Cost-Optimal Grouped-Query Attention for Long-Context Modeling

Anonymous ACL submission

Abstract

Grouped-Query Attention (GQA) is a widely
adopted strategy for reducing the computa-
tional cost of attention layers in large language
models (LLMs). However, current GQA con-
figurations are often suboptimal because they
overlook how context length influences infer-
ence cost. Since inference cost grows with
context length, the most cost-efficient GQA
configuration should also vary accordingly. In
this work, we analyze the relationship among
context length, model size, GQA configuration,
and model loss, and introduce two innovations:
(1) we decouple the total head size from the hid-
den size, enabling more flexible control over
attention FLOPs; and (2) we jointly optimize
the model size and the GQA configuration to ar-
rive at a better allocation of inference resources
between attention layers and other components.
Our analysis reveals that commonly used GQA
configurations are highly suboptimal for long-
context scenarios. More importantly, we pro-
pose a recipe for deriving cost-optimal GQA
configurations. Our results show that for long-
context scenarios, one should use fewer atten-
tion heads while scaling up model size. Config-
urations selected by our recipe can reduce both
memory usage and FLOPs by more than 50%
compared to Llama-3’s GQA, with no degrada-
tion in model capabilities. Our findings offer
valuable insights for designing efficient long-
context LLMs.

1 Introduction

It is well established that increasing the size of
large language models (LLMs) can improve their
language modeling qualities (Hestness et al., 2017;
Kaplan et al., 2020). Thus, many prior studies
have focused on minimizing model size while
maintaining quality to ensure cost-effectiveness
(Hoffmann et al., 2022; Hu et al., 2024; Abdin
et al.,, 2024). However, the vast majority of
LLMs are Transformer-based (Vaswani et al., 2017,
Grattafiori et al., 2024), and the cost of running

such architectures does not solely depend on the
model size. Specifically, during inference, a cache
of keys/values (i.e., KV cache) is maintained to
avoid recomputation in attention layers, resulting in
memory costs that scale linearly with the context
length. Also, attention layers include the computa-
tion of pair-wise attention scores and the weighted
summation of value vectors, incurring per-token
computational costs that scale linearly with the
context length. Many studies have aimed to re-
duce these costs, including KV cache compression
(Li et al., 2024a), prompt compression (Pan et al.,
2024; Li et al., 2024b), sparse attention (Lou et al.,
2024; Ge et al., 2024; Jiang et al., 2024), etc.

One of the most widely used techniques for re-
ducing memory costs is Grouped-Query Attention
(GQA) (Ainslie et al., 2023), in which attention
heads are split into groups and the heads in each
group share the same KV vectors. Current imple-
mentations of GQA have two critical limitations:
(1) Most existing models unnecessarily restrict the
total number of head dimensions to be equal to the
model hidden size, resulting in redundant FLOPs
(floating-point operations). (2) When deciding on
the number of attention heads and groups, current
models do not take into account the influence of
context length on the computational and memory
costs, resulting in suboptimal configurations for
long contexts.

In this paper, we aim to optimize the cost-
effectiveness of GQA Transformers from the per-
spective of resource allocation. Concretely, we
categorize inference costs into time-invariant costs,
which are constant with respect to context length
(e.g., fixed model parameters), and time-variant
costs, which grow with context length (e.g., at-
tention computation and KV cache). To freely
control the resource allocated to time-variant and
time-invariant parts, we make two changes to the
existing GQA design procedures: (1) By decou-
pling the total number of head dimensions and the

Change 1: Decoupling hidden size and head number

3.2
x Allocate more resources to time-invariant parts 30 198

— .

» Il Time-invariant 228 v
B AR piniaiaiaiaiiiih o S Sy |

5 30 Vol
Ordinary GQA 24 1.88B

Flexible adjustment of time-variant compute 4 22 100 10t

20 Memory (GB)

Change 2: Joint optimization of GQA configuration and model size

Fixed X

Time-invariant
memory/FLOPs

»

Faster but worse Faster and better

Adjustable

Time-invariant
memory/FLOPs

® LUama-3 GQA

Result Inference costs (@128K)

3.2
) -57.8%
3.0
10 1.2B
028
l i
0 o Hm .,
Llama-3 Qurs Llama-3 Qyrs 22

GQA GQA 2 o
Memory (GB) FLOPs (1e15) Compute (FLOPs)

Figure 1: Our approach makes two changes to unlock the flexible adjustment of memory and compute allocation be-
tween time-invariant components (model weights) and time-variant components (KV cache/attention computation).
Optimizing resource allocation results in cost-optimal GQA configuration (“Ours”), which has markedly lower
memory and FLOPs usage compared to Llama-3, without compromising model capabilities.

model hidden size, we unlock a free hyperparam-
eter to control the compute allocated to attention
operations. (2) We jointly optimize GQA config-
urations and model size to modulate the resource
allocation between time-variant and time-invariant
components. After these changes, we can answer
our main research question:

Given an expected inference context
length and target loss, how can GQA be
configured to minimize inference costs
while achieving that loss?

To avoid sweeping all combinations of model
sizes and GQA configurations, we present a three-
step search procedure (detailed in Section 4).
Our approach is empirically validated on models
up to 1.2B parameters. Empirical results show
that the widely used Llama-3 GQA configuration
(Grattafiori et al., 2024) is highly suboptimal at
128K (which is the context length supported by
Llama-3). Instead, our approach gives a configu-
ration that achieves the same loss while reducing
inference FLOPs and memory usage by more than
50% (Figure 1 (right)).

The contributions of this paper can be summa-
rized by the following points:

* By decoupling the model hidden size from
the attention head number and jointly optimiz-
ing the model size and GQA configuration,
we can flexibly allocate memory and com-
pute resources among time-variant and time-
invariant components.

* We present the first rigorous study to search
for the optimal GQA configuration in terms

of inference costs for reaching a target loss.
Our three-step approach can precisely iden-
tify cost-optimal GQA configurations without
exhaustively sweeping many configurations.

* Our framework reveals valuable insights for
designing more cost-effective Transformer
LLMs, especially in long-context scenarios.

2 Related Work

This paper explores how to build efficient long-
context LLMs based on GQA Transformer. Please
refer to the LLM-related surveys (Zhao et al., 2023;
Lu et al., 2024) for more details on LLMs.

Grouped-Query Attention The original Trans-
former model employs multi-head attention (MHA)
(Vaswani et al., 2017), in which each layer consists
of multiple heads that are computed in parallel,
and the layer’s output is the sum of the heads’ out-
puts. To improve decoding efficiency, especially
improving memory efficiency, multi-query atten-
tion (MQA) (Shazeer, 2019) shares the weights
of all key and value projections among all heads,
significantly reducing KV cache size and memory
bandwidth requirements during autoregressive de-
coding. Grouped-query attention (GQA) (Ainslie
et al., 2023) extends this by partitioning heads into
groups where each group shares a common KV
projection. Formally, MHA is a variant of GQA
with independent KV projections per query head,
while MQA corresponds to the extreme where all
queries share one common KV projection. Recent
attention methods based on low-rank factorization,
such as MLA (DeepSeek-Al et al., 2024), can also
be viewed as variants of GQA. Hence, it can be

Adjustable?
Notation | Meaning Vanilla GQA This paper | Constrained by
T | Context length | X X | None
N Model size X v None
nh Attention head number X v None
Ny KV head number v v None
L Number of layers X X N and pre-defined aspect ratio (d/L)
d Model hidden size X X N and pre-defined aspect ratio (d/L)
die FFN intermediate size X X di ~ 8d/3
dp Head size X X dp =64
\% Vocabulary size X X Pre-defined vocabulary

Table 1: Notations in the paper. We optimize more free hyperparameters, resulting in better cost-efficiency.

said that most of the current popular LLMs (Groen-
eveld et al., 2024; Biderman et al., 2023; Hu et al.,
2024; Grattafiori et al., 2024; Yang et al., 2025b)
are built based on GQA.

