
Adversarial Training for Graph Neural Networks:
Pitfalls, Solutions, and New Directions

Lukas Gosch1∗, Simon Geisler1∗, Daniel Sturm1∗, Bertrand Charpentier1,
Daniel Zügner1,2, Stephan Günnemann1

1Department of Computer Science & Munich Data Science Institute
Technical University of Munich

2Microsoft Research
{l.gosch, s.geisler, da.sturm, s.guennemann}@tum.de | dzuegner@microsoft.com

Abstract

Despite its success in the image domain, adversarial training did not (yet) stand
out as an effective defense for Graph Neural Networks (GNNs) against graph
structure perturbations. In the pursuit of fixing adversarial training (1) we show and
overcome fundamental theoretical as well as practical limitations of the adopted
graph learning setting in prior work; (2) we reveal that flexible GNNs based on
learnable graph diffusion are able to adjust to adversarial perturbations, while
the learned message passing scheme is naturally interpretable; (3) we introduce
the first attack for structure perturbations that, while targeting multiple nodes at
once, is capable of handling global (graph-level) as well as local (node-level)
constraints. Including these contributions, we demonstrate that adversarial training
is a state-of-the-art defense against adversarial structure perturbations.1

1 Introduction

Adversarial training has weathered the test of time and stands out as one of the few effective measures
against adversarial perturbations. While this is particularly true for numerical input data like images
[1], it is not yet established as an effective method to defend predictions of Graph Neural Networks
(GNNs) against graph structure perturbations.

0 1 5 10 25

Perturbed Edges (global) [%]

50
55
60
65
70
75
80
85

T
es

t
A

cc
ur

ac
y

[%
]

MLP

GCN
w/ adv. trn.

GCN
w/o adv. trn.

GPRGNN
w/ adv. trn.

GPRGNN
w/o adv. trn.

Figure 1: Robust diffusion (GPRGNN) vs.
GCN on (inductive) Cora-ML. We report ad-
versarial training and standard training.

Although previous work reported some robustness
gains by using adversarial training in GNNs [2, 3],
closer inspection highlights two main shortcomings:
(i) their learning setting leads to a biased evaluation
and (ii) the studied architectures seem to struggle to
learn robust representations.

(i) Learning setting. In the previously studied trans-
ductive learning settings (see Table 3), clean valida-
tion and test nodes are known during training. Thus,
perfect robustness can be achieved by memorizing
the training graph. This can lead to a false impression of robustness. Indeed, we find that the gains of
the adversarial training approach from Xu et al. [2] largely stem from exploiting this flaw. Motivated
by this finding, we revisit adversarial training for node classification under structure perturbations in
a fully inductive setting (i.e., validation/test nodes are excluded during training). Thus, our results do
not suffer from the same evaluation pitfall and pertain to a more challenging and realistic scenario.

*Equal contribution.
1Project page: https://www.cs.cit.tum.de/daml/adversarial-training/

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://www.cs.cit.tum.de/daml/adversarial-training/


(ii) GNN architectures. The studied GNNs like GCN [4] or APPNP [5] all seem to share the same fate
as they have a limited ability to adjust their message passing to counteract adversarial perturbations.
Instead, we propose to use flexible message-passing schemes based on learnable diffusion. The main
motivation behind this choice is the ability to approximate any spectral graph filter. Thus, adversarial
training may choose the most robust filter that achieves a competitive training loss. Thereby, we
significantly improve robustness compared to previous work, while yielding an interpretable message-
passing scheme, and making the evaluation bias in the transductive setting (i) apparent.

More realistic perturbations. Inspecting robust diffusion indicates that previously studied perturbation
sets [2, 3] are overly permissive and unrealistic. Prior work only constrained the global (graph-level)
number of inserted and removed edges, despite studying node classification, where predictions are
inherently local (node-level). As a result, commonly, an adversary has been allowed to add or remove
a number of edges that exceeds the average node degree by 100 times or more, providing ample
leeway for a complete change of many node neighborhoods through rewiring. E.g., on Cora-ML 5%
edge-changes correspond to 798 changes, but the average degree is 5.68. To prevent such degenerate
perturbations [6], we propose Locally constrained Randomized Block Coordinate Descent (LR-BCD),
the first attack that, while targeting multiple nodes at once, is able to constrain both local perturbations
per node and global ones. Even though local constraints are well-studied for attacks targeting a single
node [7], surprisingly, there was no attack incorporating these for jointly attacking a set of nodes at
once. Thus, LR-BCD fills an important gap in the literature, while being efficient and effective.

Addressing the aforementioned points, we substantially boost empirical and certifiable adversarial
robustness up to the level of state-of-the-art defenses for GNNs. For example, in Figure 1, we show a
4-fold increased robustness over standard training (measured in decline in accuracy after an attack).

Contributions. (1) We show theoretically and empirically that in the transductive learning setting
previously studied for adversarial training, one can trivially achieve perfect robustness. We show that
the full inductive setting does not have this limitation and, consequently, revisit adversarial training
in this setting (see Section 2). (2) By leveraging more flexible GNN architectures based on learnable
diffusion, we significantly improve upon the robustness under adversarial training (see Section 3). (3)
We implement more realistic adversaries for structure perturbations with a novel attack that constrains
perturbations globally and locally for each node in the graph (see Section 4).

2 Learning Settings: Transductive vs. Inductive Adversarial Training

We first give background on adversarial training and self-training. Then, in Section 2.1, we discuss
the transductive learning setting and its shortcomings in contrast to inductive learning in the context
of robust generalization. Following previous work, we focus on node classification and assume we
are given an undirected training graph G = (X,A) consisting of n nodes of which m are labeled.
By A ∈ {0, 1}n×n we denote the adjacency matrix, by X ∈ Rn×d the feature matrix, and by
yi ∈ {1, ..., C} the label of a node i, summarized for all nodes in the vector y.

Adversarial Training. Adversarial training optimizes the parameters of a GNN fθ on an adversarially
perturbed input graph with the goal to increase robustness against test-time (evasion) attacks (i.e.,
attacks against the test graph after training). The objective during training is

argmin
θ

max
G̃∈B(G)

m∑
i=1

ℓ(fθ(G̃)i, yi) (1)

where fθ(G̃)i is the GNN-prediction for node i based on the perturbed graph G̃, ℓ is a chosen loss
function, and B(G) is the set of allowed perturbed graphs given the clean graph G. As in previous
work, we assume that an adversary maliciously changes the graph structure by inserting or deleting
edges. Then, B(G) can be defined by restricting the total number of malicious edge changes in the
graph to ∆ ∈ N≥0 (called a global constraint) and/or restricting the total number of edge changes
in each neighborhood of a node i to ∆

(l)
i ∈ N≥0 (called local constraints, see Section 4). Solving

Equation (1) is difficult in practice. Thus, we approximate it with alternating first-order optimization,
i.e., we approximately solve Equation (1) by training fθ not on the clean graph G, but on a perturbed
one G̃ that is newly crafted in each iteration through attacking the current model (see Algorithm B.2).

Self-training is an established semi-supervised learning strategy [8] that leverages unlabeled nodes via
pseudo-labeling and is applied by previous works on adversarial training for GNNs [2, 3]. For this, first

2



a model fθ′ is trained regularly using the m labeled nodes, minimizing
∑m

i=1 ℓ(fθ(G)i, yi). Thereafter,
a new (final) model fθ is randomly initialized and trained on all nodes, using the known labels for the
training nodes and pseudo-labels generated by fθ′ for the unlabeled nodes (see Algorithm B.3). Thus,
if including self-training, Equation (1) changes to

argmin
θ

max
G̃∈B(G)

{ m∑
i=1

ℓ(fθ(G̃)i, yi) +
n∑

i=m+1

ℓ(fθ(G̃)i, fθ′(G)i)
}

(2)

2.1 Transductive Setting

Transductive node classification is a common and well-studied graph learning problem [9, 4]. It aims
to complete the node labeling of the given and partially labeled graph G. More formally, the goal at
test time is to accurately label the already known n−m unlabeled nodes, i.e., to achieve minimal

L0/1(fθ) =

n∑
i=m+1

ℓ0/1(fθ(G)i, yi) (3)

This is in contrast to an inductive setting, where at test time a new (extended) graph G′ (with labels y′)
is sampled conditioned on the training graph G. Then, the goal is to optimally classify the newly sam-
pled nodes I in expectation over possible (G′,y′)-pairs, i.e., to minimize E

[∑
i∈I ℓ0/1(fθ(G′)i, y′i)

]
.

That is, in transductive learning the n−m unlabeled nodes known during training are considered test
nodes, but in an inductive setting, new unseen test nodes are sampled. For additional details on the
inductive setting, see Appendix A.

Many common graph benchmark datasets such as Cora, CiteSeer, or Pubmed [10, 11], are designed
for transductive learning. Naturally, this setting has been adopted as a starting point for many works
on robust graph learning [7, 2, 12], including all of the adversarial training literature (see Section 6).
Here, the latter is concerned with defending against test-time (evasion) attacks in transductive node
classification, i.e., it is assumed that after training an adversary can select a maliciously changed
graph G̃ out of the set of permissible perturbations B(G), with the goal to maximize misclassification:

Ladv(fθ) = max
G̃∈B(G)

n∑
i=m+1

ℓ0/1(fθ(G̃)i, yi) (4)

Since the adversary changes the graph at test time (i.e., the changes are not known during training),
this, strictly speaking, corresponds to an inductive setting [9], where the only change considered
is adversarial. Now, the goal of adversarial training is to find parameters θ minimizing Ladv(fθ),
corresponding to the optimal (robust) classifier under attack [1].

2.1.1 Theoretical Limitations

Defending against test-time (evasion) attacks in a transductive setting comes with conceptual limita-
tions. In the case of graph learning, the test nodes are already known at training time and the only
change is adversarial. Hence, we can design a defense algorithm A achieving perfect robustness
without trading off accuracy through memorizing the (clean) training graph.

Formally, A takes a GNN fθ as input and returns a slightly modified model f̃θ corresponding to
fθ composed with a preprocessing routine (memory) that, during inference, replaces the perturbed
graph G̃ = (X̃, Ã) ∈ B(G) with the clean graph G = (X,A) known from training, resulting in
f̃θ(G̃) = fθ(G). In other words, f̃θ ignores every change to the graph including those of the adversary.
Trivially, this results in the same (clean) misclassification rate L0/1(fθ) = L0/1(f̃θ) because f̃θ
and fθ have the same predictions on the clean graph, but also perfect robustness, in the sense of
L0/1(f̃θ) = Ladv(f̃θ), as the predictions are not influenced by the adversary. Thus, we can state:

Proposition 1. For transductive node classification, f̃θ = A(fθ) is a perfectly robust version of an
arbitrary GNN fθ, in the sense of L0/1(fθ) = L0/1(f̃θ) = Ladv(f̃θ).

However, what is probably most interesting about A is that we can use it to construct an optimal
solution to the otherwise difficult saddle-point problem minθ Ladv(fθ) = minθ maxG̃∈B(G) L0/1(fθ)

arising in adversarial training. Formally, we state (proof see Appendix C.1):

3



Proposition 2. Assuming we solve the standard learning problem θ∗ = argminθ L0/1(fθ) and
that G ∈ B(G). Then, f̃θ∗ = A(fθ∗) is an optimal solution to the saddle-point problem arising in
(transductive) adversarial training, in the sense of Ladv(f̃θ∗) = minθ Ladv(f̃θ) ≤ minθ Ladv(fθ).

In other words, at train time, from a GNN fθ∗ minimizing the clean error, we can construct a
perfectly robust classifier f̃θ∗ minimizing the maximal misclassification rate under attack solely from
memorizing the data available during training.

Note that in a fully inductive setting due to the expectation in the losses, neither Proposition 1 nor
Proposition 2 hold, i.e., an optimal solution cannot be found through memorization (see Appendix A).
Thus, inductive node classification does not suffer from the same theoretical limitations.

2.1.2 Empirical Limitations

Even though prior work did not achieve perfect robustness, we show below that the reported gains
from adversarial training by Xu et al. [2] actually mostly stem from self-training, i.e., the "leakage" of
information on the clean test nodes through pseudo-labeling. Then, we close the gap between theory
and practice and show that perfect robustness, while preserving clean accuracy, can be achieved
empirically through adversarial training – effectively solving the learning setting in prior work.

Self-training is the (main) cause for robustness in transductive learning. In Figure 2, we compare

Figure 2: Robust test-
accuracy of a GCN under
different training schemes on
Cora. Adversarial training
uses a PGD-attack (10% pert.
edges). Most robustness
gains are due to self-training.

Figure 3: Adv. trained
GPRGNN following Xu
et al. [2] achieves perfect
robustness on Cora. GCN
baseline uses the same adv.
training setup (training
budget: 100% of edges).

the (robust) test accuracies of a GCN
using different training schemes: (i)
normal training, (ii) adversarial train-
ing, (iii) self-training, and (iv) pair-
ing self- and adversarial training. In-
deed, Figure 2 shows that the main ro-
bustness gain actually stems from self-
training and not adversarial training.
Surprisingly, adversarial training with-
out self-training can even hurt robust-
ness, while adversarial training paired
with self-training only slightly in-
creases robust test accuracy compared
to using self-training alone. These re-
sults are independent of the used ar-
chitecture, dataset, or attack strength,
as we show in Appendix C.2.2.

Adversarial training causes overfitting. For transductive node classification, it is also empirically
possible to achieve perfect robustness while maintaining clean test accuracy by combining self- with
adversarial training and using a more flexible, learnable diffusion model (GPRGNN) as introduced in
Section 3 In Figure 3, we show the test accuracy under severe perturbations for an adversarially trained
GCN [2] and GPRGNN, both trained using a very strong adversary and pseudo-labels derived from
self-training. The performance of the adversarially trained GCN reduces rapidly, while GPRGNN
achieves (almost constant) perfect robustness. Since the pseudo-labels are derived from the clean
graph, the clean graph is leaked in the training process. This allows GPRGNN to mimic the behavior
of an MLP and overfit to the pseudo-labels, i.e., memorize the (node-feature, pseudo-label)-pairs it
has seen during training. In other words, it finds a trivial solution to this learning setting, making its
limitations evident similar to the theoretic solution discussed in Section 2.1.1. In Appendix C.2.1 we
show that we achieve perfect robustness not only if using the PGD attack as Xu et al. [2], but also for
many different attacks.

These findings question how to interpret the reported robustness gains of previous work, which all
evaluate transductively and usually use self-training. Conceptually, being robust against test-time
(evasion) attacks is most relevant if there can be a natural change in the existing data. Only then it
is realistic to assume an adversary causing some of the change to be malicious and against which
we want to be robust without losing our ability to generalize to new data. Therefore, in Section 5
we revisit adversarial training in an inductive setting, avoiding the same evaluation pitfalls. Indeed,
we find that using robust diffusion (see Section 3), we are not only capable of solving transductive
robustness, but learn to robustly generalize to unseen nodes far better than previously studied models.

