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Abstract001

Grouped-Query Attention (GQA) is a widely002
adopted strategy for reducing the computa-003
tional cost of attention layers in large language004
models (LLMs). However, current GQA con-005
figurations are often suboptimal because they006
overlook how context length influences infer-007
ence cost. Since inference cost grows with008
context length, the most cost-efficient GQA009
configuration should also vary accordingly. In010
this work, we analyze the relationship among011
context length, model size, GQA configuration,012
and model loss, and introduce two innovations:013
(1) we decouple the total head size from the hid-014
den size, enabling more flexible control over015
attention FLOPs; and (2) we jointly optimize016
the model size and the GQA configuration to ar-017
rive at a better allocation of inference resources018
between attention layers and other components.019
Our analysis reveals that commonly used GQA020
configurations are highly suboptimal for long-021
context scenarios. More importantly, we pro-022
pose a recipe for deriving cost-optimal GQA023
configurations. Our results show that for long-024
context scenarios, one should use fewer atten-025
tion heads while scaling up model size. Config-026
urations selected by our recipe can reduce both027
memory usage and FLOPs by more than 50%028
compared to Llama-3’s GQA, with no degrada-029
tion in model capabilities. Our findings offer030
valuable insights for designing efficient long-031
context LLMs.032

1 Introduction033

It is well established that increasing the size of034

large language models (LLMs) can improve their035

language modeling qualities (Hestness et al., 2017;036

Kaplan et al., 2020). Thus, many prior studies037

have focused on minimizing model size while038

maintaining quality to ensure cost-effectiveness039

(Hoffmann et al., 2022; Hu et al., 2024; Abdin040

et al., 2024). However, the vast majority of041

LLMs are Transformer-based (Vaswani et al., 2017;042

Grattafiori et al., 2024), and the cost of running043

such architectures does not solely depend on the 044

model size. Specifically, during inference, a cache 045

of keys/values (i.e., KV cache) is maintained to 046

avoid recomputation in attention layers, resulting in 047

memory costs that scale linearly with the context 048

length. Also, attention layers include the computa- 049

tion of pair-wise attention scores and the weighted 050

summation of value vectors, incurring per-token 051

computational costs that scale linearly with the 052

context length. Many studies have aimed to re- 053

duce these costs, including KV cache compression 054

(Li et al., 2024a), prompt compression (Pan et al., 055

2024; Li et al., 2024b), sparse attention (Lou et al., 056

2024; Ge et al., 2024; Jiang et al., 2024), etc. 057

One of the most widely used techniques for re- 058

ducing memory costs is Grouped-Query Attention 059

(GQA) (Ainslie et al., 2023), in which attention 060

heads are split into groups and the heads in each 061

group share the same KV vectors. Current imple- 062

mentations of GQA have two critical limitations: 063

(1) Most existing models unnecessarily restrict the 064

total number of head dimensions to be equal to the 065

model hidden size, resulting in redundant FLOPs 066

(floating-point operations). (2) When deciding on 067

the number of attention heads and groups, current 068

models do not take into account the influence of 069

context length on the computational and memory 070

costs, resulting in suboptimal configurations for 071

long contexts. 072

In this paper, we aim to optimize the cost- 073

effectiveness of GQA Transformers from the per- 074

spective of resource allocation. Concretely, we 075

categorize inference costs into time-invariant costs, 076

which are constant with respect to context length 077

(e.g., fixed model parameters), and time-variant 078

costs, which grow with context length (e.g., at- 079

tention computation and KV cache). To freely 080

control the resource allocated to time-variant and 081

time-invariant parts, we make two changes to the 082

existing GQA design procedures: (1) By decou- 083

pling the total number of head dimensions and the 084
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Figure 1: Our approach makes two changes to unlock the flexible adjustment of memory and compute allocation be-
tween time-invariant components (model weights) and time-variant components (KV cache/attention computation).
Optimizing resource allocation results in cost-optimal GQA configuration (“Ours”), which has markedly lower
memory and FLOPs usage compared to Llama-3, without compromising model capabilities.

model hidden size, we unlock a free hyperparam-085

eter to control the compute allocated to attention086

operations. (2) We jointly optimize GQA config-087

urations and model size to modulate the resource088

allocation between time-variant and time-invariant089

components. After these changes, we can answer090

our main research question:091

Given an expected inference context092

length and target loss, how can GQA be093

configured to minimize inference costs094

while achieving that loss?095

To avoid sweeping all combinations of model096

sizes and GQA configurations, we present a three-097

step search procedure (detailed in Section 4).098

Our approach is empirically validated on models099

up to 1.2B parameters. Empirical results show100

that the widely used Llama-3 GQA configuration101

(Grattafiori et al., 2024) is highly suboptimal at102

128K (which is the context length supported by103

Llama-3). Instead, our approach gives a configu-104

ration that achieves the same loss while reducing105

inference FLOPs and memory usage by more than106

50% (Figure 1 (right)).107

The contributions of this paper can be summa-108

rized by the following points:109

• By decoupling the model hidden size from110

the attention head number and jointly optimiz-111

ing the model size and GQA configuration,112

we can flexibly allocate memory and com-113

pute resources among time-variant and time-114

invariant components.115

• We present the first rigorous study to search116

for the optimal GQA configuration in terms117

of inference costs for reaching a target loss. 118

Our three-step approach can precisely iden- 119

tify cost-optimal GQA configurations without 120

exhaustively sweeping many configurations. 121

• Our framework reveals valuable insights for 122

designing more cost-effective Transformer 123

LLMs, especially in long-context scenarios. 124

2 Related Work 125

This paper explores how to build efficient long- 126

context LLMs based on GQA Transformer. Please 127

refer to the LLM-related surveys (Zhao et al., 2023; 128

Lu et al., 2024) for more details on LLMs. 129

Grouped-Query Attention The original Trans- 130

former model employs multi-head attention (MHA) 131

(Vaswani et al., 2017), in which each layer consists 132

of multiple heads that are computed in parallel, 133

and the layer’s output is the sum of the heads’ out- 134

puts. To improve decoding efficiency, especially 135

improving memory efficiency, multi-query atten- 136

tion (MQA) (Shazeer, 2019) shares the weights 137

of all key and value projections among all heads, 138

significantly reducing KV cache size and memory 139

bandwidth requirements during autoregressive de- 140

coding. Grouped-query attention (GQA) (Ainslie 141

et al., 2023) extends this by partitioning heads into 142

groups where each group shares a common KV 143

projection. Formally, MHA is a variant of GQA 144

with independent KV projections per query head, 145

while MQA corresponds to the extreme where all 146

queries share one common KV projection. Recent 147

attention methods based on low-rank factorization, 148

such as MLA (DeepSeek-AI et al., 2024), can also 149

be viewed as variants of GQA. Hence, it can be 150
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Adjustable?
Notation Meaning Vanilla GQA This paper Constrained by

T Context length ✗ ✗ None

N Model size ✗ ✓ None
nh Attention head number ✗ ✓ None
nkv KV head number ✓ ✓ None

L Number of layers ✗ ✗ N and pre-defined aspect ratio (d/L)
d Model hidden size ✗ ✗ N and pre-defined aspect ratio (d/L)
dff FFN intermediate size ✗ ✗ dff ≈ 8d/3
dh Head size ✗ ✗ dh = 64
V Vocabulary size ✗ ✗ Pre-defined vocabulary

Table 1: Notations in the paper. We optimize more free hyperparameters, resulting in better cost-efficiency.

