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Abstract
Image forgery localization in the diffusion era
poses new challenges as modern editing pipelines
produce photorealistic, semantically coherent ma-
nipulations that bypass conventional detectors.
While some recent methods leverage foundation
model cues or handcrafted noise residuals, they
still miss the subtle embedding artifacts intro-
duced by modern diffusion pipelines. In response,
we develop Detective SAM, which extends the
Segment Anything Model by incorporating a blur-
based detection signal, learnable coarse-to-fine
prompt generation, and lightweight fine-tuning
for automatic forgery mask generation. Detec-
tive SAM localizes forgeries with high precision.
On three challenging benchmarks (MagicBrush,
CoCoGlide, and IMD2020), it outperforms prior
state-of-the-art methods, demonstrating the power
of combining explicit forensic perturbation cues
with foundation-model adaptation for robust im-
age forgery localization in the diffusion era.

1. Introduction
The sophistication of modern diffusion models and their lo-
cal editing techniques has blurred the line between synthetic
and real imagery (Ramesh et al., 2021). Deep learning has
democratized photorealistic image generation, and synthetic
images are now virtually indistinguishable to the naked
eye. The wide availability of these techniques has caused
our virtual environment to flood with such images. This
transformation creates demand for robust and generalizable
methods for image forgery localization (IFL) (Kadha et al.,
2025).

Modern image-editing systems build directly on broader
innovations in deep learning for processing visual informa-
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tion. Among these are Vision Transformers (ViT) (Doso-
vitskiy et al., 2021) and image foundation models, such as
CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2024),
and other self-supervised embeddings (Assran et al., 2023).
These architectures produce global (coarse, e.g., a 16×16
feature map) and local (fine, pixel-level) representations
through large-scale pretraining, yielding powerful features
for downstream tasks. The recently released Segment Any-
thing Model (SAM) (Ravi et al., 2024) exemplifies this
trend, serving as a strong segmentation foundation model
for understanding arbitrary image regions. Moreover, SAM
has been fine-tuned via lightweight adapters (Chen et al.,
2024) to specialized domains such as shadow detection (Jie
& Zhang, 2023) and camouflage detection (Meeran et al.,
2024).

Previous forgery methods mainly focused on splicing and
copy-move (Chang et al., 2013). The rise of diffusion mod-
els such as DALL-E (Ramesh et al., 2022) and their ability
to generate realistic local inpaintings has caused previous
methods and forensic clues to become outdated (Zhang
et al., 2024). The text-guided pipelines of these models
allow them to create semantically consistent content. New
diffusion-based datasets such as MagicBrush (Zhang et al.,
2024) expose the vulnerability of existing IFL approaches,
causing a significant drop in performance for IFL tasks
(Nguyen et al., 2024). The combination of diffusion-edit
datasets (Zhang et al., 2024; Jia et al., 2023) and foundation
models has sparked a wide array of IFL models (Lai et al.,
2023; Kwon et al., 2024; Zhang et al., 2025; Nguyen et al.,
2024) which successfully improve existing diffusion-based
IFL benchmarks.

The paradigm shift brought on by diffusion models for im-
age generation initiated the surge in research on stronger
forensic clues. Part of this surge has seen robust empirical
success with training-free (Ricker et al., 2024; Tsai et al.,
2024; He et al., 2024) and zero-shot (Cozzolino et al., 2024)
methods that rely on explicit noise artifacts in the embed-
ding space. The text-to-image nature of diffusion edits has
also inspired the use of Multimodal Large Language Models
(MLLMs) for IFL (Liu et al., 2025). EditScout (Nguyen
et al., 2024) benchmarks previous approaches on diffusion-
based datasets and proposes such an MLLM-based method.
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The concept of leveraging linguistic cues as supplemental
semantic information is promising; however, the insufficient
use of forensic indicators and image foundation models may
explain why performance has not yet reached expectations.
Figure 1 shows that our proposed Detective SAM frame-
work masks are more accurate with respect to the ground
truth forged region when compared to EditScout.

