Cost-Optimal Grouped-Query Attention for Long-Context Modeling

Anonymous ACL submission

Abstract

Grouped-Query Attention (GQA) is a widely adopted strategy for reducing the computational cost of attention layers in large language models (LLMs). However, current GQA configurations are often suboptimal because they overlook how context length influences inference cost. Since inference cost grows with context length, the most cost-efficient GQA configuration should also vary accordingly. In this work, we analyze the relationship among context length, model size, GQA configuration, and model loss, and introduce two innovations: (1) we decouple the total head size from the hidden size, enabling more flexible control over attention FLOPs; and (2) we jointly optimize the model size and the GQA configuration to arrive at a better allocation of inference resources between attention layers and other components. Our analysis reveals that commonly used GQA configurations are highly suboptimal for longcontext scenarios. More importantly, we propose a recipe for deriving cost-optimal GQA configurations. Our results show that for longcontext scenarios, one should use fewer attention heads while scaling up model size. Configurations selected by our recipe can reduce both memory usage and FLOPs by more than 50% compared to Llama-3's GQA, with no degradation in model capabilities. Our findings offer valuable insights for designing efficient longcontext LLMs.

1 Introduction

002

011

016

017

022

024

035

040

042

043

It is well established that increasing the size of large language models (LLMs) can improve their language modeling qualities (Hestness et al., 2017; Kaplan et al., 2020). Thus, many prior studies have focused on minimizing model size while maintaining quality to ensure cost-effectiveness (Hoffmann et al., 2022; Hu et al., 2024; Abdin et al., 2024). However, the vast majority of LLMs are Transformer-based (Vaswani et al., 2017; Grattafiori et al., 2024), and the cost of running such architectures does not solely depend on the model size. Specifically, during inference, a cache of keys/values (i.e., KV cache) is maintained to avoid recomputation in attention layers, resulting in **memory costs** that scale linearly with the context length. Also, attention layers include the computation of pair-wise attention scores and the weighted summation of value vectors, incurring per-token **computational costs** that scale linearly with the context length. Many studies have aimed to reduce these costs, including KV cache compression (Li et al., 2024a), prompt compression (Pan et al., 2024; Li et al., 2024; Jiang et al., 2024), etc.

044

045

046

047

051

055

058

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

081

One of the most widely used techniques for reducing memory costs is Grouped-Query Attention (GQA) (Ainslie et al., 2023), in which attention heads are split into groups and the heads in each group share the same KV vectors. Current implementations of GQA have two critical limitations: (1) Most existing models unnecessarily restrict the total number of head dimensions to be equal to the model hidden size, resulting in redundant FLOPs (floating-point operations). (2) When deciding on the number of attention heads and groups, current models do not take into account the influence of context length on the computational and memory costs, resulting in suboptimal configurations for long contexts.

In this paper, we aim to optimize the costeffectiveness of GQA Transformers from the perspective of resource allocation. Concretely, we categorize inference costs into *time-invariant costs*, which are constant with respect to context length (e.g., fixed model parameters), and *time-variant costs*, which grow with context length (e.g., attention computation and KV cache). To freely control the resource allocated to time-variant and time-invariant parts, we make two changes to the existing GQA design procedures: (1) By decoupling the total number of head dimensions and the

Figure 1: Our approach makes two changes to unlock the flexible adjustment of memory and compute allocation between *time-invariant* components (model weights) and *time-variant* components (KV cache/attention computation). Optimizing resource allocation results in **cost-optimal GQA configuration** ("Ours"), which has markedly lower memory and FLOPs usage compared to Llama-3, without compromising model capabilities.

model hidden size, we unlock a free hyperparameter to control the compute allocated to attention operations. (2) We jointly optimize GQA configurations and model size to modulate the resource allocation between time-variant and time-invariant components. After these changes, we can answer our main research question:

085

094

100

101

102

103

104

105

106

107

109

110

111

112

113

114

115

116

117

Given an expected inference context length and target loss, how can GQA be configured to minimize inference costs while achieving that loss?

To avoid sweeping all combinations of model sizes and GQA configurations, we present a threestep search procedure (detailed in Section 4). Our approach is empirically validated on models up to 1.2B parameters. Empirical results show that the widely used Llama-3 GQA configuration (Grattafiori et al., 2024) is highly suboptimal at 128K (which is the context length supported by Llama-3). Instead, our approach gives a configuration that achieves the same loss while reducing inference FLOPs and memory usage by more than 50% (Figure 1 (right)).

> The contributions of this paper can be summarized by the following points:

- By decoupling the model hidden size from the attention head number and jointly optimizing the model size and GQA configuration, we can flexibly allocate memory and compute resources among time-variant and timeinvariant components.
- We present the first rigorous study to search for the optimal GQA configuration in terms

of inference costs for reaching a target loss. Our three-step approach can precisely identify cost-optimal GQA configurations without exhaustively sweeping many configurations. 118

119

120

121

122

123

124

125

126

127

128

129

• Our framework reveals valuable insights for designing more cost-effective Transformer LLMs, especially in long-context scenarios.

2 Related Work

This paper explores how to build efficient longcontext LLMs based on GQA Transformer. Please refer to the LLM-related surveys (Zhao et al., 2023; Lu et al., 2024) for more details on LLMs.

Grouped-Query Attention The original Trans-130 former model employs multi-head attention (MHA) 131 (Vaswani et al., 2017), in which each layer consists 132 of multiple heads that are computed in parallel, 133 and the layer's output is the sum of the heads' out-134 puts. To improve decoding efficiency, especially 135 improving memory efficiency, multi-query atten-136 tion (MQA) (Shazeer, 2019) shares the weights 137 of all key and value projections among all heads, 138 significantly reducing KV cache size and memory 139 bandwidth requirements during autoregressive de-140 coding. Grouped-query attention (GQA) (Ainslie 141 et al., 2023) extends this by partitioning heads into 142 groups where each group shares a common KV 143 projection. Formally, MHA is a variant of GQA 144 with independent KV projections per query head, 145 while MQA corresponds to the extreme where all 146 queries share one common KV projection. Recent 147 attention methods based on low-rank factorization, 148 such as MLA (DeepSeek-AI et al., 2024), can also 149 be viewed as variants of GQA. Hence, it can be 150

		Adjustable?		
Notation	Meaning	Vanilla GQA	This paper	Constrained by
Т	Context length	×	×	None
N	Model size	×	1	None
n_h	Attention head number	×	1	None
n_{kv}	KV head number	✓	1	None
L	Number of layers	×	×	$\mid N$ and pre-defined aspect ratio (d/L)
d	Model hidden size	×	×	N and pre-defined aspect ratio (d/L)
$d_{ m ff}$	FFN intermediate size	×	×	$d_{\rm ff} \approx 8d/3$
d_h	Head size	×	×	$d_h = 64$
V	Vocabulary size	×	×	Pre-defined vocabulary

Table 1: Notations in the paper. We optimize more free hyperparameters, resulting in better cost-efficiency.

said that most of the current popular LLMs (Groeneveld et al., 2024; Biderman et al., 2023; Hu et al.,
2024; Grattafiori et al., 2024; Yang et al., 2025b)
are built based on GQA.