said that most of the current popular LLMs (Groen-151

eveld et al., 2024; Biderman et al., 2023; Hu et al.,152

2024; Grattafiori et al., 2024; Yang et al., 2025b)153

are built based on GQA.154

Efficient Long-Context Attention Attention155

mechanisms pose a major bottleneck in long-156

context settings due to high computational and157

memory costs, especially from the KV cache. To158

mitigate this, techniques like sparse attention (Lou159

et al., 2024; Ge et al., 2024; Jiang et al., 2024),160

prompt compression (Pan et al., 2024; Xiao et al.,161

2024), and KV cache compression (Liu et al.,162

2024; Hooper et al., 2024; Zhang et al., 2024;163

Yao et al., 2024; Cai et al., 2024) have been pro-164

posed. While these methods build on and optimize165

GQA, they often compromise performance rela-166

tive to vanilla GQA. Our work focuses on identi-167

fying cost-optimal GQA configurations for long-168

context scenarios through precise characterization169

of model size, context length, and attention head170

configurations in terms of their impacts on model171

performance, computational cost, and memory cost.172

The efficient long-context attention methods de-173

scribed above remain orthogonal to our GQA archi-174

tecture search and can be subsequently applied as175

complementary optimizations to the cost-optimal176

GQA structures. For more details on efficient long-177

context attention methods, please refer to the sur-178

veys (Yuan et al., 2024; Shi et al., 2024).179

Scaling Laws for LLMs Recent studies on scal-180

ing laws for LLMs (Hestness et al., 2017; Kaplan181

et al., 2020; Hoffmann et al., 2022) have estab-182

lished that model loss follows a log-linear rela-183

tionship concerning model size and training data184

size. They utilize this relationship to minimize185

the model loss given a fixed training FLOPs bud-186

get. However, there are two critical limitations: (1)187

These works do not consider the influence of con-188

text length on the computational and memory costs. 189

(2) These laws prioritize the optimal allocation of 190

compute during training, ignoring inference costs. 191

Although Sardana et al. (2023) supplement scal- 192

ing laws by accounting for total inference FLOPs, 193

their inference cost estimation ignores the influ- 194

ence of context length and memory usage during 195

inference. Our work extends these studies by ac- 196

counting for both the computational and memory 197

costs during inference and addressing the impact 198

of context lengths. 199

3 Preliminaries: Computational and 200

Memory Costs of GQA Transformers 201

In this section, we first briefly introduce GQA 202

Transformers (Ainslie et al., 2023) and describe 203

key model configurations and their impact on com- 204

putational and memory costs. Then, we provide a 205

more accurate formula for the computational and 206

memory costs of Transformer-based LLMs that 207

explicitly considers context length and can guide 208

the design of cost-optimal long-context LLMs. Ta- 209

ble 1 lists the main notations in this paper, and 210

Appendix A provides a more complete list. 211

3.1 GQA Transformers 212

A Transformer model consists of L layers, each 213

of which consists of an attention block and a feed- 214

forward network (FFN) block. For each layer, let 215

xi,yi ∈ Rd denote the i-th input and output em- 216

bedding, where d is the model hidden dimension. 217

Attention Blocks For each head in an attention 218

block, xi is first projected into query qi = xiWq ∈ 219

Rdh , key ki = xiWk ∈ Rdh , value vi = xiWv ∈ 220

Rdh , where dh is the head dimension, then the 221

attention head output is computed as 222

h̃i = softmax
(
qiK

⊤
i√

dh

)
ViW

⊤
o ∈ Rd, (1) 223

3



Component Parameters Per-token FLOPs

Input emb. dV 0
ATT proj. 2Lddh(nh + nkv) 4Lddh(nh + nkv)
ATT comp. 0 4LTnhdh
FFN 2Lddff 4Lddff
Output emb. 0 2dV

Table 2: Parameters and per-token FLOPs (forward
pass) of the main components in Transformers. “Input
emb.” and “Output emb.” represent the input and out-
put embedding layers, respectively, sharing the same
embedding weights. “ATT proj.” and “ATT comp.” rep-
resent the projection and computation processes of all
attention blocks, respectively.

where Wq,Wk,Wv,Wo ∈ Rd×dh are learnable224

projection matrices. K⊤
i =

[
k⊤
1 ⊕ · · · ⊕ k⊤

i

]
and225

V⊤
i =

[
v⊤
1 ⊕ · · · ⊕ v⊤

i

]
are the KV cache for the226

current attention head, where ⊕ denotes the con-227

catenation along the sequence dimension. In MHA228

Transformers, each attention block consists of nh229

heads computed in parallel, and the final attention230

output hi ∈ Rd is the sum of all head outputs. In231

GQA, every nh/nkv query heads share the same232

KV projection matrices, where nkv is the number233

of KV heads.234

FFN Blocks An FFN block is defined as235

yi = σ
(
hiW

⊤
up

)
Wdown ∈ Rd, (2)236

where Wup ∈ Rd×dff ,Wdown ∈ Rdff×d are learn-237

able projection matrices and σ(·) is an element-238

wise activation function.239

Hyperparameter Constraints Let V denote240

the vocabulary size and N denote the model241

size. We assume that dh and V are fixed1, and242

dff ≈ 8d/3, following common LLM design243

choices (Grattafiori et al., 2024; Groeneveld et al.,244

2024; Biderman et al., 2023). For each model size245

N , we assume that the optimal aspect ratio d/L is246

determined in advance (taken from Biderman et al.247

(2023)), so each N corresponds to a unique pair248

(d, L). Table 1 (right) lists these constraints.249

3.2 Inference Costs of GQA Transformers250

Table 2 summarizes the number of parameters for251

each component in the Transformer model and the252

FLOPs associated with it. Table 3 summarizes the253

memory and computational costs during inference.254

1Keeping dh and V constant for varying model sizes is
a common practice. Examples include Llama-3 (Grattafiori
et al., 2024) and Qwen3 (Yang et al., 2025a).

Type Time-invariant Time-variant

FLOPs (Cinfer) 2N 4TLdhnh

Mem. (Minfer) N 2TLdhnkv

Table 3: The time-invariant and time-variant costs of
GQA Transformers during inference.

Inference Computational Costs Cinfer(T ) is the 255

number of FLOPs used to process one token within 256

the context with T tokens. This is roughly given as 257

Cinfer(T ) = Cconst + Catt(T )

= 2N︸︷︷︸
Time-invariant

+4TLdhnh︸ ︷︷ ︸
Time-variant

, (3) 258

where Cconst denotes the “time-invariant FLOPs”, 259

the number of FLOPs invariant to the current time 260

step. Catt(T ) denotes the “time-variant FLOPs”, 261

which is the number of FLOPs used to compute the 262

attention softmax process. 263

Inference Memory Costs M(T ) is defined as 264

the memory required to process one token within 265

the context with T tokens. Ignoring the necessary 266

system overhead, we need to store the model pa- 267

rameters and the KV cache, which is roughly: 268

Minfer(T ) = N +Nkv(T )

