
Gated Position-based Attention for Neural Machine Translation

Anonymous ACL submission

Abstract

Attention is a key component of modern neural001
machine translation architectures. Its effective-002
ness was attributed to its capability of modeling003
word dependencies based on their representa-004
tion similarity. However, recent work shows005
that word dependency can be replaced with006
position dependency with only minor degrada-007
tion. In this paper, we propose position-based008
attention as a variant of multi-head attention009
where the attention weights are computed from010
position representations. A naive replacement011
of token vectors with position vectors in self-012
attention results in a significant loss in transla-013
tion quality, which can be recovered by using014
relative position representations and a gating015
mechanism. We show analytically that this gat-016
ing mechanism introduces some form of word017
dependency and validate its effectiveness ex-018
perimentally under various conditions. The019
resulting network, rPosNet, outperforms all ex-020
isting position-based approaches and matches021
Transformer quality while requiring more than022
20% fewer attention parameters after training.023

1 Introduction024

The Transformer (Vaswani et al., 2017) revolution-025

ized the field of neural machine translation before026

its wide adoption in numerous other tasks (Dong027

et al., 2018; Devlin et al., 2019; Dosovitskiy et al.,028

2021). Using self-attention (Vaswani et al., 2017),029

the Transformer computes high-level representa-030

tions for each token as a weighted sum of the entire031

sequence, where the weights depend on the pair-032

wise content interactions.033

Recent work argues that results similar to the034

Transformer can also be achieved by modeling self-035

attention weights based on positional instead of036

content information (Wu et al., 2019; You et al.,037

2020; Tolstikhin et al., 2021; Liu et al., 2021; Lee-038

Thorp et al., 2022). Often, these position-based039

methods are used with some form of gating mecha-040

nism that precedes or wraps the token-mixing oper-041

ation (Wu et al., 2019; Liu et al., 2021; Kim et al., 042

2023). While it is known that gating is important 043

to guide the information flow of neural networks 044

(Srivastava et al., 2015; Dauphin et al., 2017), its 045

importance for position-based approaches is not 046

covered in the literature. Thus, we compare ex- 047

isting position-based approaches as self-attention 048

replacements for machine translation and observe 049

a significant loss in quality for approaches with- 050

out gating. Additionally, scoring with a diverse 051

set of metrics shows that no existing approach can 052

consistently match Transformer results, even with 053

gating. 054

In this paper, we propose rPosNet, a network 055

that leverages gating and computes self-attention 056

weights based on the interactions of absolute and 057

relative position representations. Additionally, we 058

deliver insights into gating and its dependency on 059

position information. In summary, we provide the 060

following contributions: 061

• Analytically, we derive that wrapping the 062

weighted sum of tokens with a gating mech- 063

anism introduces latent content-dependent 064

token-mixing weights (Section 3). 065

• rPosNet outperforms existing position-based 066

methods and slightly exceeds the Transformer 067

while saving 20% of the self-attention param- 068

eters (Section 6). 069

• We show that increasing the expressiveness of 070

token-mixing weights reduces the usefulness 071

of gating (Section 7.2). 072

• We observe experimentally that rPosNet is 073

less effective when used in cross-attention. 074

Our gating reformulation suggests one prob- 075

able reason, but we leave detailed investiga- 076

tions for future work (Section 7.3). 077
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Figure 1: Flowchart representation of (a) self-attention, (b) gated absolute position-based attention (aPosNet), and
(c) gated relative position-based attention (rPosNet). While self-attention provides word and position information to
queries (Q) and keys (K), we omit word information to calculate the attention weights of PosNet. In rPosNet, we
model relative positions using relative position representations (D). Additionally, we employ the gating mechanism
presented in Section 2.3, which applies a GeLU activation and layer normalization on the value vectors (V) and
elementwise multiplies the context vector (C) with the GeLU activated gate (G).

