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ABSTRACT

Cross-modal alignment is a general way for continuous sign language recognition
(CSLR) tasks. However, Due to the weakly supervised nature of CSLR, man-
ual alignment often fails to map sign frames to glosses accurately. In this paper,
we propose a diffusion-based framework, achieving CSLR in a new view based
on cross-modal generation, leveraging the inherent semantic consistency between
sign videos and glosses. To address the issue of ambiguous boundaries in sign
videos, we have also developed a contrastive learning-based feature enhancement
strategy, which serves as a more sophisticated alternative to the simple attention
mechanisms commonly used in text-to-image generation tasks. Extensive exper-
iments on three public sign language recognition datasets demonstrate the effec-
tiveness of generation way in CSLR and it can achieve better performance than
state-of-the-art methods. The code of our method will be available upon accep-
tance.

1 INTRODUCTION

Sign language is an essential communication bridge between deaf and hearing individuals. Efforts
to map sign language videos to textual glosses, known as sign language recognition, have garnered
significant interest recently. This field can be divided into isolated sign language recognition (ISLR)
and continuous sign language recognition (CSLR), depending on the number of signs in a video.
Given its closer alignment with real-life situations, CSLR has attracted more attention from re-
searchers.

From a machine learning perspective, CSLR can be considered a weakly supervised task, as it lacks
specific gloss-level annotations for each sign. To tackle this challenge, techniques such as cross-
modal alignment (Chen et al., 2024a; Pu et al., 2019) and explicit consistency constraints (Min et al.,
2021; Zuo & Mak, 2022) have been utilized. However, in a weakly supervised context, achieving
frame-level alignment is an ill-posed problem and can result in insertion or deletion errors (Park
et al., 2008), adversely affecting the final recognition performance. Meanwhile, similar to verbal
language, the combination of sign words is dynamic, leading to varied transitions between signs. In
such scenarios, alignments trained on limited data may not generalize well to broader settings.

As incorrect alignment may introduce some significant challenges to CSLR, an alternative can be
minimizing manual intervention and fully leveraging the inherent semantic relationship between
sign videos and gloss sequences. In general, the CSLR process is to transfer a video containing a
series of consecutive signs to a sequence of natural language words, namely glosses, making it a
form of cross-modal generation task. While numerous generative models like GANs (Radford et al.,
2015) and VAEs (Kingma & Welling, 2013) exist, they may not be ideally suited for the complex
demands of video-to-text generation. Unlike most image-to-image style transfer tasks, CSLR must
adhere to restricted ground truth for glosses, and the differences between the input and output in
CSLR are substantial. For example, CSLR must transform sign video inputs into textual outputs,
presenting challenges that could lead to mode collapse or gradient vanishing issues, especially when
using complex training strategies like those employed in GANs. Instead of focusing solely on low-
level pixel-wise matching, the semantic information should be used more sufficiently in such a
cross-modal generation. In other words, we should learn more about the semantic consistency of
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Figure 1: (a) A mainstream CSLR framework based on cross-modal alignment of fixed patterns.
1⃝ denotes the approaches such as self-distillation and iterative training, while 2⃝ denotes the

means like sentence-level contrastive learning and knowledge distillation. (b) Our proposed CSLR
framework based on cross-modal generation. Gloss features are provided only at training stage. We
transform CSLR into a cross-modal generation, fully exploring the potential of diffusion models in
cross-modal feature correlation.

sign videos and glosses in their data distribution. Denoising diffusion models (DDMs) have emerged
as a promising solution, often producing higher quality samples and garnering increased attention
from researchers. In the process of noising and denoising, DDM focuses not on individual samples
but on the distribution itself. This adaptive exploration of cross-modal feature relationships is what
we need to obtain accurate glosses. As illustrated in Fig.1, by viewing CSLR as a cross-modal
generation task, the dependence on gloss-level labels becomes unnecessary.

Another challenge is handling the uncertainties and ambiguities inherent in certain sign video seg-
ments. As proposed in (Rombach et al., 2022), attention injection is utilized to capture crucial infor-
mation for enhanced generation performance. Unlike typical text-to-image generation tasks, CSLR
lacks an explicit mapping framework. Given the nature of sign videos, some frames serve merely as
transitions between two sign actions and lack semantic content. These transitional segments might
inadvertently produce features similar to non-existent sign actions in the video, a phenomenon ex-
acerbated by coarticulation. Such ambiguous features present challenges for DDMs in accurately
interpreting visual-textual associations and generating the correct gloss sequences. To address this,
it is essential to refine the feature representation to better capitalize on semantic correlations. Con-
sidering that video clips and gloss text represent two facets of the same sign word, we can leverage
this semantic link by enhancing the distinction between transitional features and all glosses, while
narrowing the gap between clearly semantic features and their corresponding glosses.