4



3 Robust Diffusion: Combining Graph Diffusion with Adversarial Training

We propose to use learnable graph diffusion models able to approximate any graph filter in conjunction
with adversarial training to obtain a robust diffusion. The key motivation is to use more flexible GNN
architectures for adversarial training than previous studies. We not only show that a robust diffusion
significantly outperforms other models used in previous work (see Section 5), but it also allows for
increased interpetability as we can gain insights into the characteristics of such robustness-enhancing
models from different perspectives.

In fixed message passing schemes of popular GNNs like GCN or APPNP, each layer can be
interpreted as the graph convolution g(Λ)⊛H = V g(Λ)V ⊤H between a fixed graph filter g(Λ)
and the transformed node attributes are H = fθ(X) using MLP fθ. This convolution is defined
w.r.t. the (diagonalized) eigenvalues Λ ∈ Rn×n and eigenvectors V ∈ Rn×n of the Laplacian
L′ = I −D−1/2AD−1/2 with diagonal degree matrix D. Following the common reparametrization,
instead of L′, we use the “normalized adjacency” L = D−1/2AD−1/2 or, depending on the specific
model, L̊ = D̊−1/2ÅD̊−1/2 where Å = A+I with node degrees D̊. Then, many spatial GNNs relate
to the K-order polynomial approximation V g(Λ)V ⊤H ≈

∑K
k=0 γkL

kH with the K +1 diffusion
coefficients γ ∈ RK+1. Many GNNs stack multiple convolutions and add point-wise non-linearities.

Crucially, GCN’s or APPNP’s graph filter g(Λ) is fixed (up to scaling). Specifically, we obtain an
MLP with γ = [1, 0, . . . , 0]. If using L̊, a GCN corresponds to γ = [0,−1, 0, . . . , 0], and in APPNP
γ are the Personalized PageRank coefficients.

yu = 0 yu = 1 yu = 2 yu = 3

Tu,v 0.350-0.35

(a) Norm. adj. −L̊ (b) T (no adv. trn.)

(c) T (w/o local con.) (d) T (w/ local con.)

Figure 4: Robust diffusion (GPRGNN) on
Karate Club where the edge (u, v) width en-
codes the diffusion coefficient Tu,v learned
during training. In (a) we show the normal-
ized adjacency matrix. The other plots show
the robust diffusion transition matrix: (b)
w/o adversarial training, (c) w/ adversarial
training but w/o local constraints, and (d) w/
adversarial training and w/ local constraints.

Robust diffusion. In contrast to prior work on ro-
bust graph learning, we do not solely use a static
parametrization of g(Λ). Instead, we learn the graph fil-
ter, which corresponds to training diffusion coefficients
γ. This allows the model to adapt the graph diffusion to
the adversarial perturbations seen during training, i.e.,
we learn a robust diffusion.

For this, the used architectures consist of two steps:
(1) using an MLP to preprocess the node features,
i.e., H = fθ(X) where θ are learnable parame-
ters; and then, (2) using a learnable diffusion com-
puting the logits. For the learnable diffusion, we em-
ploy GPRGNN [13] that uses the previously intro-
duced monomial basis: softmax

(∑K
k=0 γkL̊

kH
)
. Ad-

ditionally, we study Chebyshev polynomials (see Cheb-
NetII [14]) that are of interest due to their benefi-
cial theoretical properties. ChebNetII can be expressed
as softmax

(∑K
k=0 γkwkTk(L)H

)
with extra weight-

ing factor wk = 2/K−1
∑K

j=0 Tk(xj). The Chebyshev
basis is given via T0(L) = I , T1(L) = L, and
Tk(L) = 2LTk−1(L) − Tk−2(L). The Chebyshev
nodes xj = cos

( j+1/2
K+1 π

)
, j = 0, . . . ,K for wk re-

duce the so-called Runge phenomenon [14]. Note, the
resulting Chebyshev polynomial can be expressed in
monomial basis (up to L vs. L̊) via expanding the
Tk(L) terms and collecting the powers Lk.

Interpretability. While chaining multiple layers of a “fixed” convolution scheme (e.g. GCN) might
allow for similar flexibility, with our choice of robust diffusion, we can gain insights about the learned
robust representation from the (i) polynomial, (ii) spectral, and (iii) spatial perspective.

(i) Polynomial perspective. The coefficients γk determine the importance of the respective k-hop
neighborhood for the learned representations. To visualize γk, we can always consider γ0 to be
positive, which is equivalent to flipping the sign of the processed features H . Additionally, we
normalize the coefficients s.t.

∑
|γ| = 1 since H also influences the scale. In Figure 6, we give an

example for the polynomial perspective (details are discussed in Section 5).

5



(ii) Spectral perspective. We solve for gθ(Λ) in the polynomial approximation V gθ(Λ)V ⊤H ≈∑K
k=0 γkL̊

kH to obtain a possible graph filter gθ(Λ) = V ⊤(
∑K

k=0 γkL̊
k)V . Following Balcilar

et al. [15], we study the spectral characteristics w.r.t. I−D−1/2AD−1/2. Then, the diagonal entries of
gθ(Λ) correspond to the (relative) magnitude of how signals of frequency λ are present in the filtered
signal. Vice versa, a low value corresponds to suppression of this frequency. Recall, low frequencies
correspond to the small eigenvalues and high to the large eigenvalues. In Figure 7, we show how
adversarial training and the permissible perturbations affect the spectra of the learned graph filters.

(iii) Spatial perspective. Robust diffusion (monomial basis) can be summarized as softmax (TH)

where T =
∑K

k=0 γkL̊
k is the total diffusion matrix. The coefficient Tuv indicates the diffusion

strength between node u and node v. For example, we visualize the total diffusion matrix T in
Figure 4 on Karate Club [16] with different training strategies. Depending on the learning signal we
give, GPRGNN is able to adjust its diffusion.

4 LR-BCD: Adversarial Attack with Local Constraints

Motivation for local constraints. The just-discussed interpretability of robust diffusion provides
empirical evidence for the importance of local constraints. Specifically, from Figure 4c, we see that
GPRGNN adversarially trained without local constraints learns a diffusion that almost ignores the
graph structure. While this model is certainly very robust w.r.t. structure perturbations, it is not a
very useful GNN since it cannot leverage the structure information anymore. In contrast, we show in
Figure 4d that GPRGNN trained adversarially with local constraints results in a robust model that can
still incorporate the structure information.

1 2 3 4

Node Degree

1
2

3
4

N
b

.
of

ad
v
.

ed
ge

s

1 2 3 4

Node Degree

10

20

30

Figure 5: Number of successfully attacked
nodes by node degree and number of con-
nected adversarial edges. We attack self-
trained GCN with PR-BCD and global bud-
gets 10% (left) and 25% (right) on Cora-ML
and aggregate the results over three different
data splits. We observe that a notable amount
of nodes is perturbed beyond their degree.

The local predictions in node classification yield
an alternative motivation. In the absence of local
constraints, an adversary typically has the power to
rewire the entire neighborhood of many nodes. When
attacking GNNs, we empirically observe that a ma-
jority of successfully attacked nodes are perturbed
beyond their degree even for moderate global attack
budgets (see Figure 5). That such perturbations are
not reasonable is evident in the fact that studies on
local attacks [7, 17], where the adversary targets a sin-
gle node’s prediction, do not consider perturbations
(far) beyond the node degree. However, a 5% attack
budget on Cora-ML allows changing 798 edges while
the majority of nodes have a degree less than three.

Traditionally, adversarial changes are judged by no-
ticeability [18] since unnoticeable changes do not alter the semantics. However, for graphs, manual
inspection of its content is often not feasible, and the concept of (un-)noticeability is unclear. However,
using generative graph models Gosch et al. [6] revealed that perturbations beyond the node degree
most often do alter the semantics. Perturbations that alter semantics can pose a problem for adversarial
training. Similar observations have been done in graph contrastive learning where perturbations that
do not preserve graph semantic preservation have a direct effect on the achievable error bounds [19].

Locally constrained Randomized Block Coordinate Descent (LR-BCD). We next introduce our
LR-BCD attack; the first attack targeting multiple nodes at once while maintaining a local constraint
for each node next to a global one. For this, we extend the so-called PR-BCD attack framework.

Projected Randomized Block Coordinate Descent (PR-BCD) [17] is a gradient-based attack framework
applicable to a wide range of models. Its goals is to generate a perturbation matrix P ∈ {0, 1}n×n that
is applied to the original adjacency matrix A to construct a perturbed matrix Ã = A+(I−2A) ⊙ P ,
where I is an all-one matrix and ⊙ the element-wise product. For undirected graphs, only the upper-
triangular parts of all matrices are considered. To construct P in an efficient manner, PR-BCD
relaxes P during the attack from {0, 1}n×n to [0, 1]n×n and employs an iterative process for T
iterations. It consists of three repeating steps. (1) A random block of size b is sampled. That is, only b
(non-contiguous) elements in the perturbation matrix Pt−1 are considered and all other elements set
to zero. Thus, Pt−1 is sparse. (2) A gradient update w.r.t. the loss to compute relaxed perturbations

6



St is performed, i.e., St ← Pt−1 + αt−1∇Pt−1ℓ(Pt−1), where Pt−1 are the previous perturbations,
αt−1 is the learning rate, and∇Pt−1ℓ(Pt−1) are the perturbation gradients through the GNN. Finally,
and most crucially (3) a projection ΠB(G) ensures that the perturbations are permissible given the
set of allowed perturbations B(G), i.e. Pt = ΠB(G)(St). Now, the process starts again with (1), but
all zero-elements in the block b (or at least 1/2 of the lowest-value block elements) are resampled.
After T iterations, the perturbations PT are discretized from [0, 1]n×n to {0, 1}n×n to obtain the
discrete Ã. Specifically, PT is discretized via sampling, where the elements in PT are used to define
Bernoulli distributions.

Global projection. As mentioned above, the projection ΠB(G) of PR-BCD is the crucial step that
accounts for the attack budget. Geisler et al. [17] develop an efficient projection for an adversary
implementing a global perturbation constraint, i.e., for B(G) = {Ã ∈ {0, 1}n×n | ∥Ã−A∥0 ≤ ∆}
with ∆ ∈ N≥0. This is achieved by formulating the projection as the following optimization problem

Π∆(S) = argminP ∥P − S∥2F subject to
∑

i,j
Pi,j ≤ ∆ (5)

P ∈ [0, 1]n×n

with Frobenius norm ∥ · ∥2F and the sum aggregating all elements of the matrix. Π∆(S) can be solved
with the bisection method [17]. However, the projection Π∆ does not support limiting the number of
perturbations per node, i.e.,

∑n
j=1 Pi,j ≤ ∆

(l)
i where ∆(l) ∈ Nn

≥0 is the vector of local budgets for
each node. Indeed, extending the optimization problem above to include local constraints leads to the
notoriously hard problem of Euclidean projection to polyhedra [20].

A locally constrained global projection (LR-BCD). With the goal of an efficient attack including local
constraints, we have to develop an alternative and scaleable projection strategy for B(G) = {Ã ∈
{0, 1}n×n | ∥Ã −A∥0 < ∆ ∧ ∥

∑
j(Ãij −Aij)∥0 ≤ ∆

(l)
i ∀i ∈ [n]}. Our novel projection P =

Π
(l)
∆ (S) = Π[0,1](S)⊙C∗ chooses the largest entries from the perturbation matrix S ∈ Rn×n using

C∗ ∈ [0, 1]n×n and clipping operator Π[0,1](s) ∈ [0, 1], s.t. we obey global and local constraints.
The optimal choices C∗ can be calculated by solving a relaxed multi-dimensional knapsack problem:

C∗ = argmax
C

∑
i,j

S ⊙C subject to
∑

i,j
P ′
i,j ≤ ∆ (6)∑

j
P ′
i,j ≤ ∆

(l)
i ∀i ∈ [n]

C ∈ [0, 1]n×n

where P ′ = Π[0,1](S)⊙C, i.e., Π[0,1](S) represents the weights of the individual choices, while S
captures their value.

∑
i,j P

′
i,j aggregate all elements in the matrix. The local constraint

∑
j P

′
i,j ≤

∆
(l)
i , constrain the perturbations in each neighborhood, with node-specific budgets ∆

(l)
i . Even

though this optimization problem has no closed-form solution, it can be readily approximated with
greedy approaches [21]. The key idea is to iterate the non-zero entries in S in descending order and
construct the resulting C∗ (or directly P ) as follows: For each perturbation (u, v) related to Suv,
we check if the global ∆ or local budgets ∆(l)

u and ∆
(l)
v are not yet exhausted. Then, C∗

uv = 1 (i.e.,
Pu,v = Π[0,1](Suv)). Otherwise, C∗

uv = min{∆,∆
(l)
u ,∆

(l)
v }. The final discretization is given by

C∗ corresponding to the solution of Equation (6) for ST , but changing the weight of each choice
to 1 (i.e., P ′ = C), guaranteeing a binary solution due to the budgets being integer. We give the
pseudo-code and more details in Appendix B.4.

Our projection yields sparse solutions as it greedily selects the largest entries in S until the budget
is exhausted. Moreover, it is efficient. Its time complexity is O(b log(b)) due to the sorting of the
up to b non-zero entries in the sparse matrix S. Its space complexity is O(b), assuming we choose
the block size b ≥ ∆ as well as b ≥ n. Thus, LR-BCD has the same asymptotic complexities as the
purely global projection by Geisler et al. [17] (which we will from now on denote as PR-BCD).

Summary. We will now summarize our LR-BCD along the four dimensions proposed by Biggio
and Roli [22]. (1) Attacker’s goal: Although our focus is to increase the misclassification for the
target nodes in node classification, we can apply LR-BCD to different node- and graph-level tasks
depending on the loss choice. (2) Attacker’s knowledge: We assume perfect knowledge about the
model and dataset, which is reasonable for adversarial training. (3) Attacker’s capability: We propose

7



Table 1: Comparison on Citeseer of regularly trained models, the state-of-the-art SoftMedian GDC
defense, and adversarially trained models (train ϵ = 20%). The first line shows the robust accuracy
[%] of a standard GCN and all other numbers represent the difference in robust accuracy achieved by
various models in percentage points from this standard GCN. The best model is highlighted in bold
and grey background marks our robust diffusion.

Model Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD Certifiable accuracy / sparse smoothing
trn. A. trn. ↓ Clean ϵ=0.1 ϵ=0.25 Clean 3 add. 5 del.

