ,ξ is computed by separately feeding t′(X) to the online network Fθ and t(X) to the target
network Fξ. Then, at each training step, a stochastic optimization step is performed to minimize

LBYOL
θ,ξ = Lθ,ξ + L̃θ,ξ (2)

The gradient is taken only with respect to θ. So, the parameter update is as follows:

θ ← optimizer(θ,∇θLBYOL
θ,ξ ). (3)

ξ ← τξ + (1− τ)θ,

where the weights ξ are an exponential moving average of the online network’s parameters θ with
a target decay rate τ ∈ [0, 1]. At the end of training, the encoder fθ(.) is used for the downstream
task. During training only the parameters θ of the online network Fθ are updated.
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2.2 POSTERIOR SAMPLING USING CSGHMC

In the Bayesian paradigm, for a given dataset D = {xi}ni=1 and a θ-parameterized model, the
following a-posterior distribution over θ is computed using Bayes’ rule as: p(θ|D) ∝ p(D|θ)p(θ),
where p(θ) is a prior assigned to the parameters θ and p(D|θ) is the likelihood.

In MAP optimization, the prior has the role of a regularizer and the likelihood has the role of a cost
function. An optimizer is optimized to find the MAP solution which is amenable to the parameter
update:

∆θ = − ℓ

2
(
n

N

N∑
i=1

∇θ log p(xi|θ) +∇θ log p(θ)), (4)

for a given randomly sampled mini-batch X = {xi}Ni=1 ⊂ D and learning rate ℓ.

In contrast to MAP optimization, in the Bayesian paradigm the model explores the distribution
over the model parameters. Welling & Teh (2011) showed that this distribution can be approximated
using Stochastic Gradient Langevin Dynamics (SGLD) by injecting Gaussian noise to the parameter
updates of SGD so that they do not collapse to just the MAP solution. This leads to the following
parameter update:

∆θ = − ℓ

2
(
n

N

N∑
i=1

∇θ log p(xi|θ) +∇θ log p(θ)) + ϵ; ϵ ∝ N (0, ℓI) (5)

SGHMC (Chen et al. (2014)) is an improved counterpart of SGLD which introduces a momentum
variable m. The posterior sampling is done using the following update rule:

m = βm− ℓ

2
(
n

N

N∑
i=1

∇θ log p(xi|θ) +∇θ log p(θ)) + ϵ; ϵ ∝ N (0, (1− β)ℓI) (6)

θ = θ +m

where β is the momentum term. Equations 5 and 6 guarantee convergence to the true posterior as
long as the learning rate ℓ decreases towards zero. Zhang et al. (2020) showed that replacing the
traditional decreasing learning rate schedule in SGHMC with a cyclical variant allows to explore
multimodal posterior distributions and developed cSGHMC. In this paper we apply cSGHMC to
take samples from the posterior distribution.

3 POSTERIOR OVER REPRESENTATIONS

To infer a posterior over the embeddings, we place a prior α over the parameters θ of the online
networkFθ. By placing a distribution over θ, we induce a distribution over an infinite space of online
networks Fθ. This results in a distribution over embeddings Zθ. Sampling from this distribution
corresponds to sampling from the following conditional posterior:

Zθ ∝ p(θ|X) ∝ p(X|θ)p(θ|α), (7)

where X is a mini-batch. Equation 7 can be interpreted intuitively as follows. We sample weights
θ from the prior p(θ|α). Then we condition on this sample of the weights form a particular online
network Fθ which is used to produce embedding Zθ by minimizing the loss function LByol

θ,ξ .

To take samples from the posterior in equation 7 we use cSGHMC and the update rule in equation
6. Algorithm 1 describes our proposed method to sample from the posterior. Algorithm 1 produces
samples from the posterior over the parameters θ of the online network Fθ and consequently a
distribution over embeddings Zθ, since we compute the gradients of the loss with respect to the
parameters that we are sampling.

Our proposed probabilistic approach is a natural Bayesian generalization of MAP optimization.
Indeed, if one performs MAP optimization using SGD in Algorithm 1 instead of posterior sampling,
one approximates the whole posterior over θ with a point mass. Sampling from the whole posterior
over embeddings versus approximating this with a point mass allows estimating uncertainties in the
embedding space.
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Algorithm 1 Probabilistic Self-Supervised Learning
Require: ℓ initial learning rate, β momentum term, K number of training iterations
Ensure: sequence θ1, θ2, ...

for k = 1 : K do
• sample mini-batch X = {xi}Ni=1 and augmentations t ∼ T , t′ ∼ T
• compute LBYOL