Ground truth EditScout Ours

“a parakeet should be
sitting on the knit item”

“put a party hat on the dog”

“put a rat on
 the counter”

Figure 1. Left column: source images and instructions. Right col-
umn: forged segmentation mask contours generated by EditScout
(yellow) and the Detective SAM mask (red) with a white contour
for the ground truth forged region. The original EditScout masks
are shown in supplementary Figure 7.

Few state-of-the-art techniques have begun incorporating
these recent innovations for a robust IFL system. SAM’s
release prompted papers to adapt the model to various tasks.
A successful framework for this is provided by (Chen et al.,
2024). The authors propose feature adapters as lightweight
modules to fine-tune SAM for detecting different classes of
segments. In the problem of IFL, the task requires segment-
ing the forged region and identifying where it is. This de-
mands automatic prompting of SAM, IMDPrompter (Zhang
et al., 2025) proposes a learnable prompting system based
on implicit noise filters. Their method relies on dense, hand-
crafted, and trained noise views instead of artifacts in the
embeddings of foundation models and does not beat earlier
benchmarks set by (Niu et al., 2024). The IFL field currently
lacks a framework that combines these innovations: (1) ex-

plicit Gaussian blur perturbation embedding artifacts as a
forensic signal (2) feature adapters to fine-tune SAM for the
IFL task (3) a learnable prompter based on modern vision
architectures, and (4) training on modern diffusion-edited
datasets. This paper offers such a unification of ideas and
shows that it improves benchmark scores significantly.

We propose, Detective SAM, a comprehensive framework
for image forgery localization. The key novelties of Detec-
tive SAM are as follows:

1. Perturbation-driven forensic signal: We build upon
the success of perturbation embedding sensitivity as a
forensic signal to reveal subtle diffusion-induced edit-
ing artifacts and integrate this in a learned IFL pipeline.

2. Coarse-to-fine learnable prompting: We propose
a learnable prompter module that fuses the forensic
signal features with the target image features for auto-
matic prompting with coarse-to-fine localization as in
ViT architectures.

3. End-to-End SAM feature adapter integration: We
extend automatic prompting with feature adapters
(Chen et al., 2024), enabling lightweight end-to-end
fine-tuning of SAM’s mask decoding head for forgery
segmentation.

4. State-of-the-art performance: We demonstrate the
effectiveness of this approach on recent diffusion-based
IFL datasets such as MagicBrush and CoCoGlide.

2. Related work
Image forgery localization. IFL concerns itself with the
task of not only detecting if parts of an image are manip-
ulated, but also pinpointing them pixel-wise. An effective
signal or “forensic clue” is required to locate image forgery.
These clues/artifacts can include reconstruction error (Ves-
nin et al., 2024), JPEG compression artifacts (Kwon et al.,
2021), explicit noise artifacts (Zhu et al., 2024), or implicit
noise artifacts (Zhang et al., 2025).

Recent work has shown explicit noise artifacts in the embed-
ding space of vision-transformer architectures and founda-
tion model embeddings. RIGID (He et al., 2024) and BLUR
(Tsai et al., 2024) show that it is possible to detect synthetic
images using the DINOv2 (Oquab et al., 2024) image foun-
dation model in a training-free manner by detecting subtle
embedding distribution shifts.

SAM in IFL. Adaptations of SAM for IFL have attracted
considerable interest (Kwon et al., 2024; Lai et al., 2023;
Zhang et al., 2025). These methods seek to distinguish ma-
nipulated regions from genuine content by training SAM
to segment forged areas in contrast to the conventional ob-
ject segmentation task. For example, SAM is adapted for
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deepfake detection and localization (Lai et al., 2023) with a
reconstruction-error signal or used in multi-source forgery
partitioning (Kwon et al., 2024) with large-scale contrastive
pretraining and a fixed 16x16 point grid. However, diffusion-
based tampering often manifests as subtle, irregular artifacts
confined to small regions. Therefore, we require learnable
prompts that dynamically adjust to the unpredictable pat-
terns of diffusion-based forgeries. IMDPrompter (Zhang
et al., 2025) achieves this with a learnable heatmap and
box prompts employing various filters as the signal. This
technique does not use a perturbation-driven signal or build
upon the strong SAM adaptation results from (Chen et al.,
2024). Other approaches use SAM’s segmentation capabili-
ties without learnable prompts (Su et al., 2024).