The main contributions are summarized as follows:

• We provide a novel view that transferring CSLR into a cross-modal generation task, and
propose a DDM-based generation framework DiffSign, which avoids the wrong predictions
caused by inaccurate alignments in traditional CSLR methods.

• We propose a gloss-level feature enhancement method based on contrastive learning to
alleviate the semantic ambiguity present in visual features, ensuring a clear distinction
among the visual features that represent different glosses.

• The proposed DiffSign achieves state-of-the-art results on three widely used CSLR datasets
(PHOENIX-2014, PHOENIX-2014T, CSL-Daily). Sufficient ablation experiments are
demonstrated, providing interpretability and reproducibility for the proposed architecture.
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2 RELATED WORK

2.1 CONTINUOUS SIGN LANGUAGE RECOGNITION

Recent CSLR methods (Min et al., 2021; Zuo & Mak, 2022; Guo et al., 2023) have primarily fo-
cused on achieving more accurate correspondence between video segments and their corresponding
glosses. (Zuo & Mak, 2022; Cheng et al., 2023) applies cross-modal contrastive learning at the
sentence-level, improving the alignment globally. To achieve more accurate alignment, some meth-
ods use iterative training (Cui et al., 2019; Pu et al., 2019), knowledge distillation (Min et al., 2021),
or gloss-level cross-modal contrastive learning (Chen et al., 2024a) to accomplish finer-grained
alignment. (Chen et al., 2024a) uses Dynamic Time Warping (DTW) to establish the correspon-
dence between visual features and gloss features. It forms clip-gloss pairs through a fixed similarity
measurement. Due to the absence of gloss-level labels, alignment becomes an ill-posed problem,
making it challenging to achieve precise correspondences through fixed patterns. Therefore, in
our approach, we no longer perform cross-modal alignment. Instead, we transform CSLR into a
cross-modal generation task. We explore the relationships between cross-modal features during the
denoising process of DDM, obtaining more precise gloss sequences through generation.

2.2 DENOISING DIFFUSION MODEL

The DDM includes a forward Gaussian diffusion noising process and a reverse denoising generation
process. It can iteratively denoise the input Gaussian noise under the guidance of guiding informa-
tion, ultimately generating a target aligned with the guiding information. DDMs have demonstrated
impressive performance in cross-modal generation, such as text-to-visual generation with models
like Stable Diffusion (Rombach et al., 2022), LGD (Song et al., 2023), and UniDiffuser (Bao et al.,
2023). Additionally, the visual-to-text task of image captioning, generative approaches are also
utilized (Luo et al., 2023). Whether it is ”text-to-image” or ”image-to-text,” the core lies in the
correspondence of cross-modal features. High-quality correspondence of cross-modal features is
essential for achieving text-based image editing. Therefore, DDMs have a strong ability to explore
and learn the relationships between cross-modal features which is suitable for forming clip-gloss
correspondence in CSLR. Additionally, (Chen et al., 2024b) points out that applying DDMs as de-
noising autoencoders to recognition tasks can extract linearly separable representations of images.
Based on this idea, (Zheng et al., 2023; Guo et al., 2023) apply generative models such as VAEs
and DDMs as denoising autoencoders to the CSLR task in order to optimize the visual representa-
tion. Since they utilize generative models as denoising autoencoders, there is no longer a need for
guiding information from other modalities. This results in a loss of cross-modal characteristics and
fails to fully explore cross-modal feature associations. In our approach, we pioneeringly complete
the CSLR task through a cross-modal generation process and fully leverage the ability of DDMs in
cross-modal feature association.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Suppose we have a sign language video, which is encoded to V ∈ RN×D. And the gloss label
is encoded to a fixed-length sequence G ∈ RN

′
×D of length N

′
, where D denotes the feature

dimension. Then our target is to generate G′
from noise with the guidance of V .