Efficient Long-Context Attention Attention 155 mechanisms pose a major bottleneck in long-156 context settings due to high computational and 157 memory costs, especially from the KV cache. To 158 mitigate this, techniques like sparse attention (Lou 159 et al., 2024; Ge et al., 2024; Jiang et al., 2024), 160 prompt compression (Pan et al., 2024; Xiao et al., 161 2024), and KV cache compression (Liu et al., 162 2024; Hooper et al., 2024; Zhang et al., 2024; 163 Yao et al., 2024; Cai et al., 2024) have been pro-164 posed. While these methods build on and optimize 165 GQA, they often compromise performance rela-166 tive to vanilla GQA. Our work focuses on identifying cost-optimal GQA configurations for long-168 169 context scenarios through precise characterization of model size, context length, and attention head 170 configurations in terms of their impacts on model 171 performance, computational cost, and memory cost. 172 The efficient long-context attention methods described above remain orthogonal to our GQA archi-174 tecture search and can be subsequently applied as 175 complementary optimizations to the cost-optimal 176 GQA structures. For more details on efficient longcontext attention methods, please refer to the sur-178 veys (Yuan et al., 2024; Shi et al., 2024). 179

180Scaling Laws for LLMsRecent studies on scal-181ing laws for LLMs (Hestness et al., 2017; Kaplan182et al., 2020; Hoffmann et al., 2022) have estab-183lished that model loss follows a log-linear rela-184tionship concerning model size and training data185size. They utilize this relationship to minimize186the model loss given a fixed training FLOPs bud-187get. However, there are two critical limitations: (1)188These works do not consider the influence of con-

text length on the computational and memory costs. (2) These laws prioritize the optimal allocation of compute during training, ignoring inference costs. Although Sardana et al. (2023) supplement scaling laws by accounting for total inference FLOPs, their inference cost estimation ignores the influence of context length and memory usage during inference. Our work extends these studies by accounting for both the computational and memory costs during inference and addressing the impact of context lengths.

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

3 Preliminaries: Computational and Memory Costs of GQA Transformers

In this section, we first briefly introduce GQA Transformers (Ainslie et al., 2023) and describe key model configurations and their impact on computational and memory costs. Then, we provide a more accurate formula for the computational and memory costs of Transformer-based LLMs that explicitly considers context length and can guide the design of cost-optimal long-context LLMs. Table 1 lists the main notations in this paper, and Appendix A provides a more complete list.

3.1 GQA Transformers

A Transformer model consists of L layers, each of which consists of an attention block and a feed-forward network (FFN) block. For each layer, let $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^d$ denote the *i*-th input and output embedding, where d is the model hidden dimension.

Attention Blocks For each head in an attention block, \mathbf{x}_i is first projected into query $\mathbf{q}_i = \mathbf{x}_i \mathbf{W}_q \in \mathbb{R}^{d_h}$, key $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}_k \in \mathbb{R}^{d_h}$, value $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}_v \in \mathbb{R}^{d_h}$, where d_h is the head dimension, then the attention head output is computed as

$$\tilde{\mathbf{h}}_{i} = \operatorname{softmax}\left(\frac{\mathbf{q}_{i}\mathbf{K}_{i}^{\top}}{\sqrt{d_{h}}}\right) \mathbf{V}_{i}\mathbf{W}_{o}^{\top} \in \mathbb{R}^{d}, \quad (1)$$
223

Component	Parameters	Per-token FLOPs	
Input emb.	dV	0	
ATT proj.	$2Ldd_h(n_h+n_{kv})$	$4Ldd_h(n_h+n_{kv})$	
ATT comp.	0	$4LTn_hd_h$	
FFN	$2Ldd_{\mathrm{ff}}$	$4Ldd_{ m ff}$	
Output emb.	0	2dV	

Table 2: Parameters and per-token FLOPs (**forward pass**) of the main components in Transformers. "Input emb." and "Output emb." represent the input and output embedding layers, respectively, sharing the same embedding weights. "ATT proj." and "ATT comp." represent the projection and computation processes of all attention blocks, respectively.

where $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v, \mathbf{W}_o \in \mathbb{R}^{d \times d_h}$ are learnable projection matrices. $\mathbf{K}_i^{\top} = [\mathbf{k}_1^{\top} \oplus \cdots \oplus \mathbf{k}_i^{\top}]$ and $\mathbf{V}_i^{\top} = [\mathbf{v}_1^{\top} \oplus \cdots \oplus \mathbf{v}_i^{\top}]$ are the KV cache for the current attention head, where \oplus denotes the concatenation along the sequence dimension. In MHA Transformers, each attention block consists of n_h heads computed in parallel, and the final attention output $\mathbf{h}_i \in \mathbb{R}^d$ is the sum of all head outputs. In GQA, every n_h/n_{kv} query heads share the same KV projection matrices, where n_{kv} is the number of KV heads.

FFN Blocks An FFN block is defined as

235

237

239

241

242

245

247

254

$$\mathbf{y}_i = \sigma \left(\mathbf{h}_i \mathbf{W}_{up}^\top \right) \mathbf{W}_{down} \in \mathbb{R}^d, \qquad (2)$$

where $\mathbf{W}_{up} \in \mathbb{R}^{d \times d_{ff}}, \mathbf{W}_{down} \in \mathbb{R}^{d_{ff} \times d}$ are learnable projection matrices and $\sigma(\cdot)$ is an elementwise activation function.

Hyperparameter Constraints Let V denote the vocabulary size and N denote the model size. We assume that d_h and V are fixed¹, and $d_{\rm ff} \approx 8d/3$, following common LLM design choices (Grattafiori et al., 2024; Groeneveld et al., 2024; Biderman et al., 2023). For each model size N, we assume that the optimal aspect ratio d/L is determined in advance (taken from Biderman et al. (2023)), so each N corresponds to a unique pair (d, L). Table 1 (right) lists these constraints.

3.2 Inference Costs of GQA Transformers

Table 2 summarizes the number of parameters for each component in the Transformer model and the FLOPs associated with it. Table 3 summarizes the memory and computational costs during inference.

Туре	Time-invariant	Time-variant
FLOPs (C_{infer})	2N	$4TLd_hn_h$
Mem. (M_{infer})	N	$2TLd_hn_{kv}$

Table 3: The time-invariant and time-variant costs of GQA Transformers during inference.

Inference Computational Costs $C_{infer}(T)$ is the number of FLOPs used to process one token within the context with T tokens. This is roughly given as

255

257

258

259

260

261

262

263

264

265

266

267

269

270

271

272

273

274

275

276

277

278

283

284

287

288

289

$$C_{\text{infer}}(T) = C_{\text{const}} + C_{\text{att}}(T)$$

= $\underbrace{2N}_{\text{Time-invariant}} + \underbrace{4TLd_hn_h}_{\text{Time-variant}}$ (3)

where C_{const} denotes the "time-invariant FLOPs", the number of FLOPs invariant to the current time step. $C_{\text{att}}(T)$ denotes the "time-variant FLOPs", which is the number of FLOPs used to compute the attention softmax process.

Inference Memory Costs M(T) is defined as the memory required to process one token within the context with T tokens. Ignoring the necessary system overhead, we need to store the model parameters and the KV cache, which is roughly:

$$M_{\text{infer}}(T) = N + N_{kv}(T)$$

= $\underbrace{N}_{\text{Time-invariant}} + \underbrace{2TLd_h n_{kv}}_{\text{Time-variant}}$, (4)

where N denotes the number of model parameters and $N_{kv}(T)$ denotes the number of values in the KV cache for the context with T tokens.