3. Detective SAM

3.1. Problem Setting

We consider the task of image forgery localization, where
given an RGB image I ∈ R3×H×W with three channels,
height H and width W , we aim to predict a binary mask
B ∈ {0, 1}H×W , with Bij = 1 if pixel (i, j) has been
edited once, and 0 otherwise. This work mainly focuses
on edits produced by diffusion-based image-editing models.
A diffusion model processes a text instruction to generate
local edits of a source image, as in Figure 2.

Figure 2. First row: visualization of source and target image with
instruction for a sample in the MagicBrush validation set. Second
row: Gaussian-blurred version of the same target image (σ = 1).

3.2. Overview

Detective SAM is a perturbation-driven extension of SAM2
(Ravi et al., 2024) for image forgery localization.
As illustrated in Figure 2, we first apply Gaussian blur to
the input image I, producing a perturbed copy I ′. Both I
and I ′ are then passed through the frozen SAM2 HIERA en-
coder (Ryali et al., 2023), yielding multi-scale embeddings
Xs at scales s ∈ {128, 64, 32} for (H,W ) = (512, 512).

For both I and I ′, the smallest scale embedding is
used as the image embedding input for our decoder,
and SAM’s frozen “non-memory” embedding is added
to this. This embedding is learned during SAM’s train-
ing (which also supports video) and flags the input as
a single image rather than a video frame, giving us fea-
ture F32 = NoMemEmbed(X32). The other embed-
ding scales are passed through SAM’s frozen convolu-
tional layers, which process these for decoder input; Fs =
ConvSAM(Xs) if s ∈ {64, 128}. This yields six feature
maps {F I

s , F
I′

s }. These features are then passed through a
FeatureAdapter As, which generates a correction term
∆Fs. The adapted feature is computed as: F̃s = F I

s +∆Fs.

Additionally, all feature maps {F I
s , F

I′

s , F̃s} are fused by
our MaskAdapter to produce a low-resolution forgery
heatmap M ∈ R128×128. Finally, the adapted features
{F̃s} and heatmap M are input to the SAM2 mask de-
coder, which outputs the binary forgery segmentation mask
B ∈ {0, 1}H×W . These steps are visualized in Figure 3.

HIERA
Encoder

Feature
adapters

Mask  
adapter

Decoder

Gaussian Blur

Perturbations Adapter modulesFrozen SAM Frozen SAM

Figure 3. Flow chart of the steps in Detective SAM with our pro-
posed modules in blue and SAM’s frozen modules in green.

3.3. Perturbations

Forgery detection/localization methods require a reliable
signal to predict forgery maps. Common signals are recon-
struction errors (Vesnin et al., 2024), pretrained/fine-tuned
embeddings on forgery datasets (Kwon et al., 2024), or
perturbation-based signals. Building further upon the suc-
cess of the BLUR technique (Tsai et al., 2024), we construct
a perturbed image as: I ′ = Blur(I;σ) With Blur using
the exact 3x3 kernel from (Tsai et al., 2024) and standard
deviation σ = 1.0. Both I and I ′ are passed through the
shared SAM2 HIERA encoder. SAM2’s HIERA encoder
is trained on a large-scale, diverse set of images, serving as
our image foundation model. Editing techniques can pro-
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duce outputs with higher sensitivity to small perturbations
in the embedding space. Empirically, it is noticed that these
artifacts show up in the loss landscape of the embedding
space (Chen, 2025).