θ,ξ based on equation 2
ℓ← C(k)ℓ ▷ update learning rate using cyclic modulation

m← βm− ℓ

2
∇θLBYOL

θ,ξ + ϵ; ϵ ∝ N (0, (1− β)ℓI)

θ ← θ +m ▷ update parameters θ using update rule 6
ξ ← τξ + (1− τ)ξ
if end of cycle then

yield θ
end if

end for

Marginalizing over representations: Once pretraining is done, we can marginalize the posterior
over θ for downstream tasks. To compute the predictive distribution for a new instance x∗ we use a
model average over all collected samples with respect to the posterior over θ.

p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ|D)dθ ≈ 1

T

T∑
t=1

p(y∗|x∗, θ(k)), θ(k) ∝ p(θ|D). (8)

We will see that this model average is effective for improving performance, calibration as well as
out-of-distribution detection in downstream task.

4 EXPERIMENTS

In this section, we present our experimental results. We evaluate proposed method on several tasks
including semi-supervised learning and out-of-distribution detection. First, we describe our exper-
imental setup. Then, we evaluate our model using semi-supervised setting, and lastly, we evaluate
our model using out-of-distribution examples. We implemented the code using PyTorch (Paszke
et al. (2017)). Our code is available upon request.

4.1 EXPERIMENTAL SETUP

Datasets We conduct our experiments on five challenging image datasets. A brief description
of these datasets is summarized in Table 1. Both the training and test set are used for CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton (2009)), and STL-10 (Coates et al. (2011)), while only the
training set is used for ImageNet-10 (Chang et al. (2017)), and Tiny-ImageNet (Le & Yang (2015)).
For Imagenet-10 and Tiny-ImageNet the Validation set of Imagenet-10 is used for evaluation, since
the Test set of these datasets do not have ground-truth. For STL-10, its 100,000 unlabeled samples
are used for pretraining.

Implementation Details We adopt ResNet-18 (He et al. (2016)) as the backbone for the self-
supervised learning model. Following the original setting of BYOL, we use 2-layer MLPs as the

Table 1: A summary of datasets used for evaluations.

Dataset Pretrain Fine-tune Test Samples Classes Image Size
CIFAR-10 Train Train Test 60000 10 32

CIFAR-100 Train Train Test 60000 100 32
STL-10 Unlabeled Train Test 113000 10 96

ImageNet-10 Train Train Validation 13000 10 224
Tiny-ImageNet Train Train Validation 103925 10 64
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Figure 1: NLL and ACC in downstream task for embeddings of last 4 cycles of both models. left:
Results on CIFAR-10, right: Results on ImageNet-10. Embeddings from BBYOL show consistanly
lower NLL and higher ACC.

projection and prediction heads. We apply the standard ResNet without modification on the input
images of given sizes in Table 1 for all datasets which produces a feature vector of size 512 for each
sample. We use terms ”representations” or ”embeddings” interchangeably for this feature vector.
We use the same set of data augmentations in Grill et al. (2020) on all datasets for pretraining, con-
sists of random cropping and resizing with a random horizontal flip, followed by a color distortion
and a grayscale conversion.

For cSGHMC, a normal prior N (0, I) is set on the parameters of the online network and a cosine
decay learning rate (Zhang et al. (2020)) with cycle length of 50 is used as a scheduler. The batch
size is set to 256 and we use momentum term of 0.9. For all datasets we train the model from scratch
for 1000 epochs with the initial learning rate 0.1 for Tiny-ImageNet and 0.2 for the rest of datasets.
We inject Guassian noise at epoch 45 and collect 1 sample per cycle for the last 4 cycles resulting in
4 samples. We scale Guassian noise and prior with the dataset size (Florian et al. (2020)).

Evaluation Metrics Tow widely-used metrics including Accuracy (ACC), and Negative Log
Likelihood (NLL) are utilized to evaluate our method. Higher value of ACC indicate better per-
formance of the model and lower value of NLL indicate better calibration.

Baselines We compare proposed Bayesian self-supervised model referred as BBYOL with its de-
terministic counterpart in terms of described evaluation metrics. For training BYOL we use SGD
optimizer with a fixed learning rate schedule and momentum term 0.9. No weight decay is used.
Other parameters are as the same as BBYOL. The initial learning rate for each dataset is described
in Appendix A. We train BYOL on all datasets for 1000 epochs and take 4 samples on last 200
epochs with the same interval 50 epochs. For both BYOL and BBYOL if we marginalize over
representations we use terms BYOL-ENS and BBYOL-ENS respectively.