2 Background078

Neural machine translation is typically modeled079

with an encoder-decoder sequence-to-sequence080

(Sutskever et al., 2014) Transformer, which mainly081

consists of multi-head attention and feed-forward082

sub-layers. In the following, we introduce our nota-083

tion, position-based token-mixing alternatives and084

the gating mechanism commonly used in modern085

architectures.086

2.1 Multi-head Attention087

Given a source sequence x P RMˆD and target se-088

quence y P RNˆD, the multi-head attention mech-089

anism (Vaswani et al., 2017) mixes the elements090

in x for every element in y. If y and x refer to091

the same sequence, it is called self-attention. The092

multi-head concept derives from performing the093

following operations on H parallel splits of the fea-094

ture dimension D. In this work, we drop the head095

indices for simplicity of notation. To calculate the096

unnormalized mixing weight, referred to as atten-097

tion energy, of yn and xm, those are projected into098

query and key and combined using the dot product:099

α̂nm :“
pWQynqpWKxmqJ

?
D

. (1)100
101

Since α̂nm is computed from token contents, we102

say that attention captures token-token interactions.103

The attention weight is then calculated by the soft- 104

max normalization of the attention energy: 105

αnm :“
exp α̂nm

ř

m1 exp α̂nm1

, (2) 106
107

and used as the token-mixing weight in the 108

weighted sum over projected input tokens x, de- 109

noted value vectors: 110

cn :“
ÿ

m

αnm ¨ pW V xmq. (3) 111

112

We will refer to the result cn as context vector. 113

Finally, the context vectors of each head are con- 114

catenated and mixed with a linear projection, called 115

output projection. 116

2.2 Position-based token mixing 117

We briefly overview how existing position-based 118

token-mixing approaches propose to modify the 119

attention weights and provide the corresponding 120

Equations in Appendix A for comparison. 121

FNet Proposed for language understanding, FNet 122

(Lee-Thorp et al., 2022) applies a 2D Fourier trans- 123

form over the spatial and feature dimension of x. 124

However, this formulation performed poorly in pre- 125

liminary experiments, which is why our FNet im- 126

plementation, denoted FourierNet, applies a 1D 127

Fourier transform along the spatial dimension and 128

employs value and output projections. 129
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GaussianNet Proposed for machine translation,130

You et al. (2020) hardcode self-attention weights131

as a Gaussian distribution. They report similar per-132

formance to the Transformer when GaussianNet is133

applied for self-attention but a significant degrada-134

tion if extended to cross-attention.135

LinearNet Tolstikhin et al. (2021) propose mix-136

ing tokens with a learnable spatial projection, ef-137

fectively representing α. It has been proposed, to-138

gether with other architecture changes, for image139

classification and natural language understanding140

with minor degradations to the Transformer.141

LightConv For machine translation and other142

tasks, Wu et al. (2019) introduce a lightweight form143

of depthwise convolution, which shares the kernel144

weights W across the feature dimension of a head145

and the outputs while additionally softmax normal-146

izing them.147

gLinearNet Liu et al. (2021) combine the spatial148

projection of LinearNet with the gating mechanism149

of Section 2.3. They propose their architecture for150

image classification and masked language model-151

ing and report significant improvements over Tol-152

stikhin et al. (2021).153

2.3 Gating Mechanisms154

Various formulations of gating mechanisms have155

been proposed to control the information flow156

in neural networks (Hochreiter and Schmidhuber,157

1997; Cho et al., 2014; Srivastava et al., 2015;158

van den Oord et al., 2016; Dauphin et al., 2017).159

They all have in common an elementwise multipli-160

cation between two vectors where one, the gate, is161

bounded in the r0, 1s interval. The gating mecha-162

nism we consider here has been proven effective163

with position-based token-mixing approaches (Liu164

et al., 2021; Kim et al., 2023) and differs from other165

gating mechanisms in that the gate is GeLU acti-166

vated (Hendrycks and Gimpel, 2016) and thus only167

lower bounded. This gating mechanism modifies168

the weighted sum of Equation 3 by applying layer169

normalization (Ba et al., 2016) on the value vector170

vm “ W V xm and elementwise multiplying the171

context vector with the gate gn “ σgpWGynq:172

cn :“
”