3.2 DIFFUSION MODEL BASED GLOSS GENERATION

3.2.1 DIFFUSION DENOISING DETAIL

As the sign video contains tens to hundreds of frames, directly applying DDMs at the pixel level
incurs significant costs in terms of computational resources and time. Then we perform the noising
and denoising at the feature level with the latent diffusion model (LDM). The architecture of our
DiffSign is illustrated in Fig. 2. The diffusion process of LDM is the same as that of pixel-level
DDM (Ho et al., 2020), except that we are adding noise to the gloss features G. We progressively add
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Figure 2: An overview of our proposed framework. (a) The core idea of transforming the CSLR
into cross-modal generation is demonstrated, leveraging the powerful ability of diffusion models
in understanding cross-modal feature correlations, obtaining more accurate gloss sequences. (b) It
demonstrates the implementation details of gloss-level feature enhancement and how it alleviates
the ambiguity and uncertainty issues in visual features through gloss-level contrastive learning.

multi-level Gaussian noise to the gloss features in a Markov chain manner to obtain G0,G1, . . . ,GT .
Each step can be represented as:

q(Gt|Gt−1) = N (Gt;
√

1− βt · Gt−1, βtI), (1)

where N denotes the normal distribution and βt is the weight controlling the noise for step t. There-
fore, given G0(G), Gt can be expressed as:

Gt =
√
αt · G0 +

√
1− αt · ε, (2)

where ε represents Gaussian noise. We set the parameters for all diffusion steps as follows: βt ∈
(0, 1) for t = 1, . . . , T , αt = 1− βt, and αt =

∏t
k=1 αk.

During the denoising phase, the Gaussian noise G′

T is combined with the visual guidance V through
cross-attention. Utilizing the predicted noise from the DDM, the process iteratively reduces noise to
generate the gloss features G′

. The entire denoising process is carried out in the manner of DDPM
(Ho et al., 2020) and can be represented as:

pθ(G
′

0:T ) = p(G
′

T ) ·
T∏

t=1

pθ(G
′

t−1|G
′

t), (3)

where θ represents the parameters of the model. Each step of denoising follows a normal distribu-
tion, which can be represented as:

pθ(G
′

t−1|G
′

t) = N (G
′

t−1;µθ(G
′

t, t),Σθ(G
′

t, t)). (4)

The mean µθ(G
′

t, t) and variance Σθ(G
′

t, t) denote the model’s predictions for the reverse process,
which adhere to a normal distribution. For the reason of simplifying the model and providing more
accurate predictions, we only use the model to predict the mean, while the variance is set to a fixed
value Σθ = βtI.

Since we try to achieve cross-modal generation, the traditional backbones like U-Net for image-
oriented noise prediction are not suitable. Inspired by (Peebles & Xie, 2023) who serializes image
features and performs diffusion-denoising in the latent space, we employ diffusion transformer (DiT)
for denoising. Based on the idea of directly transforming CSLR into cross-modal generation to
obtain gloss features with clear boundary information, we need to generate the gloss features G′
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using the diffusion model guided by the visual features V . The entire “video-to-text” process can be
modeled as:

pθ(G
′
|V) =

T∏
t=1

pθ(G
′

t−1|G
′

t,V), (5)

where pθ(G
′

t−1|G
′

t,V) not only represents the recovery of the gloss features during the iterative
sampling process but also signifies the model’s continuous learning of the cross-modal contextual
information between the input gloss features G′

t and the visual guidance V . The entire process
integrates the embeddings in V that represent the same sign action and uses them to update the
corresponding token in G′

t . After generating G′
, we use a transformer-based decoder to decode the

predictions. Through this ”video-to-text” approach, we have innovatively explored the potential
of diffusion models in cross-modal feature correspondence, resulting in gloss features that contain
richer cross-modal contextual information, and ultimately decoding more accurate gloss sequences.

3.2.2 RECOGNITION-ORIENTED SUPERVISION MODULE

Although the powerful capability of diffusion model has been proven in generating images and
videos (Ho et al., 2022; Rombach et al., 2022), it is still challenging to adapt it to high-level vision
tasks like CSLR. As the measurement for generation quality like FID mainly focuses on pixel-wise
information, during the later stages of the iterative sampling process only low-level supervision is
given. It makes the generation quality of features negatively correlated with the recognition accuracy
(Chen et al., 2024b). These low-level features are not useful for generating gloss labels, and we need
to make the diffusion model pay more attention to semantic and other high-level features during the
sampling process. Therefore, we modify the denoising module of the diffusion model, and add a
step-wise constraint, which can be formulated as:

LRSM =

T∑
t=0

δt · [− log p(G|G
′

t; θ)], (6)

where G denotes the ground truth gloss label. It can apply connectionist temporal classification
constraints between the gloss features G′

t and the gloss label. In the initial few iterations, since the
generated gloss features G′

t is mostly noise, we use δt to balance the loss values at different stages
to prevent excessive gradients and ensure stable training.