Takeaways As listed in Table 3, inference costs can be split into four types: time-invariant FLOPs and memory, and time-variant FLOPs and memory. The time-invariant costs are directly proportional to the model size (N), while time-variant FLOPs can be controlled by n_h , and time-variant memory can be controlled by n_{kv} . Thus, adjusting N, n_h , and n_{kv} permits fine-grained control over these four kinds of costs. This analysis also implies that a large model may have lower inference costs if its time-variant costs are low enough.

Training Costs Since this work mainly focuses on minimizing inference costs, the calculation for the training costs is left to Appendix C.

4 Method

Our objective is to find the GQA configuration that minimizes inference costs while attaining a given

¹Keeping d_h and V constant for varying model sizes is a common practice. Examples include Llama-3 (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025a).

299

3

301 302

303

3(

3

3

30

309

311

312 313

314 315

317 318

319

32

322

323 324

-

32

320

32

329

330

33

332 333 *loss*. We approach this by framing the problem as balancing the time-variant and time-invariant costs.

In order to unlock the ability to flexibly allocate different amounts of compute and memory to the time-variant and time-invariant components, we make two changes to existing GQA design procedures: (1) We decouple the number of attention heads from the model hidden dimension, and (2) we jointly optimize the model size and the GQA configuration. Figure 1 (left) shows the effect of these two changes, and Table 1 shows the adjustability of different hyperparameters in this work compared to vanilla GQA.

Change 1: Decoupling the Head Number from the Hidden Dimension Most existing GQA Transformers adopt $n_h \times d_h = d$, which is arbitrarily chosen in the original Transformer paper (Vaswani et al., 2017). This is an unnecessary restriction, rendering GQA unable to adjust the timevariant FLOPs. We decouple n_h from d, unlocking a free hyperparameter n_h that controls the number of FLOPs of attention blocks.

Change 2: Joint Optimization of Model Size and GQA Configuration In addition to the timevariant costs, we also want to control the timeinvariant costs (FFNs, attention QKV/output projections, etc.). Specifically, by reducing N, but increasing n_h , we can allocate more compute to time-variant components. Similarly, we can allocate more compute to time-invariant components by increasing N and decreasing n_h . This paper aims to identify the optimal allocation of memory and compute between the time-variant and timeinvariant components, by jointly tweaking the GQA configuration (n_h, n_{kv}) and the model size N.

4.1 Cost-Optimal GQA Search

Objective Formulation With the ability to freely adjust the time-variant and time-invariant costs, we formulate the optimization objective as follows,

$$\arg\min_{n_h, n_{kv}, N} Z(T, N, n_h, n_{kv})$$

s.t. $\mathcal{L}(T, N, n_h, n_{kv}) \leq \mathcal{L}^*$ (5)
where $Z = \lambda M_{infer}^{\alpha} + (1 - \lambda) C_{infer}^{\beta}$,

where \mathcal{L}^* is the target LM loss, \mathcal{L} is the model loss, $\lambda \in [0, 1], \alpha, \beta \in \mathbb{R}$ control the trade-off between compute and memory based on deployment constraints². Setting $\lambda = 1$ minimizes only M_{infer} , while $\lambda = 0$ minimizes only C_{infer} . We refer to Z as the *hardware-aware cost*. By default, we set $\lambda = 0.9, \alpha = 1/2, \beta = 1/3$ based on hardware utilization tests in our environment. In other words, the inputs to the optimization objective are (\mathcal{L}^*, T) and the outputs are (N, n_h, n_{kv}) .

334

335

336

337

339

340

341

342

343

345

347

348

349

351

352

353

354

355

356

357

358

359

361

363

364

365

366

367

368

369

370

371

Influence of Context Length We empirically observe that the effect of context length T on loss \mathcal{L} is largely invariant to N, n_h , and n_{kv} (verified in Section 5.7). This means we can train with moderate context lengths (e.g., T = 8K) and extrapolate the loss to longer contexts, saving precious computation resources. However, the influence of model size N and GQA head configuration $H = (n_h, n_{kv})$ on loss is coupled and must be jointly modeled. To this end, we adopt a three-step procedure:

Step 1: Candidate Selection Define a candidate set of attention configurations:

$$H_{\text{cand}} = \{n_h = 1, 2, 4, \dots, \max(d)/d_h\} \\ \times \{n_{kv} = 1, 2, 4, \dots, \max(d)/d_h\}$$
(6)
s.t. $n_{kv} \le n_h$,

where $\max(d)$ is the hidden size of the largest model used to fit scaling curves in step 2. We round $\max(d)/d_h$ to the nearest power of 2 if necessary.

Step 2: Scaling Curves Fitting For each $H \in H_{cand}$, we train a series of small-scale models with varying N using a sufficiently long context length (we use T = 8K), and fit the model loss using a power-law scaling function³ as

$$\mathcal{L}(N;H) = \left(\frac{a}{N}\right)^b + E,\tag{7}$$

where a, b are configuration-dependent coefficients and E is the "natural entropy of language".

Step 3: Cost Minimization For each GQA configuration H, we solve for the smallest model size $N^*(H)$ that satisfies the loss constraint as

$$N^{*}(H) = \frac{a}{\left(\mathcal{L}^{*} - E\right)^{1/b}}.$$
 (8)

Then, we calculate the inference cost for each configuration and select the one with the lowest cost

$$(N^*(H), H^*) = \underset{H}{\arg\min} Z(T, N, n_{kv}, n_h).$$
(9)

²Although M_{infer} and C_{infer} have different measurement units, (λ, α, β) allow us to control the importance of compute

and memory resources under a unified metric.

³We use the number of non-embedding parameters because it produces more predictable scaling laws in our experiments.

5 Experiments

372

374

375

376

384

386

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

We first explain the experimental settings (Section 5.1). Then, we present the main results and takeaways (Section 5.2), followed by the actual cost-optimal GQA configurations derived using our approach (Section 5.3) and an analysis of the influence of n_h and n_{kv} on LM loss (Section 5.4). After that, we present the results for the setting where total training FLOPs is aligned (Section 5.6). Finally, we verify that the effect of T on \mathcal{L} is largely independent of N and H (Section 5.7).

5.1 Experimental Settings

Model Configurations We adopt the widely used Llama-3 (Grattafiori et al., 2024) architecture. For each GQA configuration, we train models from 3M to 1.2B in size. We keep the model configurations as close to Biderman et al. (2023) as possible. We have $\max(d)/d_h = 32$, this results in 21 candidate configurations (i.e., $|H_{cand}| = 21$). For more details, see Appendix D.

Data Configurations We use SlimPajama (Soboleva et al., 2023) in our experiments. It is a deduplicated version of the RedPajama (Weber et al., 2024) corpus with 627B tokens. In most of our experiments, we use a 20:1 ratio between training data and model parameters, as suggested by Hoffmann et al. (2022). Additionally, we always ensure that each batch has 512K tokens. For more details, see Appendix E.

Training Configurations We try to follow common practices in most of our experiments. We use AdamW optimizer with the WSD learning rate scheduler (Hu et al., 2024). We choose the maximum learning rate by sweeping different values with the MHA model for each model size. For more details, see Appendix F.

5.2 Loss vs. Inference Costs

Here, we compare the loss-cost tradeoffs of different GQA configurations. Figure 2 reports the results for a subset of H_{cand} , showing LM loss as functions of various inference costs (M_{infer} , C_{infer} , and Z), with a context length of 128K tokens. To save space, we report the result of other context lengths in Appendix H.1.