ÿ

m

αnm ¨ Norm
`

σgpvmq
˘

ı

d gn, (4)173

174

where σg refers to the GeLU function. In general,175

gating can be applied with any formulation of α.176

However, we will show experimentally in Section177

7.2 that its benefits strongly depend on the informa- 178

tion incorporated within α. 179

3 Reformulating the gating mechanism 180

To better understand the implications of gating, 181

we reformulate Equation 4. We omit layer nor- 182

malization for simplicity and will show in the Ap- 183

pendix B that the general reformulation is unaf- 184

fected if we apply layer normalization on vm. Ad- 185

ditionally, we leverage the GeLU approximation 186

σgpvmq « vmσsp1.702vmq, where σs refers to the 187

Sigmoid function, and rewrite Equation 4 as 188

cn «
ÿ

m

αnmβnm d vm. (5) 189

190

Equation 5 shows that gating the context vector 191

introduces the latent weights βnm P RD: 192

βnm “ gn d σsp1.702vmq, (6) 193194

which consists of the two independent factors 195

β1
n “ gn and β1

m “ σsp1.702vmq. While the mul- 196

tiplication of β1
n and β1

m, in general, allows for 197

token-token interactions, the independence of these 198

factors poses a limitation: for a given query token 199

yn, the ratio between the weights assigned to xm 200

and to xm1 is independent of yn: 201

βnm
βnm1

“
β1
m

β1
m1

. (7) 202
203

In other words, the ratios of token-mixing weights 204

for a query yn as computed by β are predetermined 205

by the ratios across β1
1...M . While we show in Sec- 206

tion 6 that this limitation is not problematic for 207

self-attention, it may be part of the reason gating 208

and relative position-based attention are not effec- 209

tive in cross-attention (see Section 7.3). 210

4 Position-based attention 211

In this Section, we propose position-based atten- 212

tion, which determines the token-mixing weight 213

connecting tokens xm and yn solely based on the 214

position-position interactions between n and m. 215

We pair position-based attention with the gating 216

mechanism of Section 2.3. 217

4.1 Absolute position-based attention 218

In absolute position-based attention we compute 219

the attention energy as the dot product between the 220

two projected position embeddings ñ and m̃: 221

α̂nm :“
pWQñqpWKm̃qJ

?
Dh

. (8) 222
223
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Note that while ñ and m̃ are shared across layers,224

WQ and WK are layer-specific. We refer to the225

combination of Equation 8 and the gating mecha-226

nism of Section 2.3 with aPosNet.227

Theoretical Complexity Except for the gating228

overhead, aPosNet has a similar theoretical com-229

plexity as attention. However, after training, the230

position representations ñ and m̃ are fixed and231

do not depend on the input. It allows us to pre-232

compute α̂ to obtain a matrix of shape pHˆNˆNq.233

Thus, with projections, one layer accounts for234

HN2 ` 3D2 parameters. Additionally, this pre-235

computation reduces the number of operations236

from 2N2D ` 5ND2 to N2D ` 3ND2 by omit-237

ting the dot product and key query projections. We238

compare theoretical complexities in Appendix C.239

Relation to gLinearNet With the pre-computed240

attention energy matrix, aPosNet becomes similar241

to gLinearNet except that α of gLinearNet is not242

normalized and has been trained directly.243

4.2 Relative position-based attention244

To model position interactions with relative245

position-based attention, we borrow the relative po-246

sition representations d̃nm from Shaw et al. (2018),247

which we use in the dot product with the projected248

position embedding ñ:249

α̂nm :“
pWQñqpd̃nmqJ

?
Dh

. (9)250
251

Similarly to Shaw et al. (2018), the distance em-252

bedding d̃ is clipped to a maximum unidirectional253

context size K:254

d̃nm :“ Embeddingrel

´

clip
`

tγnu ´ m,K
˘

¯

.

(10)