GCN ✗ - 72.0 ± 2.5 54.7 ± 2.8 51.7 ± 2.8 45.3 ± 3.4 38.0 ± 3.8 38.3 ± 11.5 1.7 ± 0.7 4.8 ± 1.5

GAT ✗ - -3.6 ± 2.7 -3.9 ± 3.4 +0.5 ± 3.5 -15.9 ± 5.3 -2.3 ± 7.3 -14.0 ± 12.0 -1.7 ± 0.7 -4.8 ± 1.5
APPNP ✗ - +0.2 ± 1.1 +1.7 ± 0.7 +1.9 ± 1.4 +3.0 ± 1.2 +2.2 ± 2.5 +8.9 ± 9.1 +31.2 ± 6.4 +31.6 ± 6.4

GPRGNN ✗ - +2.2 ± 4.3 +4.2 ± 2.7 +3.6 ± 4.9 +5.5 ± 3.9 +7.9 ± 4.6 +17.9 ± 6.9 +42.4 ± 4.4 +41.3 ± 3.7
ChebNetII ✗ - +1.1 ± 2.2 +5.8 ± 2.5 +5.0 ± 2.4 +10.4 ± 2.6 +7.6 ± 3.4 +24.6 ± 9.9 +55.6 ± 1.2 +54.0 ± 0.9
SoftMedian ✗ - +0.9 ± 1.7 +9.5 ± 2.2 +9.3 ± 1.9 +16.2 ± 2.4 +14.6 ± 2.9 +25.2 ± 10.5 +60.3 ± 1.4 +57.5 ± 0.8

GCN ✓ LR-BCD -0.2 ± 1.2 +7.8 ± 1.6 +5.9 ± 1.5 +10.9 ± 2.1 +8.1 ± 2.3 -3.0 ± 9.4 +10.7 ± 4.6 +13.1 ± 5.1
PR-BCD +0.0 ± 1.9 +6.9 ± 0.9 +5.3 ± 1.6 +8.6 ± 2.3 +5.8 ± 2.4 +4.2 ± 14.6 +10.1 ± 5.5 +11.4 ± 4.5

GAT ✓ LR-BCD +0.8 ± 1.6 +5.9 ± 3.7 +9.0 ± 3.0 +8.4 ± 5.1 +13.1 ± 3.5 -2.0 ± 23.0 +1.4 ± 1.7 +4.0 ± 2.1
PR-BCD +1.1 ± 2.2 +8.9 ± 2.8 +13.2 ± 3.7 +10.3 ± 2.3 +21.8 ± 4.8 -10.1 ± 13.7 +1.2 ± 2.0 +2.8 ± 1.2

APPNP ✓ LR-BCD -0.8 ± 1.3 +7.6 ± 1.6 +5.6 ± 1.9 +11.1 ± 1.9 +8.3 ± 3.6 +21.7 ± 9.5 +41.3 ± 2.9 +44.1 ± 1.2
PR-BCD -0.2 ± 2.2 +6.2 ± 2.3 +5.5 ± 3.1 +9.0 ± 2.9 +6.5 ± 3.8 +19.3 ± 7.2 +41.0 ± 3.8 +41.9 ± 3.0

LR-BCD +1.7 ± 3.0 +15.7 ± 3.6 +13.6 ± 3.5 +24.8 ± 4.2 +22.9 ± 4.3 +34.0 ± 11.5 +67.4 ± 1.5 +65.0 ± 2.5GPRGNN ✓ PR-BCD +0.6 ± 3.6 +15.0 ± 3.6 +15.9 ± 4.2 +23.2 ± 4.3 +26.3 ± 5.4 +32.9 ± 11.8 +69.0 ± 1.5 +65.9 ± 2.3
LR-BCD +3.7 ± 1.4 +11.5 ± 1.6 +11.5 ± 1.1 +16.4 ± 1.9 +16.0 ± 2.9 +31.5 ± 12.7 +62.3 ± 1.9 +59.8 ± 2.5ChebNetII ✓ PR-BCD +3.4 ± 1.7 +13.2 ± 2.2 +14.3 ± 1.2 +19.5 ± 1.6 +19.8 ± 2.3 +30.7 ± 13.2 +65.4 ± 2.6 +62.9 ± 3.7

to use a threat model that constrains the number of edge perturbations globally as well as locally for
each node. (4) Attacker’s strategy: LR-BCD extends PR-BCD by a projection incorporating local
constraints. Most notably, we relax the unweighted graph during the attack to continuous values and
leverage randomization for an efficient attack while optimizing over all possible n2 edges.

5 Empirical Results

Inductive learning. All results in this section follow a fully inductive semi-supervised setting. That is,
the training graph G does not include validation and test nodes. For evaluation, we then successively
add the respective evaluation set. This way, we avoid the evaluation flaw of prior work since the model
cannot achieve robustness via “memorizing” the predictions on the clean graph. We obtain inductive
splits randomly, except for OGB arXiv [11], which comes with a split. In addition to the commonly
sampled 20 nodes per class for both (labeled) training and validation, we sample a stratified test set
consisting of 10% of all nodes. The remaining nodes are used as (unlabeled) training nodes.

Setup. We study the citation networks Cora, Cora-ML, CiteSeer [23], Pubmed [24], and OGB
arXiv [11]. Furthermore, WikiCS [25, 26], which has significantly more heterogeneous neighborhoods
as well the heterophilic dataset Squirrel [27] and (contextual) Stochastic Block Models (SBMs) [28]
with a heterophilic parametrization (see Appendix B.1). As models we choose GPRGNN, ChebNetII,
GCN, APPNP, and GAT [29]. Further, we compare to the state-of-the-art evasion defenses Soft
Median GDC [17] in the main part and GRAND [30] in Table D.6. We apply adversarial training (see
Section 2 and Appendix B.5) using both PR-BCD that only constraints perturbations globally and our
LR-BCD that also allows for local constraints. Moreover, we use adversarial training in conjunction
with self-training. Due to the inductive split, this does not bias results. We use the tanh margin attack
loss of [17] and do not generate adversarial examples for the first 10 epochs (warm-up). We evaluate
robust generalization on the test set using L/PR-BCD, which corresponds to adaptive attacks. Adaptive
attacks are the gold standard in evaluating empirical robustness because they craft model-specific
perturbations [31]. We use ϵ to parametrize the global budget ∆ = ⌊ϵ ·

∑
u∈A du/2⌉ relative to the

degree du for the set of targeted nodesA. We find that ∆(l)
u = ⌊du/2⌋ is a reasonable local budget for

all datasets but arXiv where we use ∆(l)
u = ⌊du/4⌋. We report averaged results with the standard error

of the mean over three random splits. We use GTX 1080Ti (11 Gb) GPUs for all experiments but arXiv,
for which we use a V100 (40 GB). For details see Appendix B. We discuss limitations in Appendix F
and provide code at https://www.cs.cit.tum.de/daml/adversarial-training/.

Certifiable robustness. We use the model-agnostic randomized/sparse smoothing certificate of
Bojchevski et al. [32] to also quantify certifiable robustness. Sparse smoothing creates a randomized
ensemble given a base model fθ s.t. the majority prediction of the ensemble comes with guarantees.
For the randomization, we follow Bojchevski et al. [32] and uniformly drop edges with p− = 0.6 as
well as add edges with p+ = 0.01. Sparse smoothing then determines if a node-level prediction is

8

https://www.cs.cit.tum.de/daml/adversarial-training/


certified (does not change) for the desired deletion radius r− or addition radius r+. The guarantee
holds in a probabilistic sense with significance level α. We report the “certified accuracy” γ(r−, r+)
that is the average of correct and certifiable predictions over all nodes. We choose α = 5% and
obtain 100,000 random samples. For simplicity, we report in the main part the certified accuracies
γ(r− = 0, r+ = 0), γ(5, 0), and γ(0, 3). See Appendix D.4 for more details and results.

Table 2: Robust accuracy [%] on further datasets.
Attack types match for training (ϵ = 0.2) and evalua-
tion. Grey shading highlights our robust diffusion.

Model Adv. Attack Clean ϵ=0.1 ϵ=0.25trn. eval. & trn.

C
or

a
M

L GCN ✗
LR-BCD 82.5 ± 1.9 59.2 ± 2.8 48.5 ± 1.6
PR-BCD 82.5 ± 1.9 57.4 ± 2.3 38.0 ± 2.3

GPRGNN
✗

LR-BCD 83.5 ± 2.6 64.8 ± 2.3 57.0 ± 1.5
PR-BCD 83.5 ± 2.6 61.9 ± 1.8 46.6 ± 1.4
LR-BCD 83.3 ± 1.2 76.8 ± 1.1 74.4 ± 1.8✓ PR-BCD 82.5 ± 0.8 73.5 ± 1.5 69.0 ± 2.6

C
or

a

GCN ✗
LR-BCD 79.9 ± 0.9 60.8 ± 0.2 47.9 ± 1.8
PR-BCD 79.9 ± 0.9 59.1 ± 0.4 44.1 ± 0.7

GPRGNN
✗

LR-BCD 81.8 ± 1.0 69.4 ± 0.2 61.7 ± 0.6
PR-BCD 81.8 ± 1.0 64.3 ± 0.6 52.0 ± 0.6
LR-BCD 82.4 ± 0.9 72.6 ± 1.1 70.0 ± 1.5✓ PR-BCD 79.9 ± 1.3 71.9 ± 1.0 66.3 ± 0.9

Pu
bm

ed

GCN ✗
LR-BCD 77.4 ± 0.4 60.4 ± 0.7 52.8 ± 1.4
PR-BCD 77.4 ± 0.3 54.0 ± 0.5 39.3 ± 1.2

GPRGNN
✗

LR-BCD 78.8 ± 1.0 61.1 ± 1.3 54.0 ± 0.9
PR-BCD 78.8 ± 1.0 57.0 ± 1.2 42.7 ± 1.4
LR-BCD 80.5 ± 0.8 75.8 ± 1.0 74.7 ± 1.1✓ PR-BCD 80.4 ± 0.5 73.0 ± 1.1 68.8 ± 1.6

SB
M

(h
et

er
o.

)

GCN ✗
LR-BCD 62.0 ± 4.5 51.5 ± 4.3 45.1 ± 4.5
PR-BCD 62.0 ± 4.5 49.2 ± 3.4 47.1 ± 4.8

GPRGNN
✗

LR-BCD 86.5 ± 2.1 67.3 ± 3.3 59.6 ± 3.3
PR-BCD 85.9 ± 4.9 68.4 ± 2.9 55.6 ± 4.4
LR-BCD 85.5 ± 0.5 72.1 ± 1.7 67.0 ± 3.3✓ PR-BCD 85.5 ± 2.9 69.0 ± 0.5 60.9 ± 2.9

Sq
ui

rr
el

GCN ✗
LR-BCD 42.0 ± 0.3 20.1 ± 1.3 15.8 ± 1.4
PR-BCD 41.9 ± 0.3 12.1 ± 0.3 6.9 ± 0.6

GPRGNN
✗

LR-BCD 40.0 ± 0.6 29.8 ± 4.8 28.4 ± 5.1
PR-BCD 40.4 ± 0.9 20.6 ± 0.6 15.3 ± 1.4
LR-BCD 37.8 ± 1.4 34.1 ± 3.4 33.8 ± 3.7✓ PR-BCD 38.4 ± 1.6 32.3 ± 4.7 28.9 ± 9.1

W
ik

iC
S

GCN ✗
LR-BCD 74.6 ± 2.8 42.5 ± 2.3 35.4 ± 2.6
PR-BCD 75.1 ± 1.5 38.6 ± 2.9 30.2 ± 2.5

GPRGNN
✗

LR-BCD 72.8 ± 1.1 52.8 ± 3.2 49.7 ± 4.9
PR-BCD 72.8 ± 0.4 52.7 ± 1.0 50.0 ± 1.2
LR-BCD 73.3 ± 2.7 64.4 ± 2.2 62.8 ± 2.1✓ PR-BCD 73.2 ± 0.2 60.0 ± 1.9 54.1 ± 0.8

Finding I: Adversarial training is an effec-
tive defense against structure perturbations.
This is apparent from the results in Table 1,
where we compare the empirical and certifi-
able robustness between the aforementioned
models on Citeseer. Our adversarially trained
robust diffusion models GPRGNN and Cheb-
NetII outperform the other baselines both in
empirical and certifiable robustness. This in-
cludes the state-of-the-art defense Soft Me-
dian, which we outperform with a comfort-
able margin. Thus, we close the gap in terms
of the efficacy of adversarial training in the
image domain vs. structure perturbations. No-
tably, the increased robustness does not imply
a lower clean accuracy. For example, our LR-
BCD adversarially trained GPRGNN achieves
a 1.7 percentage points higher clean accuracy
than a GCN, while with an adaptive LR-BCD
attack and ϵ = 25% perturbed edges, we out-
perform a GCN by 24.8 percentage points.
This amounts to a clean accuracy of 73.7%
and a perturbed accuracy of 70.1%. We show
the empirical robustness gains of adversarial
training on on the other datasets in Table 2,
compared to a GCN and regularly trained
GPRGNN. We show that robust diffusion con-
sistently and substantially improves the robust-
ness – not only on homophilic datasets but also
under heterophily (SBM, Squirrel). We present more results and an ablation study in Appendix D.

Finding II: Choose the set of permissible perturbations wisely! As argued already in Section 4,
the right set of admissible permutations can guide the learned robust diffusion. Importantly, the set of
admissible perturbations is application specific. That is, depending on the choice, the resulting model
might have different robustness characteristics w.r.t. different threat models. For example, in Table 1,
a LR-BCD adversarially trained GPRGNN is more robust to LR-BCD attacks than to a model trained
with PR-BCD, and vice versa. Importantly, the learned message passing is very different as the
spectral analysis (Figure 7) reveals a striking pattern. Adversarial training with PR-BCD flipped the
behavior from low-pass to high-pass if compared to a regularly trained model. However, adversarial
training with LR-BCD seems to preserve the general characteristic while using a larger fraction of the
spectrum to enhance robustness. Note that such a filter (less integral Lipschitz) opposes the theoretical
stability result of Gama et al. [33]. Moreover, the polynomial coefficients (Figure 6) resulting from
adversarial training without local constraints (Figure 6c) are very similar to coefficients that Chien
et al. [13] associated with a non-informative graph structure. See Appendix D.2 for other datasets.

Finding III: Adversarial training with local constraints is efficient and scalable. We show in
Figure 8 the results of an adversarially trained GPRGNN using LR-BCD with different relative
budgets ϵ. Adversarial training on arXiv requires less than 20 GB of RAM and an epoch takes
approx. 10 seconds. In contrast, the globally constrained adversarial training of Xu et al. [2] would
require multiple terabytes of RAM due to n2 possible edge perturbations [17]. We not only show
that robust diffusion with LR-BCD is scalable, but also that it improves the robustness on arXiv.
That is, twice as many edge perturbations are required to push the accuracy below that of an MLP, if
comparing ϵ = 10% to standard training.

9



0 10

Index k

0.00

0.25

C
o

eff
.
γ
k

0 10

Index k
0 10

Index k

(a) Regul. (b) w/ loc. (c) w/o l.

Figure 6: Learned coefficients γ
for GPRGNN on Citeseer. We use
ϵ = 20% in (b) and (c) for adv. trn.