416**Takeaway 1**We discover that loss does not have417a simple relationship (e.g., power-plus-constant418function) with either memory or computational419costs. However, it is still possible to predict the loss

Expected inference context length (T)					
\mathcal{L}^*	8K	16K	32K	64K	128K
3.0	32, 1	16, 1	8, 1	4, 1	4, 1
2.9	32, 1	16, 1	16, 1	8, 1	4,1
2.8	32, 2	16, 1	16, 1	8, 1	8,1
2.7	32, 4	16, 2	16, 1	16, 1	8,1
2.6	32, 8	16, 4	16, 2	16, 2	8,1
2.5	32, 16	16, 8	16, 4	16, 2	16, 2
2.4	32, 32	32, 32	32, 8	32, 8	32, 4
2.35	32,32	32,32	32,32	32, 16	32,8

Table 4: The cost-optimal GQA configuration (n_h, n_{kv}) for different target loss \mathcal{L}^* and context lengths (T), while minimizing the *hardware-aware cost* (Z, see Section 4.1). For reference, the loss of 1B, 3B, and 8B of Llama-3 GQA is 2.615, 2.448, and 2.362, respectively.

by fitting loss as a function of N, then transforming the fitted curves along the x-axis to account for the time-variant costs. Fitting loss as a power-plusconstant function of N is highly accurate, with R^2 values over 0.999. 420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

Takeaway 2 The commonly used Llama-3 GQA configuration (i.e., $H = d/d_h$, 8)⁴ is highly suboptimal at 128K context length. For instance, Llama-3.2-1B uses this head configuration and supports 128K context length. At that length, using H = (8, 1) and increasing the model size to 1.8B would **achieve the same loss (2.615) while reducing 50.8% and 57.8% inference memory and FLOPs usage, respectively** (shown in Figure 1 (right)). Alternatively, using H = 8, 1 can achieve a loss that is 0.117 lower than Llama-3.2-1B with the same per-token inference budget in terms of Z.

5.3 Cost-Optimal GQA Configuration

Table 4 reports the cost-optimal GQA for different expected inference context lengths T and target losses \mathcal{L}^* . When the target loss is high, the model is small, making the time-invariant costs low. Thus, the optimal configuration allocates more resources to the time-invariant part by increasing N and reducing n_h and n_{kv} . Similarly, when T is great, the time-variant costs are high, making it more attractive to reduce n_h and n_{kv} more aggressively.

In addition, the results indicate that there is nothing especially attractive about the commonly used Llama-3 GQA configuration $(d/d_h, 8)$. For certain combinations of \mathcal{L}^* and T, the GQA configuration is cost-optimal. However, for a greater number of

⁴We use "Llama-3 GQA" to refer to the GQA configuration on Llama-3 and not the actual publicly released checkpoint, which is trained on huge amounts of proprietary data.

Figure 2: Loss as a function of inference costs with a context length of 128K, assuming we use BF16 for both parameters and the KV cache. $H = (n_h, n_{kv})$ denotes the attention head configuration. n_h and n_{kv} have different effects on the memory cost, computational cost, and loss. x-axis is in log scale.

Figure 3: The loss for different number of query heads (n_h) and KV heads (n_{kv}) , with 1.2B model parameters.

combinations, it is sub-optimal in costs. The result implies that configuration of GQA Transformers should take into account the expected inference context length, and directly applying the popular GQA configuration results in severe waste of hardware resources.

5.4 Influence of Query and KV Heads

Figure 3 shows the relationship between loss and the number of query heads and KV heads (i.e., different GQA configurations), with a model size of 1.2B. Similar results are observed with other model sizes as well. We emphasize two main takeaways.

Takeaway 1 The loss reduction by increasing either n_h or n_{kv} exhibits diminishing returns. This means that when n_h or n_{kv} is great, increasing these hyperparameters to reduce loss may not be worth the cost increase. We also found that they exhibit a power-plus-constant relationship (details in Appendix I).

471**Takeaway 2** Increasing n_h reduces the loss more472than increasing n_{kv} by the same amount, although473both of them cause the same parameter increase.474This means the n_h is more important for model475expressivity. Having more query heads allows the476model to capture a greater number of dependency

Evaluation Metric	$ \begin{array}{c c} H = 32,8 \\ (Llama-3 \text{ GQA}) \end{array} $	$\begin{array}{c} H=8,1\\ (\text{Ours}) \end{array}$
Train. throughput (tok/s) Infer. throughput (tok/s)	18,655 12,921	31,260 20,643
Common-sense NIAH (1-8K) NIAH (16K) NIAH (32K) NIAH (64K) NIAH (128K)	45.7% 90.9% 30.4% 15.1% 6.1%	45.5% 96.9% 46.0% 18.7% 7.9% 6.7%

Table 5: The throughput of two GQA configurations at 128K context length, and their accuracy on commonsense reasoning (average of 8 tasks) and retrieval tasks (NIAH, varying context length). Although H = 8, 1has more parameters (1.8B vs. 1.2B), it is much faster for both training and inference.

patterns. Meanwhile, having more KV heads provides more capacity to store information for each token. The empirical results may indicate that the former is more important for performance.

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

5.5 Downstream Performance

Now, we compare the cost-optimal configuration against Llama-3 GQA in terms of training/inference throughput and downstream performance. At T = 128K and $\mathcal{L}^* = 2.615$ (the loss of Llama-3 GQA at 1.2B model size), the costoptimal GQA configuration is H = 8, 1. Specifically, we train two models, one with H = 32, 8(Llama-3 GQA) and one with H = 8, 1. Training starts with a 4K context length on 20B tokens. It is then trained with 128K context length for 1B tokens. More training details is given in Appendix J.1.

Training throughput is computed based on the training time while inference throughput is measured with a batch size of 1 on one NVIDIA

452

453

Figure 4: Loss as a function of memory and computational costs, aligned by total training FLOPs at 128K tokens. Each curve is trained with the same amount of training compute.

A800 GPU (with T = 128K). For downstream performance, we evaluate the models on zeroshot common-sense reasoning (Gao et al., 2024) and needle-in-a-haystack (NIAH) (Hsieh et al., 2024), which are two widely used LLM benchmarks (more details in Appendix J.2). The result is shown in Table 5. One can see that the differences in common-sense reasoning and long-context retrieval are rather small. Meanwhile, the costoptimal model (H = 8, 1) is much more efficient.

5.6 Aligning Training Costs

497

498

499

502

503

510

511

512

513

514

515

516

517

518

519

520

522

524

527

528

In the previous sections, the training data is always 20 tokens per parameter (i.e., the Chinchilla law). This favors configurations that spend more FLOPs per token. Instead, we can allow more computeefficient configurations to use more training data to align the training costs of different configurations.

Figure 4 reports the result when we always train with T = 128K⁵. We find that using fewer heads is even more advantageous because of the extra training data, producing a model with the same loss but with 88% and 83% lower memory and FLOPs usage.

5.7 Influence of Context Length

In this section, we empirically show that the relationship between context length T and loss \mathcal{L} is largely invariant to N and n_h when T is sufficiently large. To this end, we measure the relative loss difference between various models and a "baseline":

$$\Delta \mathcal{L}(T) = \frac{\mathcal{L}(T) - \mathcal{L}_{\text{baseline}}(T)}{\mathcal{L}_{\text{baseline}}(T)}$$

)

Figure 5 shows the relative loss difference between various GQA configurations with H = 1, 1 as the

Figure 5: Relative loss difference between various GQA configurations and the H = 1, 1 model, as a function of context length T. Model size is 470M.