Efficient Long-Context Attention Attention
mechanisms pose a major bottleneck in long-
context settings due to high computational and
memory costs, especially from the KV cache. To
mitigate this, techniques like sparse attention (Lou
et al., 2024; Ge et al., 2024; Jiang et al., 2024),
prompt compression (Pan et al., 2024; Xiao et al.,
2024), and KV cache compression (Liu et al.,
2024; Hooper et al., 2024; Zhang et al., 2024;
Yao et al., 2024; Cai et al., 2024) have been pro-
posed. While these methods build on and optimize
GQA, they often compromise performance rela-
tive to vanilla GQA. Our work focuses on identi-
fying cost-optimal GQA configurations for long-
context scenarios through precise characterization
of model size, context length, and attention head
configurations in terms of their impacts on model
performance, computational cost, and memory cost.
The efficient long-context attention methods de-
scribed above remain orthogonal to our GQA archi-
tecture search and can be subsequently applied as
complementary optimizations to the cost-optimal
GQA structures. For more details on efficient long-
context attention methods, please refer to the sur-
veys (Yuan et al., 2024; Shi et al., 2024).

Scaling Laws for LLMs Recent studies on scal-
ing laws for LLMs (Hestness et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022) have estab-
lished that model loss follows a log-linear rela-
tionship concerning model size and training data
size. They utilize this relationship to minimize
the model loss given a fixed training FLOPs bud-
get. However, there are two critical limitations: (1)
These works do not consider the influence of con-

text length on the computational and memory costs.
(2) These laws prioritize the optimal allocation of
compute during training, ignoring inference costs.
Although Sardana et al. (2023) supplement scal-
ing laws by accounting for total inference FLOPs,
their inference cost estimation ignores the influ-
ence of context length and memory usage during
inference. Our work extends these studies by ac-
counting for both the computational and memory
costs during inference and addressing the impact
of context lengths.

3 Preliminaries: Computational and
Memory Costs of GQA Transformers

In this section, we first briefly introduce GQA
Transformers (Ainslie et al., 2023) and describe
key model configurations and their impact on com-
putational and memory costs. Then, we provide a
more accurate formula for the computational and
memory costs of Transformer-based LLMs that
explicitly considers context length and can guide
the design of cost-optimal long-context LLMs. Ta-
ble 1 lists the main notations in this paper, and
Appendix A provides a more complete list.

3.1 GOQA Transformers

A Transformer model consists of L layers, each
of which consists of an attention block and a feed-
forward network (FFN) block. For each layer, let
x;,yi € R denote the i-th input and output em-
bedding, where d is the model hidden dimension.

Attention Blocks For each head in an attention
block, x; is first projected into query q; = x; W €
R, key k; = x; W), € R% value v; = x,W, €
R4, where dy, is the head dimension, then the
attention head output is computed as

K,/

vy,

h; = softmax <) V,W/] eRY (D)

Component | Parameters | Per-token FLOPs
Input emb. dVv 0

ATT proj. 2Lddp (np, + nky) | 4Lddp(nn + 1k
ATT comp. 0 ALTnpdp
FFN 2 Lddy 4Lddg
Output emb. 0 2dV

Table 2: Parameters and per-token FLOPs (forward
pass) of the main components in Transformers. “Input
emb.” and “Output emb.” represent the input and out-
put embedding layers, respectively, sharing the same
embedding weights. “ATT proj.” and “ATT comp.” rep-
resent the projection and computation processes of all
attention blocks, respectively.

where W, W, W, W, R¥¥4n are learnable
projection matrices. KlT = [k]— G- B kﬂ and
V] =[v] & - @v/] are the KV cache for the
current attention head, where @ denotes the con-
catenation along the sequence dimension. In MHA
Transformers, each attention block consists of ny,
heads computed in parallel, and the final attention
output h; € R? is the sum of all head outputs. In
GQA, every ny/ng, query heads share the same
KV projection matrices, where ng,, is the number
of KV heads.

FFN Blocks An FFN block is defined as

yi=0 (BW5) Wama €Y, @)

where Wy, € RIXdt W goun € RU>4 are learn-
able projection matrices and o(+) is an element-
wise activation function.

Hyperparameter Constraints Let 1V denote
the vocabulary size and N denote the model
size. We assume that dj, and V are fixed', and
dg =~ 8d/3, following common LLM design
choices (Grattafiori et al., 2024; Groeneveld et al.,
2024; Biderman et al., 2023). For each model size
N, we assume that the optimal aspect ratio d/L is
determined in advance (taken from Biderman et al.
(2023)), so each NN corresponds to a unique pair
(d, L). Table 1 (right) lists these constraints.

3.2 Inference Costs of GQA Transformers

Table 2 summarizes the number of parameters for
each component in the Transformer model and the
FLOPs associated with it. Table 3 summarizes the
memory and computational costs during inference.

"Keeping dj, and V constant for varying model sizes is
a common practice. Examples include Llama-3 (Grattafiori
et al., 2024) and Qwen3 (Yang et al., 2025a).

Type \ Time-invariant Time-variant
FLOPs (Cinfer) 2N 4Tth7’lh
Mem. (Mnfﬂ) N 2Tth’l’Lk-v

Table 3: The time-invariant and time-variant costs of
GQA Transformers during inference.

Inference Computational Costs Ciype(7') is the
number of FLOPs used to process one token within
the context with 7" tokens. This is roughly given as

Cinfer(T) — Cconst + Catt(T)
= 2N +4TLdyny,,)

Time-invariant Tjme-variant

where Cionst denotes the “time-invariant FLOPs”,
the number of FLOPs invariant to the current time
step. Cay(T') denotes the “time-variant FLOPs”,
which is the number of FLOPs used to compute the
attention softmax process.

Inference Memory Costs M (T) is defined as
the memory required to process one token within
the context with 7" tokens. Ignoring the necessary
system overhead, we need to store the model pa-
rameters and the KV cache, which is roughly:

Mnfer(T) =N+ Nkv (T)
= N +2TLdyng,, @

Time-invariant Time-variant

where N denotes the number of model parameters
and Ny, (T) denotes the number of values in the
KV cache for the context with 7" tokens.

Takeaways As listed in Table 3, inference costs
can be split into four types: time-invariant FLOPs
and memory, and time-variant FLOPs and memory.
The time-invariant costs are directly proportional to
the model size (/V), while time-variant FLOPs can
be controlled by ny, and time-variant memory can
be controlled by ng,. Thus, adjusting N, ny, and
ng, permits fine-grained control over these four
kinds of costs. This analysis also implies that a
large model may have lower inference costs if its
time-variant costs are low enough.

Training Costs Since this work mainly focuses
on minimizing inference costs, the calculation for
the training costs is left to Appendix C.

