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Abstract 
Modern language models, such as GPT-3, 

BERT, and LLaMA, are notoriously data-
hungry, requiring millions to over a trillion 
tokens of training data. Yet, transformer-based 
learning models have demonstrated a 
remarkable ability to learn natural languages. 
After sufficient training, they can consistently 
distinguish grammatical from ungrammatical 
sentences. Children as young as 14 months 
already have the capacity to learn grammar 
rules from very few examples, even in the 
presence of non-rule-following exceptions. 
Yang’s (2016) Tolerance Principle (TP) 
predicts an all-or-none threshold (N/lnN) on 
how many exceptions in a training set are 
tolerable for a rule to be learnable by humans; 
beyond the TP threshold, instead of a 
generalizable rule, the exceptions and rule 
exemplars need to be memorized. To test for 
TP-like effects, we use BabyBERTa (Huebner 
et al. 2021), a transformer-based language 
model optimized for unsupervised training on 
smaller corpora than most LLMs. We train it 
on a very simple rule with very small training 
sets. BabyBERTa can learn the rule from 
datasets of under 1,000 tokens. We test the 
effect on learning of varying the type and 
token frequency of exemplars vs. exceptions. 
The learning follows a continuous gradient 
with no evidence of any TP threshold effect. 

1   Introduction 

1.1   Tolerance Principle (TP) 

Unsupervised Learning of a rule (passive 
exposure, no corrective feedback) from a training 
set of examples requires the ability to generalize 
the rule to novel instances not seen in the training 
set (Huebner et al. 2021). Let us call a rule 
productive if it is learnable from a training set. A 
theory that can predict and explain whether a 
training set for a rule will be productive would be 
important in linguistics and cognitive science for 
the light it would shed on the process of early 
language acquisition in humans. 

One theory of rule generalization is the 
Tolerance Principle (TP), originally derived 
mathematically in The Price of Linguistic 
Productivity (Yang 2016) as a necessary 
consequence of a rule-ordering algorithm known 
as the Elsewhere Condition (Anderson 1969, 
Kiparsky 1973). Yang proposes the TP as a 
cognitive model of processing rules and 
exceptions. According to the Elsewhere 
Condition, as applied to the human brain, learning 
operates in an “exceptions-first, rule-later” 
fashion. When encountering a new exemplar and 
needing to decide whether to apply a rule, the 
brain must first consider every known exception 
to the rule (to see whether this exemplar is one of 
them) before the general rule can be applied to it. 
When there are very many exceptions and very 
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few rule-following examples, it is more time-
efficient to just memorize each exemplar on a 
case-by-case basis and not try to learn a rule at all. 
The TP explores, mathematically, the relationship 
between the number of exceptions and the number 
of rule-following examples that allows the brain 
to “optimize/minimize the time complexity of 
language use,” (Yang, 2016, p. 60). 

The TP is described in “A User’s Guide to the 
Tolerance Principle,” (Yang 2018), and made 
most explicit in “A User’s Defense of the 
Tolerance Principle” (Yang 2023) : “The TP is 
first and foremost a theory of learning. It specifies 
a precise threshold, as a proportion of items in the 
learner’s experience, that a generalization can 
tolerate as exceptions: 𝜃𝜃𝑁𝑁 = 𝑁𝑁/𝑙𝑙𝑙𝑙𝑙𝑙, where 𝑁𝑁 is 
the cardinality of the item set,” (Yang, 2023, p. 2). 
Yang makes the claim that the TP is applicable to 
many kinds of learning where a rule must be 
generalized despite the possibility of exceptions. 
It is not explicitly limited to natural language 
rules. 

One key feature of the TP is the hypothesis that 
rule learning does not occur gradually; it is instead 
quantal, meaning a rule is either productive or 
unproductive on a given set. Given a sufficient 
number of examples, (unsupervised) learners 
should either be able to generalize a rule, or be 
completely unable to do so, in which case they can 
only memorize the examples they were given on 
a case-by-case basis. This applies to learning rules 
over an entire set or to learning sub-rules over 
subsets of a set. 