0 2

Eigenvalue λ

0.5

1.0

F
ilt

er
m

ag
n. regular

trn.

adv trn.
LR-BCD

adv trn.
PR-BCD

Figure 7: Respective spectral fil-
ters of Figure 6. Low filter mag-
nitude denotes suppression of
the respective frequencies asso-
ciated with eigenvalues λ.

0 5 10

Perturbed Edges (global) [%]

55

60

65

70

T
es

t
A

cc
ur

ac
y

[%
]

MLP

ε = 0%

ε = 5%

ε = 10%

Figure 8: Acc. on arXiv un-
der adv. attack for GPRGNN
with different training pert.
strengths ϵ using LR-BCD.

6 Related Work Table 3: Works on adversarial training for GNNs.

Publication Learning setting Type of attack
Deng et al. [34] Transductive evasion (attribute)
Feng et al. [35] Transductive evasion (attribute)

Jin and Zhang [36] Transductive evasion (structure + attribute)
Xu et al. [2] Transductive evasion (structure)
Xu et al. [3] Transducitve evasion (structure)

Chen et al. [37] Transductive evasion (structure)
Li et al. [38] Transductive evasion (structure + attribute)

Guo et al. [39] Transductive evasion + poisoning (structure)

We next relate to prior work and refer to
Appendix E for more detail: (1) Learn-
ing setting. Conceptual problems by re-
membering training data are not unique
to adversarial training and have been
mentioned in Zheng et al. [40] for graph
injection attacks and by Scholten et al.
[41] for certification. (2) Adversarial training for GNNs under structure perturbations have been
studied in [2, 3, 36–39]. However, all prior works study a transductive setting (see Table 3) hav-
ing serious shortcomings for evasion attacks (see Section 2). Note that only Xu et al. [2, 3] study
adversarial training for (global) structure perturbations in its literal sense, i.e., directly work on
Equation (1). Further, we are the first to study adversarial training in the inductive setting. (3) Lo-
cal constraints have been studied for local attacks [7, 17, 42, 12], i.e., if attacking a single node’s
prediction. They are also well-established for robustness certificates [43–45]. However, surprisingly,
there is no global attack, i.e., attack targeting a large set of node predictions at once, that incorporates
local constraints. This even led to prior work trying to naively and expensively apply local attacks for
each node sequentially to generate locally constrained global perturbations [38]. With LR-BCD, we
finally close this gap. (4) GNN Architectures. The robust GNN literature strongly focuses on GCN
and variants [7, 17, 46–49, 38, 50, 8]. GAT is perhaps the most flexible studied model [40]. While
adversarial training improves the robustness of GAT, in our experiments, an adversarial trained GAT
is not more robust than a GCN [4]. A novel aspect of our work is that spectral filters, in the form of
polynomials [14, 13], can learn significantly more robust representations, beating a state-of-the-art
graph defense. They also reveal insights about the learned robust representation.

7 Broader impact

We are convinced that the benefits outweigh the risks. Having the right tools at hand can further the
reliability of graph machine learning. Due to the more fine-grained perturbation models, researchers
and practitioners and improve upon defending adversarial attacks. We firmly believe that transparent
research into the vulnerabilities of models allows researchers and practitioners to understand potential
problems and build strong defenses – as also showcased in our paper. Moreover, due to the studied
whitebox setup, our approaches are not directly applicable for real-world malicious actors.

8 Discussion and Conclusion

We show that the transductive learning setting in prior work on adversarial training for GNNs has
fundamental limitations leading to a biased evaluation and a trivial solution through memorization.
Thus, we revisit adversarial training in a fully inductive setting. Furthermore, we argue that future
research on evasion attacks in the graph domain, in general, should focus on the inductive setting to
avoid the conceptual limitations inherent to combining transductive learning with test-time attacks.
Moreover, we employ more flexible GNNs than before that achieve substantial robustness gains
through adversarial training and are interpretable. For more realistic perturbations, we develop
LR-BCD - the first global attack able to maintain local constraints.

10



Acknowledgments and Disclosure of Funding

This research was supported by the Helmholtz Association under the joint research school “Munich
School for Data Science - MUDS“. Furthermore, this paper has been supported by the DAAD
programme Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the German
Federal Ministry of Education and Research, and the German Research Foundation, grant GU
1409/4-1.

References
[1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

[2] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. In IJCAI,
2019.

[3] Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, and Xue
Lin. Towards an efficient and general framework of robust training for graph neural networks.
In ICASSP, 2020.

[4] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[5] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on graphs. In ICLR, 2019.

[6] Lukas Gosch, Daniel Sturm, Simon Geisler, and Stephan Günnemann. Revisiting robustness in
graph machine learning. In ICLR, 2023.

[7] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In KDD, 2018.

[8] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018.

[9] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning (Adap-
tive Computation and Machine Learning). 2006.

[10] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[12] Stephan Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural
Networks: Foundations, Frontiers, and Applications. 2022.

[13] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In ICLR, 2021.

[14] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. In NeurIPS, 2022.

[15] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In ICLR, 2021.

[16] W.W. Zachary. An information flow model for conflict and fission in small groups. Journal of
Anthropological Research, 1977.

[17] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. In NeurIPS, 2021.

11



[18] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[19] Puja Trivedi, Ekdeep Singh Lubana, Mark Heimann, Danai Koutra, and Jayaraman J. Thiagara-
jan. Analyzing data-centric properties for graph contrastive learning. In NeurIPS, 2022.

[20] Stephen Wright and Benjamin Recht. First-order methods for constrained optimization. In
Optimization for Data Analysis. 2022.

[21] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. 2004.

[22] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. In ACM SIGSAC Conference on Computer and Communications Security, 2018.

[23] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. In ICLR, 2018.

[24] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 2008.

[25] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv:2007.02901, 2020.

[26] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks, 2022.

[27] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we really
making progress? In ICLR, 2023.

[28] Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata Sen. Contextual
stochastic block models. NeurIPS, 2018.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[30] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on
graphs. In NeurIPS, 2020.

[31] Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bojchevski. Are
defenses for graph neural networks robust? In NeurIPS, 2022.

[32] Aleksandar Bojchevski, Johannes Klicpera, and Stephan Günnemann. Efficient robustness
certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and
more. In ICML, 2020.

[33] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural
networks. IEEE Trans. Signal Process., 2020.

[34] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolu-
tional networks. In arXiv:1902.09192, 2019.

[35] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
2019.

[36] Hongwei Jin and Xinhua Zhang. Latent adversarial training of graph convolution networks. In
ICML Workshop on Learning and Reasoning with Graph-Structured Data, 2019.

[37] Jinyin Chen, Xiang Lin, Hui Xiong, Yangyang Wu, Haibin Zheng, and Qi Xuan. Smoothing
adversarial training for gnn. IEEE Transactions on Computational Social Systems, 2021.

[38] Jintang Li, Jiaying Peng, Liang Chen, Zibin Zheng, Tingting Liang, and Qing Ling. Spectral
adversarial training for robust graph neural network. In TKDE, 2022.

12



[39] Jiayan Guo, Shangyang Li, Yue Zhao, and Yan Zhang. Learning robust representation through
graph adversarial contrastive learning. In Database Systems for Advanced Applications. 2022.

[40] Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie
Tang. Graph robustness benchmark: Benchmarking the adversarial robustness of graph machine
learning. NeurIPS, 2021.

[41] Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, and Stephan Günnemann.
Randomized message-interception smoothing: Gray-box certificates for graph neural networks.
In NeurIPS, 2022.

[42] Marcin Waniek, Tomasz Michalak, Talal Rahwan, and Michael Wooldridge. Hiding individuals
and communities in a social network. Nature Human Behaviour, 2, 2018.

[43] Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, NeurIPS, 2019.

[44] Daniel Zügner and Stephan Günnemann. Certifiable robustness of graph convolutional networks
under structure perturbations. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash,
editors, KDD, 2020.

[45] Jan Schuchardt, Aleksandar Bojchevski, Johannes Klicpera, and Stephan Günnemann. Col-
lective robustness certificates: Exploiting interdependence in graph neural networks. In ICLR,
2021.

[46] Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural networks via
robust aggregation. In NeurIPS, 2020.

[47] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In ICLR, 2019.

[48] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In KDD, 2019.

[49] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. In ICML, 2018.

[50] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All
you need is low (rank): Defending against adversarial attacks on graphs. In WSDM, 2020.

[51] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples for graph data: Deep insights into attack and defense. In IJCAI, 2019.

[52] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adver-
sarial attacks. In NeurIPS, 2020.

[53] Yongqiang Chen, Han Yang, Yonggang Zhang, MA KAILI, Tongliang Liu, Bo Han, and James
Cheng. Understanding and improving graph injection attack by promoting unnoticeability. In
ICLR, 2022.

[54] Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günne-
mann. Generalization of neural combinatorial solvers through the lens of adversarial robustness.
In ICLR, 2022.

13



A Inductive Setting

Here, we formally introduce the inductive node-classification problem and the arising saddle-point
problem relevant for adversarial training in the graph domain. The formal presentation follows the
setting of a growing graph, i.e., given a training graph G of size n with labels y ∈ Ym, m ≤ n, we
sample a new graph G′ with k additional nodes from the underlying data-generating distribution D
conditioned on G, which we denote (G′, y′) ∼ D(G, y), where y′ ∈ Yn+k includes the (unknown)
labels of the newly added nodes. The newly added nodes are collected in the set I. However, as will
be clear later, the given formulation is general and comprises different inductive learning settings
described at the end of this section.

For inductive node classification, we are now interested in the expected 0/1-loss on the newly added
nodes, given as:

E
(G′,y′)∼D(G,y)

∑
i∈I

ℓ0/1(fθ(G′i, y′i)) (A.1)

Now, assuming an adversary performing a test-time (evasion) attack, one can write the robust
classification error as

Ladv(fθ) = E
(G′,y′)∼D(G,y)

max
G̃′∈B(G′)

∑
i∈I

ℓ0/1(fθ(G′i, y′i)) (A.2)

with B(G′) representing the set of possible perturbed graphs the adversary can choose from.

In adversarial training, the goal now is to solve the following saddle-point problem:

min
θ
Ladv(fθ) (A.3)

Because of the expectations in the losses (compared to the transductive setting defined by Equation (3)
and Equation (4)) neither an optimal solution to the saddle point problem defined by Equation (A.3)
nor a perfectly robust model achieving clean test accuracy as in Proposition 1 can be achieved through
memorizing information from the training graph. Thus, inductive node classification represents a
learning setting without the pitfalls presented in Section 2.1.

The formulation comprises the setting of an evolving graph, which does not necessarily grow but
changes the already existing nodes and graph structure over time, by including the indices of the n
nodes present at training in the set K. Another inductive learning setting samples G′ as a completely
new graph independent of G, then the conditional sampling process reduces to (G′, y′) ∼ D.

B Experimental Details

This section summarizes the experimental setup, including datasets, models, attacks, and
adversarial training. The code can be found at https://www.cs.cit.tum.de/daml/
adversarial-training/.

B.1 Datsets

We perform experiments on the commonly used citation networks Cora, Cora-ML, Citeseer, Pubmed,
and OGB arXiv; as well as WikiCS, Squirrel (with removed duplicates) and (C)SBMs. We always
extract the largest connected component for all datasets.

For all datasets, except OGB arXiv and the heterophilic datasets, the data is split as follows. In the
transductive setting, we sample 20 nodes per class for both training and validation set. The remaining
nodes constitute the test set. Similarly, in the inductive setting, we sample 20 nodes per class for both
(labeled) training and validation set. Additionally, we sample a stratified test set consisting of 10% of
all nodes. The remaining nodes are used as additional (unlabeled) training nodes. For OGB arXiv, we
use the provided temporal split. For Squirrel, we use the version without duplicated nodes and the
split both provided by Platonov et al. [27].

14

https://www.cs.cit.tum.de/daml/adversarial-training/
https://www.cs.cit.tum.de/daml/adversarial-training/


We parametrize the (C)SBMs following Gosch et al. [6]. In a (C)SBM, the labels yi are sampled
uniformly from {0, 1}. Then, the respective node features are sampled from a d-dimensional Gaußian
distribution N ((2yi − 1)µ, σI) with µ = Kσ

2
√
d
∈ Rd. We set σ = 1 and K = 1.5, resulting in a

regime, where graph structure is important for node classification [6]. Furthermore, the dimensionality
d is set to 21. The connection probabilities between same-class nodes p and different-class nodes q are
set to p = 0.15% and q = 0.63%. (This can be understood as an "inverted" Cora fit, as the maximum
likelihood fit to Cora results in p = 0.63% and q = 0.15%.) We use an 80%/20% train/validation
split on the nodes.

B.2 Models

In the following, we present the hyperparameters and architectural details for the models used in this
work. The experimental configuration files including all hyperparameters will be made public upon
acceptance.

• GPRGNN: We fix the predictive part as a two-layer MLP with 64 hidden units (256 for
OGB arXiv). The transition matrix is the symmetric normalized adjacency with self-loops
L̊ = D̊−1/2ÅD̊−1/2, while the diffusion coefficients are randomly initialized. A total of K = 10
diffusion steps is considered. During training, the MLP dropout is fixed at 0.2 and no dropout
is applied to the adjacency. In contrast to Chien et al. [13], the diffusion coefficients are always
learned with weight decay. This acts as regularization and prevents the coefficients from growing
indefinitely.

• ChebNetII: Similarly, we use a two-layer MLP for the features with 64 hidden units and K = 10.
Following the authors He et al. [14], we use the shifted graph Laplacian without self-loops
L = −D−1/2AD−1/2. L then has eigenvalues in the range [−1, 1] instead of [0, 2]. This shift
is required for the parametrization of the Chebyshev polynomial, however, does not affect
eigenvectors. During training, we apply dropout of 0.8 to the features and 0.5 to L to the
propagation.

• GAT: We use two layers with 64 hidden units and a single attention head. During training we
apply a dropout of 0.5 to the hidden units. No neighborhood dropout is applied.

• GCN: We use a two-layer GCN with 64 hidden units. For OGB arXiv we increase to a three layer
architecture with 256 hidden units. During training, a dropout of 0.5 is applied.

• APPNP: The structure of APPNP mirrors that of GPRGNN. A two-layer MLP with 64 hidden units
(256 for OGB arXiv) encodes the node attributes. This is followed by generalized graph diffusion
with transition matrix L̊ = D̊−1/2ÅD̊−1/2 and coefficient γK = (1− α)K and γl = α(1− α)l
for l < K. As for GPRGNN, a total of K = 10 steps is done and the MLP dropout is fixed at 0.2,
while no dropout is applied to the adjacency. The α is set to 0.1.

• SoftMedian GDC: We follow the default configuration of Geisler et al. [17] and use a temperature
of T = 0.2 for the SoftMedian aggregation with 64 hidden dimensions as well as dropout of 0.5.
The Personalized PageRank (PPR) diffusion coefficient is fixed to α = 0.15 and then a top k = 64
sparsification is applied. In the attacks, the model is fully differentiable but the sparsification of
the propagation matrix.