3.3 GLOSS-LEVEL FEATURE REPRESENTATION ENHANCEMENT WITH CONTRASTIVE
LEARNING

Continuous sign language videos, as raw signals, are influenced by coarticulation, leading to the
presence of semantically ambiguous features in the visual sequences. These features, occurring
in the transitional parts between adjacent sign actions, may resemble certain gloss features due to
changes in sign actions, even though they do not inherently contain semantic information. To ensure
differences between features representing different sign actions in visual features are more distinct
and to help the diffusion model understand the visual-textual relationship, we propose gloss-level
feature enhancement based on contrastive learning.

We choose to perform gloss-level feature enhancement during the fusion of V and G′

t at the sampling
stage. This is because during the training stage of the diffusion model, the intensity of adding noise
is random, and we cannot effectively balance the losses generated by each batch under the gloss-
level feature enhancement constraint. The recognition-oriented supervision module is added during
sampling stage for the same reason. Due to our use of cross-attention to combine V and G′

t , a
dot product-based attention matrix M ∈ RN

′
·N is generated. Here, Mij represents the similarity

between the i-th token and the j-th embedding. In the CSLR task, this indicates the probability
that the i-th token and the j-th embedding represent the same sign action. As shown in fig.3, we
select the token with the highest similarity for each embedding to form positive pairs and pair it
with the remaining tokens to form negative pairs. For those transitional segments in continuous
sign language videos that do not contain semantic actions, there is no need to select corresponding
tokens for the embeddings obtained from them. We have set a similarity threshold τ , and when the
similarity between a certain embedding and all tokens is less than τ , we consider that this embedding
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is derived from transitions encoding, and no longer match tokens for it. Therefore, during gloss-
level contrastive learning, this embedding (anchor) has no positive sample pairs and forms negative
sample pairs with all tokens to increase the distance between them. By using this method to create
a gap between sign language actions, it helps the model understand the relationship between visual
embeddings and gloss tokens, leading to the generation of a more accurate gloss representation
G′

. Due to the high noise and low reliability of the gloss tokens generated in the initial sampling
stage, we still use δt as weights to balance the losses in different sampling stages. The constraint of
gloss-level feature enhancement can be represented as:

LGFE = − log

T∑
t=0

N∑
i=1

δt · exp(Vi · G
′

t+)∑N ′

j=1 exp(Vi · G
′
tj)

; (7)

where G′

t represents the gloss token sequences generated at the t-th sampling step, G′

t+ denotes the
token in G′

t that serves as a positive sample, and G′

tj represents the j-th token in G′

t . And LGFE

represents the total gloss-level feature enhancement loss.

With these designs, the final loss can be expressed as:

L = LCTC + LRSM + LGFE + γ · LDDM (8)

Figure 3: The attention matrix produced during gloss-level feature enhancement. The token-
embedding pairs circled in red form the positive sample pairs and the rest of pairs form the negative
sample pairs. In particular, the gray blocks consist of embeddings that represent the transitional
parts between sign actions.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

The proposed method is implemented with Pytorch on two NVIDIA RTX 4090GPUs. It takes
ResNet-34 (He et al., 2016) as the visual encoder and a module derived from mBART (Liu et al.,
2020) as the gloss encoder. A decoder consisting of 4 transformer encoder layers is equipped to
decode the final prediction. We adopt a 12-layer DiT to predict the noise. The training process
consists of two stages. We first train our network without diffusion model based gloss generation
module for 40 epochs to obtain meaningful visual features and gloss features. In the second stage,
we freeze the parameters of visual encoder, gloss encoder and decoder to train the rest of model
for 60 epochs. The Adam optimizer is adopted, and the initial learning rate is set to 10−4 for both
stages. The learning rate decays (0.2) at epochs 20 and 35 for stage one and decays (0.2) at epochs
30 and 50 for stage two. The weight decay of 10−4 and batch size of 2. The diffusion time step is
set to 1000, and we set βt increasing linearly from β1 = 0.0001 to βT = 0.99. The hyperparameter
γ is set to 10.0. The weights in Eqs.6 and Eqs.7 are set from δ1 = 0.0001 to δT = 0.01, and linear
weight schedule is adopted. The threshold τ = 0.15. Word Error Rate(WER) (Park et al., 2008) is
utilized as the evaluation metric. Lower WER refers to higher recognition accuracy.
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4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

