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Abstract

Sketches, probabilistic structures for estimating
item frequencies in infinite data streams with lim-
ited space, are widely used across various do-
mains. Recent studies have shifted the focus
from handcrafted sketches to neural sketches,
leveraging memory-augmented neural networks
(MANNs) to enhance the streaming compression
capabilities and achieve better space-accuracy
trade-offs. However, existing neural sketches
struggle to scale across different data domains
and space budgets due to inflexible MANN con-
figurations. In this paper, we introduce a scalable
MANN architecture that brings to life the Lego
sketch, a novel sketch with superior scalability
and accuracy. Much like assembling creations
with modular Lego bricks, the Lego sketch dy-
namically coordinates multiple memory bricks
to adapt to various space budgets and diverse
data domains. Our theoretical analysis guaran-
tees its high scalability and provides the first er-
ror bound for neural sketch. Furthermore, exten-
sive experimental evaluations demonstrate that
the Lego sketch exhibits superior space-accuracy
trade-offs, outperforming existing handcrafted
and neural sketches. Our code is available at
https://github.com/FFY0/LegoSketch ICML.

1. Introduction
The estimation of item frequency in a continuous and never-
ending data stream stands as a pivotal task in supporting a
broad spectrum of applications in machine learning (Goyal
et al., 2012; Aghazadeh et al., 2018; Talukdar & Cohen,
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2014), network measurements (Yu et al., 2013; Yang et al.,
2018), and big data analytics (Cormode et al., 2012; Zaharia
et al., 2016). Sketches, a typical probabilistic structure,
have become essential for representing data streams with
sub-linear space and linear time while maintaining accu-
rate item frequency estimates. Two major research direc-
tion in sketching techniques have emerged: handcrafted
sketches (Cormode & Muthukrishnan, 2005; Charikar et al.,
2002; Estan & Varghese, 2002; Deng & Rafiei, 2007) and
neural sketches (Rae et al., 2019; Feng et al., 2024; Cao
et al., 2023; 2024).

Handcrafted sketches rely on core structures, such as the
CM-sketch (Cormode & Muthukrishnan, 2005) and C-
sketch (Charikar et al., 2002), which are comprised of com-
pact 2D arrays, hash functions, and predefined strategies.
These handcrafted core structures have since formed the
foundation for numerous variants or derivatives (Estan &
Varghese, 2002; Deng & Rafiei, 2007), designed to bet-
ter adapt to the skewed distributions in data streams4. In
contrast to the decade-old core structures of handcrafted
sketches, recent advancements in neural sketches (Cao et al.,
2023; 2024; Feng et al., 2024; Rae et al., 2019) have intro-
duced memory-augmented neural networks (MANNs) as a
new class of core structures. The MANN-based cores im-
prove sketching performance by leveraging their capability
of memory compression and adaptability to distributional
patterns of data streams. Figure 1 provides an overview of
the literatures on sketches.

Despite recent advancements, existing neural sketches face
practical challenges when deployed in real-world settings,
particularly in scaling effectively to data streams across
diverse domains and varying space budgets. A major scal-
ability issue is that they require retraining when there is a
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Figure 3: Lego Sketch Overview: The Lego sketch enables a
scalable and unified framework capable of adapting to different
domains and space budgets, mirroring the modular design seen in
dedicate creations built from multiple Lego bricks.

shift in data domains or changes in space budgets. This
requirement stems from their reliance on a sample MLP-
based embedding module and a fixed-size memory module
within the traditional MANN architecture. Also, as demon-
strated in Figure 2, the accuracy advantage of existing neural
sketches, i.e., meta-sketches, in terms of estimation error
over handcrafted sketches, tends to decrease as the space
budget increases.

In this paper, we propose a novel neural sketch, called the
Lego sketch, designed to significantly enhance scalability
and improve the space-accuracy trade-offs of existing neural
sketches, thereby setting new benchmarks in performance1.
As depicted in Figure 3, the Lego sketch is initially trained
on a single memory brick to acquire basic sketching capa-
bilities across data domains. When dealing with a large-
scale data stream, it divides the stream into manageable
sub-streams, each controlled by an independent memory
brick. The Lego framework is achieved by devising a new
MANN architecture from two aspects.

For scalability, the Lego sketch overcomes the shortcom-
ings of existing neural sketches under conventional MANN
architecture, particularly when used across different data
domains and space budgets. First, we propose a novel nor-
malized multi-hash embedding technique to enable theoret-
ically provable domain-agnostic scalability (Section 4.1),
without necessitating retraining for different data domains.
Second, with theoretical foundations (Section 4.2), our ap-
proach leverages a scalable memory strategy to coordinate
multiple memory bricks, avoiding the need for retraining
when adapting memory sizes to fit different space budgets.

For accuracy, the Lego sketch not only addresses the is-
sue of diminished advantage of existing neural sketches
in high budgets but also offers enhancement in accuracy.

1This paper focuses on the core structure of sketches. Deriva-
tives of a core structure typically incorporates external enhance-
ments, such as filters (discussed in Section 2). Section 3.3 explores
derivatives of the Lego sketch, which use it as the core structure,
providing a comprehensive analysis.

Specifically, we propose a novel self-guided weighting loss
(Section 3.2) for dynamically weighting different meta-tasks
during self-supervised meta-learning, effectively address-
ing issues of diminished advantage. Moreover, a pioneer-
ing module termed memory scanning (Section 3.1), which
autonomously reconstructs stream features from the com-
pressed memory, along with other optimization techniques,
significantly aids in the estimation, thereby achieving supe-
rior space-accuracy trade-offs, as shown in Figure 2.