3.4. Adapter Modules

In the spirit of previous work on SAM adaptations (Chen
et al., 2024), we create multi-scale feature adapters to fine-
tune SAM. Fine-tuning focuses on aligning the feature
adapters with SAM for forgery localization adaptation, but is
done concurrently with the training of our mask adapter. The
feature adapters are designed to incorporate our task-specific
information (forensic signal) from the embeddings in the
input to SAM’s decoder in a lightweight manner. These
adapters are single layer convolutional neural networks that
process {F I

s , F
I′

s } to get {F̃s}. The feature adapters fine-
tune SAM by modifying the unperturbed feature with the
prompt term ∆Fs.

Unlike straightforward adaptations of SAM in prior ap-
proaches, we require automatic prompting of the SAM de-
coder for our target task since it is unknown to the user
where the forgery is located. Therefore, a neural network
is required to process the forensic signal into a prompt.
SAM expects either points, boxes, or heatmap inputs. Thus,
we design a mask adapter that takes the feature maps
{F I

s , F
I′

s , F̃s} and fuses them with gated feature fusion
to produce heatmap M as input to the SAM decoder. The
mask adapter is structured to generate a spatially coherent,
globally contextualized heatmap by:

1. Multi-scale feature fusion: We fuse {F I
s , F

I′

s F̃s}
with convolutions to an embedding Ffuse ∈ Rd×ŝ×ŝ

with common resolution ŝ = max {s}, defined as the
largest scale. This integrates information from all lev-
els to detect and localize forgery.

2. Coarse patch scoring: Significant parts of the im-
age have low importance since they are unforged. To
mitigate instability in those regions, we capture high-
level spatial importance by tiling Ffuse into a grid of
size

(
⌊ŝ/r⌋, ⌊ŝ/r⌋

)
with downscale factor r using a

strided convolution. This yields coarse logits L̃coarse.
Cross-attention builds queries from pooled fused fea-
tures and keys/values from the flattened coarse logits,
enabling each patch to gather context from the entire
coarse map. This global interaction smooths/removes
heatmap “islands” to produce the refined logits Lcoarse.
The number of attention parameters is limited since we
work in the downscaled domain.

3. Full-resolution refinement: We refine our coarse log-
its and fused feature map Ffuse in a convolutional
refine-head to produce high-resolution logits Lrefine ∈
Rŝ×ŝ.

4. Learned gating: Finally, we blend our coarse and re-
fined logits with g = sigmoid(w1Lcoarse+w2Lrefine+
b) with only three parameters: {w1, w2, b}, the final
heatmap logits are M = gLrefine+(1−g)Lcoarse. This
suppresses spurious refinements in regions where the
coarse mask is confident by allowing the importance
of both the coarse and fine components to be learned.
Specifically, the gating weight gij decreases when the
coarse logit is high, such that the final mask falls back
on the reliable coarse prediction.

Notice that no sigmoid function is applied to mask heatmap
M , since SAM’s decoder expects logits. M is fed into
SAM’s decoder as the heatmap prompt to produce the final
pixel heatmap B.
We observe that a simple convolution from Ffuse to M pro-
duces spurious and noisy forgery scores. The idea of divid-
ing the fine space into patches to integrate global context is
similar to vision transformers (Dosovitskiy et al., 2021).

3.5. Loss functions

We train the mask and feature adapters using the same ob-
jectives as SAM (Chen et al., 2024), combining a focal loss
(Lin et al., 2018) with a Dice loss. The Dice loss maxi-
mizes the overlap between the predicted and ground-truth
masks by penalizing their normalized differences. The focal
loss further addresses the class imbalance in IFL by down-
weighting well-classified pixels and up-weighting forged
pixels relative to the abundant negative background.

Formally, our total training objective is

L = LDice + λfocal Lα,γ
focal.

The focusing parameter γ ≥ 0 in Lα,γ
focal down-weights

well-classified examples. The balance factor α ∈ [0, 1]
re-weights positive vs negative examples to counteract class
imbalance. Where we borrow λfocal = 20 from the SAM2
paper and sweep over (α, γ).