The performance of our DiffSign is evaluated on three widely used SLR datasets, which are
PHOENIX-2014 (Koller et al., 2015), PHOENIX-2014T (Camgoz et al., 2018) and CSL-Daily
(Zhou et al., 2021a).

PHOENIX-2014. Table 1 presents a comparison between several state-of-the-art methods on
PHOENIX-2014 dataset. Compared to (Hu et al., 2023), which adopts self-enhanced correlation
calculation to capture hand trajectories but solely depends on a LSTM-based sequential module to
complete alignment, our method can achieve 2.2% and 2.1% improvement on dev and test sub-
set, respectively. We also find that (Chen et al., 2022) which incorporates the keypoint sequence
outperforms (Hu et al., 2023) which relies on RGB stream only. This suggests that fusing more
vision-based information such as optical flow, skeleton keypoints, etc. can improve recognition to
a limited extent, 0.4% and 0.6% on dev and test subset. As the explicit alignment of the fixed pat-
tern is adopted, the performance difference between some of the recent state-of-the-art methods is
not significant. The difference in WER between top-tier methods like (Zhang et al., 2023), (Chen
et al., 2022) and (Ahn et al., 2024) is only about 0.5%. By transforming cross-modal alignment
into cross-modal generation and fully exploring the cross-modal feature correspondence ability of
the diffusion denoising model, our method achieves an improvement of nearly 1% in the dev subset
compared to SOTA work (Zhang et al., 2023).

Table 1: Comparison with state-of-the-art methods on PHOENIX-2014 dataset.
Methods Dev(%) Test(%)

SubUNets (Cihan Camgoz et al., 2017) 40.8 40.7
IAN (Pu et al., 2019) 37.1 36.7

CNN-LSTM-HMMs* (Koller et al., 2019) 26.0 26.0
SFL (Niu & Mak, 2020) 24.9 25.3

DNF(RGB) (Cui et al., 2019) 23.8 24.4
FCN (Cheng et al., 2020) 23.7 23.9

CMA (Pu et al., 2020) 21.3 21.9
VAC (Min et al., 2021) 21.2 21.9

STMC* (Zhou et al., 2021b) 21.1 20.7
C2SLR* (Zuo & Mak, 2022) 20.5 20.4
CVT-SLR (Zheng et al., 2023) 19.8 20.1

CorrNet (Hu et al., 2023) 18.8 19.4
TwoStream-SLR* (Chen et al., 2022) 18.4 18.8

SlowFast (Ahn et al., 2024) 18.0 18.3
C2ST (Zhang et al., 2023) 17.5 17.7

Ours 16.6 17.1
“∗” indicates the utilization of more cues such as extra face or

hand features acquired by heavy pose-estimation networks or pre-
extracted heatmaps.

PHOENIX-2014T. We demonstrate the performance of several methods on both dev and test sets of
PHOENIX-2014T in Table 2. Our method still outperforms rest approaches on both of these subsets.
(Zheng et al., 2023) is similar to our approach in integrating the generative model into the CSLR task;
however, it introduces the generative model as a denoising autoencoder, overlooking the generative
model’s ability to explore cross-modal feature associations. (Zhou et al., 2021b; Zuo & Mak, 2022)
introduce extra facial and hand features acquired by heavy pose-estimation networks or pre-extracted
heatmaps. Although adding more modal features as inputs can improve the representation ability
of the fused features, it also inevitably introduces redundant information, which affects the final
recognition results. Our method accomplishes CSLR through a more elegant single-cue framework
and achieves more accurate recognition.