• MLP: The MLP follows GPRGNN’s prediction module. It has two layers with 64 hidden units
(256 for OGB arXiv) and is trained using a dropout of 0.2 on the hidden layer.

Training parameters. We perform adversarial training as described in Algorithm B.2. We train for a
maximum of 3000 epochs and optimize the model parameters using ADAM with learning rate 1e-2
and weight decay 1e-3. To avoid overfitting, we apply early stopping with a patience of 200 epochs.
For early stopping, we attack all validation nodes with the training attack and consecutively evaluate
the loss on all validation nodes w.r.t the resulting perturbed graph. Following insights from Geisler
et al. [17], the tanh-margin loss is chosen as both attack and training loss. To increase stability, the
first ten epochs are performed without including adversarial examples.

Training attack parameters. During adversarial training, we run a total of 20 attack epochs without
early stopping. For PGD and PR-BCD, we stick with the same learning rates as for evaluation. For
LR-BCD, we multiply the learning rate by 20 to account for the lower number of epochs. This helps
to obtain a sparser solution where local constraints are accounted for.

15



B.3 Attacks

For evaluating the robustness of GNNs, we use the following attacks and hyperparameters. Following
insights from Geisler et al. [17], the tanh-margin loss is chosen as attack objective.

• PGD [3]: We optimize for 400 epochs. In epoch t, we use a learning rate of 0.1 ·∆/
√
t, where ∆

is the global budget (see Section 5).
• PR-BCD [17]: We closely follow the setup from Geisler et al. [17]. We use a block size of

500.000 (3.000.000 for OGB arXiv) and perform 400 epochs. Afterwards, the best epoch’s state
is recovered and 100 additional epochs with decaying learning rate and without block resampling
are performed. Additionally, we scale the learning rate w.r.t. ∆ and the block size, as suggested
by Geisler et al. [17].

• LR-BCD: We use a block size of 500.000 (3.000.000 for OGB arXiv) and perform 400 epochs.
We scale the learning rate w.r.t. ∆ and the block size, identical to PR-BCD. The local budget is
always chosen as

• FGSM [17]: The FGSM attack greedily perturbs a single edge each epoch. No hyperparameters
are needed.

B.4 Projection of LR-BCD

We next give the pseudo-code for our LR-BCD in Algorithm B.1. To improve performance, we
only iterate edges that violate a local budget. Edges that only impact the global budget are handled
separately. Additionally, we stop Algorithm B.1 early if the global budget is exhausted.

Note that the algorithm represents the implementation for undirected graphs.

Algorithm B.1 LR-BCD - Projection with local and global constraints

Input: Upper triangular perturbations S ∈ Rn×n, budgets ∆ ∈ N, ∆(l) ∈ Nn

Output: projected gradients P = Π
(l)
∆ (S)

P ← 0 // sparse matrix of shape n× n

Ŝ ← Π[0,1](S)
idx← argsort(triu(S), ‘desc’, ‘indices’)
for (u, v) in idx do

if Ŝu,v = 0 or ∆− Ŝu,v < 0 then Return end if
∆u,v ← min (∆,∆

(l)
u ,∆

(l)
v )

if ∆u,v ≥ Ŝu,v then
Pu,v ← Ŝu,v

∆← ∆− Ŝu,v

∆
(l)
u ← ∆

(l)
u − Ŝu,v

∆
(l)
v ← ∆

(l)
v − Ŝu,v

end if
end for

B.5 Adversarial training

In adversarial training, we solve the following objective

argmin
θ

max
G̃∈B(G)

m∑
i=1

ℓ(fθ(G̃)i, yi) (B.1)

where m is the number of labeled nodes and G the clean training graph and ℓ is the chosen (surrogate)
loss. Since Equation (1) is a challenging (typically) non-convex bi-level optimization problem, we
approximate it with alternating first-order optimization. In other words, we train fθ not on the clean
graph G but on adversarially perturbed graphs G̃ that are crafted in each iteration. This process is
represented by Algorithm B.2.

16



Algorithm B.2 Adversarial Training

Input: Training/validation graph Gt/v, training/validation labels yt/v, GNN fθ0 , adversary A,
epochs E, warm-up epochs W , loss ℓ, learning rate α
Output: GNN fθ∗

ℓmin ←∞
for l = 1 to W do
θl ← θl−1 + α ∗ ∇θl−1

ℓ(fθl−1
(Gt),yt)

end for
for l = W to E do
Ĝt ← A(fθl−1

, (Gt),yt)

θl ← θl−1 + α ∗ ∇θl−1
ℓ(fθl−1

(Ĝt),yt)

G̃v ← A(fθl ,Gv,yv)

if ℓmin > ℓ(fθl(Ĝv),yv) then
ℓmin ← ℓ(fθl(Ĝv),yv)
θ∗ ← θl

end if
end for

B.6 Self-Training

For self-training, first pseudo-labels are generated using Algorithm B.3. Then, a new, final GNN is
trained on the expanded label set.

Algorithm B.3 Self-Training

Input: Graph G, labels yL, GNN fθ, epochs E
Output: Expanded labels ŷ
fθ∗ ← train(fθ,G,yL) // train an initial GNN
yU ← fθ∗(G) // predict pseudo labels for all unlabeled nodes
ŷ ← yL ∪ yU // return union

C Transductive Setting

C.1 Proof of Proposition 2

Before proving Proposition 2, note that the assumption G ∈ B(G) in Proposition 2 is natural and
usually fulfilled in practice. This is as the idea behind choosing a perturbation model B(G) is to
include all graphs, which are close under some notion to the clean graph G. As a result, all common
perturbation model choices [12] allow the adversary to not change the graph if it would not increase
misclassification, i.e., G ∈ B(G) holds. Now, we restate Proposition 2 for convenience:
Proposition 2. Assuming we solve the standard learning problem θ∗ = argminθ L0/1(fθ) and
that G ∈ B(G). Then, f̃θ∗ = A(fθ∗) is an optimal solution to the saddle-point problem arising in
(transductive) adversarial training, in the sense of Ladv(f̃θ∗) = minθ Ladv(f̃θ) ≤ minθ Ladv(fθ).

Proof. Assuming G ∈ B(G) leads to the following lower bound on the adversarial misclassification
rate: L0/1(fθ) ≤ Ladv(fθ), valid for all θ. This implies (i) minθ L0/1(fθ) ≤ minθ Ladv(fθ). Now,
assuming θ∗ = argminθ L0/1(fθ) is given and using our modified learning algorithm f̃θ∗ , we obtain

Ladv(f̃θ∗) = min
θ
Ladv(f̃θ) ≤ min

θ
Ladv(fθ)

The first equality follows from Ladv(f̃θ∗) = L0/1(f̃θ∗) = L0/1(fθ∗) = minθ L0/1(fθ) and then,
using L0/1(fθ) = L0/1(f̃θ) = Ladv(f̃θ) results in minθ L0/1(fθ) = minθ Ladv(f̃θ). The last
inequality follows from (i). This shows the optimality of f̃θ∗ w.r.t. the saddle-point problem.

17



C.2 Empirical Limitations

C.2.1 Adversarial Training Causes Overfitting

Table C.1 shows that GPRGNN adversarially trained (robust diffusion) with ϵ = 1 on Cora (with
self-training) is (almost) perfectly robust against a wide range of attacks, not only PGD. Similar
results hold for other common transductive benchmark datasets such as Cora-ML (Table C.2), or
Citeseer (Table C.3).

Table C.1: GPRGNN’s test-accuracy [%] under attack on Cora. This robust diffusion has been
adversarially trained with ϵ = 1 (with self-training) and shows (almost) perfect robustness against a
wide range of attacks.

Perturbed Edges [%] 0 1 5 1 25 50 100

PGD 82.0+1.5 81.8+1.4 81.8+1.4 81.8+1.4 81.8+1.4 81.7+1.4 81.7+1.3
FGSM 82.0+1.5 81.8+1.4 81.8+1.4 81.7+1.3 81.3+1.2 81.0+1.1 80.6+1.0
GreedyRBCD 82.0+1.5 81.8+1.4 81.8+1.4 81.7+1.3 81.4+1.2 81.0+1.1 80.7+1.1
PRBCD 82.0+1.5 81.8+1.4 81.8+1.4 81.7+1.4 81.6+1.3 81.5+1.3 81.4+1.2

Table C.2: GPRGNN’s test-accuracy [%] under attack on Cora-ML. This robust diffusion has been
adversarially trained with ϵ = 1 (with self-training) and shows (almost) perfect robustness against a
wide range of attacks.

Perturbed Edges [%] 0 1 5 1 25 50 100

PGD 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.7+1.9 81.7+1.9
DICE 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9
FGSM 81.8+1.9 81.8+2.0 81.7+1.9 81.6+2.0 81.5+2.0 81.2+2.0 80.9+2.0
GreedyRBCD 81.8+1.9 81.8+1.9 81.7+1.9 81.6+1.9 81.5+1.9 81.2+2.0 81.0+2.0
PRBCD 81.8+1.9 81.8+1.9 81.8+1.9 81.8+1.9 81.7+1.9 81.6+1.9 81.5+1.9

Table C.3: GPRGNN’s test-accuracy [%] under attack on Citeseer. This robust diffusion has been
adversarially trained with ϵ = 1 (with self-training) and shows (almost) perfect robustness against a
wide range of attacks.

Perturbed Edges [%] 0 1 5 1 25 50 100

PGD 71.8+0.9 71.8+0.9 71.8+0.9 71.8+0.9 71.7+0.9 71.8+0.8 71.8+0.9
DICE 71.8+0.9 71.8+0.9 71.8+0.9 71.8+0.9 71.8+0.9 71.8+0.9 71.9+0.9
FGSM 71.8+0.9 71.8+0.9 71.7+0.9 71.7+0.9 71.5+0.9 71.3+1.0 71.0+1.0
GreedyRBCD 71.8+0.9 71.8+0.9 71.7+0.9 71.7+0.9 71.5+0.9 71.3+0.9 71.0+1.0
PRBCD 71.8+0.9 71.8+0.9 71.8+0.9 71.7+0.9 71.7+0.9 71.7+0.9 71.4+0.9

C.2.2 Self-Training as the (Main) Cause for Robustness

Figure C.1 shows that self-training is the major cause for robustness not only for GCN but also for
other architectures. Figure C.2 highlights that this phenomenon also occurs given different attack
strengths in the adversarial training. Figure C.3 shows that these results are not only constrained to
the Cora dataset.

18



(a) GCN (b) APPNP (c) Robust Diffusion (GPRGNN)

Figure C.1: Training different architectures with different training schemes on (transductive) Cora
with a global training budget of ϵ = 0.1 (10% perturbed edges) and using self-training.

(a) GCN (b) APPNP (c) Robust Diffusion (GPRGNN)

Figure C.2: Training different architectures with different training schemes on (transductive) Cora
with a global training budget of ϵ = 0.05 (5% perturbed edges) and using self-training.

(a) GCN (b) APPNP (c) Robust Diffusion (GPRGNN)

Figure C.3: Training different architectures with different training schemes on (transductive) Citeseer
with a global training budget of ϵ = 0.1 (10% perturbed edges) and using self-training.

D Additional Inductive Results

Here, we present additional results for adversarial training in the inductive setting. We supplement the
results of the main part with results on other datasets as well as more extensive results for Citeseer.

D.1 Test Accuracy

Table D.1 supplements Table 1 and additionally shows the results of the investigated models for an
adversary with ϵ = 5% and using only self-training without adversarial training. Thereby, we ablate
the effects of self-training and adversarial training on the achieved robustness and highlight, that
self-training alone already significantly increases robustness, but combining both methods achieves
the best results.

Table D.2 and Table D.3 show analogous results for Cora and Cora-ML, respectively and Table D.4
for Pubmed. They again show that robust diffusion achieves the highest robustness values. Table D.5

19



Table D.1: Comparison on Citeseer of regularly trained models, the state-of-the-art SoftMedian GDC
defense, self-trained models and adversarially trained models (train ϵ = 20%). The first line shows
the robust accuracy [%] of a standard GCN and all other numbers represent the difference in robust
accuracy achieved by various models in percentage points from this standard GCN. The best model is
highlighted in bold.

Model Self- Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD
trn. trn. A. trn. ↓ Clean ϵ=5% ϵ=10% ϵ=25%

GCN ✗ ✗ - 72.0 ± 2.5 62.5 ± 1.9 59.3 ± 2.3 54.7 ± 2.8 51.7 ± 2.8 45.3 ± 3.4 38.0 ± 3.8
GAT ✗ ✗ - -3.6 ± 2.7 -3.6 ± 2.4 -0.6 ± 3.0 -3.9 ± 3.4 +0.5 ± 3.5 -15.9 ± 5.3 -2.3 ± 7.3

APPNP ✗ ✗ - +0.2 ± 1.1 -0.9 ± 0.7 +1.6 ± 0.7 +1.7 ± 0.7 +1.9 ± 1.4 +3.0 ± 1.2 +2.2 ± 2.5
GPRGNN ✗ ✗ - +2.2 ± 4.3 +2.0 ± 3.3 +3.1 ± 4.4 +4.2 ± 2.7 +3.6 ± 4.9 +5.5 ± 3.9 +7.9 ± 4.6
ChebNetII ✗ ✗ - +1.1 ± 2.2 +4.0 ± 1.0 +3.4 ± 2.5 +5.8 ± 2.5 +5.0 ± 2.4 +10.4 ± 2.6 +7.6 ± 3.4
SoftMedian ✗ ✗ - +0.9 ± 1.7 +4.4 ± 1.5 +5.9 ± 1.4 +9.5 ± 2.2 +9.3 ± 1.9 +16.2 ± 2.4 +14.6 ± 2.9

GCN ✓ ✗ - +1.1 ± 0.9 +3.0 ± 0.3 +3.4 ± 0.7 +6.4 ± 0.9 +5.1 ± 0.8 +9.2 ± 1.4 +7.5 ± 1.6
GAT ✓ ✗ - +0.2 ± 2.6 +0.8 ± 2.5 +4.8 ± 2.7 +1.6 ± 3.2 +5.5 ± 3.7 -6.7 ± 3.6 +10.0 ± 4.3

APPNP ✓ ✗ - -0.5 ± 2.2 +2.0 ± 0.9 +3.3 ± 1.3 +6.2 ± 2.2 +5.3 ± 2.3 +8.7 ± 2.5 +5.9 ± 3.3
GPRGNN ✓ ✗ - +1.7 ± 3.4 +7.3 ± 2.8 +7.2 ± 3.4 +13.2 ± 3.5 +10.9 ± 3.7 +18.4 ± 4.2 +19.6 ± 5.4
ChebNetII ✓ ✗ - +0.2 ± 1.7 +2.6 ± 0.9 +3.9 ± 1.5 +7.6 ± 2.2 +6.9 ± 1.3 +12.0 ± 1.1 +10.4 ± 2.3