4. Experiments
4.1. Evaluation

Our performance is evaluated with the pixel-level mean
Intersection over Union (IoU) and the mean F1 score. The
IoU measures the overlap between the ground truth forged
mask and B, and the F1 score serves as the harmonic mean
between pixel-level precision and recall.

Datasets: The MagicBrush dataset contains high-quality
diffusion-based edits using DALL-E (Ramesh et al., 2022).
Magicbrush has multiple edit rounds. Edit rounds are the
number of distinct local edits in one image. To align with the
training regime of EditScout (Nguyen et al., 2024), we only
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use single edits for this paper, giving 4512 samples. Besides
MagicBrush, we also use AutoSplice (Jia et al., 2023) for
training, which comprises diffusion-based DALL-E edits
with 3621 samples.

We train Detective SAM on the training set of MagicBrush
(Zhang et al., 2024) and AutoSplice (Jia et al., 2023) to
arrive at the same training regime as EditScout (Nguyen
et al., 2024) for a fair comparison. Similar to EditScout, we
evaluate our model on the 512 samples in the CoCoGLIDE
dataset and the 801 samples of the MagicBrush validation
and test set. Additionally, we evaluate our model on the
2010 samples in the test set of IMD20 (Novozámský et al.,
2020) to compare our model’s out-of-sample performance
against the benchmarks implemented in (Niu et al., 2024).
We choose IMD20 because it is the lowest-scoring dataset
in that paper and in (Zhang et al., 2025).

4.2. Results

Quantitative results: The benchmark results in Table 1 are
copied from the EditScout paper. The PerfBrush dataset is
cut as it is not yet publicly available. We only display the
best scores of the table here; the full table is available in the
appendix Table 2.

Table 1. Best EditScout benchmark results and Detective SAM.

METHOD
MAGICBRUSH COCOGLIDE
IOU ↑ F1 ↑ IOU ↑ F1 ↑

BEST 30.47 40.35 34.11 45.70
DETECTIVE SAM 49.22 60.24 35.54 46.86

Detective SAM outperforms the MagicBrush results by a
significant margin, but the CoCoGLIDE results are close in
terms of IoU.

Similarly, the full IMD20 benchmarks from (Niu et al.,
2024) are in the appendix under Table 3. The best bench-
mark IoU is 19.2 for MVSS-Net (Dong et al., 2023) and the
best F1 is 58.9 for the (Niu et al., 2024) model. Detective
SAM achieves an IoU of 41.94 and F1 score of 52.33 on
IMD20. The significant divergence between F1 and IoU
in this table for some models can be explained by overes-
timating the small forged region. Conversely, Detective
SAM’s IoU-to-F1 ratio is consistent across datasets, indicat-
ing stronger generalization. The SAM-based IMDPrompter
F1 results are added to the table without the IoU metric
since it is not reported.

Qualitative Results: Our method produces a re-
fined heatmap M and coarse heatmap Mcoarse =
sigmoid(Lcoarse). In Figure 4, notice that our coarse
patches down-weight unconfident regions, yielding a final

prediction that successfully highlights the forged area. More
samples are visualized in the appendix Section B.

Figure 4. Coarse heatmap Mcoarse and refined heatmap M , warmer
colors indicate higher probabilities/logits of forgery. The contour
of the ground truth mask is overlaid.

SAM’s decoder processes heatmap M to produce a per-
pixel segmentation heatmap (Figure 5), where the adapted
SAM pushes background areas into the negative success-
fully because of its segmentation capabilities and adapted
fine-tuning.

Figure 5. Adapted SAM segmentation output before thresholding
at level 0.5, warmer colors indicate higher probabilities of forgery.

Thresholding at 0.5 yields the final binary segmentation
mask B shown in Figure 6. The figure shows that forged
regions do not correspond one-to-one with the added object
(bird). The divergence is by design: (1) IFL models are
trained on the ground truth mask of the edit instruction, (2)
the inpainting model often blends the added object with its
environment (Figure 2), leading to a forged surrounding
region. This observation serves as a case in point on why
we require fine-tuning of SAM besides just prompt learning:
to change the focus from pure object segmentation to forged
region segmentation.
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Figure 6. The final binary forgery segmentation mask B overlaid
on the original target image.