CSL-Daily is a recently released large-scale Chinese sign language dataset for both continuous sign
language recognition and translation. The content of the dataset is centered around daily life. It
has the largest vocabulary size (20K) among commonly used CSLR datasets. Table 3 shows that
our method still achieves the best result on this challenging dataset. The excellent performance of
our method on CSL-Daily dataset demonstrates the feasibility of converting CSLR to cross-modal
generation and helps us outperform the SOTA work (Zhang et al., 2023), which recurrently fuses
gloss representations from all previous time steps with the current time visual representation.
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Table 2: Comparison with state-of-the-art methods on PHOENIX-2014T dataset.
Methods Dev(%) Test(%)

SFL (Niu & Mak, 2020) 25.1 26.1
DNF(RGB) (Cui et al., 2019) 23.3 25.1

FCN (Cheng et al., 2020) 23.3 25.1
SignBT (Zhou et al., 2021a) 22.7 23.9

CNN-LSTM-HMMs* (Koller et al., 2019) 22.1 24.1
C2SLR* (Zuo & Mak, 2022) 20.2 20.4
STMC* (Zhou et al., 2021b) 19.6 21.0

CVT-SLR (Zheng et al., 2023) 19.4 20.3
CorrNet (Hu et al., 2023) 18.9 20.5

TwoStream-SLR* (Chen et al., 2022) 17.7 19.3
SlowFast (Ahn et al., 2024) 17.7 18.7
C2ST (Zhang et al., 2023) 17.3 18.9

Ours 16.5 17.8

Table 3: Comparison with state-of-the-art methods on CSL-Daily dataset.
Methods Dev(%) Test(%)

SubUNets (Cihan Camgoz et al., 2017) 41.4 41.0
LS-HAN (Huang et al., 2018) 39.0 39.4
SignBT (Zhou et al., 2021a) 33.2 33.2

FCN (Cheng et al., 2020) 33.2 32.5
DNF(RGB) (Cui et al., 2019) 32.8 32.4

CorrNet (Hu et al., 2023) 30.6 30.1
TwoStream-SLR* (Chen et al., 2022) 25.4 25.3

SlowFast (Ahn et al., 2024) 25.5 24.9
C2ST (Zhang et al., 2023) 25.9 25.8

Ours 24.3 23.9

4.3 ABLATION STUDY

In this section, we begin by performing comprehensive experiments on each component of our
framework to thoroughly assess the effectiveness of our designs. Next, we analyze the impact of
hyperparameters utilized in our network.To clearly illustrate the functionality of our designs, we
also compare our method with prior approaches based on traditional recognition frameworks. We
use CSL-Daily as our benchmark for evaluation.

Study on each component. Table 4 presents an analysis of the effectiveness of each proposed com-
ponent of our network. The first row of the table indicates that no proposed modules are applied;
instead, the extracted visual features are directly fed into the decoder for recognition results. Our
model reaches a Word Error Rate (WER) of 26.1% on the CSL-Daily Dev set by adopting diffusion
model based gloss generation (DGG) module to accomplish CSLR through cross-modal genera-
tion. When we incorporate gloss-level feature enhancement (GFE) to mitigate the ambiguity and
uncertainty of sign language videos caused by coarticulation and to ensure sharp differences be-
tween visual features representing different glosses, the WER improves to 24.9%. Furthermore, by
implementing recognition-oriented supervision module (RSM) for enhanced supervision and better
adaptation to downstream recognition tasks, we achieve a final WER of 24.3%.

Table 4: Study the effects of each component of the proposed network on the CSL-Daily dataset.
DGG GFE RSM Dev(%) Test(%)

✘ ✘ ✘ 31.2 30.8
✔ ✘ ✘ 26.1 25.4
✔ ✔ ✘ 24.9 24.5
✔ ✔ ✔ 24.3 23.9

Study on weight δt of gloss-level feature enhancement and recognition-oriented supervision
module. As the target gloss features are gradually refined during the sampling process, we need to
impose different levels of constraints on the gloss features generated in each iteration to achieve a
balance in the loss value. We use a series of weighting factors δt ∈ (0, 1)Tt=1 to accomplish the task.
We compare our default configuration where δt linearly increases from δ1 = 10−4 to δT = 0.01
with other different settings. The comparison is shown in Table 5. In the initial few iterations, the
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quality of the generated gloss features is low and contains a significant amount of noise, which does
not effectively represent the individual glosses in the sentence. If we set the initial weights too high,
we will encounter a significantly large loss, which can lead to vibrations during training and result
in non-convergence. Conversely, if we set the weights at the end stage too low, it will reduce the
overall influence of the constraints, making it impossible to alleviate the uncertainty and ambiguity
of sign videos or to better adapt to downstream recognition tasks.

Table 5: Study the effects of weight δt of gloss-level feature enhancement and recognition-oriented
supervision module.