255

256

However, in contrast to Shaw et al. (2018), we257

extend relative position-based self-attention to be258

compatible with cross-attention by multiplying n259

with the length ratio γ :“ M
N which we determine260

similar to You et al. (2020) by measuring the aver-261

age length ratio on the training set. We refer to the262

combination of Equation 9 and the gating mecha-263

nism of Section 2.3 with rPosNet. In Figure 1, we264

illustrate the operations performed by aPosNet and265

rPosNet in comparison to multi-head self-attention.266

Theoretical Complexity Similar to aPosNet, we267

can pre-compute α̂ of rPosNet after training, which268

summarizes the interactions between query and269

relative position representations into a matrix of 270

shape pH ˆ K̂ ˆ Nq, where K̂ “ 2K ` 1. Thus, 271

pre-computing α̂ after training reduces the number 272

of parameters from K̂D ` 4D2 to HK̂N ` 3D2 273

and operations from K̂ND ` N2D ` 4ND2 to 274

N2D ` 3ND2. With the hyperparameters pre- 275

sented in Section 5, the pre-computation saves 23% 276

of attention parameters in the Base model configu- 277

ration and 24% in the Big configuration. 278

Relation to LightConv After pre-computing α̂, 279

rPosNet differs from LightConv in that rPosNet 280

does not share token-mixing weights across yn and 281

has global context. We provide an ablation study in 282

Appendix E to understand the importance of these 283

differences. 284

5 Experimental Setup 285

5.1 Datasets & Evaluation 286

We perform our comparison on four datasets of 287

varying sizes: IWSLT14 German-English (Fed- 288

erico et al., 2014), WMT14 English-{German, 289

French} (Bojar et al., 2014), and WMT18 English- 290

Chinese (Bojar et al., 2018). We evaluate DEÑEN 291

models on the test sets TED-{dev10,dev12, test10, 292

tst11, tst12}, EN-{DE, FR} models on newstest14 293

and ENÑZH models on newstest17. An overview 294

of the dataset statistics is shown in Table 1. We 295

preprocess all datasets using Byte Pair Encoding 296

(BPE) (Sennrich et al., 2016) and lowercase the 297

text for the DEÑEN direction. 298

We report BLEU (Papineni et al., 2002), BLEURT 299

(Sellam et al., 2020), and COMET (Rei et al., 2020) 300

for each evaluation. All scores are calculated on 301

detokenized text. To calculate BLEU scores, we 302

use sacreBLEU1 and its internal tokenizations23. 303

For BLEURT and COMET, we use the official im- 304

plementations45 and the models BLEURT-20 and 305

wmt20-comet-da, respectively. To summarize re- 306

sults, we will refer to the translation quality dif- 307

ference between two approaches as their relative 308

difference averaged across all metrics and datasets. 309

1https://github.com/mjpost/sacrebleu
2SacreBLEU signature for EN, FR, DE:

nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
3SacreBLEU signature for ZH:

nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.0.0
4https://github.com/google-research/

bleurt
5https://github.com/Unbabel/COMET
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5.2 Model Architectures310

Our Base and Big Transformer architectures fol-311

low the implementation of Vaswani et al. (2017),312

whereas, for the Small models, we halve the feed-313

forward dimension to 1024 and increase dropout314

to 0.3. We compare position-based token-mixing315

approaches by leveraging the respective formu-316

lations instead of encoder/decoder self-attention317

while leaving the rest of the Transformer architec-318

ture unchanged. We make an exception for Fourier-319

Net, which cannot be straightforwardly extended to320

the decoder because it has an explicit dependency321

on the sequence length. Instead, FourierNet uses322

multi-head attention within decoder self-attention.323

In preliminary experiments, we found that aPos-324

Net works best with sinusoidal positional embed-325

dings (Vaswani et al., 2017) and rPosNet with learn-326

able embeddings (Gehring et al., 2017). All other327

position-based token-mixing approaches use sinu-328

soidal positional embeddings. Similar to Shaw et al.329

(2018), our implementation of rPosNet and Light-330

Conv use a unidirectional context window K “ 16331

for the Base and K “ 8 for the Big model.332

5.3 Training Setup333

Our training setup closely follows the configura-334

tion of Vaswani et al. (2017). Similarly, we use335

the Adam optimizer and a warmup learning rate336

schedule with 4000 steps. We group batches by337

sentence length and train the Small models for 30k338

steps, the Base models for 150k, and the Big mod-339

els for 300k. The final model is an average over340

the best checkpoint and its following if there are341

enough checkpoints to average, or else we take an342

average over the last checkpoints. We determine343

the best checkpoint by its perplexity on the vali-344

dation set. For DEÑEN, we consistently average345

30 checkpoints with a checkpoint period of 300346

steps; for the Base models, we average 7 check-347

points with 1000 steps each; for the Big models, 20348

checkpoints with 600 steps each. The Small model349

uses an effective batch size of approximately 16000350

target tokens while the Base and Big models accu-351

mulate approximately 27000 target tokens per step.352

We use beam search with a beam size of 12 for all353

models. All models in this work are implemented354

in PyTorch (Paszke et al., 2019) and are available355

in the supplementary material. The Small models356

are trained on a single 2080 TI graphics card, the357

Base models on two, and the Big models on four.358

Table 1: Dataset statistics.