Contributions. 1) We introduce the Lego sketch, a novel
neural sketch equipped with a scalable MANN architecture
designed for sketching data streams. 2) The Lego sketch re-
solves scalability limitations and achieves a superior space-
accuracy trade-off through key technical innovations, in-
cluding normalized multi-hash embedding, scalable mem-
ory, memory scanning, and self-guided weighting loss. 3)
We also provide theoretical support for the scalability and
estimation error analysis, areas previously unexplored in
existing neural sketches. 4) Extensive empirical studies on
both real-world and synthetic datasets confirm that the Lego
sketch significantly outperforms state-of-the-art methods.

2. Related Works
Sketch techniques fall into two categories: core sketches
and their derivatives, as shown in Figure 1. Core sketches
(Cormode & Muthukrishnan, 2005; Charikar et al., 2002;
Estan & Varghese, 2002; Deng & Rafiei, 2007; Liu & Xie,
2021; Cao et al., 2023; 2024), also referred to as core struc-
tures, provide the fundamental structure for stream process-
ing, where (Estan & Varghese, 2002; Deng & Rafiei, 2007)
are variants of (Cormode & Muthukrishnan, 2005; Charikar
et al., 2002) under specific conditions. Subsequent deriva-
tives (Zhou et al., 2018; Roy et al., 2016; Yang et al., 2018;
Aamand et al., 2024; Hsu et al., 2019; Zhao et al., 2023; Ma
et al., 2024; Gao et al., 2024a; Liu & Xie, 2023; Liu et al.,
2024; Gao et al., 2024b; Huang et al., 2023) of core struc-
tures, depend on the core structure for their foundational
performance and incorporate external enhancement with
orthogonal add-ons like filters. Notably, recent advances
in neural sketches, i.e., the meta-sketch (Cao et al., 2023;
2024), have shown improved accuracy under tight space
budgets but face scalability challenges. Our Lego sketch
tackles the scalability challenges and optimizes the space-
accuracy trade-offs. Moreover, we study how subsequent
derivatives can utilize the Lego sketch as their core, detailed
in Section 3.3.

Counter-based summarization is also a common method
for summarizing data streams, identifying frequent items
through techniques like MG summary (Misra & Gries, 1982)
and SpaceSaving (Metwally et al., 2005). These methods
typically excel in insertion-only stream models, with some
research also exploring learning-based enhancements (Sha-
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Table 1: MANN Architecture in Neural Sketches
MANN Arch. Embedding Memory Scanning Loss

Meta-Sketch MLP-based Fixed - Regular Loss Lo

Lego Sketch Scalable Scalable Deepsets-based Self-guided Loss L′

hout & Mitzenmacher, 2024). However, compared to sketch
techniques, counter-based methods struggle with dynamic
streams that allow deletions or negative weights, while
sketch methods naively handle unbounded deletions, mak-
ing them suitable for broader applications (Cormode &
Hadjieleftheriou, 2008; Berinde et al., 2010). Given these
differences, counter-based summarization and sketch tech-
niques should not be directly compared; nonetheless, future
research could explore the development of an end-to-end
neural framework for counter-based summarization.

Memory-augmented neural networks (MANNs) (Graves
et al., 2016; Danihelka et al., 2016; Weston et al., 2014;
Graves et al., 2014) are designed for efficient interaction
with external memory through neural networks. Leveraging
meta-learning, MANNs facilitate one-shot learning capa-
bility of certain tasks across various datasets, avoiding be
limited to specific dataset (Santoro et al., 2016; Vinyals et al.,
2016; Hospedales et al., 2021). Previous efforts on neural
sketches (Cao et al., 2023; 2024) implement this MANN ar-
chitecture in four functional modules: Embedding, Address-
ing, Memory, and Decoding, where the one-shot learning
paradigm is inherited for the single-pass storage procedure
in stream processing. As aforementioned, neural sketches
struggle with the scalability challenge. Our Lego sketch
addresses the challenge by devising a novel MANN archi-
tecture. A comparison of our architecture with traditional
MANNs is outlined in Table 1.

3. Methodology
We consider a standard data stream model to outline the
problem of stream item frequency estimation. Consider a
data stream X = (x1, ..., xN ) consisting of N data items
with n distinct elements. Each data item xi ∈ X assumes
a value from the item domain set X = {e1, ..., en}, where
elements in X are unique. The frequency fi of element ei
indicates its occurrence in X . Thus, the total frequencies for
all fis add up to N , representing the length of the stream.
Without causing any ambiguity, we use xi to refer to either
a data item for storing or an element for querying.

3.1. Lego Framework

Overview. The Lego sketch consists of five modules: Scal-
able Embedding(E), Hash Addressing(A), Scalable Mem-
ory (M), Memory Scanning (S), and Ensemble Decod-
ing(D). These modules collaborate to provide two types
of operations: Store and Query, controlling the writing and
reading of external memory. Each operation is carried out

through a single forward pass of several network modules,
ensuring that the computational complexity of a single op-
eration remains constant, independent of the data stream’s
length. This aligns well with the efficiency requirements
for sketching data streams (Charikar et al., 2002; Cormode
& Muthukrishnan, 2005; Cao et al., 2023). A high-level
overview of these operations is presented in Figure 4.