= N︸︷︷︸
Time-invariant

+2TLdhnkv︸ ︷︷ ︸
Time-variant

, (4) 269

where N denotes the number of model parameters 270

and Nkv(T ) denotes the number of values in the 271

KV cache for the context with T tokens. 272

Takeaways As listed in Table 3, inference costs 273

can be split into four types: time-invariant FLOPs 274

and memory, and time-variant FLOPs and memory. 275

The time-invariant costs are directly proportional to 276

the model size (N ), while time-variant FLOPs can 277

be controlled by nh, and time-variant memory can 278

be controlled by nkv. Thus, adjusting N , nh, and 279

nkv permits fine-grained control over these four 280

kinds of costs. This analysis also implies that a 281

large model may have lower inference costs if its 282

time-variant costs are low enough. 283

Training Costs Since this work mainly focuses 284

on minimizing inference costs, the calculation for 285

the training costs is left to Appendix C. 286

4 Method 287

Our objective is to find the GQA configuration that 288

minimizes inference costs while attaining a given 289
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loss. We approach this by framing the problem as290

balancing the time-variant and time-invariant costs.291

In order to unlock the ability to flexibly allocate292

different amounts of compute and memory to the293

time-variant and time-invariant components, we294

make two changes to existing GQA design proce-295

dures: (1) We decouple the number of attention296

heads from the model hidden dimension, and (2)297

we jointly optimize the model size and the GQA298

configuration. Figure 1 (left) shows the effect of299

these two changes, and Table 1 shows the adjusta-300

bility of different hyperparameters in this work301

compared to vanilla GQA.302

Change 1: Decoupling the Head Number from303

the Hidden Dimension Most existing GQA304

Transformers adopt nh × dh = d, which is ar-305

bitrarily chosen in the original Transformer paper306

(Vaswani et al., 2017). This is an unnecessary re-307

striction, rendering GQA unable to adjust the time-308

variant FLOPs. We decouple nh from d, unlocking309

a free hyperparameter nh that controls the number310

of FLOPs of attention blocks.311

Change 2: Joint Optimization of Model Size312

and GQA Configuration In addition to the time-313

variant costs, we also want to control the time-314

invariant costs (FFNs, attention QKV/output pro-315

jections, etc.). Specifically, by reducing N , but316

increasing nh, we can allocate more compute to317

time-variant components. Similarly, we can allo-318

cate more compute to time-invariant components319

by increasing N and decreasing nh. This paper320

aims to identify the optimal allocation of memory321

and compute between the time-variant and time-322

invariant components, by jointly tweaking the GQA323

configuration (nh, nkv) and the model size N .324

4.1 Cost-Optimal GQA Search325

Objective Formulation With the ability to freely326

adjust the time-variant and time-invariant costs, we327

formulate the optimization objective as follows,328

argmin
nh,nkv ,N

Z(T,N, nh, nkv)

s.t. L(T,N, nh, nkv) ≤ L∗

where Z = λMα
infer + (1− λ)Cβ

infer,

(5)329

where L∗ is the target LM loss, L is the model loss,330

λ ∈ [0, 1], α, β ∈ R control the trade-off between331

compute and memory based on deployment con-332

straints2. Setting λ = 1 minimizes only Minfer,333

2Although Minfer and Cinfer have different measurement
units, (λ, α, β) allow us to control the importance of compute

while λ = 0 minimizes only Cinfer. We refer to 334

Z as the hardware-aware cost. By default, we set 335

λ = 0.9, α = 1/2, β = 1/3 based on hardware 336

utilization tests in our environment. In other words, 337

the inputs to the optimization objective are (L∗, T ) 338

and the outputs are (N,nh, nkv). 339

Influence of Context Length We empirically ob- 340

serve that the effect of context length T on loss L 341

is largely invariant to N , nh, and nkv (verified 342

in Section 5.7). This means we can train with 343

moderate context lengths (e.g., T = 8K) and ex- 344

trapolate the loss to longer contexts, saving pre- 345

cious computation resources. However, the influ- 346

ence of model size N and GQA head configuration 347

H = (nh, nkv) on loss is coupled and must be 348

jointly modeled. To this end, we adopt a three-step 349

procedure: 350

Step 1: Candidate Selection Define a candidate 351

set of attention configurations: 352

Hcand = {nh = 1, 2, 4, . . . ,max(d)/dh}
× {nkv = 1, 2, 4, . . . ,max(d)/dh}

s.t. nkv ≤ nh,

(6) 353

where max(d) is the hidden size of the largest 354

model used to fit scaling curves in step 2. We round 355

max(d)/dh to the nearest power of 2 if necessary. 356

Step 2: Scaling Curves Fitting For each H ∈ 357

Hcand, we train a series of small-scale models with 358

varying N using a sufficiently long context length 359

(we use T = 8K), and fit the model loss using a 360

power-law scaling function3 as 361

L(N ;H) =
( a

N

)b
+ E, (7) 362

where a, b are configuration-dependent coefficients 363

and E is the “natural entropy of language”. 364

Step 3: Cost Minimization For each GQA con- 365

figuration H , we solve for the smallest model size 366

N∗(H) that satisfies the loss constraint as 367

N∗(H) =
a

(L∗ − E)1/b
. (8) 368

Then, we calculate the inference cost for each con- 369

figuration and select the one with the lowest cost 370

(N∗(H), H∗) = argmin
H

Z(T,N, nkv, nh). (9) 371

and memory resources under a unified metric.
3We use the number of non-embedding parameters because

it produces more predictable scaling laws in our experiments.
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5 Experiments372

We first explain the experimental settings (Sec-373

tion 5.1). Then, we present the main results and374

takeaways (Section 5.2), followed by the actual375

cost-optimal GQA configurations derived using our376

approach (Section 5.3) and an analysis of the influ-377

ence of nh and nkv on LM loss (Section 5.4). After378

that, we present the results for the setting where379

total training FLOPs is aligned (Section 5.6). Fi-380

nally, we verify that the effect of T on L is largely381

independent of N and H (Section 5.7).382

5.1 Experimental Settings383

Model Configurations We adopt the widely used384

Llama-3 (Grattafiori et al., 2024) architecture. For385

each GQA configuration, we train models from 3M386

to 1.2B in size. We keep the model configurations387

as close to Biderman et al. (2023) as possible. We388

have max(d)/dh = 32, this results in 21 candi-389

date configurations (i.e., |Hcand| = 21). For more390

details, see Appendix D.391

Data Configurations We use SlimPajama392

(Soboleva et al., 2023) in our experiments. It is a393

deduplicated version of the RedPajama (Weber394

et al., 2024) corpus with 627B tokens. In most395

of our experiments, we use a 20:1 ratio between396

training data and model parameters, as suggested397

by Hoffmann et al. (2022). Additionally, we398

always ensure that each batch has 512K tokens.399

For more details, see Appendix E.400

Training Configurations We try to follow com-401

mon practices in most of our experiments. We402

use AdamW optimizer with the WSD learning rate403

scheduler (Hu et al., 2024). We choose the max-404

imum learning rate by sweeping different values405

with the MHA model for each model size. For406

more details, see Appendix F.407

5.2 Loss vs. Inference Costs408

Here, we compare the loss-cost tradeoffs of dif-409

ferent GQA configurations. Figure 2 reports the410

results for a subset of Hcand, showing LM loss as411

functions of various inference costs (Minfer, Cinfer,412

and Z), with a context length of 128K tokens. To413

save space, we report the result of other context414

lengths in Appendix H.1.415

Takeaway 1 We discover that loss does not have416

a simple relationship (e.g., power-plus-constant417

function) with either memory or computational418

costs. However, it is still possible to predict the loss419

Expected inference context length (T )

L∗ 8K 16K 32K 64K 128K

3.0 32, 1 16, 1 8, 1 4, 1 4, 1
2.9 32, 1 16, 1 16, 1 8, 1 4, 1
2.8 32, 2 16, 1 16, 1 8, 1 8, 1
2.7 32, 4 16, 2 16, 1 16, 1 8, 1
2.6 32, 8 16, 4 16, 2 16, 2 8, 1
2.5 32, 16 16, 8 16, 4 16, 2 16, 2
2.4 32, 32 32, 32 32, 8 32, 8 32, 4