Also essential for understanding the TP is that 
the set size 𝑁𝑁, as well as the number of 
permissible exceptions 𝑒𝑒 ≤ 𝜃𝜃𝑁𝑁, both refer to the 
frequency of unique item “types” in the training 
set  (e.g., “gave,” or “gived”) not the frequency of 
“tokens” (occurrences) of the type. As long as a 
learner is exposed to enough different item types 
to allow rule learning to occur at all, the number 
of repetitions of tokens of the same type will not 
affect the productivity of the rule. 

To our knowledge the TP has not been tested 
on an unsupervised machine learning model prior 
to this study. 

1.2   Rule Generalization in Human Infants 

A long line of research in the laboratory of Rushen 
Shi has investigated the ability of human infants 
to generalize grammatical rules. Koulaguina & 
Shi (2013) showed that infants as young as 14 
months can generalize grammar rules to novel 
instances from relatively little training (as few as 
8 exemplar sentences, repeated four times). 
Koulaguina & Shi (2019) showed with 14-month-
olds that a training set that consisted of 50% rule-
following and 50% non-rule-following sentences 
was insufficient for the word-order rule to be 
generalized, while a training set consisting of 80% 
rule-following and 20% non-rule-following was 
sufficient. They also found that it was the type 
frequency of the example set and not the token 
frequency that determined whether a word-order 
shift rule was productive. 

Shi & Emond (2023) continued the above 
paradigm with more rigor, attempting to find a 
threshold of permissible exceptions beyond which 
generalizability would be impossible. They found 
that, for a training set of 16 sentences, 14-month-
olds could learn a rule when there were 11 rule-
following exemplars and 5 exceptions, but could 
not learn when the input consisted of 10 rule-
following sentences and 6 exceptions, consistent 
with the prediction of the TP. Specifically, for this 
training set size (N=16), TP predicts a threshold 
at 5.77, i.e., rule exemplars ~63.9%. Shi and 
Emond also found that babies performed similarly 
well in the 68.75% rule-following, 80% rule-
following, and 100% rule-following cases. They 
performed similarly poorly in the 50% case and 
the 62.5% case. These findings suggested a 
quantal effect across the TP threshold, lending 
significant support to the TP. 

1.3   Motivation 

It is difficult to explain how or why 14-month-
olds are so remarkably capable of generalizing 
rules to novel instances; however, computational 
models are less of a black box than a human brain. 
When a model uses unsupervised learning to learn 
a rule from noisy or exception-filled data, is its 
learning governed by the TP, or something like it? 
This was the question that motivated our work. If 

107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 

https://ling.auf.net/lingbuzz/004146/current.pdf?_s=IOjeJ2Lpp8Xag2MV
https://ling.auf.net/lingbuzz/004146/current.pdf?_s=IOjeJ2Lpp8Xag2MV
https://www.ling.upenn.edu/courses/ling5700/Yang2023enger.pdf
https://www.ling.upenn.edu/courses/ling5700/Yang2023enger.pdf


3 
 

it is possible to show that models can do the same 
thing human infants can do, examining how they 
do it might help explain how human infants do it. 

The problem of explaining the capacity to learn 
is also at the forefront of language model research 
(see Contreras et al. 2023, Jawahar et al. 2019). 
Whereas there is plenty of research on how LLMs 
learn when they are provided with superhuman 
amounts of data and training, there is very limited 
research on their capacity to learn with small 
amounts of unlabeled training data through 
unsupervised learning. 

1.4   Related Studies 

A few efforts have been made to optimize LLMs 
to achieve substantial learning from 
developmentally feasible quantities of training 
data. In the BabyLM challenge (Warstadt et al. 
2023), language models were optimized to 
maximize learning with a training data size of 
10M words or less. Huebner et al. (2021) 
developed the BabyBERTa transformer-based 
language model as a variation of RoBERTa-base 
(Liu 2019) and pre-trained it on as few as 5M 
words, simulating the input available to children 
aged one to six years old. Some of the best 
performers on the BabyLM challenge used 
BabyBERTa (Warstadt et al. 2023). 

2   Implementation 

2.1   Task 

We test the scope and generality of the TP, noting 
that the TP does not apply only to the 
unsupervised learning of grammatical rules, but to 
the unsupervised learning of rules and categories 
in general. To reduce ambiguity about what our 
model is or is not learning, we train and test it on 
as simple a rule as possible, defined by only the 
presence or absence of one relevant binary 
feature. 