GCN ✓ ✓ LR-BCD -0.2 ± 1.2 +2.3 ± 0.3 +3.0 ± 0.9 +7.8 ± 1.6 +5.9 ± 1.5 +10.9 ± 2.1 +8.1 ± 2.3
PR-BCD +0.0 ± 1.9 +1.4 ± 0.3 +2.5 ± 0.9 +6.9 ± 0.9 +5.3 ± 1.6 +8.6 ± 2.3 +5.8 ± 2.4

GAT ✓ ✓ LR-BCD +0.8 ± 1.6 +1.7 ± 2.0 +5.1 ± 2.7 +5.9 ± 3.7 +9.0 ± 3.0 +8.4 ± 5.1 +13.1 ± 3.5
PR-BCD +1.1 ± 2.2 +4.5 ± 1.8 +7.8 ± 1.2 +8.9 ± 2.8 +13.2 ± 3.7 +10.3 ± 2.3 +21.8 ± 4.8

APPNP ✓ ✓ LR-BCD -0.8 ± 1.3 +2.2 ± 1.0 +3.0 ± 1.5 +7.6 ± 1.6 +5.6 ± 1.9 +11.1 ± 1.9 +8.3 ± 3.6
PR-BCD -0.2 ± 2.2 +2.2 ± 1.2 +3.1 ± 1.8 +6.2 ± 2.3 +5.5 ± 3.1 +9.0 ± 2.9 +6.5 ± 3.8

GPRGNN ✓ ✓ LR-BCD +1.7 ± 3.0 +8.1 ± 2.7 +8.4 ± 3.4 +15.7 ± 3.6 +13.6 ± 3.5 +24.8 ± 4.2 +22.9 ± 4.3
PR-BCD +0.6 ± 3.6 +8.1 ± 2.8 +10.3 ± 3.4 +15.0 ± 3.6 +15.9 ± 4.2 +23.2 ± 4.3 +26.3 ± 5.4

ChebNetII ✓ ✓ LR-BCD +3.7 ± 1.4 +6.7 ± 0.8 +8.4 ± 1.0 +11.5 ± 1.6 +11.5 ± 1.1 +16.4 ± 1.9 +16.0 ± 2.9
PR-BCD +3.4 ± 1.7 +7.0 ± 0.9 +10.0 ± 1.3 +13.2 ± 2.2 +14.3 ± 1.2 +19.5 ± 1.6 +19.8 ± 2.3

shows the results for OGB-arXiv. The training split in OGB-arXiv is fully labeled and hence, self-
training is not applicable. Adversarial training improves the robustness of the investigated models on
most occasions. A learnable, robust diffusion is particularly effective for small ϵ, while fixating the
diffusion can be advantageous for large ϵ. This is most likely explained by the different structure of
this large-scale graph compared to the other benchmark graphs, indicated by adversaries with ϵ = 1%
or ϵ = 2% being already very effective and corresponding to a large number of adversarial edges.

In Table D.6, we additionally compare the performance using the DICE and PGD attacks. Moreover,
we show that our adversarial training approach is a more effective defense than GRAND [30] against
LR-BCD.

Table D.2: Comparison on Cora of regularly trained models, the state-of-the-art SoftMedian GDC
defense, self-trained models and adversarially trained models (train ϵ = 20%). The first line shows
the robust accuracy [%] of a standard GCN and all other numbers represent the difference in robust
accuracy achieved by various models in percentage points from this standard GCN. The best model is
highlighted in bold.

Model Self- Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD
trn. trn. A. trn. ↓ Clean ϵ=5% ϵ=10% ϵ=25%

GCN ✗ ✗ - 79.9 ± 0.9 67.5 ± 0.4 66.7 ± 0.8 60.8 ± 0.2 59.1 ± 0.4 47.9 ± 1.8 44.1 ± 0.7
GAT ✗ ✗ - -2.7 ± 1.6 -2.1 ± 0.9 -1.8 ± 2.3 -5.3 ± 1.0 -1.1 ± 3.2 -11.7 ± 3.9 -0.6 ± 3.1

APPNP ✗ ✗ - +1.6 ± 0.1 +2.4 ± 1.7 +2.2 ± 0.4 +2.4 ± 1.7 +2.7 ± 0.9 +7.2 ± 2.6 +3.1 ± 0.7
GPRGNN ✗ ✗ - +2.0 ± 1.2 +7.4 ± 0.5 +4.0 ± 0.8 +8.5 ± 0.1 +5.3 ± 1.0 +13.8 ± 1.4 +7.9 ± 1.2
ChebNetII ✗ ✗ - +1.0 ± 2.3 +3.3 ± 2.1 +1.1 ± 2.6 +4.0 ± 1.3 +2.1 ± 1.4 +8.2 ± 0.7 +4.9 ± 1.4
SoftMedian ✗ ✗ - -2.9 ± 1.0 +3.8 ± 1.8 +2.2 ± 1.0 +6.6 ± 1.1 +5.9 ± 1.4 +14.8 ± 2.7 +10.4 ± 1.4

GCN ✓ ✗ - +0.6 ± 1.0 +3.5 ± 1.0 +2.0 ± 0.9 +5.4 ± 1.2 +3.2 ± 0.6 +9.4 ± 0.5 +4.6 ± 0.8
GAT ✓ ✗ - -4.2 ± 2.7 -0.5 ± 1.7 -2.2 ± 3.2 -3.7 ± 1.0 -1.7 ± 3.3 -8.8 ± 3.6 -2.4 ± 3.4

APPNP ✓ ✗ - +2.0 ± 0.9 +5.3 ± 1.7 +4.0 ± 0.8 +8.2 ± 1.4 +6.1 ± 1.0 +13.4 ± 2.6 +7.1 ± 0.8
GPRGNN ✓ ✗ - +2.8 ± 1.0 +8.2 ± 0.5 +6.7 ± 0.2 +12.0 ± 0.7 +10.1 ± 1.3 +19.7 ± 2.4 +16.7 ± 3.0
ChebNetII ✓ ✗ - +2.3 ± 0.5 +5.7 ± 1.2 +3.3 ± 0.8 +6.8 ± 1.2 +4.6 ± 0.9 +11.7 ± 2.3 +4.6 ± 1.1

GCN ✓ ✓ LR-BCD +0.5 ± 0.7 +3.3 ± 1.1 +2.1 ± 0.4 +5.7 ± 0.6 +3.1 ± 0.3 +10.4 ± 2.4 +5.4 ± 1.2
PR-BCD +1.1 ± 1.1 +3.1 ± 0.6 +2.3 ± 0.2 +6.2 ± 0.8 +3.8 ± 0.3 +8.7 ± 1.8 +5.0 ± 0.7

GAT ✓ ✓ LR-BCD -1.5 ± 0.9 +0.4 ± 1.3 +0.6 ± 1.0 +2.4 ± 1.6 +2.3 ± 0.5 +6.5 ± 3.0 +7.3 ± 1.4
PR-BCD -2.1 ± 0.9 +3.8 ± 0.7 +5.0 ± 1.9 +5.1 ± 1.5 +7.6 ± 1.9 +5.9 ± 3.5 +14.5 ± 3.0

APPNP ✓ ✓ LR-BCD +1.8 ± 1.1 +5.0 ± 1.2 +3.9 ± 0.7 +8.5 ± 0.4 +6.8 ± 0.8 +14.7 ± 2.7 +8.2 ± 1.2
PR-BCD +1.0 ± 0.7 +3.7 ± 1.1 +3.7 ± 0.6 +6.6 ± 1.3 +5.0 ± 1.1 +12.7 ± 3.5 +7.3 ± 0.2

GPRGNN ✓ ✓ LR-BCD +2.6 ± 0.2 +8.2 ± 0.6 +8.1 ± 0.4 +11.8 ± 1.2 +11.0 ± 0.0 +22.1 ± 2.3 +16.8 ± 1.5
PR-BCD +0.0 ± 0.6 +8.1 ± 1.1 +8.1 ± 0.4 +13.3 ± 1.3 +12.8 ± 0.7 +24.2 ± 2.4 +22.2 ± 1.4

ChebNetII ✓ ✓ LR-BCD -6.7 ± 9.6 -1.2 ± 7.0 -1.2 ± 6.7 +1.2 ± 6.2 +1.8 ± 4.8 +10.0 ± 5.8 +6.5 ± 1.4
PR-BCD +1.5 ± 1.5 +3.7 ± 1.8 +4.8 ± 0.4 +7.7 ± 1.5 +6.7 ± 1.4 +11.7 ± 3.3 +7.6 ± 1.4

20



Table D.3: Comparison on Cora-ML of regularly trained models, the state-of-the-art SoftMedian
GDC defense, self-trained models and adversarially trained models (train ϵ = 20%). The first line
shows the robust accuracy [%] of a standard GCN and all other numbers represent the difference in
robust accuracy achieved by various models in percentage points from this standard GCN. The best
model is highlighted in bold.

Model Self- Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD
trn. trn. A. trn. ↓ Clean ϵ=5% ϵ=10% ϵ=25%

GCN ✗ ✗ - 82.5 ± 1.9 66.0 ± 2.8 66.2 ± 2.5 59.2 ± 2.8 57.4 ± 2.3 48.5 ± 1.6 38.0 ± 2.3
GAT ✗ ✗ - -1.8 ± 0.4 -5.6 ± 2.1 -6.3 ± 2.1 -11.3 ± 2.1 -6.0 ± 2.2 -21.4 ± 4.3 -4.9 ± 2.6

APPNP ✗ ✗ - +0.6 ± 0.7 +3.3 ± 1.6 +2.3 ± 1.9 +5.3 ± 0.2 +3.1 ± 0.8 +7.0 ± 1.1 +4.3 ± 1.1
GPRGNN ✗ ✗ - +0.9 ± 0.7 +5.0 ± 0.8 +2.5 ± 0.4 +5.6 ± 0.6 +4.5 ± 0.5 +8.6 ± 0.1 +8.6 ± 1.4
ChebNetII ✗ ✗ - -0.2 ± 0.5 +4.2 ± 1.7 +1.4 ± 0.7 +6.0 ± 1.3 +2.6 ± 0.2 +7.0 ± 1.5 +6.3 ± 2.1
SoftMedian ✗ ✗ - -0.8 ± 1.0 +7.7 ± 1.9 +4.8 ± 1.7 +10.7 ± 1.4 +7.7 ± 0.9 +17.0 ± 0.6 +17.4 ± 0.5

GCN ✓ ✗ - +0.7 ± 0.7 +4.5 ± 2.0 +2.6 ± 1.6 +6.1 ± 2.4 +3.9 ± 1.3 +7.3 ± 0.5 +6.3 ± 0.7
GAT ✓ ✗ - -3.6 ± 0.5 -2.8 ± 2.7 -1.9 ± 3.7 -6.9 ± 2.2 -1.3 ± 3.3 -17.0 ± 3.8 -2.0 ± 3.1

APPNP ✓ ✗ - +1.4 ± 0.7 +5.8 ± 2.0 +4.6 ± 1.6 +7.3 ± 1.7 +5.2 ± 0.4 +10.1 ± 0.5 +7.7 ± 1.6
GPRGNN ✓ ✗ - +2.1 ± 1.3 +10.7 ± 1.8 +7.7 ± 1.8 +13.5 ± 1.5 +9.9 ± 2.1 +17.0 ± 1.4 +16.9 ± 2.4
ChebNetII ✓ ✗ - +1.8 ± 0.5 +8.0 ± 1.7 +4.9 ± 2.1 +9.9 ± 2.2 +6.2 ± 1.8 +10.8 ± 1.7 +10.1 ± 2.3

GCN ✓ ✓ LR-BCD +1.2 ± 0.7 +6.1 ± 1.9 +3.5 ± 1.4 +8.6 ± 1.8 +3.1 ± 0.5 +10.9 ± 0.5 +7.2 ± 1.6
PR-BCD +0.5 ± 0.6 +5.4 ± 1.3 +3.1 ± 1.0 +8.2 ± 1.1 +3.5 ± 1.0 +10.3 ± 0.7 +6.7 ± 0.7

GAT ✓ ✓ LR-BCD -2.7 ± 0.6 +4.3 ± 1.9 +1.8 ± 1.6 +7.0 ± 1.9 +7.2 ± 1.9 +10.7 ± 0.1 +16.9 ± 0.6
PR-BCD -2.1 ± 1.0 +2.9 ± 2.7 +1.3 ± 2.2 +5.0 ± 3.0 +4.8 ± 2.6 +5.6 ± 1.4 +13.0 ± 1.6

APPNP ✓ ✓ LR-BCD +0.9 ± 0.9 +6.7 ± 2.1 +4.7 ± 1.4 +9.6 ± 1.4 +5.4 ± 1.2 +12.9 ± 0.5 +8.2 ± 1.0
PR-BCD +1.1 ± 0.4 +7.3 ± 1.6 +5.8 ± 1.7 +10.6 ± 1.6 +6.0 ± 0.9 +13.4 ± 0.9 +8.6 ± 0.7

GPRGNN ✓ ✓ LR-BCD +0.8 ± 1.2 +12.0 ± 3.2 +8.9 ± 2.7 +17.6 ± 3.7 +13.1 ± 2.8 +25.9 ± 3.4 +22.8 ± 4.4
PR-BCD -0.0 ± 1.6 +13.4 ± 3.5 +10.7 ± 2.9 +18.2 ± 4.4 +16.1 ± 3.9 +28.2 ± 3.6 +31.0 ± 4.9

ChebNetII ✓ ✓ LR-BCD +0.9 ± 0.6 +7.9 ± 1.6 +6.2 ± 1.7 +10.9 ± 1.9 +8.7 ± 0.8 +15.0 ± 0.1 +14.8 ± 1.2
PR-BCD +1.1 ± 0.4 +8.5 ± 2.0 +6.5 ± 1.2 +13.1 ± 1.7 +8.9 ± 0.9 +15.1 ± 1.1 +15.1 ± 1.1

Table D.4: Comparison on Pubmed of regularly trained models, self-trained models and adversarially
trained models (train ϵ = 20%). The first line shows the robust accuracy [%] of a standard GCN
and all other numbers represent the difference in robust accuracy achieved by various models in
percentage points from this standard GCN. The best model is highlighted in bold.