4 Method

Our objective is to find the GQA configuration that
minimizes inference costs while attaining a given

loss. We approach this by framing the problem as
balancing the time-variant and time-invariant costs.

In order to unlock the ability to flexibly allocate
different amounts of compute and memory to the
time-variant and time-invariant components, we
make two changes to existing GQA design proce-
dures: (1) We decouple the number of attention
heads from the model hidden dimension, and (2)
we jointly optimize the model size and the GQA
configuration. Figure 1 (left) shows the effect of
these two changes, and Table 1 shows the adjusta-
bility of different hyperparameters in this work
compared to vanilla GQA.

Change 1: Decoupling the Head Number from
the Hidden Dimension Most existing GQA
Transformers adopt ny X dp, = d, which is ar-
bitrarily chosen in the original Transformer paper
(Vaswani et al., 2017). This is an unnecessary re-
striction, rendering GQA unable to adjust the time-
variant FLOPs. We decouple nj, from d, unlocking
a free hyperparameter ny, that controls the number
of FLOPs of attention blocks.

Change 2: Joint Optimization of Model Size
and GQA Configuration In addition to the time-
variant costs, we also want to control the time-
invariant costs (FFNs, attention QK V/output pro-
jections, etc.). Specifically, by reducing N, but
increasing ny, we can allocate more compute to
time-variant components. Similarly, we can allo-
cate more compute to time-invariant components
by increasing N and decreasing nj. This paper
aims to identify the optimal allocation of memory
and compute between the time-variant and time-
invariant components, by jointly tweaking the GQA
configuration (ny, ng,) and the model size N.

4.1 Cost-Optimal GQA Search

Objective Formulation With the ability to freely

adjust the time-variant and time-invariant costs, we

formulate the optimization objective as follows,
argmin Z(T, N, np, nyy)

nhankvaN
s.t. L(T, N,np,ngy) < L o)
where Z = AM&., + (1 — \)CP

infer’

where L£* is the target LM loss, L is the model loss,
A € [0,1], e, B € R control the trade-off between
compute and memory based on deployment con-
straints?. Setting A = 1 minimizes only Minfer,

2Although Minger and Cinger have different measurement
units, (A, a, 8) allow us to control the importance of compute

while A = 0 minimizes only Clysr. We refer to
Z as the hardware-aware cost. By default, we set
A =09« =1/2,8 = 1/3 based on hardware
utilization tests in our environment. In other words,
the inputs to the optimization objective are (L£*,T")
and the outputs are (N, np, gy).

Influence of Context Length We empirically ob-
serve that the effect of context length 7" on loss £
is largely invariant to N, np, and ng, (verified
in Section 5.7). This means we can train with
moderate context lengths (e.g., T' = 8K) and ex-
trapolate the loss to longer contexts, saving pre-
cious computation resources. However, the influ-
ence of model size /N and GQA head configuration
H = (np,nyy) on loss is coupled and must be
jointly modeled. To this end, we adopt a three-step
procedure:

Step 1: Candidate Selection Define a candidate

set of attention configurations:

Heang = {np = 1,2,4,...,max(d)/dp}
x {ng, =1,2,4,...,max(d)/dy} (6)
S.t. Ny < Ny,

where max(d) is the hidden size of the largest
model used to fit scaling curves in step 2. We round
max(d)/dj, to the nearest power of 2 if necessary.

Step 2: Scaling Curves Fitting For each H €
Hand, We train a series of small-scale models with
varying NN using a sufficiently long context length
(we use T' = 8K), and fit the model loss using a
power-law scaling function® as

a

L(N;H) = (N

b
) +E.)
where a, b are configuration-dependent coefficients
and F is the “natural entropy of language”.

Step 3: Cost Minimization For each GQA con-
figuration H, we solve for the smallest model size
N*(H) that satisfies the loss constraint as

N*(H) =

a

(L — B ©

Then, we calculate the inference cost for each con-
figuration and select the one with the lowest cost

(N*(H), H*) = arg min Z(T, N, njp, ns). (9)
H

and memory resources under a unified metric.
3We use the number of non-embedding parameters because
it produces more predictable scaling laws in our experiments.

S Experiments

We first explain the experimental settings (Sec-
tion 5.1). Then, we present the main results and
takeaways (Section 5.2), followed by the actual
cost-optimal GQA configurations derived using our
approach (Section 5.3) and an analysis of the influ-
ence of ny, and ny,, on LM loss (Section 5.4). After
that, we present the results for the setting where
total training FLOPs is aligned (Section 5.6). Fi-
nally, we verify that the effect of 7" on L is largely
independent of N and H (Section 5.7).

5.1 Experimental Settings

Model Configurations We adopt the widely used
Llama-3 (Grattafiori et al., 2024) architecture. For
each GQA configuration, we train models from 3M
to 1.2B in size. We keep the model configurations
as close to Biderman et al. (2023) as possible. We
have max(d)/d, = 32, this results in 21 candi-
date configurations (i.e., | Heand| = 21). For more
details, see Appendix D.

Data Configurations We use SlimPajama
(Soboleva et al., 2023) in our experiments. It is a
deduplicated version of the RedPajama (Weber
et al., 2024) corpus with 627B tokens. In most
of our experiments, we use a 20:1 ratio between
training data and model parameters, as suggested
by Hoffmann et al. (2022). Additionally, we
always ensure that each batch has 512K tokens.
For more details, see Appendix E.

Training Configurations We try to follow com-
mon practices in most of our experiments. We
use AdamW optimizer with the WSD learning rate
scheduler (Hu et al., 2024). We choose the max-
imum learning rate by sweeping different values
with the MHA model for each model size. For
more details, see Appendix F.

5.2 Loss vs. Inference Costs

Here, we compare the loss-cost tradeoffs of dif-
ferent GQA configurations. Figure 2 reports the
results for a subset of H,,q, showing LM loss as
functions of various inference costs (Minter, Cinfer»
and Z), with a context length of 128K tokens. To
save space, we report the result of other context
lengths in Appendix H.1.

Takeaway 1 We discover that loss does not have
a simple relationship (e.g., power-plus-constant
function) with either memory or computational
costs. However, it is still possible to predict the loss

\ Expected inference context length (77)

£ | 8K | 16K | 32K | 64K | 128K
30 | 32,1 | 16,1 | 8,1 4,1 | 4,1
29 | 32,1 | 16,1 | 16,1 | 81 | 4,1
28 | 32,2 | 16,1 | 16,1 | 81 | 81
27 | 32,4 | 16,2 | 16,1 | 16,1 | 8,1
26 | 32,8 | 16,4 | 16,2 | 16,2 | 8,1
25 | 32,16 | 16,8 | 16,4 | 16,2 | 16,2
24 | 32,32 | 32,32 | 32,8 | 32,8 | 32,4
235 | 32,32 | 32,32 | 32,32 | 32,16 | 32,8

Table 4: The cost-optimal GQA configuration (ny, nxy)
for different target loss £* and context lengths (7),
while minimizing the hardware-aware cost (Z, see Sec-
tion 4.1). For reference, the loss of 1B, 3B, and 8B of
Llama-3 GQA is 2.615, 2.448, and 2.362, respectively.

by fitting loss as a function of N, then transform-
ing the fitted curves along the x-axis to account for
the time-variant costs. Fitting loss as a power-plus-
constant function of NV is highly accurate, with R?
values over 0.999.