We address the following questions: (1) What 
is the minimal amount of training data that our 
language model needs in order to learn a rule? (2) 
How noisy can this training data be? In other 
words, what proportion of training data in the 
training set can be rule-violating yet still leave the 

rule learnable? What is the relation between this 
proportion and the size of the dataset? (3) Is 
productivity quantal or gradient?  

2.2   Model Selection 

2.2.1   Architecture 

We implement BabyBERTa (Huebner et al. 
2021), whose code is available on GitHub. 
BabyBERTa uses the Transformers architecture 
(Vaswani 2017) and is the result of a fine-tuning 
of the hyper-parameters of RoBERTa (Liu 2019). 

BabyBERTa, in line with RoBERTa and 
differing from BERT (Devlin 2018), does not do 
next-sentence prediction. It is instead trained only 
on the masked language model (MLM) pre-
training objective used by BERT. A new random 
subsample of tokens is selected for masking every 
epoch. 

Unlike RoBERTa-base, BabyBERTa is trained 
exclusively on single sentences. This means that 
the prediction of masked tokens takes into account 
only the rest of the tokens in the same sentence as 
the masked token. The MLM procedure is a form 
of self-supervised learning. 

2.2.2   Hyper-Parameters 

Like the original BabyBERTa implementation, 
our model uses 8 layers, 8 attention heads, 256 
hidden units, and an intermediate size of 1024. We 
use Adam optimizer (Kingma 2014) with a 
learning rate of 1𝑒𝑒 − 4. Batch size is set to 16. In 
creating a random subsample of tokens for 
masking, tokens are selected with a probability of 
0.15.  

2.2.3   Training Procedure 

We train our model on a text (.txt) file. The 
primary reason we use transformers rather than 
another neural network architecture is to be able 
to train our model on sequential text data. The 
simplest kind of rule, with as few features as 
possible, is a binary rule. We trained the model on 
binary strings of 0’s and 1’s of length 16. Our 
binary rule was: the first digit of each vector 
should be ‘1’. 
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In all our trials, we separated sentences in the 
training sets by a newline character (one vector is 
considered a sentence), like the original 
BabyBERTa’s training data. 

We pre-trained many BabyBERTa models 
from scratch on our constructed sentences (the 16-
digit-long binary strings). We did not use any pre-
trained models trained on external datasets, and 
we did no fine-tuning. Throughout our trials we 
varied (a) the proportion of exceptions in the 
dataset, (b) the number of unique vectors 
(sentences) in the dataset, and (c) the number of 
epochs of training. 

2.2.4   Evaluation Procedure 

After a full training sequence was complete, we 
tested the trained models on novel test sets, whose 
format was inspired by the grammar test suites 
used to evaluate BabyBERTa (Huebner et al. 
2021). 

Test vectors were generated in pairs. Each pair 
of vectors was identical, except that the first digit 
of the 16 digits of one of the vectors was ‘1’and in 
the other it was ‘0’. Each vector has its “surprisal” 

calculated. Surprisal is equivalent to the sum of 
the cross-entropy errors of each token in a given 
sequence. Since our sequences were only one 
token each, surprisal was just the cross-entropy 
error of that token. 

If the model has learned a rule, then it should 
assign a lower surprisal score to a vector that 
follows the rule than to a nearly identical vector 
that breaks the rule. The model did a better job 
predicting one sentence in each pair over the 
other—the one with a lower surprisal score. We 
say that the model prefers sentences with lower 
surprisal scores. 

The model’s accuracy on each test set is 
equivalent to how often, as a percentage, the 
model prefers vectors that follow the rule, which 
we compute by dividing the number of vector 
pairs for which the model prefers the rule-
following vector by the total number of vector 
pairs. 

For each from-scratch model, we generated a 
unique new test set of 1,000 vector pairs. 