Scalable Embedding(E). The primary function of the em-
bedding module is to obtain an embedding vector vi for a
given item xi during Store and Query operations. Previ-
ous MANN based neural sketches, the meta-sketch (Cao
et al., 2023; 2024) and other related works (Rae et al.,
2019; Vinyals et al., 2016; Santoro et al., 2016; Feng et al.,
2024), leverage conventional encoders like MLPs and CNNs.
These encoders embed features of data items within spe-
cific domains, aim to extract domain-specific knowledge,
such as identifying high- and low-frequency items in spe-
cific data stream. However, this approach presents several
limitations. As highlighted in the meta-sketch (Cao et al.,
2023), dynamic streaming scenarios can lead to robustness
challenges, due to shifts between high and low-frequency
items. Most importantly, these encoders face domain scala-
bility challenges, which require encoder retraining or even
model retraining, while deploying models across diverse
data domains. For example, a model trained for web-click
stream domain cannot be directly adapted to textual stream
domain, letting alone the domain of other modalities. To
address these challenges, we propose to adjust the “target”
of the embedding module as follows. Without extracting
any domain-specific features, we generate embedding vec-
tors {v} conforming to a specific skewness4 range, making
the embedding module domain-agnostic. This strategy en-
hances both the robustness and scalability of models across
varied domains.

Inspired by the Hash Embeddings (Tito Svenstrup et al.,
2017) in NLP fields, we introduce a novel embedding tech-
nique, termed normalized multi-hash embedding, as below:

vi = E(xi) =
(VH1(xi)

,VH2(xi)
,...,VHd1

(xi)
)

∥(VH1(xi)
,VH2(xi)

,...,VHd1
(xi)

)∥1

Specifically, it comprises a learnable vector V and a set
of d1 independent hash functions {H1, ...Hd1

}. Each hash
function maps xi to an index of V , retrieving correspond-
ing values from V based on d1 indices, yielding vi ∈ Rd1 .
Finally, vi undergoes an L1 normalization. The idea lies
in the utilization of hash-based random mappings, ensur-
ing domain-agnostic scalability as the analysis in Section
4.1. Furthermore, the L1 normalization effectively main-
tains the stability of L1 accumulation across different items
in additive memory storage, thereby enhancing estimation
accuracy2.

2Related ablation studies are detailed in Section 5.5.
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Hash Addressing(A). To align with scalable hash embed-
dings, our approach simplifies the learning-based addressing
in the meta-sketch by employing an additional set of d1 hash
functions {H′

i}i≤d1
for addressing. This method seeks out

d1 positions within the range of [1, d2], subsequently trans-
forming them into a sparse address vector ai ∈ Rd1×d2 . In
the sparse address vector ai, positions mapped by the hash
functions are assigned a value of 1, while all other positions
retain a value of 0.

ai = A(xi) = SparseVector(H′
1(xi), . . . ,H′

d1
(xi))

Scalable Memory(M). With conventional MANNs, the
neural structures (Cao et al., 2023; 2024; Rae et al., 2019;
Feng et al., 2024) employ a single, fixed-size dense memory
block M ∈ Rd1×d2 to store embedding vectors. Com-
pared to the counter array used in handcrafted sketches, M
offers a superior dense compression capability. However,
the fixed size of M presents challenges for the scalabil-
ity in terms of varied space budgets (i.e. the size of M ):
the retraining necessity and increasing cost for training on
larger budget. Thus, we introduce the Scalable Memory,
which offers training-independent memory scalability for
the Lego sketch. This module manages K memory bricks,
M1, . . . ,MK , using a hash function to uniformly distribute
items in streams across these bricks. This approach allows
for memory resizing by simply increasing K, thereby elim-
inating the need for retraining when adjusting the space
budget. For example, in Section 5.2, we easily scale the
overall memory size up to 140MB for 100 million-level
streams.

Specifically, when storing an item xi, it is distributed to a
specific memory brick MH(xi), by a hash function H. In
this way, the original data stream X , is partitioned into K
sub-streams X ′

1, ...,X ′
K , with each sub-stream stored within

a brick M . Subsequently, its embedding vector vi ∈ Rd1

Algorithm 1 Operations

1: Operation Store(xi):
2: vi← E(xi) ; ai ← A(xi)
3: MH(xi) = MH(xi) + vi ◦ ai
4: Operation Query(xi):
5: vi← E(xi) ; ai ← A(xi); mi = MT

H(xi)
ai ;

6: sH(xi), s
(n)
H(xi)

, s
(α)
H(xi)

← S(MH(xi))

7: f̂i
′
← D(mi, vi, sH(xi), s

(n)
H(xi)

, s
(α)
H(xi)

)

Algorithm 2 Ensemble Decoding

1: Module D(mi, vi, sH(xi), s
(n)
H(xi)

, s
(α)
H(xi)

):

2: f̂ ′
i = gdec(mi, vi, sH(xi)); f̂

′′
i = min(mi

vi
)

3: if s(α)H(xi)
/∈ Iα or s(n)H(xi)

≤ β: f̂i = f̂i
′′

4: else: f̂i = f̂i
′

5: return f̂i

is written into MH(xi), according to the address vector
ai ∈ Rd1×d2 as follows: MH(xi) = MH(xi) + vi ◦ ai,
where ◦ represents the element-wise multiplication. Sim-
ilarly, for querying xi, the hash function H first identi-
fies the relevant memory brick MH(xi), which preserves
xi’s frequency information. Then, the relevant information
mi ∈ Rd1 is extracted from MH(xi), using xi’s address ai:
mi = MT

H(xi)
ai

3. Additionally, we supplement the length
of sub-stream into mi, using a counting bucket.

Memory Scanning(S). For any given data stream X , previ-
ous sketches typically estimate frequency fi by data items
relevant information mi retrieved from storage, while fail-
ing to consider global characteristics s of the data stream