Takeaway 2 The commonly used Llama-3 GQA
configuration (i.e., H = d/dy,, 8)* is highly sub-
optimal at 128K context length. For instance,
Llama-3.2-1B uses this head configuration and sup-
ports 128K context length. At that length, using
H = (8,1) and increasing the model size to 1.8B
would achieve the same loss (2.615) while reduc-
ing 50.8% and 57.8% inference memory and
FLOPs usage, respectively (shown in Figure 1
(right)). Alternatively, using H = 8,1 can achieve
a loss that is 0.117 lower than Llama-3.2-1B with
the same per-token inference budget in terms of Z.

5.3 Cost-Optimal GQA Configuration

Table 4 reports the cost-optimal GQA for different
expected inference context lengths 7" and target
losses £*. When the target loss is high, the model
is small, making the time-invariant costs low. Thus,
the optimal configuration allocates more resources
to the time-invariant part by increasing /N and re-
ducing ny, and ny,. Similarly, when 7T is great, the
time-variant costs are high, making it more attrac-
tive to reduce ny, and ny, more aggressively.

In addition, the results indicate that there is noth-
ing especially attractive about the commonly used
Llama-3 GQA configuration (d/dy, 8). For certain
combinations of £* and T, the GQA configuration
is cost-optimal. However, for a greater number of

*We use “Llama-3 GQA” to refer to the GQA configuration
on Llama-3 and not the actual publicly released checkpoint,
which is trained on huge amounts of proprietary data.

3.2

3.0 1 H=8,8
' e H=8,4
0 ® H=8,2
§28 e H=81
e H=4,1
H=2,1
2.6 H=1,1

2.4 2.4 2.4

10° 1010 10%

Memory cost (bytes) (Minfer)

Computational cost (FLOPS) (Cinfer)

10°
Hardware-aware cost (Z)

10'5

Figure 2: Loss as a function of inference costs with a context length of 128K, assuming we use BF16 for both
parameters and the KV cache. H = (nj,, nk,) denotes the attention head configuration. n;, and ny,, have different
effects on the memory cost, computational cost, and loss. z-axis is in log scale.

0 5 10 15 20 25 30
Number of query heads (np)

Figure 3: The loss for different number of query heads
(np) and KV heads (ny,), with 1.2B model parameters.

combinations, it is sub-optimal in costs. The result
implies that configuration of GQA Transformers
should take into account the expected inference
context length, and directly applying the popular
GQA configuration results in severe waste of hard-
ware resources.

5.4 Influence of Query and KV Heads

Figure 3 shows the relationship between loss and
the number of query heads and KV heads (i.e.,
different GQA configurations), with a model size of
1.2B. Similar results are observed with other model
sizes as well. We emphasize two main takeaways.

Takeaway 1 The loss reduction by increasing
either ny, or ny, exhibits diminishing returns. This
means that when ny, or ng, is great, increasing
these hyperparameters to reduce loss may not be
worth the cost increase. We also found that they
exhibit a power-plus-constant relationship (details
in Appendix I).

Takeaway 2 Increasing ny, reduces the loss more
than increasing ny, by the same amount, although

both of them cause the same parameter increase.

This means the ny is more important for model
expressivity. Having more query heads allows the
model to capture a greater number of dependency

Evaluation Metric H=32,8 H =231
(Llama-3 GQA) (Ours)
Train. throughput (tok/s) 18,655 31,260
Infer. throughput (tok/s) 12,921 20,643
Common-sense 45.7% 45.5%
NIAH (1-8K) 90.9% 96.9%
NIAH (16K) 30.4% 46.0%
NIAH (32K) 15.1% 18.7%
NIAH (64K) 6.1% 7.9%
NIAH (128K) 5.2% 6.7%

Table 5: The throughput of two GQA configurations at
128K context length, and their accuracy on common-
sense reasoning (average of 8 tasks) and retrieval tasks
(NIAH, varying context length). Although H = §,1
has more parameters (1.8B vs. 1.2B), it is much faster
for both training and inference.

patterns. Meanwhile, having more KV heads pro-
vides more capacity to store information for each
token. The empirical results may indicate that the
former is more important for performance.

5.5 Downstream Performance

Now, we compare the cost-optimal configura-
tion against Llama-3 GQA in terms of train-
ing/inference throughput and downstream perfor-
mance. At T = 128K and £* = 2.615 (the loss
of Llama-3 GQA at 1.2B model size), the cost-
optimal GQA configuration is H = 8, 1. Specif-
ically, we train two models, one with H = 32,8
(Llama-3 GQA) and one with H = 8, 1. Train-
ing starts with a 4K context length on 20B tokens.
It is then trained with 128K context length for
1B tokens. More training details is given in Ap-
pendix J.1.

Training throughput is computed based on the
training time while inference throughput is mea-
sured with a batch size of 1 on one NVIDIA

—o— MHA GQA (n,=8) —e— H=8,1
[}
3.2 3.2 \
3.0 1 3.0 1
2 N
g 2.81 2.8 4 N
N
2.6 1 2.6 1 - °
- 0 - 0,
2.4 88% Mem 2.4 83% FLOPs
10° 1010 101 10%°

Memory (bytes) Inference FLOPs

Figure 4: Loss as a function of memory and computa-
tional costs, aligned by total training FLOPs at 128K
tokens. Each curve is trained with the same amount of
training compute.

A800 GPU (with T' = 128K). For downstream
performance, we evaluate the models on zero-
shot common-sense reasoning (Gao et al., 2024)
and needle-in-a-haystack (NIAH) (Hsieh et al.,
2024), which are two widely used LLM bench-
marks (more details in Appendix J.2). The result
is shown in Table 5. One can see that the differ-
ences in common-sense reasoning and long-context
retrieval are rather small. Meanwhile, the cost-
optimal model (H = 8, 1) is much more efficient.

5.6 Aligning Training Costs

In the previous sections, the training data is always
20 tokens per parameter (i.e., the Chinchilla law).
This favors configurations that spend more FLOPs
per token. Instead, we can allow more compute-
efficient configurations to use more training data to
align the training costs of different configurations.

Figure 4 reports the result when we always train
with 7" = 128K>. We find that using fewer heads
is even more advantageous because of the extra
training data, producing a model with the same
loss but with 88% and 83% lower memory and
FLOPs usage.

5.7 Influence of Context Length

In this section, we empirically show that the re-
lationship between context length 7" and loss L is
largely invariant to N and nj, when T’ is sufficiently
large. To this end, we measure the relative loss dif-
ference between various models and a “baseline’:

E(T) - £baseline(T>
ﬁbaseline (T)

Figure 5 shows the relative loss difference between
various GQA configurations with H = 1,1 as the

AL(T) =

SLM:s are usually trained with short contexts most of the
time, so this result may not apply.

—0.02 A — H=28,1
e e S S S S | M H=16,1

\ — H=22
—0.04 1 H=4,4

Relative Loss Diff. (AL)

512 1K 2K 4K 8K 16K
Context Length (7')

Figure 5: Relative loss difference between various GQA
configurations and the H = 1, 1 model, as a function of
context length 7. Model size is 470M.