2.35 32, 32 32, 32 32, 32 32, 16 32, 8

Table 4: The cost-optimal GQA configuration (nh, nkv)
for different target loss L∗ and context lengths (T ),
while minimizing the hardware-aware cost (Z, see Sec-
tion 4.1). For reference, the loss of 1B, 3B, and 8B of
Llama-3 GQA is 2.615, 2.448, and 2.362, respectively.

by fitting loss as a function of N , then transform- 420

ing the fitted curves along the x-axis to account for 421

the time-variant costs. Fitting loss as a power-plus- 422

constant function of N is highly accurate, with R2 423

values over 0.999. 424

Takeaway 2 The commonly used Llama-3 GQA 425

configuration (i.e., H = d/dh, 8)4 is highly sub- 426

optimal at 128K context length. For instance, 427

Llama-3.2-1B uses this head configuration and sup- 428

ports 128K context length. At that length, using 429

H = (8, 1) and increasing the model size to 1.8B 430

would achieve the same loss (2.615) while reduc- 431

ing 50.8% and 57.8% inference memory and 432

FLOPs usage, respectively (shown in Figure 1 433

(right)). Alternatively, using H = 8, 1 can achieve 434

a loss that is 0.117 lower than Llama-3.2-1B with 435

the same per-token inference budget in terms of Z. 436

5.3 Cost-Optimal GQA Configuration 437

Table 4 reports the cost-optimal GQA for different 438

expected inference context lengths T and target 439

losses L∗. When the target loss is high, the model 440

is small, making the time-invariant costs low. Thus, 441

the optimal configuration allocates more resources 442

to the time-invariant part by increasing N and re- 443

ducing nh and nkv. Similarly, when T is great, the 444

time-variant costs are high, making it more attrac- 445

tive to reduce nh and nkv more aggressively. 446

In addition, the results indicate that there is noth- 447

ing especially attractive about the commonly used 448

Llama-3 GQA configuration (d/dh, 8). For certain 449

combinations of L∗ and T , the GQA configuration 450

is cost-optimal. However, for a greater number of 451

4We use “Llama-3 GQA” to refer to the GQA configuration
on Llama-3 and not the actual publicly released checkpoint,
which is trained on huge amounts of proprietary data.
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Figure 2: Loss as a function of inference costs with a context length of 128K, assuming we use BF16 for both
parameters and the KV cache. H = (nh, nkv) denotes the attention head configuration. nh and nkv have different
effects on the memory cost, computational cost, and loss. x-axis is in log scale.
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Figure 3: The loss for different number of query heads
(nh) and KV heads (nkv), with 1.2B model parameters.

combinations, it is sub-optimal in costs. The result452

implies that configuration of GQA Transformers453

should take into account the expected inference454

context length, and directly applying the popular455

GQA configuration results in severe waste of hard-456

ware resources.457

5.4 Influence of Query and KV Heads458

Figure 3 shows the relationship between loss and459

the number of query heads and KV heads (i.e.,460

different GQA configurations), with a model size of461

1.2B. Similar results are observed with other model462

sizes as well. We emphasize two main takeaways.463

Takeaway 1 The loss reduction by increasing464

either nh or nkv exhibits diminishing returns. This465

means that when nh or nkv is great, increasing466

these hyperparameters to reduce loss may not be467

worth the cost increase. We also found that they468

exhibit a power-plus-constant relationship (details469

in Appendix I).470

Takeaway 2 Increasing nh reduces the loss more471

than increasing nkv by the same amount, although472

both of them cause the same parameter increase.473

This means the nh is more important for model474

expressivity. Having more query heads allows the475

model to capture a greater number of dependency476

Evaluation Metric H = 32, 8 H = 8, 1
(Llama-3 GQA) (Ours)

Train. throughput (tok/s) 18,655 31,260
Infer. throughput (tok/s) 12,921 20,643

Common-sense 45.7% 45.5%
NIAH (1-8K) 90.9% 96.9%
NIAH (16K) 30.4% 46.0%
NIAH (32K) 15.1% 18.7%
NIAH (64K) 6.1% 7.9%
NIAH (128K) 5.2% 6.7%

Table 5: The throughput of two GQA configurations at
128K context length, and their accuracy on common-
sense reasoning (average of 8 tasks) and retrieval tasks
(NIAH, varying context length). Although H = 8, 1
has more parameters (1.8B vs. 1.2B), it is much faster
for both training and inference.

patterns. Meanwhile, having more KV heads pro- 477

vides more capacity to store information for each 478

token. The empirical results may indicate that the 479

former is more important for performance. 480

5.5 Downstream Performance 481

Now, we compare the cost-optimal configura- 482

tion against Llama-3 GQA in terms of train- 483

ing/inference throughput and downstream perfor- 484

mance. At T = 128K and L∗ = 2.615 (the loss 485

of Llama-3 GQA at 1.2B model size), the cost- 486

optimal GQA configuration is H = 8, 1. Specif- 487

ically, we train two models, one with H = 32, 8 488

(Llama-3 GQA) and one with H = 8, 1. Train- 489

ing starts with a 4K context length on 20B tokens. 490

It is then trained with 128K context length for 491

1B tokens. More training details is given in Ap- 492

pendix J.1. 493

Training throughput is computed based on the 494

training time while inference throughput is mea- 495

sured with a batch size of 1 on one NVIDIA 496
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Figure 4: Loss as a function of memory and computa-
tional costs, aligned by total training FLOPs at 128K
tokens. Each curve is trained with the same amount of
training compute.

A800 GPU (with T = 128K). For downstream497

performance, we evaluate the models on zero-498

shot common-sense reasoning (Gao et al., 2024)499

and needle-in-a-haystack (NIAH) (Hsieh et al.,500

2024), which are two widely used LLM bench-501

marks (more details in Appendix J.2). The result502

is shown in Table 5. One can see that the differ-503

ences in common-sense reasoning and long-context504

retrieval are rather small. Meanwhile, the cost-505

optimal model (H = 8, 1) is much more efficient.506

5.6 Aligning Training Costs507

In the previous sections, the training data is always508

20 tokens per parameter (i.e., the Chinchilla law).509

This favors configurations that spend more FLOPs510

per token. Instead, we can allow more compute-511

efficient configurations to use more training data to512

align the training costs of different configurations.513

Figure 4 reports the result when we always train514

with T = 128K5. We find that using fewer heads515

is even more advantageous because of the extra516

training data, producing a model with the same517

loss but with 88% and 83% lower memory and518

FLOPs usage.519

5.7 Influence of Context Length520

In this section, we empirically show that the re-521

lationship between context length T and loss L is522

largely invariant to N and nh when T is sufficiently523

large. To this end, we measure the relative loss dif-524

ference between various models and a “baseline”:525

∆L(T ) = L(T )− Lbaseline(T )

Lbaseline(T )
526

Figure 5 shows the relative loss difference between527

various GQA configurations with H = 1, 1 as the528

5LMs are usually trained with short contexts most of the
time, so this result may not apply.
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H = 4, 1

H = 8, 1

H = 16, 1
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Figure 5: Relative loss difference between various GQA
configurations and the H = 1, 1 model, as a function of
context length T . Model size is 470M.
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Figure 6: Relative loss difference between varying
model size and the 150M model, as a function of context
length T . These are MHA models.