Dataset
Vocabulary Size Train

Pairs
Test
Pairs

Source Target

DEÑEN 10k 160k 6750
ENÑDE 44k 4M 3003
ENÑFR 46k 36M 3003
ENÑZH 32k 45k 17M 2001

6 Results 359

We compare translation quality of the Base model 360

configurations in Table 2, and Small and Big model 361

configurations in Table 3. 362

Gated position-based attention In all experi- 363

ments, we observe rPosNet performing as well or 364

slightly better than the Transformer with an average 365

translation quality increase of 0.7%. It shows that 366

the self-attention weights of rPosNet, consisting 367

of content-dependent β and position-dependent α, 368

achieve sufficient expressiveness for machine trans- 369

lation. aPosNet cannot match this expressiveness 370

and underperforms the Transformer with an aver- 371

age relative degradation of 1.8%. In the Small setup 372

on DEÑEN, this reaches an absolute degradation 373

of 2.9 points in COMET and 0.8 points in BLEURT. 374

The significant difference between aPosNet and 375

rPosNet highlights the importance of relative posi- 376

tion information in α. 377

The results of gLinearNet and LightConv fur- 378

ther emphasize the strong modeling capabilities of 379

absolute (query) and relative position (key) inter- 380

actions in rPosNet. In comparison, token-mixing 381

weights in gLinearNet solely model absolute posi- 382

tion interactions and LightConv relative position 383

interactions. Both cannot match rPosNet’s transla- 384

tion quality, with gLinearNet on average lacking 385

behind by 1.3% relative and LightConv by 2.4%. 386

Note that in contrast to Wu et al. (2019), we do 387

not match parameters between LightConv and the 388

Transformer. Most prominent in the Base setting on 389

ENÑDE, rPosNet outperforms gLinearNet by 0.6 390

BLEURT and 1.9 COMET points. While aPosNet 391

cannot match Transformer results, rPosNet outper- 392

forms other position-based methods and is on par 393

with Shaw et al. (2018) and the Transformer across 394

all model sizes and data conditions. 395

Hard-coded token-mixing weights Our results 396

show that hard coding encoder self-attention 397
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Table 2: Base model results on ENÑDE, ENÑFR, and ENÑZH. Note that this scoring differs from Vaswani
et al. (2017) in that they split German compound words, which usually increases the BLEU score, and from You
et al. (2020) in that we use sacreBLEU’s default tokenizer, not ’intl’. We ensured that our baseline system and
reimplementation of You et al. (2020) match in BLEU when evaluating similarly.

Model
Params ENÑDE ENÑFR ENÑZH

(ENÑDE) BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT COMET

Transformer 66.5M 26.3 71.1 47.6 37.8 69.0 61.1 33.8 64.3 42.5
Shaw et al. (2018) 66.7M 26.3 71.4 48.6 37.8 69.2 61.6 34.0 64.6 43.5

FourierNet 63.4M 22.8 66.0 31.8 34.9 64.2 49.3 31.5 61.6 34.9
GaussianNet 60.2M 25.3 68.1 39.5 36.7 66.9 55.7 32.6 62.6 36.8
LinearNet 61.8M 25.3 69.8 44.3 37.0 67.7 58.2 33.1 63.3 40.2
LightConv 63.4M 26.0 70.6 46.7 37.4 68.6 60.3 33.0 63.5 41.1
gLinearNet 65.0M 26.1 70.8 46.7 37.8 69.1 61.3 33.5 64.0 42.4

aPosNet 65.0M 25.9 70.6 46.1 37.7 69.0 61.4 33.6 63.7 42.2
rPosNet 63.9M 26.6 71.4 48.6 37.9 69.4 61.8 33.8 64.2 43.1

Table 3: Big model results on ENÑDE and Small model results on DEÑEN.

Model
ENÑDE DEÑEN

Params BLEU BLEURT COMET Params BLEU BLEURT COMET

Transformer 221M 27.1 72.3 50.4 36.8M 35.0 69.3 37.6
Shaw et al. (2018) 221M 27.3 72.7 51.5 37.0M 35.4 69.7 38.8

FourierNet 208M 24.0 67.6 36.5 33.6M 32.5 66.9 28.2
GaussianNet 196M 26.3 69.4 42.3 30.4M 34.3 68.4 34.1
LinearNet 199M 26.6 71.3 48.0 32.0M 34.0 68.3 33.9
LightConv 209M 26.8 71.7 49.1 33.6M 34.4 68.9 35.5
gLinearNet 212M 27.1 72.2 49.9 35.2M 34.5 69.0 36.3

aPosNet 212M 26.8 71.4 47.7 35.2M 34.2 68.5 34.7
rPosNet 210M 27.3 72.2 50.4 34.1M 35.1 69.5 38.2