Model Self- Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD
trn. trn. A. trn. ↓ Clean ϵ=5% ϵ=10% ϵ=25%

GCN ✗ ✗ - 77.4 ± 0.4 64.3 ± 0.9 62.2 ± 0.8 60.4 ± 0.7 54.0 ± 0.5 52.8 ± 1.4 39.3 ± 1.2
GAT ✗ ✗ - -3.0 ± 1.7 -5.6 ± 4.5 -1.5 ± 2.8 -10.3 ± 6.5 -0.9 ± 3.7 -14.8 ± 8.5 -0.9 ± 6.1

APPNP ✗ ✗ - +0.5 ± 0.5 +1.9 ± 0.0 +1.8 ± 0.9 +1.7 ± 0.1 +2.5 ± 0.4 +2.4 ± 0.2 +1.1 ± 0.9
GPRGNN ✗ ✗ - +1.4 ± 1.3 +1.3 ± 2.0 +2.8 ± 1.2 +0.7 ± 2.1 +3.0 ± 1.7 +1.2 ± 2.3 +3.4 ± 1.0

GCN ✓ ✗ - +1.8 ± 0.9 +3.4 ± 1.3 +3.1 ± 1.0 +4.0 ± 1.5 +4.1 ± 0.6 +5.1 ± 1.7 +2.9 ± 0.6
GAT ✓ ✗ - -0.3 ± 1.0 -0.1 ± 1.4 +0.5 ± 0.3 -2.3 ± 1.9 +0.6 ± 1.9 -3.8 ± 3.4 -1.7 ± 2.5

APPNP ✓ ✗ - +2.7 ± 1.1 +5.5 ± 1.3 +5.7 ± 1.2 +6.1 ± 1.2 +6.7 ± 1.1 +7.3 ± 1.8 +6.0 ± 1.3
GPRGNN ✓ ✗ - +1.7 ± 1.1 +6.0 ± 1.5 +5.6 ± 0.9 +6.6 ± 1.8 +7.8 ± 1.4 +9.0 ± 2.9 +11.5 ± 2.1

GCN ✓ ✓ LR-BCD +2.2 ± 0.8 +5.3 ± 1.1 +4.2 ± 0.9 +6.1 ± 1.0 +4.4 ± 0.5 +7.9 ± 1.4 +4.5 ± 0.9
PR-BCD +1.1 ± 1.6 +5.8 ± 1.2 +4.3 ± 1.2 +6.8 ± 0.9 +5.0 ± 1.2 +8.8 ± 1.3 +5.3 ± 0.7

GAT ✓ ✓ LR-BCD -0.1 ± 1.3 +4.0 ± 1.0 +4.7 ± 1.2 +4.9 ± 0.8 +8.2 ± 0.4 +8.4 ± 1.3 +13.0 ± 1.8
PR-BCD -0.3 ± 1.0 +3.2 ± 1.5 +3.8 ± 1.4 +3.1 ± 1.3 +6.2 ± 0.7 +4.1 ± 1.7 +9.0 ± 2.5

APPNP ✓ ✓ LR-BCD +2.6 ± 1.4 +6.9 ± 1.2 +6.9 ± 1.4 +8.5 ± 1.2 +8.8 ± 1.0 +11.2 ± 1.7 +8.8 ± 1.3
PR-BCD +2.6 ± 1.3 +7.8 ± 1.8 +7.5 ± 1.9 +9.1 ± 1.5 +9.4 ± 1.4 +12.5 ± 2.0 +9.1 ± 1.9

GPRGNN ✓ ✓ LR-BCD +3.1 ± 1.1 +12.6 ± 1.8 +9.9 ± 1.1 +15.4 ± 1.7 +14.1 ± 1.6 +21.9 ± 2.5 +20.6 ± 2.0
PR-BCD +3.0 ± 0.8 +13.6 ± 1.5 +13.2 ± 1.0 +16.7 ± 1.2 +19.0 ± 1.6 +23.5 ± 1.9 +29.5 ± 1.7

Table D.5: Comparison on OGB-arXiv of regularly trained models and adversarially trained models
(train ϵ = 5%). All numbers are in %. The best model is highlighted in bold. In general, adversarial
training is effective in increasing adversarial robustness.

Model Adv. A. eval.→ LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD LR-BCD PR-BCD
trn. A. trn. ↓ Clean ϵ=1% ϵ=2% ϵ=5% ϵ=10%

APPNP ✗ - 70.6 ± 0.2 61.6 ± 0.3 62.6 ± 0.2 58.3 ± 0.4 59.0 ± 0.3 52.4 ± 0.5 52.7 ± 0.6 48.4 ± 0.7 46.9 ± 1.2
GPRGNN ✗ - 71.9 ± 0.1 63.9 ± 0.2 64.8 ± 0.2 60.7 ± 0.3 61.0 ± 0.2 54.6 ± 0.4 54.0 ± 0.4 52.3 ± 0.8 50.3 ± 0.8

APPNP ✓ LR-BCD 68.2 ± 0.1 63.1 ± 0.1 63.2 ± 0.1 60.4 ± 0.1 60.3 ± 0.1 56.5 ± 0.2 55.2 ± 0.1 54.0 ± 0.1 50.4 ± 0.2
PR-BCD 68.2 ± 0.4 62.8 ± 0.3 62.5 ± 0.3 59.8 ± 0.3 59.0 ± 0.3 55.4 ± 0.2 52.0 ± 0.2 52.6 ± 0.3 44.7 ± 0.3

GPRGNN ✓ LR-BCD 70.9 ± 0.0 64.4 ± 0.1 63.8 ± 0.1 61.1 ± 0.1 59.8 ± 0.1 55.9 ± 0.1 53.4 ± 0.1 53.5 ± 0.1 48.4 ± 0.1
PR-BCD 70.3 ± 0.2 63.8 ± 0.2 63.5 ± 0.2 60.6 ± 0.2 59.6 ± 0.2 55.5 ± 0.2 52.0 ± 0.2 52.7 ± 0.2 44.4 ± 0.1

D.2 Learned Diffusion Coefficients

Figure D.1 shows the learned coefficients γ for GPRGNN on Citeseer, Cora, Cora-ML and Pubmed.
The results for Citeseer are the ones reported in Figure 6 and given again for reference. The observation
that including local constraints during adversarial training leads to a robust model leveraging the

21



Table D.6: Further adversarial attacks on Citeseer and additional GRAND defense. The LR-BCD
results also used LR-BCD during the adversarial training. For PGD and DICE, we perform adversarial
training with PR-BCD to match the set of admissible perturbations.

Attack Model Adv. Clean ϵ=0.1 ϵ=0.25evaluation trn.

LR-BCD

GCN ✗ 72.0 ± 1.6 53.2 ± 1.9 41.7 ± 2.8
✓ 72.0 ± 1.5 59.3 ± 1.5 48.8 ± 2.4

SoftMedian GDC ✗ 72.9 ± 0.8 62.6 ± 1.0 57.1 ± 2.1
GRAND ✗ 74.6 ± 2.4 65.7 ± 3.3 59.7 ± 3.3

GPRGNN ✗ 74.1 ± 1.1 58.0 ± 1.0 49.1 ± 1.1
✓ 72.9 ± 0.6 67.8 ± 0.8 64.6 ± 1.2

PGD
GCN ✗ 73.4 ± 1.3 57.9 ± 3.0 46.4 ± 3.1

GPRGNN ✗ 74.1 ± 0.2 63.2 ± 1.3 57.6 ± 2.8
✓ 73.7 ± 0.6 67.6 ± 1.2 64.8 ± 1.3

DICE
GCN ✗ 73.4 ± 1.3 71.8 ± 1.5 68.8 ± 1.1

GPRGNN ✗ 74.1 ± 0.2 73.8 ± 1.0 70.9 ± 0.8
✓ 73.7 ± 0.6 73.7 ± 1.0 73.1 ± 0.8

0 10

Index k

0.00

0.25

C
o

eff
.
γ
k

0 10

Index k
0 10

Index k

(a) Citeseer

0 10

Index k

0.00

0.25

C
o

eff
.
γ
k

0 10

Index k
0 10

Index k

(b) Cora

0 10

Index k

0.00

0.25

C
o

eff
.
γ
k

0 10

Index k
0 10

Index k

(c) Cora-ML

0 10

Index k

0.00

0.25

C
o

eff
.
γ
k

0 10

Index k
0 10

Index k

(d) Pubmed

Figure D.1: Learned robust diffusion (GPRGNN) coefficients γ for different datasets. For each
dataset, left figure represents standard training, middle figure represents LR-BCD (adv. training w/
local constraints), right figure PR-BCD (adv. training w/o local constraints). For adversarial training,
ϵ = 20% is used.

general graph structure in a robust way compared to training with global constraints only is general
for all datasets. Training only with global constraints, for node classification, the information in the
graph other than the node’s own features are suppressed, as only γ0 and γ2 and, to a lesser extent,
γ4 are pronounced. These mainly correspond to information about the original node itself, as the
information about itself propagates to its neighbor and back in 2-hops and similar for the second-hop
neighbors. However, information from γk with k odd is suppressed through being set close to zero.

A spectral analysis as carried out in Figure 7 can be found for Cora and Cora-ML (and Citeseer for
reference) in Figure D.2. The behavior that PR-BCD training leads to high-pass behavior is consistent
across datasets.

22



0 2

Eigenvalue λ

0.5

1.0

F
ilt

er
m

ag
n. regular

trn.

adv trn.
LR-BCD

adv trn.
PR-BCD

(a) Citeseer

0 2

Eigenvalue λ

0.5

1.0

F
ilt

er
m

ag
n. regular

trn.

adv trn.
LR-BCD

adv trn.
PR-BCD

(b) Cora

0 2

Eigenvalue λ

0.5

1.0

F
ilt

er
m

ag
n. regular

trn.

adv trn.
LR-BCD

adv trn.
PR-BCD

(c) Cora-ML

Figure D.2: Spectral filters corresponding to Figure D.1 for Citeseer, Cora and Cora-ML. Low filter
magnitude denotes suppression of the respective frequencies associated with eigenvalue λ.

D.3 Comparison of PR-BCD and LR-BCD

(a) GPRGNN (b) APPNP (c) GCN

Figure D.3: Comparison of PR-BCD and LR-BCD on Cora-ML. The x-axis gives the relative global
budget. The local budget (if considered) for each node u of degree du is ∆(l)

u = ⌊du/2⌋. The models
are learned using self-training. Results are aggregated over three different data splits.

Figure D.3 compares the efficacy of PR-BCD to LR-BCD on Cora-ML. For a fair comparison, as the
admissible perturbations B(G) are inherently different for both attacks, we also consider LR-BCD
with an unlimited local budget. In this case, LR-BCD’s projection defaults to greedily picking the
highest-valued perturbations until the global budget is met. We observe that LR-BCD w/o local
constraints performs similar to PR-BCD. This suggests that the chosen greedy approach is suitable.
Additionally including local constraints, the attack efficacy reduces. Still, even with local constraints,
LR-BCD is able to recover adversarial examples that significantly reduce classification performance.

D.4 Certified Accuracy

Table D.7 shows certified accuracies for Citeseer against an extended set of perturbations compared to
Table 1. Table D.8 and Table D.9 show analogous results for the benchmark graphs Cora and Cora-ML,
respectively. On all datasets, highest certifiable accuracy is achieved through robust diffusion.

Table D.7: Comparison of certifiable accuracies for different perturbations on Citeseer of regularly
trained models, the state-of-the-art SoftMedian GDC defense, and adversarially trained models (train
ϵ = 20%). The first line shows the certifiable accuracy [%] of a standard GCN and all other numbers
represent the difference in certifiable accuracy achieved by various models in percentage points from
this standard GCN. The best model is highlighted in bold.

Model Adv. Training Certifiable accuracy / sparse smoothing
trn. attack Clean 1 add. 2 add. 3 add. 4 add. 1 del. 3 del. 5 del. 7 del.

GCN ✗ - 38.3 ± 7.2 15.6 ± 3.4 1.9 ± 0.5 1.7 ± 0.4 0.0 ± 0.0 25.2 ± 5.5 12.0 ± 2.8 4.8 ± 1.0 1.9 ± 0.5
GAT ✗ - -14.0 ± 7.6 -15.1 ± 3.2 -1.9 ± 0.5 -1.7 ± 0.4 +0.0 ± 0.0 -19.3 ± 5.2 -12.0 ± 2.8 -4.8 ± 1.0 -1.9 ± 0.5

APPNP ✗ - +8.9 ± 5.8 +26.2 ± 3.4 +31.8 ± 4.4 +31.2 ± 4.0 +26.6 ± 2.2 +19.0 ± 3.2 +28.7 ± 3.4 +31.6 ± 4.0 +31.9 ± 4.5
GPRGNN ✗ - +17.9 ± 4.4 +34.6 ± 2.0 +42.5 ± 2.7 +42.4 ± 2.8 +37.5 ± 2.9 +26.8 ± 3.0 +36.6 ± 2.1 +41.3 ± 2.4 +42.5 ± 2.7
ChebNetII ✗ - +24.6 ± 9.9 +45.5 ± 4.4 +55.9 ± 1.3 +55.6 ± 1.2 +54.8 ± 2.0 +36.9 ± 7.3 +47.8 ± 3.2 +54.0 ± 0.9 +56.1 ± 1.2
SoftMedian ✗ - +25.2 ± 10.5 +47.4 ± 4.0 +60.1 ± 1.3 +60.3 ± 1.4 +61.5 ± 2.0 +38.2 ± 7.6 +50.6 ± 3.0 +57.5 ± 0.8 +60.3 ± 1.4

GCN ✓ LR-BCD -3.0 ± 6.0 +11.2 ± 3.3 +11.4 ± 2.9 +10.7 ± 2.9 +6.1 ± 1.7 +5.1 ± 5.5 +10.3 ± 3.4 +13.1 ± 3.2 +11.5 ± 3.0
PR-BCD +4.2 ± 9.2 +10.1 ± 3.0 +10.6 ± 3.3 +10.1 ± 3.5 +6.2 ± 2.8 +6.9 ± 6.3 +10.7 ± 2.0 +11.4 ± 2.8 +10.6 ± 3.4

GAT ✓ LR-BCD -2.0 ± 14.6 +5.1 ± 5.9 +2.6 ± 1.1 +1.4 ± 1.1 +1.6 ± 0.7 +3.0 ± 10.7 +4.2 ± 4.4 +4.0 ± 1.3 +3.0 ± 1.0
PR-BCD -10.1 ± 8.7 +5.0 ± 2.5 +1.9 ± 1.1 +1.2 ± 1.3 +2.2 ± 0.8 -0.8 ± 5.5 +4.5 ± 1.3 +2.8 ± 0.8 +2.2 ± 0.9

APPNP ✓ LR-BCD +21.7 ± 6.0 +38.0 ± 1.9 +41.6 ± 1.9 +41.3 ± 1.8 +36.6 ± 1.8 +31.2 ± 4.0 +40.2 ± 1.5 +44.1 ± 0.8 +41.9 ± 2.0
PR-BCD +19.3 ± 4.6 +37.5 ± 1.2 +41.4 ± 2.2 +41.0 ± 2.4 +37.9 ± 2.6 +29.8 ± 2.4 +38.9 ± 1.5 +41.9 ± 1.9 +41.4 ± 2.2

GPRGNN ✓ LR-BCD +34.0 ± 7.3 +55.5 ± 3.9 +67.6 ± 1.1 +67.4 ± 0.9 +67.9 ± 0.5 +46.7 ± 5.8 +58.6 ± 3.4 +65.0 ± 1.6 +67.6 ± 1.1
PR-BCD +32.9 ± 7.5 +55.3 ± 3.9 +68.8 ± 1.0 +69.0 ± 0.9 +70.4 ± 0.4 +45.8 ± 5.9 +58.9 ± 3.3 +65.9 ± 1.5 +68.8 ± 1.0

ChebNetII ✓ LR-BCD +31.5 ± 12.7 +51.2 ± 6.5 +62.1 ± 1.9 +62.3 ± 1.9 +61.8 ± 2.2 +43.1 ± 9.8 +53.9 ± 5.4 +59.8 ± 2.5 +62.1 ± 1.9
PR-BCD +30.7 ± 13.2 +52.5 ± 7.0 +65.4 ± 2.7 +65.4 ± 2.6 +66.0 ± 2.1 +43.1 ± 10.4 +56.1 ± 5.9 +62.9 ± 3.7 +65.4 ± 2.7

23



Table D.8: Comparison of certifiable accuracies for different perturbations on Cora of regularly
trained models, the state-of-the-art SoftMedian GDC defense, and adversarially trained models (train
ϵ = 20%). The first line shows the certifiable accuracy [%] of a standard GCN and all other numbers
represent the difference in certifiable accuracy achieved by various models in percentage points from
this standard GCN. The best model is highlighted in bold.