5. Conclusion
Detective SAM sets a new bar for localizing (diffusion-
based) image forgery with an average increase in IoU of
14.31 over our three test sets. This paper demonstrates
that IFL methods significantly improve with strong forensic
signals, adapted segmentation models as a backbone, and
multi-scale mask refinement. Our evaluation confirms that
these ingredients discover subtle artifacts, yielding more
accurate masks and better generalization.

5.1. Limitations

Despite these advances, several avenues to improvement re-
main open. In future work, we plan to conduct a component-
wise ablation study and extend evaluation to classical IFL
datasets such as Coverage (Wen et al., 2016), Columbia (Hsu
& Chang, 2006), CASIA (Dong et al., 2013), and multi-edit
datasets. We will explore domain generalization to deepfake
and video forgery localization. Last but not least, we will
explore varied perturbations and adaptive perturbations. By
articulating these steps, we aim to advance the IFL field
further to keep pace with the evolving generative editing
tools.

5.2. Impact Statement

This paper presents an approach to further the field of image
forgery localization. Undetected manipulations of visual
content pose serious risks, including the facilitation of mis-
information campaigns and the harming of societal trust
in digital media. We, therefore, provide a framework to
compete with innovations in modern local forgery tools.
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A. Method

Table 2. MagicBrush and CoCoGLIDE segmentation results from EditScout (Nguyen et al., 2024) with the Detective SAM row added.
The star * denotes additional fine-tuning by the authors of EditScout.

Method MagicBrush CoCoGLIDE
IoU ↑ F1 ↑ IoU ↑ F1 ↑

PSCC-Net [2022] 8.35 12.30 14.46 20.24
EITL-Net [2024] 7.88 11.38 28.79 35.42
TruFor [2023] 19.47 26.93 29.26 36.08
HiFi [2023] 5.10 8.22 16.55 23.44
CAT-Net [2021] 2.71 4.33 31.63 39.18

PSCC-Net * [2022] 16.82 26.50 15.02 20.75
EITL-Net * [2024] 20.02 28.09 19.15 26.34
CAT-Net * [2021] 30.47 40.35 31.79 41.12
EditScout [2024] 23.77 33.19 34.11 45.70
Detective SAM 49.22 60.24 35.54 46.86

Table 3. IMD2020 segmentation results from (Niu et al., 2024), with the Detective SAM row added.

Method IMD2020
IoU ↑ F1 ↑

ManTra [2019] 12.4 18.3
SPAN [2020] 10.0 14.5
PSCC-Net [2022] 12.0 19.7
MVSS [2023] 19.2 26.0
HiFi [2023] 8.0 53.2
EVP [2023] 18.3 23.3
IMDPrompter [2025] - 30.6
(Niu et al., 2024) 17.0 58.9
Detective SAM 41.94 52.33
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“a parakeet should be
sitting on the knit item”

“put a party hat on the dog”

“put a rat on
 the counter”

Figure 7. EditScout target images where the contours in Figure 1 are taken from. Images are extracted from the EditScout (Nguyen et al.,
2024) paper since the model/code is not publicly available.
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B. Experiment visualizations

Figure 8. Ground truth mask, forgery mask prediction, coarse heatmap, and refined heatmap visualization for the instruction: ”Make one
fruit have a face”.

Figure 9. Ground truth mask, forgery mask prediction, coarse heatmap, and refined heatmap visualization for the instruction: ”Edit some
mountains in the background”.
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Detective SAM

Figure 10. Ground truth mask, forgery mask prediction, coarse heatmap, and refined heatmap visualization for the instruction: ”Have the
sun rise instead of set”.

Figure 11. Ground truth mask, forgery mask prediction, coarse heatmap, and refined heatmap visualization for the instruction: ”Add some
orange juice inside the blender”.
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