. 0.00

Q — 150M
ed 470M
2y —0.051
&5 — 12B
T3

8 —0.10 ~

-

T T T
8K 16K 32K 64K 128K

Context Length (7))

Figure 6: Relative loss difference between varying
model size and the 150M model, as a function of context
length T'. These are MHA models.

baseline. Figure 6 shows this relationship when
varying N, with N=150M as the baseline. The
results show that the relative loss difference is rel-
atively flat when 7" > 8K (all fluctuations are less
than 1%). The main takeaway is that when apply-
ing our cost optimization procedure to longer con-
texts, we do not have to repeat step 2 (an expensive
process) with longer contexts since the loss change
of each model will remain roughly the same.

6 Conclusion

To optimize the allocation of FLOPs and memory
between time-invariant and time-variant compo-
nents of GQA Transformers, we first decouple the
number of attention heads from the model hidden
dimensions, enabling a more flexible distribution of
FLOPs and memory. Next, we refine the estimation
of computational and memory costs in existing ap-
proaches by incorporating context length. Our find-
ings reveal that typical configurations of GQA are
significantly suboptimal for certain context lengths.
Through detailed analysis, we offer valuable in-
sights for improving the allocation of resources by
jointly adjusting the model size and the number of
query and KV heads. As the demand for greater
inference context lengths continues to grow, our
work marks a critical advancement toward efficient
long-context LLMs.

Limitations

Like most phenomena in neural language models,
we cannot be sure that the conclusions will hold
when further scaling up the models. The power-
plus-constant scaling law is also not guaranteed,
although it has been empirically validated up to
hundreds of billions of parameters. Similarly, there
is no guarantee that these laws and our conclusions
will hold for an arbitrarily large amount of training
data. In general, we have kept our experiments
as close to research conventions as possible, and
the scale of the largest models in our experiments
(i.e., 1.2B for Llama-3 GQA and 1.8B for our cost-
optimal GQA) is comparable to some real-world
LLMs.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, and 1 others. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
arXiv preprint arXiv:2404.14219.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of EMNLP.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer Normalization. arXiv preprint
arXiv:1607.06450.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A Suite for Analyzing Large Language Mod-
els Across Training and Scaling. In Proceedings of
ICML.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi
Chen. 2024. LoCoCo: Dropping In Convolutions
for Long Context Compression. In Proceedings of
ICML.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingx-
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, and 81 others.
2024. DeepSeek-V2: A Strong, Economical, and Ef-
ficient Mixture-of-Experts Language Model. arXiv
preprint arXiv:2405.04434.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,

Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. The Language Model Evaluation
Harness.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive KV cache compression for
llms. In Proceedings of ICLR.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 17 others. 2024. The Llama 3 Herd of
Models. arXiv preprint arXiv:2407.21783.

Dirk Groeneveld, 1z Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Chandu, Arman Cohan, Jennifer Dumas, Yanai
Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024.
OLMo: Accelerating the Science of Language Mod-
els. In Proceedings of ACL.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gre-
gory F. Diamos, Heewoo Jun, Hassan Kianinejad,
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi
Zhou. 2017. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Thomas Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karén
Simonyan, Erich Elsen, and 3 others. 2022. An em-
pirical analysis of compute-optimal large language
model training. In Proceedings of NeurIPS.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. KVQuant:
Towards 10 Million Context Length LLM Infer-
ence with KV Cache Quantization. arXiv preprint
arXiv:2401.18079.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. RULER: What’s the Real
Context Size of Your Long-Context Language Mod-
els? arXiv preprint arXiv:2404.06654.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun
He, Weilin Zhao, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng
Thai, Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie
Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, and 5 oth-
ers. 2024. MiniCPM: Unveiling the potential of small

language models with scalable training strategies. In
COLM.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, and
1 others. 2024. MlInference 1.0: Accelerating Pre-
filling for Long-Context LLMs via Dynamic Sparse
Attention. In Proceedings of ICML.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang,
Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei Dong,
Qing Li, and Lei Chen. 2024a. A survey on large
language model acceleration based on KV cache man-
agement. arXiv preprint arXiv:2412.19442.

Zonggian Li, Yinhong Liu, Yixuan Su, and Nigel Col-
lier. 2024b. Prompt compression for large language
models: A survey. arXiv preprint arXiv:2410.12388.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric
2bit Quantization for KV Cache. In Proceedings of
ICML.

Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. 2024.
Sparser is faster and less is more: Efficient sparse
attention for long-range transformers. arXiv preprint
arXiv:2406.16747.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang-
ming Liu, Xiwen Zhang, Nicholas D Lane, and
Mengwei Xu. 2024. Small language models: Sur-
vey, measurements, and insights. arXiv preprint
arXiv:2409.15790.

Zhuoshi Pan, Qianhui Wu, Huigiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Riihle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,
Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-
2: Data distillation for efficient and faithful task-
agnostic prompt compression. In Findings of ACL.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and
Jonathan Frankle. 2023. Beyond chinchilla-optimal:
Accounting for inference in language model scaling
laws. arXiv preprint arXiv:2401.00448.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

10

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and
Hai Zhao. 2024. Keep the Cost Down: A Review on
Methods to Optimize LLM’s KV-Cache Consump-
tion. In Proceedings of COLM.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. RoFormer: En-
hanced transformer with rotary position embedding.
Neurocomput.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurlPS.

Maurice Weber, Daniel Y Fu, Quentin Gregory An-
thony, Yonatan Oren, Shane Adams, Anton Alexan-
drov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao,
Virginia Adams, Ben Athiwaratkun, Rahul Chala-
mala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy
Liang, Christopher Re, Irina Rish, and Ce Zhang.
2024. RedPajama: an Open Dataset for Training
Large Language Models. In Proceedings of NeurIPS
Datasets and Benchmarks Track.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks. In Proceedings
of ICLR.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On Layer
Normalization in the Transformer Architecture. In
Proceedings of ICML.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, and 41 others.
2025a. Qwen3 Technical Report. arXiv preprint
arXiv:2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 23 others.
2025b. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Yao Yao, Zuchao Li, and Hai Zhao. 2024. SirLLM:
Streaming Infinite Retentive LLM. In Proceedings
of ACL.

Jiayi Yuan, Hongyi Liu, Yu-Neng Chuang, Songchen Li,
Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaud-
hary, Zhaozhuo Xu, Zirui Liu, and 1 others. 2024.
KV Cache Compression, But What Must We Give
in Return? a Comprehensive Benchmark of Long

Context Capable Approaches.
EMNLP.

In Proceedings of

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. In Proceedings of NeurlPS.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2024. H2O: Heavy-hitter oracle for efficient
generative inference of large language models. In
Proceedings of NeurIPS.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

11

Notation | Meaning
Model hyperparameters

\% | Vocabulary size, always set to 50,304.

L | Number of layers

d | Model hidden dimension

dn ‘ Head size, always set to 64.

dit FFN intermediate size, we always set dif =
8d/3.

o ‘ The activation function in FFN

nh | Number of attention heads

Nk | Number of KV heads (or groups in GQA)

Inference and Training Costs

Clnfer The computational cost (in FLOPs) per for-
ward pass with a context length of 7" tokens.

Minfer The memory usage (in floating-point values)
of serving the model with a context length of
T tokens.

Clrain The computational cost (in FLOPs) used to
train the model with a context length of T
tokens.

Micain The memory usage (in floating-point values)
of training the model with a context length of
T tokens.

A Hardware-aware costs combining both Miner
and Cinfer. Defined in Section 4.1.

Other parameters

T | Context length

N | Number of model parameters.

Dirain ‘ Number of training tokens.

A a, B Hyperparameters controlling the importance

of memory and compute resources.