δ1 δT Dev(%) Test(%)
10−4 0.01 24.3 23.9
10−3 0.01 26.7 26.2
10−2 0.01 29.3 28.5
10−4 0.1 28.4 28.0
10−4 0.02 25.5 25.0
10−4 0.01 24.3 23.9
10−4 0.001 25.9 25.1

Comparison with cross-modal alignment methods. Unlike other methods focus on cross-modal
alignment, we transform the CSLR task into a cross-modal generation task, fully exploring the
potential of diffusion models in corresponding cross-modal features, which has resulted in more
accurate gloss sequences. As shown in Table 6, we compare our cross-model generation method with
other gloss-level or sentence-level cross-modal alignment methods to further validate its superiority.
For fairness considerations, we will use ResNet34 as the visual encoder for all methods. Compared
to previous methods based on cross-modal alignment, our method leverages cross-modal generation
to generate more accurate gloss sequences.

Table 6: Comparison with other cross-model alignment methods.
Methods Dev(%) Test(%)

SEC (Zuo & Mak, 2022) 28.1 27.7
Visual Enhancement (VE) (Min et al., 2021) 28.0 27.5

Visual Alignment (VA) (Min et al., 2021) 27.6 27.0
VE+VA (Min et al., 2021) 26.9 26.3

IAN (Pu et al., 2019) 29.5 28.8
DNF (Cui et al., 2019) 31.2 30.6

CVT-SLR (Zheng et al., 2023) 27.3 26.9
C2ST (Zhang et al., 2023) 26.1 25.9

Ours 24.3 23.9

4.4 VISUALIZATION

Visualization of the gloss predictions obtained through cross-modal generation. Fig.4 shows
how our network present a more accurate gloss sequence when compared with several top-tier meth-
ods (Zhang et al., 2023; Chen et al., 2022; Hu et al., 2023). As we mentioned earlier, gloss-level
alignment in the CSLR task is an ill-posed problem, and continuous sign language videos are af-
fected by coarticulation, which increases the uncertainty and ambiguity during the transitions of
sign actions, further complicating the alignment process. Relying solely on the idea of explicit
cross-modal alignment presents performance bottlenecks. Our method transforms the CSLR into
cross-modal generation, allowing powerful diffusion models to fully understand the relationships
between visual embeddings and gloss tokens. This enables the models to obtain more accurate re-
sults. As shown in Fig.4, when there are consecutive identical glosses, previous methods was not
able to effectively identify gaps between these same glosses, leading to only partial recognition of
glosses “press” or direct misidentification. In contrast, our proposed network distinguishes transi-
tions from other sign actions through gloss-level feature enhancement. By leveraging cross-modal
generation for gloss prediction, we can accurately identify each instance of ”press” along with the
gaps between them.
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Figure 4: Beam search decode results for several top-tier methods and our proposed method on
CSL-Daily dataset. The grey blocks represent the transitions that contain no semantic actions. Our
proposed method accurately recognizes multiple consecutive and identical glosses as well as the
transitions between them.

Visualization for gloss-level feature enhancement and recognition-oriented supervision mod-
ule. Fig.5 illustrates the impact of GFE and RSM on the word error rate (WER) during the training
process. Incorporating either GFE or RSM results in a reduction of the final WER, with reduc-
tions of 1.2% and 1.0%, respectively. Due to the poor quality of the generated gloss features in the
early stages of training, the large gradient values resulting from the added constraints caused some
oscillations in the network, leading to an increase in WER during the first 15 epochs. However,
after completing 60 training epochs, the application of either constraint significantly reduced the
network’s WER. When we simultaneously apply both constraints, the WER is further reduced, the
WER decreases by 1.8% compared to the scenario without any constraints, showing the effective-
ness of the two constraints.

Figure 5: Visualization of the impact of different constraints on WER in the CSL-Daily dataset.

5 CONCLUSION

This paper propose a diffusion model based network equipped with recognition-oriented supervi-
sion module to complete CSLR through cross-modal generation and fully explore the potential of
diffusion models in cross-modal feature correspondence. A contrastive learning based gloss-level
feature representation enhancement strategy is proposed to optimize visual features and mitigate the
ambiguity and uncertainty inherent in sign language videos. Our network achieves state-of-the-art
results on several datasets, including Phoenix-2014, Phoenix-2014T, and CSL-Daily.
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