baseline. Figure 6 shows this relationship when 529

varying N , with N=150M as the baseline. The 530

results show that the relative loss difference is rel- 531

atively flat when T > 8K (all fluctuations are less 532

than 1%). The main takeaway is that when apply- 533

ing our cost optimization procedure to longer con- 534

texts, we do not have to repeat step 2 (an expensive 535

process) with longer contexts since the loss change 536

of each model will remain roughly the same. 537

6 Conclusion 538

To optimize the allocation of FLOPs and memory 539

between time-invariant and time-variant compo- 540

nents of GQA Transformers, we first decouple the 541

number of attention heads from the model hidden 542

dimensions, enabling a more flexible distribution of 543

FLOPs and memory. Next, we refine the estimation 544

of computational and memory costs in existing ap- 545

proaches by incorporating context length. Our find- 546

ings reveal that typical configurations of GQA are 547

significantly suboptimal for certain context lengths. 548

Through detailed analysis, we offer valuable in- 549

sights for improving the allocation of resources by 550

jointly adjusting the model size and the number of 551

query and KV heads. As the demand for greater 552

inference context lengths continues to grow, our 553

work marks a critical advancement toward efficient 554

long-context LLMs. 555
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Limitations556

Like most phenomena in neural language models,557

we cannot be sure that the conclusions will hold558

when further scaling up the models. The power-559

plus-constant scaling law is also not guaranteed,560

although it has been empirically validated up to561

hundreds of billions of parameters. Similarly, there562

is no guarantee that these laws and our conclusions563

will hold for an arbitrarily large amount of training564

data. In general, we have kept our experiments565

as close to research conventions as possible, and566

the scale of the largest models in our experiments567

(i.e., 1.2B for Llama-3 GQA and 1.8B for our cost-568

optimal GQA) is comparable to some real-world569

LLMs.570

References571

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed572
Awadallah, Ammar Ahmad Awan, Nguyen Bach,573
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat574
Behl, and 1 others. 2024. Phi-3 technical report: A575
highly capable language model locally on your phone.576
arXiv preprint arXiv:2404.14219.577

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury578
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.579
2023. GQA: Training generalized multi-query trans-580
former models from multi-head checkpoints. In Pro-581
ceedings of EMNLP.582

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-583
ton. 2016. Layer Normalization. arXiv preprint584
arXiv:1607.06450.585

Stella Biderman, Hailey Schoelkopf, Quentin Gregory586
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-587
lahan, Mohammad Aflah Khan, Shivanshu Purohit,588
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,589
Lintang Sutawika, and Oskar Van Der Wal. 2023.590
Pythia: A Suite for Analyzing Large Language Mod-591
els Across Training and Scaling. In Proceedings of592
ICML.593

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi594
Chen. 2024. LoCoCo: Dropping In Convolutions595
for Long Context Compression. In Proceedings of596
ICML.597

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingx-598
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng,599
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,600
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli601
Luo, Guangbo Hao, Guanting Chen, and 81 others.602
2024. DeepSeek-V2: A Strong, Economical, and Ef-603
ficient Mixture-of-Experts Language Model. arXiv604
preprint arXiv:2405.04434.605

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-606
man, Sid Black, Anthony DiPofi, Charles Foster,607

Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 608
Haonan Li, Kyle McDonell, Niklas Muennighoff, 609
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 610
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 611
5 others. 2024. The Language Model Evaluation 612
Harness. 613

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 614
Jiawei Han, and Jianfeng Gao. 2024. Model tells you 615
what to discard: Adaptive KV cache compression for 616
llms. In Proceedings of ICLR. 617

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 618
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 619
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 620
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 621
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 622
tra, Archie Sravankumar, Artem Korenev, Arthur 623
Hinsvark, and 17 others. 2024. The Llama 3 Herd of 624
Models. arXiv preprint arXiv:2407.21783. 625

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita 626
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya 627
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, 628
Shane Arora, David Atkinson, Russell Authur, Khy- 629
athi Chandu, Arman Cohan, Jennifer Dumas, Yanai 630
Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024. 631
OLMo: Accelerating the Science of Language Mod- 632
els. In Proceedings of ACL. 633

Joel Hestness, Sharan Narang, Newsha Ardalani, Gre- 634
gory F. Diamos, Heewoo Jun, Hassan Kianinejad, 635
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi 636
Zhou. 2017. Deep learning scaling is predictable, 637
empirically. arXiv preprint arXiv:1712.00409. 638

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 639
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 640
Diego de Las Casas, Lisa Anne Hendricks, Johannes 641
Welbl, Aidan Clark, Thomas Hennigan, Eric Noland, 642
Katherine Millican, George van den Driessche, Bog- 643
dan Damoc, Aurelia Guy, Simon Osindero, Karén 644
Simonyan, Erich Elsen, and 3 others. 2022. An em- 645
pirical analysis of compute-optimal large language 646
model training. In Proceedings of NeurIPS. 647

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 648
Michael W Mahoney, Yakun Sophia Shao, Kurt 649
Keutzer, and Amir Gholami. 2024. KVQuant: 650
Towards 10 Million Context Length LLM Infer- 651
ence with KV Cache Quantization. arXiv preprint 652
arXiv:2401.18079. 653

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan- 654
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, 655
and Boris Ginsburg. 2024. RULER: What’s the Real 656
Context Size of Your Long-Context Language Mod- 657
els? arXiv preprint arXiv:2404.06654. 658

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun 659
He, Weilin Zhao, Xiang Long, Zhi Zheng, Yewei 660
Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng 661
Thai, Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie 662
Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, and 5 oth- 663
ers. 2024. MiniCPM: Unveiling the potential of small 664

9



language models with scalable training strategies. In665
COLM.666

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,667
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,668
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, and669
1 others. 2024. MInference 1.0: Accelerating Pre-670
filling for Long-Context LLMs via Dynamic Sparse671
Attention. In Proceedings of ICML.672

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.673
Brown, Benjamin Chess, Rewon Child, Scott Gray,674
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.675
Scaling laws for neural language models. arXiv676
preprint arXiv:2001.08361.677

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A678
method for stochastic optimization. In Proceedings679
of ICLR.680

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang,681
Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei Dong,682
Qing Li, and Lei Chen. 2024a. A survey on large683
language model acceleration based on KV cache man-684
agement. arXiv preprint arXiv:2412.19442.685

Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Col-686
lier. 2024b. Prompt compression for large language687
models: A survey. arXiv preprint arXiv:2410.12388.688

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,689
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and690
Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric691
2bit Quantization for KV Cache. In Proceedings of692
ICML.693

Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. 2024.694
Sparser is faster and less is more: Efficient sparse695
attention for long-range transformers. arXiv preprint696
arXiv:2406.16747.697

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang-698
ming Liu, Xiwen Zhang, Nicholas D Lane, and699
Mengwei Xu. 2024. Small language models: Sur-700
vey, measurements, and insights. arXiv preprint701
arXiv:2409.15790.702

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin703
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor704
Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,705
Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-706
2: Data distillation for efficient and faithful task-707
agnostic prompt compression. In Findings of ACL.708

Alec Radford and Karthik Narasimhan. 2018. Im-709
proving language understanding by generative pre-710
training.711

Nikhil Sardana, Jacob Portes, Sasha Doubov, and712
Jonathan Frankle. 2023. Beyond chinchilla-optimal:713
Accounting for inference in language model scaling714
laws. arXiv preprint arXiv:2401.00448.715

Noam Shazeer. 2019. Fast transformer decoding:716
One write-head is all you need. arXiv preprint717
arXiv:1911.02150.718

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and 719
Hai Zhao. 2024. Keep the Cost Down: A Review on 720
Methods to Optimize LLM’s KV-Cache Consump- 721
tion. In Proceedings of COLM. 722

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja- 723
cob R Steeves, Joel Hestness, and Nolan Dey. 2023. 724
SlimPajama: A 627B token cleaned and deduplicated 725
version of RedPajama. 726

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, 727
Wen Bo, and Yunfeng Liu. 2024. RoFormer: En- 728
hanced transformer with rotary position embedding. 729
Neurocomput. 730