Figure 6: Relative loss difference between varying model size and the 150M model, as a function of context length *T*. These are MHA models.

baseline. Figure 6 shows this relationship when varying N, with N=150M as the baseline. The results show that the relative loss difference is relatively flat when T > 8K (all fluctuations are less than 1%). The main takeaway is that when applying our cost optimization procedure to longer contexts, we do not have to repeat step 2 (an expensive process) with longer contexts since the loss change of each model will remain roughly the same.

6 Conclusion

To optimize the allocation of FLOPs and memory between time-invariant and time-variant components of GQA Transformers, we first decouple the number of attention heads from the model hidden dimensions, enabling a more flexible distribution of FLOPs and memory. Next, we refine the estimation of computational and memory costs in existing approaches by incorporating context length. Our findings reveal that typical configurations of GQA are significantly suboptimal for certain context lengths. Through detailed analysis, we offer valuable insights for improving the allocation of resources by jointly adjusting the model size and the number of query and KV heads. As the demand for greater inference context lengths continues to grow, our work marks a critical advancement toward efficient long-context LLMs.

8

546

547

548

549

550

551

552

553

554

555

529

530

⁵LMs are usually trained with short contexts most of the time, so this result may not apply.

571

572

574

576

582

583

584

585

587

588

589

590

591

593

597

607

Limitations

Like most phenomena in neural language models, we cannot be sure that the conclusions will hold when further scaling up the models. The power-559 plus-constant scaling law is also not guaranteed, although it has been empirically validated up to hundreds of billions of parameters. Similarly, there 562 is no guarantee that these laws and our conclusions will hold for an arbitrarily large amount of training data. In general, we have kept our experiments 565 as close to research conventions as possible, and 566 the scale of the largest models in our experiments 567 (i.e., 1.2B for Llama-3 GQA and 1.8B for our cost-568 optimal GQA) is comparable to some real-world LLMs.

References

- Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, and 1 others. 2024. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*.
- Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit Sanghai. 2023. GQA: Training generalized multi-query transformer models from multi-head checkpoints. In *Proceedings of EMNLP*.
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. *arXiv preprint arXiv:1607.06450*.
- Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. 2023. Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling. In *Proceedings of ICML*.
- Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. 2024. LoCoCo: Dropping In Convolutions for Long Context Compression. In *Proceedings of ICML*.
- DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, and 81 others. 2024. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model. arXiv preprint arXiv:2405.04434.
- Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,

Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, and 5 others. 2024. The Language Model Evaluation Harness. 608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

- Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. 2024. Model tells you what to discard: Adaptive KV cache compression for llms. In *Proceedings of ICLR*.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 17 others. 2024. The Llama 3 Herd of Models. *arXiv preprint arXiv:2407.21783*.
- Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024. OLMo: Accelerating the Science of Language Models. In *Proceedings of ACL*.
- Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. 2017. Deep learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, and 3 others. 2022. An empirical analysis of compute-optimal large language model training. In *Proceedings of NeurIPS*.
- Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024. KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization. *arXiv preprint arXiv:2401.18079*.
- Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, and Boris Ginsburg. 2024. RULER: What's the Real Context Size of Your Long-Context Language Models? *arXiv preprint arXiv:2404.06654*.
- Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng Thai, Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, and 5 others. 2024. MiniCPM: Unveiling the potential of small

1 others. 2024. MInference 1.0: Accelerating Pre- filling for Long-Context LLMs via Dynamic Sparse Attention. In <i>Proceedings of ICML</i> .	- cob Slin vers
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray. Alec Radford, Jeffrey Wu, and Dario Amodei. 2020 Scaling laws for neural language models. <i>arXiv</i> <i>preprint arXiv:2001.08361</i> .	Jianlir Wer han <i>Neu</i>
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In <i>Proceedings</i> of <i>ICLR</i> .	Usz Kai you
Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei Dong, Qing Li, and Lei Chen. 2024a. A survey on large language model acceleration based on KV cache man- agement. <i>arXiv preprint arXiv:2412.19442</i> .	, Mauri , thor dro - Virg mal Lia
Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Col- lier. 2024b. Prompt compression for large language models: A survey. <i>arXiv preprint arXiv:2410.12388</i>	- 202 Lar
Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache. In <i>Proceedings of</i> <i>ICML</i> .	Guang Har lang <i>of I</i>
Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. 2024 Sparser is faster and less is more: Efficient sparse attention for long-range transformers. <i>arXiv preprint</i> <i>arXiv:2406.16747</i> .	Kulbir . Shu Lan Noi <i>Pro</i>
Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang- ming Liu, Xiwen Zhang, Nicholas D Lane, and Mengwei Xu. 2024. Small language models: Sur- vey, measurements, and insights. <i>arXiv preprint</i> <i>arXiv:2409.15790</i> .	- An Ya Bin - Che hen Hao
 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression. In <i>Findings of ACL</i>. 	, An Ya , An Ya - Bo - Fei hon
Alec Radford and Karthik Narasimhan. 2018. Im- proving language understanding by generative pre- training.	- 202 - <i>arX</i>
Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. 2023. Beyond chinchilla-optimal Accounting for inference in language model scaling laws. <i>arXiv preprint arXiv:2401.00448</i> .	Yao Y Stre <i>of A</i> Jiayi Y
Noam Shazeer. 2019. Fast transformer decoding One write-head is all you need. <i>arXiv preprint</i> <i>arXiv:1911.02150</i> .	har KV in F
	10

language models with scalable training strategies. In COLM.

666

673

678

679

695

703

705

710

712

714

715

716

717

- Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, and

- Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. 2024. Keep the Cost Down: A Review on Methods to Optimize LLM's KV-Cache Consumption. In Proceedings of COLM.
- Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-R Steeves, Joel Hestness, and Nolan Dey. 2023. nPajama: A 627B token cleaned and deduplicated sion of RedPajama.
- 1 Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, n Bo, and Yunfeng Liu. 2024. RoFormer: Enced transformer with rotary position embedding. irocomput.
- h Vaswani, Noam Shazeer, Niki Parmar, Jakob koreit, Llion Jones, Aidan N Gomez, Ł ukasz ser, and Illia Polosukhin. 2017. Attention is all need. In Proceedings of NeurIPS.
- ce Weber, Daniel Y Fu, Quentin Gregory Anny, Yonatan Oren, Shane Adams, Anton Alexanv, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, ginia Adams, Ben Athiwaratkun, Rahul Chalala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy ng, Christopher Re, Irina Rish, and Ce Zhang. 24. RedPajama: an Open Dataset for Training ge Language Models. In Proceedings of NeurIPS asets and Benchmarks Track.
- xuan Xiao, Yuandong Tian, Beidi Chen, Song n, and Mike Lewis. 2024. Efficient streaming guage models with attention sinks. In Proceedings CLR.
- n Xiong, Yunchang Yang, Di He, Kai Zheng, ixin Zheng, Chen Xing, Huishuai Zhang, Yanyan n, Liwei Wang, and Tieyan Liu. 2020. On Layer rmalization in the Transformer Architecture. In ceedings of ICML.
- ing, Anfeng Li, Baosong Yang, Beichen Zhang, yuan Hui, Bo Zheng, Bowen Yu, Chang Gao, engen Huang, Chenxu Lv, Chujie Zheng, Dayig Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, bran Wei, Huan Lin, Jialong Tang, and 41 others. 25a. Qwen3 Technical Report. arXiv preprint liv:2505.09388.
- ng, Baosong Yang, Beichen Zhang, Binyuan Hui, Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Huang, Haoran Wei, Huan Lin, Jian Yang, Jiang Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, gren Zhou, Junyang Lin, Kai Dang, and 23 others. 25b. Qwen2.5 technical report. arXiv preprint liv:2412.15115.
- ao, Zuchao Li, and Hai Zhao. 2024. SirLLM: eaming Infinite Retentive LLM. In Proceedings CL.
- luan, Hongyi Liu, Yu-Neng Chuang, Songchen Li, anchu Wang, Duy Le, Hongye Jin, Vipin Chaudy, Zhaozhuo Xu, Zirui Liu, and 1 others. 2024. Cache Compression, But What Must We Give Return? a Comprehensive Benchmark of Long