3For batch matrix multiplication, vectors need dimensional
broadcast and T applies to last two dimensions.
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(such as distinct item number n and skewness parameter α4)
as prior knowledge to aid frequency estimation. This over-
sight arises primarily because handcrafted sketches struggle
to infer global stream properties from their compressed stor-
age. Although some works have attempted to infer error
distributions based on handcrafted rules to assist in decod-
ing (Ting, 2018; Chen et al., 2021; Liu et al., 2024), such
designs are limited and highly dependent on specific rules.
In reality, the error of sketches is fundamentally determined
by the characteristics of the stream itself, and further us-
ing rule-based methods to infer these characteristics from
compressed storage is even more challenging. Moreover,
designing estimation strategies that consider global charac-
teristics complicates the matter further. Here, we point that,
these challenges can be resolved within the MANN architec-
ture of neural sketches through end-to-end training, which
could effectively reconstructs global stream characteristics.
It not only facilities the reconstruction of both explicit and
implicit global stream characteristics s by training scanning
network gscan under the supervision of the loss function,
but also simultaneously trains a decoding network gdec uti-
lizing global characteristics s for more accurate frequency
estimation2.

Considering the disorderliness of information caused by
hash addressing in memory bricks, these stacked pieces of
information can essentially be viewed as a set that satisfies
permutation invariance (Kimura et al., 2024). Therefore,
we employ a simple set prediction network, Deepsets (Za-
heer et al., 2017), to implement gscan for scanning and
reconstructing global stream characteristics from a specific
MH(xi). For practical efficiency, we take a subset M ′

H(xi)

comprising one-tenth the size of the memory MH(xi), as
we find this fraction sufficient. This subset M ′

H(xi)
is then

fed into gscan, producing a reconstruction vector sH(xi).
Among the elements of sH(xi), the first two, s(n)H(xi)

and

s
(α)
H(xi)

, regress to the explicit global characteristics n and α

under the supervision of an auxiliary reconstruction loss L′′.
The remaining elements reconstruct implicit characteristics
guided by the main loss L′ described in Section 3.2.

sH(xi), s
(n)
H(xi)

, s
(α)
H(xi)

= S(MH(xi)) = gscan(M
′
H(xi)

)

Ensemble Decoding(D). Given a query item xi and its
corresponding mi and vi, we concatenate mi and vi as the
foundation, supplementing them with stream characteristics
sH(xi) . These vectors are then fed into a decoding network
gdec to obtain a neural prediction f̂ ′

i . Benefiting from the
newly designed and more interpretable MANN architecture

4In real world streams, the frequency distributions exhibit
skewed patterns, which are often approximated by the Zipf distri-
butions (Babcock et al., 2002; Yang & Zhu, 2016; Breslau et al.,
1999; Adamic, 2000) using a varied parameter α known as skew-
ness as detailed in Appendix D.

of the Lego sketch, we enable the straightforward compu-
tation of a rule-based estimate f̂ ′′

i = min (mi/vi). These
two estimates are aggregated to produce a final prediction
f̂i based on the estimated skewness s(α)H(xi)

and item num-

ber s(n)H(xi)
, i.e., f̂i = D(mi, vi, sH(xi), s

(n)
H(xi)

, s
(α)
H(xi)

), as
detailed in Algorithm 2.

3.2. Training

Since the memory blocks in the memory module M are
independent and are extended by multiple copies of a sin-
gle memory block, we only need to train the Lego sketch
on one memory brick M . Overall, we adopted the same
self-supervised meta-learning training strategy as previous
research (Cao et al., 2024; 2023; Rae et al., 2019), which
iteratively trains on a large number of synthetic meta-tasks
to acquire the basic sketching capabilities. The meta-tasks
are automatically generated based on data streams with dif-
ferent skewness under Zipf distributions, and each meta-task
corresponds to storing and querying all items from a syn-
thetic data stream into the memory block M . As shown
in Algorithm 3 in the appendix, the ultimate goal of the
meta-learning process is to optimize the parameters through
gradient descent based on the query error of all items.

During the training, we introduce a novel self-guided weight-
ing loss that dynamically assigns weights to different error
metrics5 across different meta-tasks. Previous loss functions
Lo (Cao et al., 2023; 2024; Rae et al., 2019) simply employ
an average across a batch b of meta-tasks T using only
learnable weights (LW) (Kendall et al., 2018) for different
error metrics. Such methods neglect the variability in task
difficulty, causing larger errors to overshadow smaller ones
across different meta-tasks. Our method resolves this prob-
lem by using a “guide error” from a sketch competitor to
weight different error metrics across meta-tasks dynamically,
i.e. optimizing (error)2/(guide error)2. Additionally, in-
stead of using a handcrafted sketch as a competitor, the
Lego sketch directly use the rule-based f̂ ′ to guide the neu-
ral prediction f̂ ′′, which is produced by D simultaneously
for training efficiency, leading to the self-guided weighting
loss L′. This self-guided weighting loss L′ significantly
enhances accuracy for large space budgets, effectively ad-
dressing the issues of advantage diminished noted in earlier
neural sketches2.