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 731
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 732
Kaiser, and Illia Polosukhin. 2017. Attention is all 733
you need. In Proceedings of NeurIPS. 734

Maurice Weber, Daniel Y Fu, Quentin Gregory An- 735
thony, Yonatan Oren, Shane Adams, Anton Alexan- 736
drov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, 737
Virginia Adams, Ben Athiwaratkun, Rahul Chala- 738
mala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy 739
Liang, Christopher Re, Irina Rish, and Ce Zhang. 740
2024. RedPajama: an Open Dataset for Training 741
Large Language Models. In Proceedings of NeurIPS 742
Datasets and Benchmarks Track. 743

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 744
Han, and Mike Lewis. 2024. Efficient streaming 745
language models with attention sinks. In Proceedings 746
of ICLR. 747

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, 748
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan 749
Lan, Liwei Wang, and Tieyan Liu. 2020. On Layer 750
Normalization in the Transformer Architecture. In 751
Proceedings of ICML. 752

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, 753
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, 754
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi- 755
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, 756
Haoran Wei, Huan Lin, Jialong Tang, and 41 others. 757
2025a. Qwen3 Technical Report. arXiv preprint 758
arXiv:2505.09388. 759

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 760
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 761
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian- 762
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, 763
Jingren Zhou, Junyang Lin, Kai Dang, and 23 others. 764
2025b. Qwen2.5 technical report. arXiv preprint 765
arXiv:2412.15115. 766

Yao Yao, Zuchao Li, and Hai Zhao. 2024. SirLLM: 767
Streaming Infinite Retentive LLM. In Proceedings 768
of ACL. 769

Jiayi Yuan, Hongyi Liu, Yu-Neng Chuang, Songchen Li, 770
Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaud- 771
hary, Zhaozhuo Xu, Zirui Liu, and 1 others. 2024. 772
KV Cache Compression, But What Must We Give 773
in Return? a Comprehensive Benchmark of Long 774

10



Context Capable Approaches. In Proceedings of775
EMNLP.776

Biao Zhang and Rico Sennrich. 2019. Root mean square777
layer normalization. In Proceedings of NeurIPS.778

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong779
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-780
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-781
ers. 2024. H2O: Heavy-hitter oracle for efficient782
generative inference of large language models. In783
Proceedings of NeurIPS.784

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,785
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen786
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.787
A survey of large language models. arXiv preprint788
arXiv:2303.18223.789

Notation Meaning

Model hyperparameters

V Vocabulary size, always set to 50,304.

L Number of layers

d Model hidden dimension

dh Head size, always set to 64.

dff FFN intermediate size, we always set dff =
8d/3.

σ The activation function in FFN

nh Number of attention heads

nkv Number of KV heads (or groups in GQA)

Inference and Training Costs

Cinfer The computational cost (in FLOPs) per for-
ward pass with a context length of T tokens.

Minfer The memory usage (in floating-point values)
of serving the model with a context length of
T tokens.

Ctrain The computational cost (in FLOPs) used to
train the model with a context length of T
tokens.

Mtrain The memory usage (in floating-point values)
of training the model with a context length of
T tokens.

Z Hardware-aware costs combining both Minfer
and Cinfer. Defined in Section 4.1.

Other parameters

T Context length

N Number of model parameters.

Dtrain Number of training tokens.

λ, α, β Hyperparameters controlling the importance
of memory and compute resources.

Table 6: List of notations used in the paper.

A Notations 790

For completeness, we provide a list of notations we 791

used in the paper, reported in Table 6. 792

B Discussions 793

What About Other Efficient Attention? This 794

paper primarily adjusts the allocation of compute 795

and memory usage by tweaking the model size 796

(controlled with L and d) and head configuration 797

(nh, nkv) in GQA, which is a rather simple method. 798

As mentioned, there are many techniques for im- 799

proving the efficiency of the attention layer, al- 800

though those have enjoyed less adoption. When us- 801

ing these techniques, the computational and mem- 802

ory costs may be considerably different, and some 803
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of our conclusions may not apply. Despite so, our804

work is still a valuable improvement over existing805

implementations of GQA.806

Recently, Multi-head Latent Attention (MLA)807

(DeepSeek-AI et al., 2024) was proposed as a808

strong alternative to GQA for reducing the KV809

cache size. During inference, MLA reformulates810

the attention computation such that all heads share811

a unified representation for keys and values. In this812

case, our analysis still applies, since MLA can be813

seen as a kind of GQA with a different head dimen-814

sion (dh) and number of attention heads (nh, nkv),815

and it uses a more complex function to generate816

the QKV vectors.817

What If Context Length Varies? The formulas818

for computational costs (see Table 8) are affine819

functions of T , so the expected costs are:820

E(Cinfer(T )) = Cinfer(E(T ))821

E(Minfer(T )) = Minfer(E(T ))822

E(Ctrain(Ttrain)) = Ctrain(E(Ttrain))823

E(Mtrain(Ttrain)) = Mtrain(E(Ttrain))824

where Ttrain is the context length during training.825

Hence, it suffices to compare the costs with the826

expected context length.827

Will the Findings Break Down When Scaling Up828

the Model/Data Size? This is a never-ending ar-829

gument against most neural architectural changes,830

because no matter the scale of our experiments,831

we can never be sure that the behavior holds for832

larger scales. However, our experiments have al-833

ready covered model sizes up to 1.2B, which is834

already the size of some widely-used models at835

the moment (Grattafiori et al., 2024; Yang et al.,836

2025b). Empirically, it has been widely validated837

that the scaling law is highly predictable to a good838

extent beyond the largest model (e.g., Llama-3 ac-839

curately predicted the loss of a 405B model with840

experiments on model sizes up to 16B). Thus, we841

are confident that our conclusions hold at least for842

models up to 10B parameters.843

B.1 How to Calculate the Costs of Models of844

Arbitrary Sizes?845

In step 3 of our procedure (proposed in Section 4.1),846

we arrive at a critical model size N∗(H). It is a847

real value, so it does not correspond to an actual848

model configuration. To calculate the inference849

costs (Minfer, Cinfer, Z) of a model of this size, we850

need H and the aspect ratio of the model a = d/L.851

N d L

1.2B 36 1536
1.8B 36 2048
4B 48 2560
6B 54 3072
13B 64 4096
33B 72 6144
64B 80 8192

Table 7: The pre-defined configurations used to calcu-
late the aspect ratio of arbitrarily sized models. For
models smaller than 1.2B, we use the configurations in
Table 9.

Cost Type Time-invar. Time-var.

Infer. FLOPs (Cinfer) 2N 4TLdhnh

Infer. Mem. (Minfer) N 2TLdhnkv

Train. FLOPs (Ctrain) 6DtrainN 12DtrainTLdhnh

Train. Mem. (Mtrain) 4N TdL

Table 8: The time-invariant and time-variant costs of
GQA Transformers during inference and training.