weights as the twiddle factors of the Fourier trans-398

form (FourierNet) leads to poor results for ma-399

chine translation and, on average across all datasets400

and metrics, degrades translation quality relative401

to the Transformer by 13.2%. In GaussianNet,402

weights are manually designed to follow the nor-403

mal distribution of Transformer self-attention pat-404

terns, which significantly reduces the degradation405

to 6.3%. However, the translation quality is still406

considerably worse than LinearNet’s, the weakest407

model with trainable self-attention weights. The408

difference between LinearNet and GaussianNet is409

negligible in BLEU but made visible with BLEURT410

and COMET, which correlate better with human411

judgment (Kocmi et al., 2021). In particular, we412

confirmed by manually analyzing a sample of trans-413

lations (see Appendix F) that the semantic metrics414

discriminate better between translation hypotheses415

when they all have little overlap with the references 416

or changing a single word alters the meaning of the 417

sentence. Thus, approaches with learnable token- 418

mixing weights, such as rPosNet, are considerably 419

better than hard-coded approaches. 420

7 Analysis 421

7.1 Decoding speed 422

Table 4 shows the average CPU decoding speed and 423

variance on ENÑDE measured across ten runs. De- 424

spite the lower theoretical complexity of position- 425

based attention, we observe similar performance to 426

the Transformer and minor improvements to Shaw 427

et al. (2018) in practice. Comparing profiling re- 428

sults between rPosNet and the Transformer showed 429

that while rPosNet reduces the time spent in linear 430

projections and matrix multiplications from 73% to 431

65% (with similar total runtime), the overall time 432
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Table 4: Comparing average CPU decoding speeds and
variances measured across ten runs on ENÑDE.

Model
Decoding Speed

[ Tokens \ s ]

Transformer 16.8 ˘ 0.61
Shaw et al. (2018) 16.5 ˘ 0.60

aPosNet 17.0 ˘ 0.69
rPosNet 16.8 ˘ 0.61

spent within self-attention layers stays the same433

due to the overhead introduced from indexing the434

attention energies and gating.435

7.2 The impact of gating and query-key436

information437

The gating mechanism is known to guide the438

learning of cross-token patterns (Tu et al., 2017;439

Dauphin et al., 2017). In Section 3, we mathe-440

matically showed that by gating the context vector,441

these patterns are captured within the latent token-442

mixing weights β. Since the products of β and443

α form the actual token-mixing weights, we ana-444

lyze in this Section how content information in α445

impacts the usefulness of gating. For that, we com-446

pare the utilization of position versus content infor-447

mation in the query and key input of self-attention,448

with and without gating. The results are visualized449

in Figure 2, where we depict COMET scores on the450

y-axis and the query and key input on the x-axis.451

The formulation of position-based attention with-452

out gating primarily6 differs from the Transformer453

in the provided information within queries and454

keys. Relative attention uses the relative position455

representations of Shaw et al. (2018)’s approach456

but without the query-key dot product of multi-457

head attention. Thus, relative attention differs from458

rPosNet in that content information is provided459

to the queries and is equal to dynamic convolu-460

tions (Wu et al., 2019) with global context (Chang461

et al., 2021). In total, the x-axis of Figure 2 depicts462

position-position interactions for aPosNet and rPos-463

Net, token-position interactions for relative atten-464

tion, token-token interactions for the Transformer,465

and token-token + token-position interactions for466

Shaw et al. (2018). We sort these approaches on467

the x-axis in order of their attention weight expres-468

siveness.469

6The position embeddings may also differ between ap-
proaches.