Lo = 1
|b|

∑
T ∈[b] LW

(
AAE(f̂ ′), ARE(f̂ ′),MSE(f̂ ′)

)
L′ = 1

|b|
∑

T ∈[b] LW
(

AAE(f̂ ′)2

AAE(f̂ ′′)2
, ARE(f̂ ′)2

ARE(f̂ ′′)2
, MSE(f̂ ′)2

MSE(f̂ ′′)2

)
Additionally, we incorporate an auxiliary reconstruction loss

5AAE= 1
n

∑n |f̂i − fi|; ARE = 1
n

∑n |f̂i − fi|/fi; MSE =
1
n

∑n |f̂i − fi|2
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L′′ in S, constituting the final loss L:

L = L′ + 0.1× L′′, where

L′′ = 1
|b|

∑
T ∈[b] LW

(
MSE(s

(n)
H(xi)

, n),MSE(s
(α)
H(xi)

, α)
)

3.3. Derivative with Lego Sketch as Core Structure

As a representative of derivatives (Zhou et al., 2018; Roy
et al., 2016; Hsu et al., 2019; Aamand et al., 2024; Zhao
et al., 2023; Gao et al., 2024b), the elastic sketch deriva-
tive (Yang et al., 2018) comprises two primary components:
a heavy part with filtering buckets for high-frequency items
and a light part, typically a CM-sketch, for low-frequency
items. This design reduces estimation errors by effectively
segregating high- and low-frequency items during data stor-
age. We present a case study of applying the framework of
elastic derivative with the Lego sketch as the core. Results
from Sections 5.2 and 5.3 demonstrate its superior accuracy
and robustness, demonstrating the potentials of the Lego
sketch in future advancements.

4. Analysis
4.1. Domain Scalability Analysis

As detailed in the proof provided in Appendix E, Theorem
4.1 demonstrates that embedding vectors from different data
domains adhere to the same distribution, confirming that
the normalized multi-hash embedding technique is domain-
agnostic. In Section 5.2, the Lego sketch deploys across
datasets from five distinct domains, as shown in Table 2,
achieves consistently high accuracy.

Theorem 4.1. Across all data items {xi} within any data
domain X, the embedding vectors {vi} generated by the nor-
malized multi-hash embedding technique exhibit the same
distribution.

4.2. Memory Scalability Analysis

Here, the impact of memory scalability on generalizability is
assessed by quantifying the gap between the sub-skewness
α′ of sub-stream X ′ in each brick and the overall skewness
α of the entire stream X . Assuming the frequency ranking
of an item xi in X is denoted by ri, and its corresponding
sub-ranking in X ′ is denoted by r′i, we can derive Theorem
4.2, the proof of which is in Appendix F.

Theorem 4.2. Given K memory bricks, the sub-skewness
α′
r′i

around ri in sub-stream X ′ is:

α′
r′i,K

(D, ri) = α log(1 + D
ri
)/ log(1 + 1

r′i
), where

D ∼ G(1/K), (ri − r′i) ∼ NB(r′i, 1/K)

D denotes the distance of ranking r between two data items,
which are adjacent on the sub-ranking r′ in same X ′. Con-

Figure 5: Sub-skewness α′

Table 2: Real Datasets Summary

Name Aol Lkml Kosarak Wiki Webdocs

n 197,790 242,976 41,270 9,379,561 5,267,656
N 361,115 1,096,439 8,019,015 24,981,163 299,887,139
Domain Word Comm. Click Edit Doc.

sequently, the expected sub-skewness is as follows:

E(α′
r′i,K

) =
∑D ∑ri α′

r′i,K
(D, ri)P(D|K)P(ri|r′i,K)

As numerical simulation in Figure 5, upon excluding the
top ten high-frequency items, the sub-skewness α′ surround-
ing other items closely approximates the overall skewness
α. Given the massive volume of items in data streams,
the Lego sketch thereby effectively transfers learned skew-
ness patterns to each sub-stream, thus improving estimation
accuracy. Also the experimental evidence in Section 5.2, in-
cluding memory resizing exceeding 1400-fold: from single
100KB brick to a maximum of 140MB in Figure 6(c) (Wiki
Dataset), underscores its powerful memory scalability.

4.3. Error Analysis

Here, we give the error bound for the rule-based estimation
f̂i

′′
in Lego sketch as Theorem 4.3, and the detailed proof

is provided in Appendix G.

Theorem 4.3. The error of f̂i
′′

for item xi is bounded by:
P(|f̂i

′′
− fi| ≥ ϵ×N) ≤ (ϵ× d2)

−1

In general, formulating an error bound for a pure neural
architecture poses challenges, leading to a scarcity of error
analysis in prior research. The above analysis shows a
wider margin compared to handcrafted sketch boundaries.
This discrepancy primarily stems from the normalization
within the embedding module, causing non-independent
values in vi. Future work may explore adjustments to the
normalization approach or modeling the distribution of vi
to further strengthen the error bound.

5. Experiment
5.1. Setup

Datasets. Firstly, we employ five real datasets indicating
irregular distributions in real applications, Aol (Pass et al.,
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Figure 6: Errors on Four Real Datasets.

2006), Lkml (Homscheid et al., 2015), Kosarak (Bodon,
2003), Wiki (Kunegis, 2013), and Webdocs (Lucchese et al.,
2004). These five datasets are widely used in sketch litera-
tures (Roy et al., 2016; Cao et al., 2023; Hsu et al., 2019;
Aamand et al., 2024) and encompass a variety of data stream
domains and scales for comprehensive evaluation, as shown
in Table 2. 6 Secondly, we generate six synthetic data
streams, each comprising 100, 000 distinct data items, con-
forming the Zipf distribution within the skewness α range
of [0.5, 1.5] to evaluate the robustness across different skew-
nesses comprehensively. All datasets are evaluated using
two most widely used error indicators (Cao et al., 2023;
Yang et al., 2018; Zhou et al., 2018; Roy et al., 2016; Deng
& Rafiei, 2007), specifically Average Absolute Error (AAE)
and Average Relative Error (ARE)5.