H is already given, which may be a function of 852

d. For the aspect ratio, we perform linear interpo- 853

lation between the nearest two pre-defined model 854

configurations. The pre-defined model aspect ratios 855

are given in Table 7. Then, we use binary search 856

to find the L that corresponds to N∗(H). We can 857

calculate d from L and a. Then, we calculate nh 858

and nkv from d and the specified configuration. 859

With all these values (non-integers) known, we can 860

calculate the model size as well as the inference 861

costs. 862

To produce an actual model in practice, 863

we suggest simply choosing the configuration 864

(N,nh, nkv) closest to the derived answer in step 865

3. The slight variations in the performance of the 866

resulting configuration are negligible compared to 867

the huge cost savings gained by selecting the cost- 868

optimal configuration using our approach. 869

C Training Costs of GQA Transformers 870

Training Computational Costs In addition to 871

inference costs, different head configurations also 872

result in different training costs, because the num- 873

ber of training FLOPs, Ctrain, is a function of Cinfer. 874

Following Kaplan et al. (2020), we estimate the 875

FLOPs of the backward pass as double the FLOPs 876

of the forward pass. Let Dtrain denote the number 877

of training tokens, Ti denotes the number of tokens 878
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preceding the i-th training token in the training879

corpora, then the training FLOPs are:880

Ctrain ≈ 3DtrainCinfer
(
T
)

(10)881

= 6Dtrain(N + 2LTdhnh︸ ︷︷ ︸
Attention

), (11)882

where T is the average value of {Ti|i =883

1, · · · , Dtrain}. When all examples in the training884

corpora are set to the constant length Ttrain, dur-885

ing training, we have T = Ttrain/2. However, in886

practice, when training long-context LLMs, it is887

more common to use short contexts for most of888

the time, and only use long contexts consisting of889

a small number of tokens to adapt the model to890

the target context length. Hence, the time-variant891

FLOPs may only make up a small portion of the892

training FLOPs, making the cost largely indepen-893

dent of the GQA configuration. Consequently, our894

paper considers training costs, but focuses more on895

optimizing inference costs.896

Training Memory Costs We only need to store897

model parameters, activations, gradients, and opti-898

mizer states during training. Assuming the widely-899

used Adam (Kingma and Ba, 2015) optimizer with-900

out offloading any storage to the CPU, the memory901

cost is roughly:902

Mtrain(T ) ≈ 4N + TdL︸︷︷︸
Activations

. (12)903

While it is important to lower the cost of caching904

activations when T is large, we do not have a free905

hyperparameter to adjust this cost (like nh for com-906

putational costs and nkv for memory costs). To907

reduce the size of activations, we have to mod-908

ify d and/or L, which either drastically changes909

the model size or its aspect ratio. Either of such910

changes leads to major consequences that are be-911

yond the scope of this paper. Regarding the 4N part912

of training memory cost, it is only dependent on913

the total model size, so it suffices to minimize the914

model size, which is already addressed in many ex-915

isting works (Kaplan et al., 2020; Grattafiori et al.,916

2024; Sardana et al., 2023).917

D Model Configurations918

Table 9 shows the configurations of the models919

in our experiments for fitting the scaling law. In920

general, we ensure that dh = 64, dff ≈ 8d/3921

(rounded to the closest multiple of 32) when scal-922

ing the model size, which is adopted from common923

hyperparameters found in existing LLMs such as 924

GPT (Radford and Narasimhan, 2018) and Llama 925

(Grattafiori et al., 2024). We also ensure that the 926

aspect ratio d/L is similar to those used by exist- 927

ing modeling scaling works (Biderman et al., 2023; 928

Hoffmann et al., 2022; Yang et al., 2025b). We 929

use the GPT-2 tokenizer, which has a vocabulary 930

size of 50,304, and we tie the input and output 931

embeddings. 932

Learning Rate The maximum learning rate (LR) 933

is chosen by a grid search on {1×10i, 2×10i, 5× 934

10i | i = −3,−4,−5} with the vanilla MHA, and 935

choosing the one with best LM loss. Then, we just 936

keep the LR the same across different GQA config- 937

urations. While different configurations may have 938

different optimal LR, exhaustively sweeping all LR 939

for each configuration is prohibitively expensive. 940

Differences From Vanilla GPT Compared to 941

the vanilla GPT model (Radford and Narasimhan, 942

2018), we make the following changes to better 943

align with more recent LLMs: 944

• We use RoPE (Su et al., 2024) with a θ value 945

of 500,000, which is widely used in current 946

LMs (Grattafiori et al., 2024). 947

• We use SwiGLU FFN instead of the ReLU 948

FFN in GPT. 949

• We use pre-norm (Xiong et al., 2020) and use 950

RMSNorm (Zhang and Sennrich, 2019) in- 951

stead of LayerNorm (Ba et al., 2016), which 952

is more common in current LLMs. The ep- 953

silon in RMSNorm is 10−6. 954

• Our model has no bias terms or dropout, 955

which is also common practice and can 956

slightly increase the training efficiency. 957

E Data Processing 958

In most of our experiments, we used SlimPajama 959

(Soboleva et al., 2023). We append an EOS token 960

to each document in the corpus before chunking 961

the documents into the specified training length. If 962

the last chunk is shorter than the specified training 963

length, it will be discarded. 964

F Training Configurations 965

Here, we provide the default training configurations 966

we used during the experiments. 967
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Figure 7: The proportion of FLOPs allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context length increases, most FLOPs are spent on the time-variant computation of the
attention operator σ(QK⊤)V, where σ is the row-wise softmax function.
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Figure 8: The proportion of memory allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context lengths increase, most of the memory usage is spent on storing the KV cache.

Model size L d dh LR

3M 4 256 64 1e-3
19M 6 512 64 1e-3
85M 12 768 64 1e-3
150M 12 1024 64 1e-3
200M 16 1024 64 5e-4
470M 24 1280 64 5e-4
680M 24 1536 64 2e-4
1.2B 36 1536 64 2e-4

Table 9: The configurations of the vanilla models with
MHA in our experiments, we try to keep it as close
to the configurations from Biderman et al. (2023) as
possible.

• Optimizer: We use the widely-used AdamW968

optimizer (Kingma and Ba, 2015), with β1 =969

0.9, β2 = 0.95, and a weight decay of 0.1.970

We only apply weight decay to linear layers,971

which excludes the re-scaling factor in RM-972

SNorm. We also use a gradient clipping value973

of 1.0.974

• Learning rate scheduler: We use the975

warmup-stable-decay (WSD) LR scheduler976

(Hu et al., 2024), with a maximum LR of 977

5 ·10−4, 10% warmup steps steps and 20% de- 978

cay steps. Warmup starts from 0 and increases 979

linearly to the maximum LR. The decay stage 980

uses a cosine annealing scheme, where the 981

minimum LR is 10% of the maximum LR. 982

• Batch size: 512K tokens. 983

• Floating-point precision: We use BF16 dur- 984

ing training and FP16 during evaluation. 985

Hardware All training experiments were run on 986

A800 GPUs, mostly with 8 GPUs. 987

G Memory and Compute Allocations by 988

Model Size 989

Figure 7 and 8 show the FLOPs and memory break- 990

down of different components as a function of 991

model size. One can see that changes in the model 992

size and/or context length can influence the allo- 993

cation of FLOPs and memory between different 994

components in the model. For instance, when 995

the context has 128K tokens, the vast majority of 996

FLOPs is spent computing the attention scores and 997

value summation (i.e., softmax
(
qiK

⊤/
√
dh

)
V), 998
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and the vast majority of memory is spent caching999