3   Trials 

 

   
Figure 1: Model accuracies (represented by the degree of darkness of a point) for different training set sizes (x-
axis), proportions of exceptions per training set (y-axis), and number of epochs (5, 10, & 20). 
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Figure 2: Effects of varying the proportion of exceptions (x-axis) on model accuracy (y-axis) for all combinations 
of E (# of epochs) and N (size of training dataset). Each graph contains 2 linear regressions: one on the left side 
of the TP threshold (𝜃𝜃𝑁𝑁 = 𝑁𝑁/𝑙𝑙𝑙𝑙(𝑁𝑁)) and one to the right. Y-axis scaling was adjusted per plot to match the data 
range, so axis ranges differ between figures. 
 

  
Figure 3: Ideal quantal graph (all-or-none step function at TP threshold, left) vs. ideal gradual learning graph 
(right). Models whose learning follows the predictions of the Tolerance Principle could be modeled by the left 
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graph, which pictures a quantal decrease in accuracy as the proportion of exceptions in the training data exceeds 
the TP threshold. 
 

 
Figures 1 and 2 show the results of training and 

testing our models. For every combination of our 
three varying parameters (number of epochs of 
training, size of training dataset, proportion of 
exceptions), we trained and tested three 
BabyBERTa models with random weight 
initialization and averaged their accuracy scores 
to reduce stochastic variance across training runs. 

We wanted to know the proportion of training 
data that can be rule-violating yet still leave the 
rule learnable, so for each combination of E (# of 
epochs) and N (size of training dataset), we plot 
the effect of proportion of exceptions on model 
accuracy (Figure 2). We are interested in the 
effect on model learning as this proportion 
crosses the TP threshold. We modeled this by 
taking a linear regression of all the data to the left 
side of the threshold and another regression on the 
right side of the threshold, and testing to see 
whether the jump from one regression to the other 
is significant. Since the TP threshold is a function 
of the size of the training data, it will not always 
appear in the same place. (Statistically, there will 
always be a jump-like effect at the TP threshold, 
where we merged the two regression lines with a 
vertical bar; this is an artifact of the stochastic 
nature of the data. These jumps are usually not 
significant. They are also not to scale due to the 
varying Y-axis scales in Figure 2). 

If our models’ learning were governed by the 
TP, the expectation would be that: 

(1) Learning should occur quantally. 
There should be a statistically significant 
jump, for each graph in Figure 2, from the 
regression on the left of the TP threshold 
to the regression on right of the TP 
threshold. The slope of each regression 
should be close to 0. See Figure 3, left. 
(2) Varying the number of epochs should 
have no significant effects on learning, 
since token frequency is not significant in 
determining whether the language model 
can learn. 

 

 

 
Figure 4: Model accuracies (represented by the 

degree of darkness of a point) for initial trials, where 
100% of vectors in the training data followed the rule. 
The purpose was to reveal the amount of training data 
necessary for learning. 

 
Initial trials in the 100% rule-consistent case 

(Figure 4) revealed that model learning reached 
near-perfect levels for dataset sizes as low as 
1,000 vectors and did not improve at all between 
1,000 and 8,000 vectors. Learning was also seen 
to occur at 500 vectors. Hence, we focused on the 
more interesting range of 50-500 vectors (Figure 
1). 

We observe some clear trends in Figures 1 and 
2. The number of epochs in training has a major 
effect on learning: increasing the number of 
epochs leads to higher overall accuracies. 

In general, we see no sign of any TP-like 
quantal effect. In Figure 2, the jump from one 
regression to the other (at the TP threshold) was 
only statistically significant in 1 instance out of 
30: (E=10, N=50), no more than we would expect 
by chance. In combinations of E and N where high 
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accuracy is present, implying that learning has 
occurred, we tend to see a gradient decrease in 
model accuracy as the proportion of exceptions in 
the training set increases. 

4   Conclusion 

For this machine learning architecture, datasets of 
a few hundred examples are large enough for rule 
learning to occur. Learning appears to follow a 
gradient: as the proportion of exception types 
increases, there is a gradual, not an all-or-none, 
decrease in accuracy. As overall token frequency 
increases accuracy increases; training for more 
epochs over the same data increases accuracy. 
The threshold predicted by the TP seems to have 
no significant bearing on the language model’s 
learning. 

5   Limitations 
This is not a comparative study of many language 
models. Nor is it grammar-specific. It is the study 
of one model with fixed hyper-parameters (See 
2.2.2). 
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