Baselines. In our experiments, we select a broad range of
baselines for comprehensive evaluations. Key among these
are the CM-sketch (CMS) (Cormode & Muthukrishnan,
2005) and C-sketch (CS) (Charikar et al., 2002), the most
widely used sketches, foundational to subsequent derivatives
(Roy et al., 2016; Yang et al., 2018; Zhou et al., 2018; Hsu
et al., 2019). We also included the learned augmented C-

6Following previous works, we also tested the Aol dataset,
where Lego Sketch demonstrated a significant advantage. During
the review process, the reviewers pointed out its anonymization
flaw, (see Aol log release ); therefore, we have excluded the results
from experiments and ablation studies in our revised manuscript.

sketch(LCS) (Aamand et al., 2024) which only utilizes prior
knowledge of n without orthogonal add-ons, making it a
close variant to the core sketches. Additionally, we consider
the latest neural sketch, the meta-sketch (MS) (Cao et al.,
2023; 2024), as a significant baseline, which is renowned
for exceptional accuracy in small space budgets. Also, we
incorporate scalable memory module into the meta-sketch
for memory scalability, facilitating a comprehensive com-
parison in different budgets. Finally, we evaluate the elastic
derivative with Lego sketch, D-Lego, as detailed in Sec-
tion 3.3. Accordingly, the elastic derivative with CMS, i.e.,
D-CMS (Yang et al., 2018), is considered the competitor.

Parameters. The Lego sketch is pretrained with 4 million
meta-tasks within the regular skewness range of [0.5, 1.0].
It uses 8-layer Deep Sets networks for the gscan and gdec,
featuring a maximum hidden layer size of 32 and employing
LeakyReLU for layer connectivity. The initial learning
rate is set at 0.001, decreasing linearly to 0.0001. The
aggregation threshold β is consistently set at 10, 000. For all
CMS and CS, we employ three hash functions, as standard
practice suggests(Aamand et al., 2024; Yang et al., 2018).
Further details are available in the appendix C and code
provided in supporting materials.

Budget. In line with previous works (Cao et al., 2023; 2024;
Rae et al., 2019), the space budget B is determined by the
total size of K memory bricks M , which in our experiments
is 100KB per brick M(d1 = 5, d2 = 5120). The budget

7

https://en.wikipedia.org/wiki/AOL_search_log_release


Lego Sketch: A Scalable Memory-augmented Neural Network for Sketching Data Streams

25 50 75 100 125
Budget(MB)

0

1

2

3

AR
E

CMS CS LCS MS Lego D-CMS D-Lego

(a) α = 0.5 (AAE) (b) α = 0.7 (AAE) (c) α = 0.9 (AAE) (d) α = 1.3 (AAE) (e) α = 1.5 (AAE)

(f) α = 0.5 (ARE) (g) α = 0.7 (ARE) (h) α = 0.9 (ARE) (i) α = 1.3 (ARE) (j) α = 1.5 (ARE)

Figure 7: Synthetic Datasets

allocated for filtering buckets in D-CMS and D-Lego is set
to one-fourth of B (Yang et al., 2018).

5.2. Accuracy

In this section, we conduct comprehensive evaluations us-
ing different space budgets on five real datasets in Figure
6, where the Lego sketch consistently outperforms all com-
petitors in terms of AAE and ARE, offering superior space-
accuracy trade-off. Taking the commonly used Lkml dataset
in Figures 6(a) and 6(e) as an example, we analyze the
space-accuracy trade-off characteristics of the Lego sketch
and its competitors. CMS and CS, recognized as the most
popular handcrafted sketches, demonstrate CMS’s superior
accuracy in large space budgets, while CS performs better
in smaller space budgets. LCS, an adaptation of CS with
prior knowledge of n, reduces errors in smaller budgets at
the expense of accuracy in larger budgets. MS, leveraging
a purely neural architecture, significantly outperforms the
aforementioned sketches in smaller spaces. However, at
larger budgets, such as at 3.2MB, MS falls behind hand-
crafted sketches.

Notably, our Lego sketch, as a novel neural sketch, further
addresses the drawbacks of meta sketches in large space bud-
gets and comprehensively reduces estimation errors. Specif-
ically in Figure 6(e), with the smallest budget of 0.6 MB,
the ARE of the Lego sketch is only 0.93, which represents
just 85% of the error of the neural architecture MS, and
21% and 26% of the errors of the traditional CMS and CS,
respectively. At the largest budget of 3.6 MB, the ARE
is 0.074,further reducing to just 21%, 46%, and 16% of
the errors of MS, CMS, and CS, respectively. The similar

(a) CPU (b) GPU

Figure 8: Throughput

advantage is observed in terms of AAE. For example, as
illustrated in Figure 6(a), at budgets of 0.6 MB and 3.6
MB, the AAE of the Lego sketch is only 97% and 13% of
that of MS. These results consistently demonstrate a signifi-
cant reduction in estimation errors across all budget levels,
underscoring the effectiveness of our approach.

Moreover, the Lego sketch within framework of elastic
derivative, abbreviated as D-Lego, is a case study in the
derivative category, exhibiting a better space-accuracy trade-
off. For example, at the 3.6MB budget, its AAE dramati-
cally reduces to an tiny value of 0.03, demonstrating signifi-
cantly enhanced accuracy. Additionally, this version notably
outperforms the elastic derivative with the traditional CM-
sketch, abbreviated as D-CMS, maintaining a consistent lead
of approximately 5-folds to 3-folds. These results highlights
the immense potential of integrating derivative strategies
with the Lego sketch as core sketch in the future.