KVs. With 1B model parameters, roughly 90% of1000

memory will be spent storing the KV cache, and1001

only 10% will be used to store the model param-1002

eters (assuming the KVs and model parameters1003

use the same precision). In other words, the time-1004

variant costs dominate the overall inference costs.1005

Thus, at this context length, we can minimize the1006

overall costs by allocating more resources to the1007

time-invariant components by increasing N and1008

decreasing nh and nkv.1009

H More Results: Loss vs. Inference Costs1010

Here, we provide the results for the relationship1011

between loss and inference costs for other context1012

lengths. The results are shown in Figure 9, 10, and1013

11. We can see that for shorter context lengths, the1014

gain of reducing nh or nkv is relatively small, but1015

the commonly used GQA (nkv = 8) configuration1016

is still suboptimal at 32K context length. At 1.2B1017

parameters, GQA uses more FLOPs and memory1018

than H = 8, 1. For longer context lengths such as1019

512K, we can achieve the same loss with less than1020

10% of the original memory usage by using fewer1021

KV heads, but a larger model (increasing N ).1022

H.1 Influence of Query and KV Heads for1023

Different Context Lengths1024

Here, we provide the supplementary results for1025

Section 5.4 for other context lengths (8K, 32K, and1026

512K). Similar to the previous section, a greater1027

context length means that the advantage of using1028

fewer heads is greater. In the following section, we1029

explicitly fit the relationship between loss and nh1030

and nkv with power-plus-constant functions.1031

I The Scaling Laws of Attention Heads1032

In this section, we show that one can predict the1033

loss for a certain head configuration using experi-1034

ments with a smaller number of heads. Specifically,1035

we find that—for the first time—the relationship1036

between loss and the number of attention heads1037

closely resembles a power-plus-constant function:1038

L(nh) = anb
h + c1039

where L is the LM loss, and a, b, c ∈ R are coef-1040

ficients. Figure 12 shows that this relationship is1041

observed with different model sizes. The concrete1042

functions for the curves are: 1043

L = 0.579n−0.124
h + 2.473 (470M) 1044

L = 0.398n−0.177
h + 2.583 (680M) 1045

L = 0.301n−0.227
h + 2.622 (1.2B) 1046

Since the larger model has a greater constant term, 1047

this means that these curves will intersect at a cer- 1048

tain point (at around nh = 8K). This is likely incor- 1049

rect, since the 1.2B model has strictly more param- 1050

eters than the other models (although at such large 1051

values of nh, the relative difference in model size is 1052

very small). This means that the fitted curves will 1053

break down before nh = 8K. Fortunately, virtually 1054

all LLMs with open weights have fewer than 128 1055

heads, and the fitted curves are very accurate up 1056

to 128 heads with R2 values over 0.999. Thus, we 1057

conclude that the law is empirically accurate for 1058

the vast majority of openly available LLMs. 1059

Similarly, Figure 13 shows that this trend is con- 1060

sistent across different context lengths. The fitted 1061

curves are 1062

L = 1.513n−0.039
h + 1.53 (T = 1K) 1063

L = 1.436n−0.041
h + 1.53 (T = 2K) 1064

L = 1.356n−0.044
h + 1.53 (T = 8K) 1065

When nh approaches infinity, the model parameters 1066

will be dominated by the attention projection matri- 1067

ces (i.e., QKVO projections). Hence, they converge 1068

to the same constant term, which is known as the 1069

“natural entropy of language”. During curve fitting, 1070

this constant term is chosen to minimize to fitting 1071

error, and we arrive at 1.53. The R2 values of these 1072

fits are over 0.999. 1073

From these results, we conclude that this power- 1074

plus-constant scaling law between loss and the 1075

number of heads is exhibited independently of 1076

model size and context length. One important im- 1077

plication of this result is that increasing the number 1078

of heads to improve model quality gives diminish- 1079

ing returns. This means that beyond a certain point, 1080

the loss reduction brought by further increasing the 1081

number of heads is not worth the cost increase. 1082

I.1 Constant Number of KV Heads 1083

Some LMs (e.g., Llama-3 (Grattafiori et al., 2024)) 1084

keep the number of KV heads constant when scal- 1085

ing up the model. Therefore, we also investigate 1086

the relationship between LM loss and nh when nkv 1087

is constant. Figure 14 shows this relationship with 1088

different values of nkv and two model sizes. We 1089
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Figure 9: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 8K tokens.

108 109 1010

Memory cost (bytes) (Minfer)

2.4

2.6

2.8

3.0

3.2

Lo
ss

1013 1014 1015

Computational cost (FLOPs) (Cinfer)

2.4

2.6

2.8

3.0

3.2

104 105

Hardware-aware cost (Z)

2.4

2.6

2.8

3.0

3.2
Llama-3 GQA
H = 8, 8
H = 8, 4
H = 8, 2
H = 8, 1
H = 4, 1
H = 2, 1
H = 1, 1

Figure 10: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 32K tokens.
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Figure 11: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during
inference with a context length of 512K tokens.

discover that the relationship is still a power-plus-1090

constant law, but the fitted curves are notably less1091

accurate, with R2 values over 0.97. It is worth not-1092

ing that the increase in fitting error compared to1093

Section I) may be attributed to the use of a smaller1094

model (150M vs. 470M).1095

J Experimental Details: Downstream1096

Performance1097

This section provides additional details for Sec-1098

tion 5.5.1099

J.1 Training 1100

The training run for both the Llama-3 GQA and 1101

H = 8, 1 (cost-optimal GQA) models are exactly 1102

the same. It consists of two phases. The first phase 1103

uses the same settings as the scaling experiments in 1104

Section 5.1. After 20B tokens, we continue training 1105

with 128K context length for 1B tokens, using new 1106

optimer states. This phase uses a lower maximum 1107

LR of 1e-5 for stability and to avoid catastrophic 1108

forgetting. 1109
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Figure 13: The relationship between LM loss and the
number of attention heads, fitted with a power-plus-
constant function. The model size is 470M.

J.2 Evaluation1110

Here, we provide more details regarding the down-1111

stream task performance evaluation in Section 5.5.1112

We use LM-Evaluation-harness (Gao et al., 2024)1113

for common-sense reasoning, and the needle-in-a-1114

haystack tasks from RULER (Hsieh et al., 2024).1115

For both of these tasks, we evaluate the last four1116

checkpoints of the model, and report the average1117

score of it. This is for reducing the randomness in1118

the results.1119

Common-Sense Reasoning Tasks We use the1120

popular LM-Evaluation-Harness (Gao et al., 2024)1121

for evaluating common-sense reasoning capabil-1122

ities. We evaluate on the common-sense reason-1123

ing tasks specified by the official implementation,1124

which includes 9 tasks/datasets: ARC-Challenge,1125

ARC-Easy, BoolQ, HellaSwag, Lambada, PIQA,1126

SocialIQA, Wikitext, and Winograd. The scores1127

we report in Table 5 are the average accuracy score1128

(excluding Wikitext, which is evaluated with per-1129

plexity). When available, we use the normalized1130

accuracy scores instead of raw accuracy scores.1131

Retrieval Task We report the average accuracy1132

of the synthetic S-NIAH tasks from RULER (Hsieh1133

et al., 2024), which tests the model’s ability to re-1134

trieve a certain “needle” (i.e., some special infor-1135
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Figure 14: The relationship between loss and nh when
nkv is constant. Model size is 150M.
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Figure 15: The loss curves of a model with 2K context
length adapted to 64K through post-training compared
to a model trained with 64K from scratch.

mation) from a large body of irrelevant text. 1136

J.3 Context Length Extension by 1137

Post-Training 1138

LLMs are typically trained on shorter sequences 1139

in practice, followed by adaptation to longer con- 1140

texts using a smaller amount of data tailored to 1141

the target context length. To ensure the validity 1142

of our conclusions in such training scenarios, we 1143

adapted a checkpoint initially trained with a 2K 1144

context length to a 64K context length through con- 1145

tinual pretraining. This adapted model was then 1146

compared to a model trained from scratch with a 1147

64K context length. As illustrated in Figure 15, the 1148

adapted model rapidly converges toward the per- 1149

formance of the model trained from scratch with a 1150

64K context length. This indicates that, with suffi- 1151

cient post-training, the loss of the adapted model 1152

approaches that of a model trained entirely from 1153

scratch. Consequently, our findings regarding in- 1154

ference costs and the relationship between loss, 1155

context length, and head configuration remain ap- 1156

plicable to post-training scenarios. 1157
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