775 Context Capable Approaches. In *Proceedings of*776 *EMNLP*.

777

778

779 780

781 782

783

789

- Biao Zhang and Rico Sennrich. 2019. Root mean square layer normalization. In *Proceedings of NeurIPS*.
- Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, and 1 others. 2024. H2O: Heavy-hitter oracle for efficient generative inference of large language models. In *Proceedings of NeurIPS*.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
 A survey of large language models. *arXiv preprint arXiv:2303.18223*.

Notation	Meaning			
Model hyperparameters				
V	Vocabulary size, always set to 50,304.			
L	Number of layers			
d	Model hidden dimension			
d_h	Head size, always set to 64.			
$d_{ m ff}$	FFN intermediate size, we always set $d_{\rm ff} = 8d/3$.			
σ	The activation function in FFN			
n_h	Number of attention heads			
n_{kv}	Number of KV heads (or groups in GQA)			
	Inference and Training Costs			
C_{infer}	The computational cost (in FLOPs) per forward pass with a context length of T tokens.			
$M_{ m infer}$	The memory usage (in floating-point values) of serving the model with a context length of T tokens.			
C _{train}	The computational cost (in FLOPs) used to train the model with a context length of T tokens.			
$M_{ m train}$	The memory usage (in floating-point values) of training the model with a context length of T tokens.			
Ζ	Hardware-aware costs combining both M_{infer} and C_{infer} . Defined in Section 4.1.			
Other parameters				
Т	Context length			
Ν	Number of model parameters.			
D_{train}	Number of training tokens.			
λ, α, β	Hyperparameters controlling the importance of memory and compute resources.			

Table 6: List of notations used in the paper.

A Notations

For completeness, we provide a list of notations we used in the paper, reported in Table 6.

790

791

792

793

794

795

796

797

798

799

800

801

802

803

B Discussions

What About Other Efficient Attention? This paper primarily adjusts the allocation of compute and memory usage by tweaking the model size (controlled with L and d) and head configuration (n_h, n_{kv}) in GQA, which is a rather simple method. As mentioned, there are many techniques for improving the efficiency of the attention layer, although those have enjoyed less adoption. When using these techniques, the computational and memory costs may be considerably different, and some

810

811

812

813

815

816

817

818

819

821

823

824

825

831

832

833

836

839

840

843

of our conclusions may not apply. Despite so, our work is still a valuable improvement over existing implementations of GQA.

Recently, Multi-head Latent Attention (MLA) (DeepSeek-AI et al., 2024) was proposed as a strong alternative to GQA for reducing the KV cache size. During inference, MLA reformulates the attention computation such that all heads share a unified representation for keys and values. In this case, our analysis still applies, since MLA can be seen as a kind of GQA with a different head dimension (d_h) and number of attention heads (n_h, n_{kv}) , and it uses a more complex function to generate the QKV vectors.

What If Context Length Varies? The formulas for computational costs (see Table 8) are affine functions of *T*, so the *expected costs* are:

$$\begin{split} \mathbb{E}(C_{\text{infer}}(T)) &= C_{\text{infer}}(\mathbb{E}(T))\\ \mathbb{E}(M_{\text{infer}}(T)) &= M_{\text{infer}}(\mathbb{E}(T))\\ \mathbb{E}(C_{\text{train}}(T_{\text{train}})) &= C_{\text{train}}(\mathbb{E}(T_{\text{train}}))\\ \mathbb{E}(M_{\text{train}}(T_{\text{train}})) &= M_{\text{train}}(\mathbb{E}(T_{\text{train}})) \end{split}$$

where T_{train} is the context length during training. Hence, it suffices to compare the costs with the expected context length.

Will the Findings Break Down When Scaling Up the Model/Data Size? This is a never-ending argument against most neural architectural changes, because no matter the scale of our experiments, we can never be sure that the behavior holds for larger scales. However, our experiments have already covered model sizes up to 1.2B, which is already the size of some widely-used models at the moment (Grattafiori et al., 2024; Yang et al., 2025b). Empirically, it has been widely validated that the scaling law is highly predictable to a good extent beyond the largest model (e.g., Llama-3 accurately predicted the loss of a 405B model with experiments on model sizes up to 16B). Thus, we are confident that our conclusions hold at least for models up to 10B parameters.

B.1 How to Calculate the Costs of Models of Arbitrary Sizes?

In step 3 of our procedure (proposed in Section 4.1), we arrive at a critical model size $N^*(H)$. It is a real value, so it does not correspond to an actual model configuration. To calculate the inference costs (M_{infer}, C_{infer}, Z) of a model of this size, we need H and the aspect ratio of the model a = d/L.

N	$\mid d$	L
1.2B	36	1536
1.8B	36	2048
4B	48	2560
6B	54	3072
13B	64	4096
33B	72	6144
64B	80	8192

Table 7: The pre-defined configurations used to calculate the aspect ratio of arbitrarily sized models. For models smaller than 1.2B, we use the configurations in Table 9.

Cost Type	Time-invar.	Time-var.
Infer. FLOPs (C_{infer}) Infer. Mem. (M_{infer})	$2N \over N$	$\begin{array}{c} 4TLd_hn_h\\ 2TLd_hn_{kv}\end{array}$
Train. FLOPs (C_{train}) Train. Mem. (M_{train})	$6D_{ m train}N$ 4N	$\frac{12D_{\text{train}}TLd_hn_h}{TdL}$

Table 8: The time-invariant and time-variant costs ofGQA Transformers during inference and training.

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

870

871

872

873

874

875

876

877

878

H is already given, which may be a function of *d*. For the aspect ratio, we perform linear interpolation between the nearest two pre-defined model configurations. The pre-defined model aspect ratios are given in Table 7. Then, we use binary search to find the *L* that corresponds to $N^*(H)$. We can calculate *d* from *L* and *a*. Then, we calculate n_h and n_{kv} from *d* and the specified configuration. With all these values (non-integers) known, we can calculate the model size as well as the inference costs.

To produce an actual model in practice, we suggest simply choosing the configuration (N, n_h, n_{kv}) closest to the derived answer in step 3. The slight variations in the performance of the resulting configuration are negligible compared to the huge cost savings gained by selecting the costoptimal configuration using our approach.