5.3. Robustness under Distributional Shift

To verify the robustness of the Lego sketch against potential
distributional shifts across varying degrees of skewness, we
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Figure 9: Ablation Study

also assess its accuracy under synthetic streams conform-
ing to Zipf distributions with different skewness α. Due
to space constraints, some experimental results are shown
in Appendix A. As shown in Figure 7, as the skewness α
increases from a relatively low value of 0.5 to a high value
of 1.5, the estimation errors of all sketches progressively
rise. The meta-sketch and LCS exhibit poorer robustness;
for instance in Figure 7(e), at an extreme skewness of 1.5,
their absolute errors predominantly exceed 8, surpassing the
upper bound depicted even in large budgets. In contrast, the
Lego sketch demonstrates strong estimation robustness with
the skewness α increasing, ultimately performing compa-
rably to the CM-sketch and surpassing all other baselines.
Notably, the elastic derivative with Lego sketch (i.e. D-
Lego) shows the best robustness, underscoring the immense
potential of future research in derivatives based on Lego
sketch.

5.4. Throughput

We evaluate the throughput of Lego Sketch’s Store and
Query operations on the large-scale Wiki dataset using both
CPU and GPU platforms. CMS, with its simple structure
and high throughput, and MS serve as baselines for com-
parison. As shown in Figure 8, the overall throughput of
the Lego sketch is of the same magnitude as that of CMS,
reaching millions on CPU and tens of millions with GPU
acceleration. In contrast, compared to MS, the Lego sketch,
with its more effective MANN architecture, significantly
surpasses MS. For instance, the throughput for storing is up
to 6.90 times higher and for querying is 12.47 times higher,
on CPU. This shows the Lego sketch’s capability to deliver
accurate estimation while efficiently processing streams.

5.5. Ablation Study

Figure 9 presents ablation studies conducted on two datasets,
evaluating the impact of four techniques across three key
modules of the Lego Sketch framework. The results are
summarized as follows:

Embedding Module E . In the first and second ablation tests,
we remove the learnable vector V and normalization opera-
tion in the normalized multi-hash embedding, respectively.
When using a fixed V for embedding instead of a learn-
able vector, the error increases significantly under higher
budgets, highlighting the necessity of end-to-end training
for accuracy prediction scenarios. Moreover, removing the
normalization operation consistently leads to higher errors
across all budgets, underscoring the role of L1 stability in
maintaining stable memory increments for embedding.

Scanning Module S . In the third ablation test, we removed
the scanning module, which was newly introduced by the
Lego Sketch. This change directly causes a significant rise
in errors under small budgets, indicating that the novel scan-
ning module S effectively captures the global characteristics
of data streams through end-to-end training. Consequently,
it significantly improves frequency estimation accuracy for
neural sketching in low-budget scenarios.

Self-guided Weighting Loss L. The final ablation exper-
iment replaces the self-guided weighting loss L′ with the
conventional loss Lo used in previous work. We observe
that without the self-guided weighting optimization, the
accuracy of Lego sketch deteriorates under larger budgets,
lead to higher errors in such scenarios. This demonstrates
that the self-guided weighting loss effectively guides the
model by dynamically reweighting different meta-tasks ac-
cording to varying task difficulty during training, enabling a
better space-accuracy trade-off.

6. Conclusion
In this work, we propose the Lego sketch, a novel neural
sketch crafted to overcome the scalability and accuracy chal-
lenges encountered by existing neural sketches in real-world
stream applications. Mirroring the sturdy and modular na-
ture of Lego bricks, the Lego sketch pioneers a scalable
memory-augmented neural network capable of adapting to
various data domains, space budgets, and offers favorable
space-accuracy trade-off, with ease and efficacy. Within the
proposed framework of the Lego sketch, a suite of advanced
techniques, including hash embedding, scalable memory,
memory scanning, and a tailored loss function, collectively
ensure the estimation accuracy of the Lego sketch. Exten-
sive experiments demonstrate that the Lego sketch outper-
forms existing handcrafted and neural sketches, while its
potential integration with orthogonal add-ons holds promise
in facilitating data stream processing.
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Figure 10: Absent Results of Synthetic Datasets

Algorithm 3 Training Algorithm
1: Input: Model(K = 1) with all learnable parameters θ
2: while not reaching the max step do
3: Generating a batch b of meta-tasks
4: for meta task T ∈ b do
5: Clear the memory M
6: Store all items in T .support set
7: Query all frequencies of distinct items in T .query set
8: end for
9: Calculate L across all frequencies estimations of b

10: Backward propagate through ∂L/∂θ
11: Update all parameter θ
12: end while

A. Additional Experimental Results
Figures 10 are provided herein, excluded from the main text due to space constraints.

B. Limitations
Lego sketch, like other existing neural sketches (Cao et al., 2024; 2023), faces challenges in error analysis due to the limited
interpretability of deep learning techniques (MANN) they employ. While we provide an initial error analysis for Lego
sketch, it does not yet match the tightness of the error bounds achieved by handcrafted sketches. Future work should focus
on improving error analysis techniques for neural sketches to address this gap. Furthermore, given the broad applicability of
sketching techniques, extending the scalable and accurate architectural innovations of Lego sketch to related areas such as
graph stream summarization (Tang et al., 2016; Feng et al., 2024; Zhao et al., 2025) or vector compression (Ivkin et al.,
2019; Spring et al., 2019; Gui et al., 2023; Zhang et al., 2023) represents a promising direction for future research.