Figure 2 shows that gating in position-based at- 470

tention approaches increases COMET by 3.5 points 471

for aPosNet and rPosNet. While relative attention 472

can leverage gating with a lower but significant 473

absolute COMET increase of 2.6 points, the incre- 474

ment for the Transformer is only 2 points and 0.9 475

points for Shaw et al. (2018). Thus, gating is less 476

helpful if α can capture content-dependent patterns, 477

and increasing the expressiveness of those patterns 478

diminishes the usefulness of gating. Since gating 479

introduces an additional projection matrix of size 480

D2 per self-attention layer, content-based mixing 481

approaches may just leverage the additional param- 482

eter. In contrast, approaches that do not incorporate 483

content information within the attention weights 484

can benefit from token-token interactions captured 485

in β. Additionally, the comparable performance of 486

rPosNet and relative attention with gating suggests 487

that gating makes the content information within 488

relative attention redundant for translation quality. 489

7.3 Comparing the usage of rPosNet across 490

attention layers 491

While the aforementioned experiments concen- 492

trated on self-attention, we also consider cross- 493

attention in this Section and analyze how the us- 494

age of rPosNet affects translation quality compared 495

to multi-head attention. In Table 5, we depict 496

the translation quality on ENÑDE when combi- 497

nations of encoder self-attention (enc-self), de- 498

coder self-attention (dec-self), and decoder cross- 499

attention (dec-cross) employ multi-head attention 500

(✗) or rPosNet (✓). The model using rPosNet only 501

for cross-attention while all other layers employ 502

multi-head attention (row 4) significantly decreases 503

translation quality by 5.7% relative to the Trans- 504

former. The result suggests that content-dependent 505

patterns incorporated by β cannot sufficiently cap- 506

ture source-target token interactions. We hypoth- 507

esize that part of the reason is the inability of β 508

to express varying relations across source tokens 509

(see Section 3). While this may be a significant 510

limitation of gating, we leave the exploration of 511

this and other possible reasons to future work. 512

However, utilizing rPosNet within all self- 513

attention layers (row 8), so that rPosNet is the 514

only token-mixing method, does not lead to fur- 515

ther degradation of translation quality with a rela- 516

tive degradation to the Transformer of 5.5% (5.3% 517

relative in BLEU). Although the loss is substan- 518

tial, rPosNet improves upon You et al. (2020)’s 519
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Figure 2: Approaches depicted on the x-axis differ in
the provided information to queries and keys. On the
y-axis we depict COMET, which is the most accurate
metric according to Kocmi et al. (2021), and provide
the full Table showing BLEU, BLEURT, and COMET
in Appendix D. If position information is provided to
queries and keys, gating has a significant positive impact
on translation quality that diminishes with the usage of
content information.

relative BLEU degradation of 12.3%7. Addition-520

ally, Table 5 shows that using rPosNet within de-521

coder self-attention is only beneficial if encoder522

self-attention leverages rPosNet, whereas the us-523

age within encoder self-attention always positively524

impacts translation quality.525

8 Related Work526

The question of how to represent position and inte-527

grate it into the Transformer architecture has been a528

vast research field that we briefly want to overview529

and connect to our approach. An extensive line530

of research focuses on improving position embed-531

dings (Kitaev et al., 2020; Liu et al., 2020; Kiyono532

et al., 2021) and their integration into the word533

vectors (Neishi and Yoshinaga, 2019; Wang et al.,534

2020). This direction is mainly orthogonal to our535

approach, and many ideas and methods can be536

leveraged with position-based attention. We leave537

these investigations for future work and restricted538

to learnable (Gehring et al., 2017) and sinusoidal539

(Vaswani et al., 2017) embeddings.540

A different line of research focuses on integrat-541

ing position within the attention mechanism (Shaw542

et al., 2018; Dai et al., 2019; Dufter et al., 2020;543

Huang et al., 2020; Raffel et al., 2020; Ke et al.,544

7As reported by You et al. (2020)

Table 5: A translation quality comparison of all combi-
nations in which encoder self-attention (enc-self), de-
coder self-attention (dec-self), and/or decoder cross-
attention (dec-cross) use either multi-head attention
(✗) or rPosNet (✓). We conduct the experiments on
ENÑDE and report BLEU, BLEURT, and COMET.

rPosNet Layers ENÑDE

enc-
self

dec-
self

dec-
cross BLEU BLEURT COMET

✗ ✗ ✗ 26.3 71.1 47.6

✓ ✗ ✗ 26.4 71.2 48.1
✗ ✓ ✗ 26.1 71.1 47.2
✗ ✗ ✓ 24.6 69.2 43.8

✓ ✓ ✗ 26.6 71.4 48.6
✓ ✗ ✓ 24.8 69.8 45.2
✗ ✓ ✓ 24.3 69.0 42.8

✓ ✓ ✓ 24.9 69.3 43.5

2020; He et al., 2021; Wu et al., 2021). They 545

all improve over Transformer models for various 546

tasks by modifying word and position interactions 547

within the attention matrix and introducing rela- 548

tive position representations as a scalar or vector. 549

While they still rely on content-dependent atten- 550

tion weights, they showed the importance of rela- 551

tive position representations, which we also used 552

in rPosNet. However, we are interested in study- 553

ing purely position-based self-attention approaches 554

and how they can perform at least on par with 555

the (content-based) Transformer. Additionally, we 556

compare with Shaw et al. (2018) as an upper bound 557

since it leverages token-token interactions and was 558

proposed for machine translation. 559

9 Conclusion 560

We have introduced the gated token-mixing ap- 561

proaches aPosNet and rPosNet for machine trans- 562

lation. Although their token-mixing weights are 563

position-based, the gating mechanism introduces 564

content dependency in the form of latent weights 565

β. These weights capture token-token interactions 566

and are crucial for the results of rPosNet. We have 567

effectively used rPosNet as a self-attention replace- 568

ment and saved more than 20% of the self-attention 569

parameters without loss in translation quality. 570
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Limitations571