C Training Costs of GQA Transformers

Training Computational Costs In addition to inference costs, different head configurations also result in different training costs, because the number of training FLOPs, C_{train} , is a function of C_{infer} . Following Kaplan et al. (2020), we estimate the FLOPs of the backward pass as double the FLOPs of the forward pass. Let D_{train} denote the number of training tokens, T_i denotes the number of tokens

preceding the *i*-th training token in the training corpora, then the training FLOPs are:

$$C_{\text{train}} \approx 3D_{\text{train}}C_{\text{infer}}\left(\overline{T}\right)$$
 (10)

$$= 6D_{\text{train}} \left(N + \underbrace{2L\overline{T}d_h n_h}_{\text{Attention}} \right), \qquad (11)$$

where \overline{T} is the average value of $\{T_i | i = 1, \dots, D_{\text{train}}\}$. When all examples in the training corpora are set to the constant length T_{train} , during training, we have $\overline{T} = T_{\text{train}}/2$. However, in practice, when training long-context LLMs, it is more common to use short contexts for most of the time, and only use long contexts consisting of a small number of tokens to adapt the model to the target context length. Hence, the time-variant FLOPs may only make up a small portion of the training FLOPs, making the cost largely independent of the GQA configuration. Consequently, our paper considers training costs, but focuses more on optimizing inference costs.

Training Memory Costs We only need to store model parameters, activations, gradients, and optimizer states during training. Assuming the widelyused Adam (Kingma and Ba, 2015) optimizer without offloading any storage to the CPU, the memory cost is roughly:

$$M_{\text{train}}(T) \approx 4N + \underbrace{TdL}_{\text{Activations}}$$
 (12)

While it is important to lower the cost of caching activations when T is large, we do not have a free hyperparameter to adjust this cost (like n_h for computational costs and n_{kv} for memory costs). To reduce the size of activations, we have to modify d and/or L, which either drastically changes the model size or its aspect ratio. Either of such changes leads to major consequences that are beyond the scope of this paper. Regarding the 4N part of training memory cost, it is only dependent on the total model size, so it suffices to minimize the model size, which is already addressed in many existing works (Kaplan et al., 2020; Grattafiori et al., 2024; Sardana et al., 2023).

D Model Configurations

919Table 9 shows the configurations of the models920in our experiments for fitting the scaling law. In921general, we ensure that $d_h = 64$, $d_{\rm ff} \approx 8d/3$ 922(rounded to the closest multiple of 32) when scal-923ing the model size, which is adopted from common

hyperparameters found in existing LLMs such as GPT (Radford and Narasimhan, 2018) and Llama (Grattafiori et al., 2024). We also ensure that the aspect ratio d/L is similar to those used by existing modeling scaling works (Biderman et al., 2023; Hoffmann et al., 2022; Yang et al., 2025b). We use the GPT-2 tokenizer, which has a vocabulary size of 50,304, and we tie the input and output embeddings.

Learning Rate The maximum learning rate (LR) is chosen by a grid search on $\{1 \times 10^i, 2 \times 10^i, 5 \times 10^i | i = -3, -4, -5\}$ with the vanilla MHA, and choosing the one with best LM loss. Then, we just keep the LR the same across different GQA configurations. While different configurations may have different optimal LR, exhaustively sweeping all LR for each configuration is prohibitively expensive.

Differences From Vanilla GPT Compared to the vanilla GPT model (Radford and Narasimhan, 2018), we make the following changes to better align with more recent LLMs:

- We use RoPE (Su et al., 2024) with a θ value of 500,000, which is widely used in current LMs (Grattafiori et al., 2024).
- We use SwiGLU FFN instead of the ReLU FFN in GPT.
- We use pre-norm (Xiong et al., 2020) and use RMSNorm (Zhang and Sennrich, 2019) instead of LayerNorm (Ba et al., 2016), which is more common in current LLMs. The epsilon in RMSNorm is 10^{-6} .
- Our model has no bias terms or dropout, which is also common practice and can slightly increase the training efficiency.

E Data Processing

In most of our experiments, we used SlimPajama (Soboleva et al., 2023). We append an EOS token to each document in the corpus before chunking the documents into the specified training length. If the last chunk is shorter than the specified training length, it will be discarded.

F Training Configurations

Here, we provide the default training configurations we used during the experiments.

Figure 7: The proportion of FLOPs allocated to different components in a Transformer LM, with multi-head attention and RoPE. As the context length increases, most FLOPs are spent on the time-variant computation of the attention operator $\sigma(\mathbf{QK}^{\top})\mathbf{V}$, where σ is the row-wise softmax function.

Figure 8: The proportion of memory allocated to different components in a Transformer LM, with multi-head attention and RoPE. As the context lengths increase, most of the memory usage is spent on storing the KV cache.

Model size	$\mid L$	d	d_h	LR
3M	4	256	64	1e-3
19M	6	512	64	1e-3
85M	12	768	64	1e-3
150M	12	1024	64	1e-3
200M	16	1024	64	5e-4
470M	24	1280	64	5e-4
680M	24	1536	64	2e-4
1.2B	36	1536	64	2e-4

Table 9: The configurations of the vanilla models with MHA in our experiments, we try to keep it as close to the configurations from Biderman et al. (2023) as possible.

- **Optimizer:** We use the widely-used AdamW optimizer (Kingma and Ba, 2015), with $\beta_1 = 0.9, \beta_2 = 0.95$, and a weight decay of 0.1. We only apply weight decay to linear layers, which excludes the re-scaling factor in RM-SNorm. We also use a gradient clipping value of 1.0.
- Learning rate scheduler: We use the warmup-stable-decay (WSD) LR scheduler

(Hu et al., 2024), with a maximum LR of $5 \cdot 10^{-4}$, 10% warmup steps steps and 20% decay steps. Warmup starts from 0 and increases linearly to the maximum LR. The decay stage uses a cosine annealing scheme, where the minimum LR is 10% of the maximum LR.

- Batch size: 512K tokens.
- **Floating-point precision:** We use BF16 during training and FP16 during evaluation.

Hardware All training experiments were run on A800 GPUs, mostly with 8 GPUs.

G Memory and Compute Allocations by Model Size

Figure 7 and 8 show the FLOPs and memory breakdown of different components as a function of model size. One can see that changes in the model size and/or context length can influence the allocation of FLOPs and memory between different components in the model. For instance, when the context has 128K tokens, the vast majority of FLOPs is spent computing the attention scores and value summation (i.e., softmax $(\mathbf{q}_i \mathbf{K}^\top / \sqrt{d_h}) \mathbf{V}$),

and the vast majority of memory is spent caching 999 KVs. With 1B model parameters, roughly 90% of 1000 memory will be spent storing the KV cache, and 1001 only 10% will be used to store the model param-1002 eters (assuming the KVs and model parameters 1003 use the same precision). In other words, the time-1004 variant costs dominate the overall inference costs. 1005 Thus, at this context length, we can minimize the 1006 overall costs by allocating more resources to the 1007 time-invariant components by increasing N and 1008 decreasing n_h and n_{kv} . 1009

H More Results: Loss vs. Inference Costs

1010

1011

1012

1014

1015

1016

1017

1020

1021

1022

1023

1024

1025

1026

1027

1028

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

Here, we provide the results for the relationship between loss and inference costs for other context lengths. The results are shown in Figure 9, 10, and 11. We can see that for shorter context lengths, the gain of reducing n_h or n_{kv} is relatively small, but the commonly used GQA ($n_{kv} = 8$) configuration is still suboptimal at 32K context length. At 1.2B parameters, GQA uses more FLOPs and memory than H = 8, 1. For longer context lengths such as 512K, we can achieve the same loss with less than 10% of the original memory usage by using fewer KV heads, but a larger model (increasing N).