C. Parameter settings
In the embedding module E , the dimension of the learnable vector V is set to 80 and all values in V are constrained to [ϵ, 1]
to ensure numerical stability during decoding processes, where ϵ = 0.001. In is set within [1000, 50000] to encompass a
broad spectrum of data stream scenarios. IN , on the other hand, varies up to 10 times the minimum stream length permissible
by current n and alpha, ranging from [minlength, 10×minlength]. All experiments run at a NVIDIA DGX workstation
with CPU Xeon-8358 (2.60GHz, 32 cores), and 4 NVIDIA A100 GPUs (6912 CUDA cores and 80GB GPU memory on
each GPU). The training time for a single Lego sketch is approximately 48 hours, and the relevant code is provided in the
supporting materials.
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D. Zipf Distribution
Definition D.1. The Zipf(α) distribution describes the pattern between the frequency ratio pi and the ranking ri (counting
from 1 to n) of items as below:

pi =
C

rαi
, whereC = (

n∑
i=1

r−α
i )−1.

The α is a parameter indicating the skewness of Zipf distribution among the data stream. Thus given the ranking ri of the
item xi and the stream length N , its frequency can be calculated as fi = Npi =

NC
rαi

.

E. Proof of Theorem 4.1
Theorem E.1. Across all data items {xi} within any data domain X, the embedding vectors {vi} generated by the
normalized multi-hash embedding technique exhibit the same distribution.

Proof. We can divide the normalized multi-hash embedding technique E(xi) into two stages as follows.

v′i = (VH1(xi), VH2(xi), . . . , VHd1
(xi))

and

vi = v′i/

d1∑
j=1

v′ij

Given that the hash functionsH uniformly distribute outputs for any given input, each component of the vector v′i associated
with any input xi is independently and identically distributed (i.i.d.), with each P [v′ij = Vk] =

1
d1

. Consequently, for

any data item, the vector vi can be derived by normalizing v′i as vi = v′i/
∑d1

j=1 v
′
ij , under the same probability condition

P [v′ij = Vk] =
1
d1

. Therefore, across all data items xi within any data domain X, the resulting embedding vectors vi adhere
to a consistent distribution, as determined by the normalized multi-hash embedding technique.

F. Proof of Theorem 4.2
Theorem F.1. Given K memory bricks, the sub-skewness α′

r′i
around ri in sub-stream X ′ is as follows:

α′
r′i,K

(D, ri) = α log(1 +
D

ri
)/ log(1 +

1

r′i
)

where D ∼ G(1/K), (ri − r′i) ∼ NB(r′i, 1/K)

D denotes the distance of ranking r between two data items, which are adjacent on the sub-ranking r′ in same
X ′.Consequently, the expected sub-skewness is as follows:

E(α′
r′i,K

) =

D∑ ri∑
α′
r′i,K

(D, ri)P(D|K)P(ri|r′i,K)

= α

∞∑
D=1

∞∑
ri=r′i

log(1 + D
ri
)

log(1 + 1
r′i
)

(K − 1)ri+D−r′i−1

K(D+ri)

(
ri − 1

r′i − 1

)

Proof. When the Zipf distribution pi = C
rαi

is transformed into a log-log scale, the relation between log pi and log ri
becomes linear, i.e. log pi = logC − α log ri. Here, α manifests as the negative slope of the line, illustrating the skewness
in of data stream frequencies. We therefore derive the α′

r′,K by inferring the negative slope between frequencies log pi and
the sub-ranking log r′i. Consider a random variable D that denotes the distance of rank r, between two data items loaded
into the same sketch which are adjacent according r′. Without losing generality, we define two items xi and xj satisfying
the aforementioned adjacency relationship. Then, we can get the following correspondence:

rj = ri +D and r′j = r′i + 1
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In that case, the negative slope on a log-log scale can be calculated in the following way to characterize the α′
r′i,K

:

α′
r′i

= − log(pj)− log(pi)

log(r′j)− log(r′i)
= −

log( C
(ri+D)α )− log( C

(ri)α
)

log(r′i + 1)− log(r′i)
= α

log(1 + D
ri
)

log(1 + 1
r′i
)

Given the vast number of data items in the data stream, from the perspective of a specific sub-stream, the procedure of
uniformly distributing data items across K matrices using a hash function can be approximated as a Bernoulli process with
a probability of 1

K . Thus D obeys a geometric distribution with parameter 1
K , i.e. D ∼ G( 1

K ) ,and ri − r′i obeys a pascal
distribution,i.e. (ri − r′i) ∼ NB(r′i,

1
K ).

G. Proof of Theorem 4.3
Theorem G.1. The error of rule-based estimation f̂i

′′
for item xi is bounded by: P(|f̂i

′′
− fi| ≥ ϵ×N) ≤ (ϵ× d2)

−1

Proof. Let vki be the k-th value of the embedding vector for the item xi ∈ Rd1 and Ii,j,k be a Bernoulli random variable
indicating if the item xi and the item xj is addressed to the same address across d2 slots for the vki , then:

E[Ii,j,k] = d−1
2

Recalling the storing operation shows that the error of f̂i
′′

all comes from the address conflict between different vki , thus:

f̂i
′′
≥ fi and ∀k (f̂i

′′
− fi ≤

n∑
j=1,j ̸=i

Ii,j,k ∗ fj ∗ vkj
vki

)

f̂i
′′
− fi ≤

1

d1

d1∑
k=1

n∑
j=1,j ̸=i

Ii,j,k ∗ fj ∗ vkj
vki

Considering the normalization operation acting on the embedding vectors, the expectation of the error can be expressed as:

E[f̂i
′′
− fi] ≤

1

d1

d1∑
k=1

n∑
j=0,j ̸=i

E[Ii,j,k] ∗ fj ∗ E[
vkj
vki

] ≤ N

d2

According to Markov’s inequality we have:

P(f̂i
′′
− fi ≥ ϵ ∗N) ≤ E[f̂i

′′
− fi]

ϵN
≤ (ϵ ∗ d2)−1
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