Table 6: List of notations used in the paper.

A Notations

For completeness, we provide a list of notations we
used in the paper, reported in Table 6.

B Discussions

What About Other Efficient Attention? This
paper primarily adjusts the allocation of compute
and memory usage by tweaking the model size
(controlled with L and d) and head configuration
(np, nky) in GQA, which is a rather simple method.
As mentioned, there are many techniques for im-
proving the efficiency of the attention layer, al-
though those have enjoyed less adoption. When us-
ing these techniques, the computational and mem-
ory costs may be considerably different, and some

of our conclusions may not apply. Despite so, our
work is still a valuable improvement over existing
implementations of GQA.

Recently, Multi-head Latent Attention (MLA)
(DeepSeek-Al et al., 2024) was proposed as a
strong alternative to GQA for reducing the KV
cache size. During inference, MLA reformulates
the attention computation such that all heads share
a unified representation for keys and values. In this
case, our analysis still applies, since MLA can be
seen as a kind of GQA with a different head dimen-
sion (d,) and number of attention heads (ny, niy),
and it uses a more complex function to generate
the QKV vectors.

What If Context Length Varies? The formulas
for computational costs (see Table 8) are affine
functions of T, so the expected costs are:

E(Cinfer(T)) = Cinfer(]E(T>)
E(Minfer(T)) = Mnfer(E(T))
E(Clrain(Ttrain)) = Ctrain (E(Tirain))
E(Miain(Tirain)) = Mirain(E(Tirain))

where Ty is the context length during training.
Hence, it suffices to compare the costs with the
expected context length.

Will the Findings Break Down When Scaling Up
the Model/Data Size? This is a never-ending ar-
gument against most neural architectural changes,
because no matter the scale of our experiments,
we can never be sure that the behavior holds for
larger scales. However, our experiments have al-
ready covered model sizes up to 1.2B, which is
already the size of some widely-used models at
the moment (Grattafiori et al., 2024; Yang et al.,
2025b). Empirically, it has been widely validated
that the scaling law is highly predictable to a good
extent beyond the largest model (e.g., Llama-3 ac-
curately predicted the loss of a 405B model with
experiments on model sizes up to 16B). Thus, we
are confident that our conclusions hold at least for
models up to 10B parameters.

B.1 How to Calculate the Costs of Models of
Arbitrary Sizes?

In step 3 of our procedure (proposed in Section 4.1),
we arrive at a critical model size N*(H). Itis a
real value, so it does not correspond to an actual
model configuration. To calculate the inference
costs (Minfer, Cinfer, Z) of a model of this size, we
need H and the aspect ratio of the model a = d/L.

12

N d L
1.2B | 36 1536
1.8B | 36 2048

4B | 48 2560

6B | 54 3072
13B | 64 4096
33B | 72 6144
64B | 80 8192

Table 7: The pre-defined configurations used to calcu-
late the aspect ratio of arbitrarily sized models. For
models smaller than 1.2B, we use the configurations in
Table 9.

Cost Type \ Time-invar. Time-var.
Infer. FLOPs (mfer 2N AT Ldpny,
Infer. Mem. (Minter) N 2T Ldpmike
Train. FLOPs (Clrain) 6D.mmN 12Dyin T Ldpnp,
Train. Mem. Mm.n TdL

Table 8: The time-invariant and time-variant costs of
GQA Transformers during inference and training.

H is already given, which may be a function of
d. For the aspect ratio, we perform linear interpo-
lation between the nearest two pre-defined model
configurations. The pre-defined model aspect ratios
are given in Table 7. Then, we use binary search
to find the L that corresponds to N*(H). We can
calculate d from L and a. Then, we calculate ny,
and ny, from d and the specified configuration.
With all these values (non-integers) known, we can
calculate the model size as well as the inference
costs.

To produce an actual model in practice,
we suggest simply choosing the configuration
(N, np, ngy) closest to the derived answer in step
3. The slight variations in the performance of the
resulting configuration are negligible compared to
the huge cost savings gained by selecting the cost-
optimal configuration using our approach.

C Training Costs of GQA Transformers

Training Computational Costs In addition to
inference costs, different head configurations also
result in different training costs, because the num-
ber of training FLOPS, Clain, is a function of Cipger.
Following Kaplan et al. (2020), we estimate the
FLOPs of the backward pass as double the FLOPs
of the forward pass. Let Dy.in denote the number
of training tokens, 7; denotes the number of tokens

preceding the i-th training token in the training
corpora, then the training FLOPs are:

Ctrain ~ 3D train Cinfer (T) (10)
- 6Dtrain(N + 2LTdhnh)7 (11)
~—
Attention

where T is the average value of {T;|i
1, -+, Diain}. When all examples in the training
corpora are set to the constant length 7i,i,, dur-
ing training, we have T = Tiain /2. However, in
practice, when training long-context LLMs, it is
more common to use short contexts for most of
the time, and only use long contexts consisting of
a small number of tokens to adapt the model to
the target context length. Hence, the time-variant
FLOPs may only make up a small portion of the
training FLOPs, making the cost largely indepen-
dent of the GQA configuration. Consequently, our
paper considers training costs, but focuses more on
optimizing inference costs.

Training Memory Costs We only need to store
model parameters, activations, gradients, and opti-
mizer states during training. Assuming the widely-
used Adam (Kingma and Ba, 2015) optimizer with-
out offloading any storage to the CPU, the memory
cost is roughly:

Myain(T) ~ AN + TdL (12)

Activations

While it is important to lower the cost of caching
activations when 71’ is large, we do not have a free
hyperparameter to adjust this cost (like np, for com-
putational costs and ng, for memory costs). To
reduce the size of activations, we have to mod-
ify d and/or L, which either drastically changes
the model size or its aspect ratio. Either of such
changes leads to major consequences that are be-
yond the scope of this paper. Regarding the 4V part
of training memory cost, it is only dependent on
the total model size, so it suffices to minimize the
model size, which is already addressed in many ex-
isting works (Kaplan et al., 2020; Grattafiori et al.,
2024, Sardana et al., 2023).

D Model Configurations

Table 9 shows the configurations of the models
in our experiments for fitting the scaling law. In
general, we ensure that d;, = 64, dg ~ 8d/3
(rounded to the closest multiple of 32) when scal-
ing the model size, which is adopted from common

13

hyperparameters found in existing LLMs such as
GPT (Radford and Narasimhan, 2018) and Llama
(Grattafiori et al., 2024). We also ensure that the
aspect ratio d/L is similar to those used by exist-
ing modeling scaling works (Biderman et al., 2023;
Hoffmann et al., 2022; Yang et al., 2025b). We
use the GPT-2 tokenizer, which has a vocabulary
size of 50,304, and we tie the input and output
embeddings.

Learning Rate The maximum learning rate (LR)
is chosen by a grid search on {1 x 10%, 2 x 10%, 5 x
10 | i = —3, —4, —5} with the vanilla MHA, and
choosing the one with best LM loss. Then, we just
keep the LR the same across different GQA config-
urations. While different configurations may have
different optimal LR, exhaustively sweeping all LR
for each configuration is prohibitively expensive.

Differences From Vanilla GPT Compared to
the vanilla GPT model (Radford and Narasimhan,
2018), we make the following changes to better
align with more recent LLMs:

* We use RoPE (Su et al., 2024) with a 8 value
of 500,000, which is widely used in current
LMs (Grattafiori et al., 2024).

e We use SwiGLU FFN instead of the ReLU
FFN in GPT.