Model Adv. Training Certifiable accuracy / sparse smoothing
trn. attack Clean 1 add. 2 add. 3 add. 4 add. 1 del. 3 del. 5 del. 7 del.

GCN ✗ - 30.9 ± 0.2 19.9 ± 3.2 12.9 ± 4.1 12.3 ± 4.1 5.9 ± 1.7 23.7 ± 2.0 18.4 ± 3.7 15.5 ± 4.1 13.2 ± 4.2
GAT ✗ - -0.5 ± 4.8 -7.8 ± 8.0 -12.1 ± 3.8 -11.5 ± 3.8 -5.5 ± 1.5 -8.4 ± 6.4 -11.4 ± 5.5 -13.9 ± 4.0 -12.3 ± 4.0

APPNP ✗ - +26.4 ± 1.2 +30.4 ± 3.5 +29.5 ± 5.2 +28.9 ± 5.3 +30.8 ± 2.5 +29.4 ± 2.2 +30.5 ± 4.1 +28.8 ± 5.2 +29.5 ± 5.3
GPRGNN ✗ - +20.6 ± 2.4 +25.6 ± 6.1 +25.3 ± 6.3 +25.4 ± 6.1 +27.0 ± 4.0 +24.2 ± 4.9 +26.3 ± 6.2 +25.4 ± 6.2 +25.2 ± 6.4
ChebNetII ✗ - +32.8 ± 1.8 +40.7 ± 6.9 +46.2 ± 7.8 +46.8 ± 7.8 +52.4 ± 4.2 +38.1 ± 5.2 +42.1 ± 7.6 +44.7 ± 8.2 +46.2 ± 8.1
SoftMedian ✗ - +36.0 ± 1.2 +46.2 ± 4.6 +51.5 ± 5.9 +51.9 ± 5.8 +57.4 ± 3.0 +42.5 ± 2.9 +47.0 ± 5.3 +49.2 ± 5.7 +51.4 ± 6.2

GCN ✓ LR-BCD +4.5 ± 2.5 +5.6 ± 3.6 -1.3 ± 6.6 -1.7 ± 6.7 -2.3 ± 3.3 +6.3 ± 2.0 +3.8 ± 4.9 +0.7 ± 6.1 -1.2 ± 6.9
PR-BCD +13.7 ± 6.2 +7.9 ± 4.5 -2.0 ± 1.0 -3.3 ± 1.5 -2.7 ± 0.7 +10.6 ± 5.1 +4.8 ± 3.0 +0.0 ± 0.6 -2.0 ± 1.2

GAT ✓ LR-BCD +0.6 ± 0.5 +9.4 ± 3.1 +12.2 ± 3.5 +12.1 ± 3.8 +3.4 ± 3.1 +6.2 ± 2.0 +10.7 ± 3.5 +12.1 ± 3.7 +12.0 ± 3.7
PR-BCD +6.4 ± 1.4 +1.5 ± 7.4 -4.8 ± 1.5 -4.2 ± 1.6 -2.4 ± 1.0 +4.8 ± 4.7 -2.9 ± 4.2 -5.7 ± 2.0 -4.6 ± 1.6

APPNP ✓ LR-BCD +25.3 ± 3.5 +31.1 ± 6.6 +30.2 ± 6.9 +30.2 ± 6.9 +32.5 ± 4.0 +28.7 ± 5.5 +30.8 ± 7.0 +30.4 ± 7.3 +29.9 ± 7.1
PR-BCD +31.5 ± 1.1 +36.4 ± 3.3 +36.6 ± 4.6 +35.8 ± 4.5 +37.4 ± 2.2 +35.4 ± 1.7 +37.1 ± 3.7 +36.9 ± 4.1 +36.6 ± 4.7

GPRGNN ✓ LR-BCD +43.8 ± 0.5 +51.4 ± 3.4 +54.6 ± 4.9 +55.2 ± 4.9 +59.1 ± 3.0 +49.1 ± 2.3 +52.5 ± 3.8 +53.8 ± 4.5 +54.3 ± 5.1
PR-BCD +45.5 ± 0.7 +55.7 ± 2.8 +61.9 ± 3.6 +62.5 ± 3.5 +68.6 ± 1.3 +52.1 ± 1.6 +56.8 ± 3.1 +59.5 ± 3.4 +61.7 ± 3.7

ChebNetII ✓ LR-BCD +24.8 ± 2.8 +34.1 ± 4.5 +38.5 ± 5.3 +38.7 ± 5.5 +41.8 ± 1.7 +30.9 ± 3.1 +35.2 ± 5.2 +36.5 ± 5.3 +38.3 ± 5.5
PR-BCD +27.1 ± 2.0 +35.8 ± 6.1 +38.6 ± 7.0 +39.1 ± 7.0 +44.7 ± 3.3 +33.9 ± 3.6 +36.5 ± 6.8 +38.3 ± 7.7 +38.3 ± 7.2

Table D.9: Comparison of certifiable accuracies for different perturbations on Cora-ML of regularly
trained models, the state-of-the-art SoftMedian GDC defense, and adversarially trained models (train
ϵ = 20%). The first line shows the certifiable accuracy [%] of a standard GCN and all other numbers
represent the difference in certifiable accuracy achieved by various models in percentage points from
this standard GCN. The best model is highlighted in bold.

Model Adv. Training Certifiable accuracy / sparse smoothing
trn. attack Clean 1 add. 2 add. 3 add. 4 add. 1 del. 3 del. 5 del. 7 del.

GCN ✗ - 37.6 ± 0.9 23.6 ± 2.1 9.6 ± 3.8 8.8 ± 3.7 3.8 ± 2.2 29.9 ± 0.8 19.7 ± 2.9 14.3 ± 4.1 10.1 ± 3.8
GAT ✗ - -12.4 ± 4.1 -3.6 ± 4.4 -2.8 ± 6.0 -4.2 ± 5.3 -3.3 ± 2.3 -7.6 ± 3.8 -0.4 ± 4.8 -2.7 ± 7.5 -3.2 ± 6.1

APPNP ✗ - +17.3 ± 1.5 +26.1 ± 1.3 +34.5 ± 3.5 +33.8 ± 3.3 +34.9 ± 2.0 +21.9 ± 0.4 +29.0 ± 2.1 +32.3 ± 3.5 +34.0 ± 3.5
GPRGNN ✗ - +25.4 ± 3.4 +32.0 ± 1.8 +38.1 ± 2.9 +38.6 ± 2.8 +39.3 ± 1.7 +29.2 ± 2.2 +34.5 ± 1.7 +35.6 ± 3.0 +37.8 ± 2.9
ChebNetII ✗ - +29.9 ± 3.2 +40.8 ± 6.6 +51.6 ± 9.2 +52.5 ± 9.1 +55.3 ± 7.1 +35.9 ± 4.7 +43.8 ± 7.5 +48.0 ± 9.0 +51.4 ± 9.2
SoftMedian ✗ - +35.6 ± 0.4 +46.7 ± 5.1 +57.2 ± 7.3 +57.7 ± 7.5 +60.8 ± 5.0 +41.8 ± 2.8 +49.8 ± 6.1 +53.8 ± 7.9 +56.9 ± 7.4

GCN ✓ LR-BCD +11.9 ± 4.3 +7.6 ± 1.9 +1.5 ± 5.4 +0.7 ± 5.5 +0.1 ± 3.5 +8.2 ± 1.6 +6.6 ± 3.4 +3.5 ± 6.4 +1.4 ± 5.6
PR-BCD +1.8 ± 3.8 +1.2 ± 4.3 +2.8 ± 7.1 +2.8 ± 7.1 +3.5 ± 5.1 +0.0 ± 3.6 +1.3 ± 5.3 +2.0 ± 6.9 +2.8 ± 7.3

GAT ✓ LR-BCD -5.5 ± 3.1 +5.6 ± 1.4 +11.7 ± 7.4 +11.6 ± 7.7 +10.2 ± 6.7 +0.6 ± 0.7 +8.3 ± 2.8 +10.8 ± 5.8 +11.5 ± 7.4
PR-BCD -13.0 ± 1.6 -3.3 ± 6.6 +6.7 ± 10.4 +7.4 ± 10.4 +10.0 ± 8.6 -8.1 ± 4.3 -0.9 ± 7.4 +2.1 ± 9.6 +6.2 ± 10.5

APPNP ✓ LR-BCD +28.4 ± 0.5 +34.3 ± 2.9 +39.1 ± 4.5 +39.0 ± 4.3 +39.4 ± 3.0 +30.9 ± 1.8 +36.0 ± 3.4 +37.2 ± 4.8 +39.0 ± 4.5
PR-BCD +25.6 ± 1.9 +32.7 ± 3.8 +38.5 ± 5.2 +38.6 ± 5.1 +38.8 ± 3.9 +29.8 ± 3.0 +34.5 ± 4.2 +36.3 ± 5.0 +38.0 ± 5.3

GPRGNN ✓ LR-BCD +41.2 ± 1.4 +52.9 ± 1.8 +64.9 ± 3.2 +65.3 ± 3.0 +68.7 ± 1.8 +47.8 ± 0.8 +56.5 ± 2.6 +61.0 ± 3.7 +64.4 ± 3.2
PR-BCD +42.4 ± 1.6 +56.0 ± 1.6 +69.5 ± 3.2 +70.2 ± 3.2 +74.9 ± 1.8 +49.9 ± 0.6 +59.6 ± 2.5 +65.0 ± 3.7 +69.0 ± 3.3

ChebNetII ✓ LR-BCD +39.6 ± 1.9 +51.4 ± 2.7 +62.1 ± 5.7 +62.8 ± 5.5 +65.7 ± 3.5 +45.7 ± 0.8 +54.6 ± 3.9 +58.7 ± 6.1 +61.6 ± 5.8
PR-BCD +36.7 ± 1.2 +49.8 ± 3.8 +62.2 ± 6.5 +63.0 ± 6.4 +66.2 ± 3.9 +43.9 ± 1.5 +53.2 ± 5.1 +58.2 ± 6.9 +61.7 ± 6.6

E Further Related Work

Defenses on Graphs. Next to adversarial training, previous works proposed defenses based on
smoothing [32], preprocessing the graph structure [50–52], or using robust model structures [46, 48].
For an extended survey, we refer to Günnemann [12].

Attacks on Graphs. Generally, one distinguishes evasion attacks, perturbing the graph after training
[7, 2, 17] and poisoning attacks, perturbing the graph before training [7, 47]. Further, one differenti-
ates global attacks perturbing multiple node predictions at once [17] from local (targeted) attacks
perturbing a single node’s prediction [7]. Attacks can perturb the nodes attributes [7], the edge
structure [7, 47, 49, 2, 17], or insert malicious nodes [53]. An adversarial attack should not change
the true classes (unnoticeability) [18]. For certain applications, like combinatorial optimization, it
might be known how the true label is affected by perturbation. For example, Geisler et al. [54] study
such adversarial attacks (& training) for GNNs for combinatorial optimization. However, in the
context of node classification, this relationship is fuzzier. For example, Zügner et al. [7] define an
attack that preserves the global degree distribution, or Gosch et al. [6] analyzes semantic preservation
in synthetic graphs and show that changing more edges than the degree of nodes is usually never
unnoticeable. In this work, we focus on evasion attacks on the edge structure, aiming at globally
attacking node predictions with realistic local constraints enforcing unnoticeability.

24



F Limitations

This work focuses on adversarial robustness against structure perturbations for node classification.
While this is the most studied and prevalent case in previous works (see Günnemann [12] and
Table 3), there are many other interesting graph learning tasks or extended settings, out of scope
for this work, for which robustness and adversarial training schemes could be of interest, as e.g.,
link prediction, node feature perturbations or graph injection. Conceptually, the adversarial training
procedure and LR-BCD attack can also be applied to the aforementioned tasks as long as the model
remains differentiable.

On another note, while we finally put into the hands of practitioners a global attack method aware
of local constraints, there is no clear strategy on how to determine the optimal local budget. Indeed,
these have to be set application dependent by domain experts. For example, Gosch et al. [6] leverage
knowledge about the data generating distribution to determine budgets that correspond to semantic-
preserving perturbations. However, in most real-world applications, we lack knowledge about the
data generating distribution. As a result, we also use the different interpretability aspects of robust
diffusion to collect additional evidence and insights into the learned message passing (see Section 3
& 5).

In Section 4, we report the asymptotic complexity of our LR-BCD attack. In Section 5, we detail the
used hardware for the adversarial training experiments and report the computational cost in terms of
runtime as well as memory on the arXiv graph, consisting of 170k nodes.

25


	Introduction
	Learning Settings: Transductive vs. Inductive Adversarial Training
	Transductive Setting
	Theoretical Limitations
	Empirical Limitations


	Robust Diffusion: Combining Graph Diffusion with Adversarial Training 
	LR-BCD: Adversarial Attack with Local Constraints
	Empirical Results
	Related Work
	Broader impact
	Discussion and Conclusion
	Inductive Setting
	Experimental Details
	Datsets
	Models
	Attacks
	Projection of LR-BCD
	Adversarial training
	Self-Training

	Transductive Setting
	Proof of prop:advtrainmem
	Empirical Limitations
	Adversarial Training Causes Overfitting
	Self-Training as the (Main) Cause for Robustness


	Additional Inductive Results
	Test Accuracy
	Learned Diffusion Coefficients
	Comparison of PR-BCD and LR-BCD
	Certified Accuracy

	Further Related Work
	Limitations