The experiments are carried out on Nvidia A40 48 GB and it takes about 7 gpu-hours to train the
model on CIFAR-10 and CIFAR-100, 21 gpu-hours on STL-10, 9 gpu-hours on ImageNet-10, 24
gpu-hours on Tiny-ImageNet. We repeat experiments for 3 random seeds and report average NLL
and ACC over 3 runs with the standard error from the mean predictor.

4.2 IMAGE CLASSIFICATION

We evaluate the performance obtained when fine-tuning both BYOL and BBYOL’s representations
on a classification task. In this task a pretrained model is fine-tuned on subsets of original training
dataset with labels. We fine-tune on 100% of labeled training data described in Table 1. We follow
protocol in Grill et al. (2020) detailed in Apendix B. We report both ACC and NLL on five chal-
lenging datasets in Table 2 and Table 3. According to the results shown in Table 2 and 3, BBYOL
significantly outperforms BYOL and BYOL-ENS on all five datasets. In particular, BBYOL im-
proves NNL on all datasets by large margin compared to its deterministic counterpart. Moreover,
marginalizing over the representations in BBYOL-ENS also improves performance in terms of both
ACC and NLL. For STL-10 and Tiny-ImageNet we marginalize over two embeddings of last two
cycles.
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Table 2: ACC ↑ and NLL ↓ on five object image benchmarks. The best results are shown in boldface.

Dataset CIFAR-10 CIFAR-100 STL10∗
Metrics ACC NLL ACC NLL ACC NLL
BYOL 74.0± 0.0 72.3± 0.4 44.6± 0.09 210.0± 0.0 65.3± 1.5 96.2± 3.6
BYOL-ENS 75.0± 0.0 69.9± 0.8 46.5± 0.2 199.3± 0.4 65.6± 1.7 94.6± 4.4
BBYOL 76.3± 0.4 66.3± 0.9 45.6± 0.4 202.0± 2.1 77.9± 0.2 60.4± 0.5
BBYOL-ENS 77.3± 0.4 65.0± 0.8 47.5± 0.4 193.3± 2.3 78.1± 0.2 60.4± 0.6

Table 3: ACC ↑ and NLL ↓ on five object image benchmarks. The best results are shown in boldface.

Dataset ImageNet-10 Tiny-ImageNet∗
Metrics ACC NLL ACC NLL
BYOL 80.1± 0.1 61.0± 1.5 69.8± 1.3 94.1± 4.1
BYOL-ENS 80.6± 0.3 58.8± 0.7 71.1± 0.3 89.0± 1.5
BBYOL 83.0± 0.3 51.3± 1.0 76.3± 0.2 74.3± 0.4
BBYOL-ENS 83.0± 0.0 50.6± 1.1 76.5± 0.1 72.5± 0.2

We observe that marginalizing over the representations in BYOL-ENS also improves performance.
It is due to the nature of contrastive loss which induces diversity in the parameter space. Whenever
the loss is not too high, marginalizing over these representations improve the performance.

In Figure 1, we plot ACC and NLL of embeddings obtained from last 4 cycles for CIFAR-10 and
ImageNet-10. We observe that BBYOL consistently yields lower error and higher accuracy, demon-
strating that the embeddings obtained from a BBYOL are more informative.

Ensemble Size In some applications, it may be beneficial to vary the size of the ensemble dynam-
ically at test time depending on available resources. Figure 2 displays the performance of BBYOL
on CIFAR-10 and CIFAR-100 datasets as the effective ensemble size, is varied. Although ensem-
bling more models generally gives better performance, we observe significant drops in error when
the second and third models are added to the ensemble. In most cases, an ensemble of two models
outperforms the baseline model.

4.3 OUT-OF-DISTRIBUTION DETECTION

To further explore the diversity of embeddings, we consider the out-of-distribution (OOD) detection
task. A pretrained model on CIFAR-10 was fine-tunned on its training data with labels and tested on
SVHN dataset (Netzer et al. (2011)); and a pretrained model on CIFAR-100 was fine-tunned on its
labeled training data and was tested on SVHN. We estimate the entropy of the predictive distribution
on SVHN. Figure 3 (left) presents the empirical CDF of the predictive entropy for CIFAR-10 (in-

Figure 2: NLL as a function of number of ensembles on CIFAR-10 and CIFAR-100.
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Figure 3: left: Empirical CDF for the predictive entropy of SVHN pretrained on CIFAR-10. right:
Hitogram for the predictive entropy of SVHN pretrained on CIFAR-100. BYOL-ENS (4/6) is
marginalizing over 4/6 embeddings.

distribution) and SVHN (out-of-distribution). Figure 3 (right) indicates the histogram of predictive
entropy for CIFAR-100 (in-distribution) and SVHN (out-of-distribution).