H.1 Influence of Query and KV Heads for Different Context Lengths

Here, we provide the supplementary results for Section 5.4 for other context lengths (8K, 32K, and 512K). Similar to the previous section, a greater context length means that the advantage of using fewer heads is greater. In the following section, we explicitly fit the relationship between loss and n_h and n_{kv} with power-plus-constant functions.

I The Scaling Laws of Attention Heads

In this section, we show that one can predict the loss for a certain head configuration using experiments with a smaller number of heads. Specifically, we find that—for the first time—the relationship between loss and the number of attention heads closely resembles a power-plus-constant function:

$$\mathcal{L}(n_h) = an_h^b + c$$

1040where \mathcal{L} is the LM loss, and $a, b, c \in \mathbb{R}$ are coef-1041ficients. Figure 12 shows that this relationship is1042observed with different model sizes. The concrete

functions for the curves are:

$$\mathcal{L} = 0.579 n_h^{-0.124} + 2.473 \qquad (470M) \qquad 1044$$

$$\mathcal{L} = 0.398 n_h^{-0.177} + 2.583 \tag{680M}$$
 1045

$$\mathcal{L} = 0.301 n_h^{-0.227} + 2.622$$
 (1.2B) 1046

Since the larger model has a greater constant term, this means that these curves will intersect at a certain point (at around $n_h = 8$ K). This is likely incorrect, since the 1.2B model has strictly more parameters than the other models (although at such large values of n_h , the relative difference in model size is very small). This means that the fitted curves will break down before $n_h = 8$ K. Fortunately, virtually all LLMs with open weights have fewer than 128 heads, and the fitted curves are very accurate up to 128 heads with R^2 values over 0.999. Thus, we conclude that the law is empirically accurate for the vast majority of openly available LLMs.

Similarly, Figure 13 shows that this trend is consistent across different context lengths. The fitted curves are

$$\mathcal{L} = 1.513n_h^{-0.039} + 1.53 \qquad (T = 1K)$$
 106

$$\mathcal{L} = 1.436n_h^{-0.041} + 1.53 \qquad (T = 2K)$$

$$\mathcal{L} = 1.356n_h^{-0.044} + 1.53 \qquad (T = 8K)$$
 106

When n_h approaches infinity, the model parameters will be dominated by the attention projection matrices (i.e., QKVO projections). Hence, they converge to the same constant term, which is known as the "natural entropy of language". During curve fitting, this constant term is chosen to minimize to fitting error, and we arrive at 1.53. The R^2 values of these fits are over 0.999.

From these results, we conclude that this powerplus-constant scaling law between loss and the number of heads is exhibited independently of model size and context length. One important implication of this result is that increasing the number of heads to improve model quality gives diminishing returns. This means that beyond a certain point, the loss reduction brought by further increasing the number of heads is not worth the cost increase.

I.1 Constant Number of KV Heads

Some LMs (e.g., Llama-3 (Grattafiori et al., 2024))1084keep the number of KV heads constant when scaling up the model. Therefore, we also investigate1085the relationship between LM loss and n_h when n_{kv} 1087is constant. Figure 14 shows this relationship with1088different values of n_{kv} and two model sizes. We1089

1043

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1058

1059

1060

1061

1062

1067

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1081

Figure 9: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during inference with a **context length of 8K tokens**.

Figure 10: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during inference with a **context length of 32K tokens**.

Figure 11: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during inference with a **context length of 512K tokens**.

discover that the relationship is still a power-plusconstant law, but the fitted curves are notably less accurate, with R^2 values over 0.97. It is worth noting that the increase in fitting error compared to Section I) may be attributed to the use of a smaller model (150M vs. 470M).

1090

1093

1094

1095

1096

1097

J Experimental Details: Downstream Performance

1098This section provides additional details for Sec-1099tion 5.5.

J.1 Training

The training run for both the Llama-3 GQA and 1101 H = 8, 1 (cost-optimal GQA) models are exactly 1102 the same. It consists of two phases. The first phase 1103 uses the same settings as the scaling experiments in 1104 Section 5.1. After 20B tokens, we continue training 1105 with 128K context length for 1B tokens, using new 1106 optimer states. This phase uses a lower maximum 1107 LR of 1e-5 for stability and to avoid catastrophic 1108 forgetting. 1109

Figure 12: The relationship between LM loss and the number of attention heads, fitted with a power-plus-constant function. The training context length is 1K.

Figure 13: The relationship between LM loss and the number of attention heads, fitted with a power-plus-constant function. The model size is 470M.

J.2 Evaluation

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

Here, we provide more details regarding the downstream task performance evaluation in Section 5.5.
We use LM-Evaluation-harness (Gao et al., 2024) for common-sense reasoning, and the needle-in-a-haystack tasks from RULER (Hsieh et al., 2024).
For both of these tasks, we evaluate the last four checkpoints of the model, and report the average score of it. This is for reducing the randomness in the results.

Common-Sense Reasoning Tasks We use the 1120 popular LM-Evaluation-Harness (Gao et al., 2024) 1121 for evaluating common-sense reasoning capabil-1122 ities. We evaluate on the common-sense reason-1123 ing tasks specified by the official implementation, 1124 which includes 9 tasks/datasets: ARC-Challenge, 1125 ARC-Easy, BoolQ, HellaSwag, Lambada, PIQA, 1126 SocialIQA, Wikitext, and Winograd. The scores 1127 we report in Table 5 are the average accuracy score 1128 (excluding Wikitext, which is evaluated with per-1129 plexity). When available, we use the normalized 1130 accuracy scores instead of raw accuracy scores. 1131

1132**Retrieval Task**We report the average accuracy1133of the synthetic S-NIAH tasks from RULER (Hsieh1134et al., 2024), which tests the model's ability to re-1135trieve a certain "needle" (i.e., some special infor-

Figure 14: The relationship between loss and n_h when n_{kv} is constant. Model size is 150M.

Figure 15: The loss curves of a model with 2K context length adapted to 64K through post-training compared to a model trained with 64K from scratch.

mation) from a large body of irrelevant text.

J.3 Context Length Extension by 1137 Post-Training 1138

1136

LLMs are typically trained on shorter sequences 1139 in practice, followed by adaptation to longer con-1140 texts using a smaller amount of data tailored to 1141 the target context length. To ensure the validity 1142 of our conclusions in such training scenarios, we 1143 adapted a checkpoint initially trained with a 2K 1144 context length to a 64K context length through con-1145 tinual pretraining. This adapted model was then 1146 compared to a model trained from scratch with a 1147 64K context length. As illustrated in Figure 15, the 1148 adapted model rapidly converges toward the per-1149 formance of the model trained from scratch with a 1150 64K context length. This indicates that, with suffi-1151 cient post-training, the loss of the adapted model 1152 approaches that of a model trained entirely from 1153 scratch. Consequently, our findings regarding in-1154 ference costs and the relationship between loss, 1155 context length, and head configuration remain ap-1156 plicable to post-training scenarios. 1157 1158 K AI Assistance in Research and Writing

We have used AI for code completion during implementation and grammar-check during paperwriting. We do not explicitly instruct AI to write any part of this paper.