* We use pre-norm (Xiong et al., 2020) and use
RMSNorm (Zhang and Sennrich, 2019) in-
stead of LayerNorm (Ba et al., 2016), which
is more common in current LLMs. The ep-
silon in RMSNorm is 1076,

* Our model has no bias terms or dropout,
which is also common practice and can
slightly increase the training efficiency.

E Data Processing

In most of our experiments, we used SlimPajama
(Soboleva et al., 2023). We append an EOS token
to each document in the corpus before chunking
the documents into the specified training length. If
the last chunk is shorter than the specified training
length, it will be discarded.

F Training Configurations

Here, we provide the default training configurations
we used during the experiments.

—— Emb.
ATT proj.

1 — ook

—— ATT out

o
o

FFN
T — Logits

o
IS

T=32K

T=128K

T — Emb.
ATT proj.
1 — otoknv
| — ATTout
FFN

4 — Logits

FLOPs proportion
FLOPs proportion

o
N}

I

| — Emb.
ATT proj.
— o(QKT)V
1 —— ATTout
FFN
11— Logits

I o
> o

FLOPs proportion

o
N}

o
o

o
o

T T T
10° 10 108

Model Size

T
108

T
10°
Model Size

T T
10° 10

Model Size

T T
1010 108

Figure 7: The proportion of FLOPs allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context length increases, most FLOPs are spent on the time-variant computation of the
attention operator O‘(QKT>V, where o is the row-wise softmax function.

T=

32K T=128K

T=8K
0.8 4

0.8 4+ —— Model
c KV c
o o
€064 — Emb £ 0.6
8 2 —— Model
g g 0 KV
S a 0.4+

0.4 1
P ol —— Emb
£ g
3 0.2 5 0.2
= =

0.0 1 0.0 4

—— Model
KV
—— Emb

Memory proportion

10° 1010 108

Model size

108

10°

Model size

10° 1010

Model size

101 108

Figure 8: The proportion of memory allocated to different components in a Transformer LM, with multi-head
attention and RoPE. As the context lengths increase, most of the memory usage is spent on storing the KV cache.

Model size | L d d, LR
M 4 256 64 le3
19M 6 512 64 1le-3
85M 12 768 64 le-3
150M 12 1024 64 1e-3
200M 16 1024 64 5e-4
470M 24 1280 64 5e-4
680M 24 1536 64 2e-4
1.2B 36 1536 64 2e-4

Table 9: The configurations of the vanilla models with
MHA in our experiments, we try to keep it as close
to the configurations from Biderman et al. (2023) as
possible.

e Optimizer: We use the widely-used AdamW
optimizer (Kingma and Ba, 2015), with 5 =
0.9, 82 = 0.95, and a weight decay of 0.1.
We only apply weight decay to linear layers,
which excludes the re-scaling factor in RM-
SNorm. We also use a gradient clipping value
of 1.0.

¢ Learning rate scheduler: We use the
warmup-stable-decay (WSD) LR scheduler

14

(Hu et al., 2024), with a maximum LR of
5-107%, 10% warmup steps steps and 20% de-
cay steps. Warmup starts from 0 and increases
linearly to the maximum LR. The decay stage
uses a cosine annealing scheme, where the
minimum LR is 10% of the maximum LR.

e Batch size: 512K tokens.

* Floating-point precision: We use BF16 dur-
ing training and FP16 during evaluation.

Hardware All training experiments were run on
A800 GPUs, mostly with 8 GPUs.

G Memory and Compute Allocations by
Model Size

Figure 7 and 8 show the FLOPs and memory break-
down of different components as a function of
model size. One can see that changes in the model
size and/or context length can influence the allo-
cation of FLOPs and memory between different
components in the model. For instance, when
the context has 128K tokens, the vast majority of
FLOPs is spent computing the attention scores and
value summation (i.e., softmax (quT / \/@) V),

and the vast majority of memory is spent caching
KVs. With 1B model parameters, roughly 90% of
memory will be spent storing the KV cache, and
only 10% will be used to store the model param-
eters (assuming the KVs and model parameters
use the same precision). In other words, the time-
variant costs dominate the overall inference costs.
Thus, at this context length, we can minimize the
overall costs by allocating more resources to the
time-invariant components by increasing N and
decreasing ny, and ..

H More Results: Loss vs. Inference Costs

Here, we provide the results for the relationship
between loss and inference costs for other context
lengths. The results are shown in Figure 9, 10, and
11. We can see that for shorter context lengths, the
gain of reducing ny, or ny, is relatively small, but
the commonly used GQA (ng, = 8) configuration
is still suboptimal at 32K context length. At 1.2B
parameters, GQA uses more FLOPs and memory
than H = 8, 1. For longer context lengths such as
512K, we can achieve the same loss with less than
10% of the original memory usage by using fewer
KV heads, but a larger model (increasing N).

H.1 Influence of Query and KV Heads for
Different Context Lengths

Here, we provide the supplementary results for
Section 5.4 for other context lengths (8K, 32K, and
512K). Similar to the previous section, a greater
context length means that the advantage of using
fewer heads is greater. In the following section, we
explicitly fit the relationship between loss and ny,
and ny, with power-plus-constant functions.

I The Scaling Laws of Attention Heads

In this section, we show that one can predict the
loss for a certain head configuration using experi-
ments with a smaller number of heads. Specifically,
we find that—for the first time—the relationship
between loss and the number of attention heads
closely resembles a power-plus-constant function:

L(ny) =and + ¢

where L is the LM loss, and a, b, ¢ € R are coef-
ficients. Figure 12 shows that this relationship is
observed with different model sizes. The concrete

15

functions for the curves are:

L£=0579n, 01 + 2473 (470M)
L£=0.398n, """ +2.583 (680M)
£ =0.301n, "7 + 2.622 (1.2B)

Since the larger model has a greater constant term,
this means that these curves will intersect at a cer-
tain point (at around nj, = 8K). This is likely incor-
rect, since the 1.2B model has strictly more param-
eters than the other models (although at such large
values of ny, the relative difference in model size is
very small). This means that the fitted curves will
break down before nj, = 8K. Fortunately, virtually
all LLMs with open weights have fewer than 128
heads, and the fitted curves are very accurate up
to 128 heads with R? values over 0.999. Thus, we
conclude that the law is empirically accurate for
the vast majority of openly available LLMs.

Similarly, Figure 13 shows that this trend is con-
sistent across different context lengths. The fitted
curves are

L£=1513n,29 + 153 (T =1K)
L£=1.436n, " +1.53 (T =2K)
L =1.356n; + 153 (T =8K)

When ny, approaches infinity, the model parameters
will be dominated by the attention projection matri-
ces (i.e., QKVO projections). Hence, they converge
to the same constant term, which is known as the
“natural entropy of language”. During curve fitting,
this constant term is chosen to minimize to fitting
error, and we arrive at 1.53. The R? values of these
fits are over 0.999.

From these results, we conclude that this power-
plus-constant scaling law between loss and the
number of heads is exhibited independently of
model size and context length. One important im-
plication of this result is that increasing the number
of heads to improve model quality gives diminish-
ing returns. This means that beyond a certain point,
the loss reduction brought by further increasing the
number of heads is not worth the cost increase.