For the unseen data, we expect the model indicates max entropy and the probablity of low entropy
should be lower (Zhang et al. (2020)). It also implies that the mode of histogram focuses at higher
value. We observe that all models assign high entropy to unseen data, since self-supervised learning
improves model uncertainty (Hendrycks et al. (2019)). In particular the predictive uncertainty im-
proves on unseen classes, as the ensemble size increases. It indicates that the embeddings produced
by sampling from the posterior come from different modes and provide different characterization
of training data. Indeed different embeddings can provide different predictions on OOD, leading to
better uncertainty estimation.

Table 4 summarizes the results for BYOL, BBYOL and BBYOL-ENS with different ensemble
size. BBYOL-ENS (6) indicates marginalizing over 6 embeddings collected from last 6 cycles.
In BBYOL-ENS (12∗) we took 3 samples per cycle in last 4 cycles. Consistent with our previous
results BBYOL improves BYOL in terms of calibration (lower NLL) and uncertainty estimation
(higher Entropy). The improvement in calibration and uncertainty estimation consistently increases
by increasing the number of ensemble size.

Table 4: Results for OOD detection for various settings. Pretrained models are fine-tunned over
training labeled data of CIFAR-10 and CIFAR-100 and tested on SVHN. All values are in percent-
ages. ↑ indicates larger value is better, and ↓ indicates lower value is better.

In-Distribution Out-of-Distribution Method NLL ↓ AUROC ↑ Mean-Ent ↑
BYOL 5.22 47.13 0.99
BBYOL 5.12 47.24 0.98

Cifar-10 SVHN BBYOL-ENS (4) 5.12 47.04 1.05
BBYOL-ENS (6) 4.99 47.82 1.10
BBYOL-ENS (12∗) 5.02 47.74 1.09
BYOL 2.62 49.75 2.0
BBYOL 2.55 50.02 2.06

Cifar-100 SVHN BBYOL-ENS (4) 2.36 49.83 2.23
BBYOL-ENS (6) 2.34 50.0 2.25
BBYOL-ENS (12∗) 2.30 50.11 2.30
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5 DISCUSSION AND FUTURE WORK

In this paper, we propose to explore the distribution over the representations using cSGHMC instead
of estimating the posterior with a MAP solution. Our experimental results indicate that samples
taken from the posterior provide meaningfully different representations which leads to improved
accuracy, calibration and uncertainty estimation in downstream tasks. Moreover through our exper-
imental results we indicate that using cSGHMC instead of a deterministic counterpart improves the
quality of representations in downstream task in terms of both accuracy and calibration. Capturing
the posterior over the embeddings can also provide the possibility of uncertainty estimation in the
embedding space, opening new directions for practitioners in the field.

For future work we would like to further investigate the following: (i) We would like to analyze
the notion of uncertainty in the embedding space and its relation with uncertainty in the predictive
space. (ii) We would like to explore the possibility of using a Bayesian self-supervised learning
model as a prior for a Bayesian downstream task.
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A APPENDIX

For training BYOL using SGD optimizer we set initial learning rate ℓ = 3e − 4 for STL-10 and
Tiny-ImageNet. We set ℓ = 3e − 3 for the rest of datasets. For cSGHMC, as mentioned in Zhang
et al. (2020), tempering helps. We use temperature 0.1 for all datasets.

B APPENDIX

For fine-tunning, we follow the protocol of Grill et al. (2020). We first initialize the network with the
parameters of the pretrained representation, and fine-tune it with a subset of original datasets with
labels. We do not use any data augmentation during fine-tunning. We optimize the cross-entropy
loss using SGD with Nesterov momentum with batch size of 100, and a momentum of 0.9. We
sweep over the learning rate {2e− 5, 1e− 5, 1e− 4, 2e− 4, 3e− 4, 4e− 4, 5e− 4}, weight decay
{0, 5e − 4} and the number of epochs {50, 60} and select the hyperparameters achieving the best
performance on our local validation set to report test performance. Table 5 describes parameters for
each dataset.

9

https://proceedings.neurips.cc/paper/2015/hash/9a4400501febb2a95e79248486a5f6d3-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/9a4400501febb2a95e79248486a5f6d3-Abstract.html
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=rkeS1RVtPS


Under review as a conference paper at ICLR 2023

Table 5: Parameters used in fine-tunning.

Dataset learning rate weight decay number of epochs
CIFAR-10 2e− 4 0 50
CIFAR-100 1e− 4 0 50
STL-10 2e− 4 0 50
ImageNet-10 2e− 4 0 50
Tiny-ImageNet 2e− 4 5e− 4 50
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