1.1 Constant Number of KV Heads

Some LMs (e.g., Llama-3 (Grattafiori et al., 2024))
keep the number of KV heads constant when scal-
ing up the model. Therefore, we also investigate
the relationship between LM loss and nj, when ny,,
is constant. Figure 14 shows this relationship with
different values of ny, and two model sizes. We

3.2

3.0 A

2.8 1

Loss

2.6

2.4 A1

o000
-
[T T T T [-4
3
)

IIIIIIZI
NP ®OO®

108 10° 1010 1012 1013

Memory cost (bytes) (Minfer)

10'14
Computational cost (FLOPS) (Cinfer)

104 10°
Hardware-aware cost (Z)

Figure 9: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during

inference with a context length of 8K tokens.

3.2 3.2 3.2
Llama-3 GQA
3.0 3.0 3.0 H=8,8
e H=84
2 2.8 2.8 2.8 ® H=82
S X ® H=81
N —
2.6 2.6 2.6 1 o H=41
H=21
H=1,1
2.4 1 2.4 2.4 '
108 10° 10 1013 10 10% 104 10°

Memory cost (bytes) (Minfer)

Computational cost (FLOPS) (Cinfer)

Hardware-aware cost (Z)

Figure 10: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during

inference with a context length of 32K tokens.

3.2 3.2 3.2

Llama-3 GQA

3.0 3.0 3.0 H=8,8

e H=84

%28 2.8- 2.8 e H=82

S e H=81

2.6 2.6 2.6 o H=41

H=2,1

2.4 1 2.4+ A\ 2.4 H=1,1

10° 1010 10t 10> 10 10V 10°

Memory cost (bytes) (Minfer)

Computational cost (FLOPS) (Cinfer)

Hardware-aware cost (2)

Figure 11: Loss as a function of memory, computational, and hardware-aware (Z in Section 4.1) costs during

inference with a context length of 512K tokens.

discover that the relationship is still a power-plus-
constant law, but the fitted curves are notably less
accurate, with R? values over 0.97. It is worth not-
ing that the increase in fitting error compared to
Section I) may be attributed to the use of a smaller
model (150M vs. 470M).

J Experimental Details: Downstream
Performance

This section provides additional details for Sec-
tion 5.5.

16

J.1 Training

The training run for both the Llama-3 GQA and
H = 8,1 (cost-optimal GQA) models are exactly
the same. It consists of two phases. The first phase
uses the same settings as the scaling experiments in
Section 5.1. After 20B tokens, we continue training
with 128K context length for 1B tokens, using new
optimer states. This phase uses a lower maximum
LR of 1e-5 for stability and to avoid catastrophic
forgetting.

[N
~e. —e— 470M
307 e T o 680M
o e T o 1.2B
w0 4 N ~
g29 e U N
- ® ~ .
\S\\\ &96\
2.8 ~—o_ e
— e
27 T T T
10° 10! 102
heads

Figure 12: The relationship between LM loss and the
number of attention heads, fitted with a power-plus-
constant function. The training context length is 1K.

&
1. - T=1k
3.0 g i
e W = T=2k
P e R B o T=8k
0 N . g
828 S Sy Eg
e TN
e
Se
2.6 A
1 4 16 64 256 1024
heads

Figure 13: The relationship between LM loss and the
number of attention heads, fitted with a power-plus-
constant function. The model size is 470M.

J.2 Evaluation

Here, we provide more details regarding the down-
stream task performance evaluation in Section 5.5.
We use LM-Evaluation-harness (Gao et al., 2024)
for common-sense reasoning, and the needle-in-a-
haystack tasks from RULER (Hsieh et al., 2024).
For both of these tasks, we evaluate the last four
checkpoints of the model, and report the average
score of it. This is for reducing the randomness in
the results.

Common-Sense Reasoning Tasks We use the
popular LM-Evaluation-Harness (Gao et al., 2024)
for evaluating common-sense reasoning capabil-
ities. We evaluate on the common-sense reason-
ing tasks specified by the official implementation,
which includes 9 tasks/datasets: ARC-Challenge,
ARC-Easy, BoolQ, HellaSwag, Lambada, PIQA,
SociallQA, Wikitext, and Winograd. The scores
we report in Table 5 are the average accuracy score
(excluding Wikitext, which is evaluated with per-
plexity). When available, we use the normalized
accuracy scores instead of raw accuracy scores.

Retrieval Task We report the average accuracy
of the synthetic S-NIAH tasks from RULER (Hsieh
et al., 2024), which tests the model’s ability to re-
trieve a certain ‘“needle” (i.e., some special infor-

17

Ny = 1
1.72n;%%3 +1.53
Ngy =2
1.71n;°%3 +1.53
N =4
1.70n;%3 + 1.53
N =8
1.67n;%%3 +1.53
Ny = 16
1.67n;%93 +1.53

10!
query heads (np)

10°

Figure 14: The relationship between loss and n; when
Nk 1S constant. Model size is 150M.

2K 64K (from scratch) 64K (resume)

85M 470M

3.4 . 3.2 .

1 1

1 1

3.2 ! 3.0 !

a | |
3 I I
3.0 i 2.8 1 i

'] ']

1 1

2.8 ; 2.6 ;

2B 4B 6B 8B 10B 12B
Training Tokens

2B 4B 6B 8B 10B 12B
Training Tokens

Figure 15: The loss curves of a model with 2K context
length adapted to 64K through post-training compared
to a model trained with 64K from scratch.

mation) from a large body of irrelevant text.

J.3 Context Length Extension by
Post-Training

LLMs are typically trained on shorter sequences
in practice, followed by adaptation to longer con-
texts using a smaller amount of data tailored to
the target context length. To ensure the validity
of our conclusions in such training scenarios, we
adapted a checkpoint initially trained with a 2K
context length to a 64K context length through con-
tinual pretraining. This adapted model was then
compared to a model trained from scratch with a
64K context length. As illustrated in Figure 15, the
adapted model rapidly converges toward the per-
formance of the model trained from scratch with a
64K context length. This indicates that, with suffi-
cient post-training, the loss of the adapted model
approaches that of a model trained entirely from
scratch. Consequently, our findings regarding in-
ference costs and the relationship between loss,
context length, and head configuration remain ap-
plicable to post-training scenarios.

K Al Assistance in Research and Writing

We have used Al for code completion during im-
plementation and grammar-check during paper-
writing. We do not explicitly instruct Al to write
any part of this paper.

18

	Introduction
	Related Work
	Preliminaries: Computational and Memory Costs of GQA Transformers
	GQA Transformers
	Inference Costs of GQA Transformers

	Method
	Cost-Optimal GQA Search

	Experiments
	Experimental Settings
	Loss vs. Inference Costs
	Cost-Optimal GQA Configuration
	Influence of Query and KV Heads
	Downstream Performance
	Aligning Training Costs
	Influence of Context Length

	Conclusion
	Notations
	Discussions
	How to Calculate the Costs of Models of Arbitrary Sizes?

	Training Costs of GQA Transformers
	Model Configurations
	Data Processing
	Training Configurations
	Memory and Compute Allocations by Model Size
	More Results: Loss vs. Inference Costs
	Influence of Query and KV Heads for Different Context Lengths

	The Scaling Laws of Attention Heads
	Constant Number of KV Heads

	Experimental Details: Downstream Performance
	Training
	Evaluation
	Context Length Extension by Post-Training

	AI Assistance in Research and Writing