The goal of this paper is to find alternatives as572

good as Transformer that do not require word-word573

interactions in attention computation. We have574

compared numerous approaches across many data575

conditions and model sizes to show the validity of576

our results. However, we can identify the following577

limitations in our work:578

• rPosNet’s decoding is not faster than Trans-579

former despite the better theoretical computa-580

tion given by pre-computing weights;581

• rPosNet’s position-based attention is an ef-582

fective replacement of Transformer’s self-583

attention, but its usage in cross-attention leads584

to quality loss;585

• We did not have enough computational re-586

sources to run all our numerous experiments587

multiple times, so we rely on the consistent588

results we obtain across different conditions589

and metrics.590
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A Formulas describing related 843

position-based token-mixing 844

approaches 845

In the following, we provide the formulas de- 846

scribing how the position-based token-mixing ap- 847

proaches from Section 2.2 formulate the context 848

vector. 849

FNet 850

cn :“ R
´

ÿ

m

exp
“

´ 2πj
n ¨ m

M

‰

¨ Fhpxmq

¯

(11)

851

852

GaussianNet 853

cn :“
1

σ
?
2π

ÿ

m

exp
”

´pm ´ µpnqq2

2σ2

ı

¨ pW V xmq

(12)

854

855

LinearNet 856

cn :“
ÿ

m

Wnm ¨ pW V xmq (13) 857

858

LightConv 859

cn :“
2K
ÿ

k“0

expWk
ř2K

k1“0 expWk1

¨ σGLUpW V xn`k´Kq

(14)

860

861

B Reformulating the gating mechanism 862

with layer normalization 863

Substituting zm “ σgpvmq we rewrite the gating 864

mechanism of Equation 4 as 865

cn :“
”

ÿ

m

αnm ¨ Normpzmq

ı

d gn. (15) 866

867

Similar to Section 3, we aim to rediscover the 868

weighted sum over vm. For this, we utilize the 869

definition of layer normalization: 870

Normpxq :“ a d rf1pxqx ´ f2pxqs ` b, (16) 871872

with gain a P RD, bias b P RD, f1pxq “ 1?
σx

and 873

f2pxq “
µx?
σpxq

. The insertion into Equation 15 874

gives us: 875
876

cn « a d
ÿ

m

αnm f1pzmq ¨ gn d σspvmq
loooooooooooomoooooooooooon

βnmPRD

dvm 877

´ a d
ÿ

m

αnm ¨ f2pzmq ¨ gn `
ÿ

m

αnmb d gn.

(17)
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Table 6: Comparing how different attention approaches
leverage gating.

Model Gating Params
ENÑDE

BLEU BLEURT COMET

Transformer ✗ 66.5M 26.3 71.1 47.6
✓ 69.7M 26.6 71.6 49.6

Shaw et al. (2018) ✗ 66.7M 26.3 71.4 48.6
✓ 69.9M 26.7 71.8 49.5

Rel. Self-Attention ✗ 63.6M 25.7 70.4 46.4
✓ 66.7M 26.5 71.3 49.0

aPosNet ✗ 61.8M 25.4 69.4 42.6
✓ 65.0M 25.9 70.6 46.1

rPosNet ✗ 60.8M 25.3 70.1 45.1
✓ 63.9M 26.6 71.4 48.6

Utilizing the normalization property
ř

m αnm “ 1879

we can simplify Equation 17 to:880
881

cn « a d
ÿ

m

αnmβnm d vm882

` gn d

”

b ´ a
ÿ

m

αnmf2pzmq

ı

, (18)883

with884

βnm “ f1pzmq ¨ gn d σsp1.702vmq. (19)885886

Although Equation 18 assumes α to be normalized,887

not normalizing α does not affect β and only adds a888

context-dependent scale in front of b. All in all, the889

Equations show that with or without layer normal-890

ization, gating introduces the token-mixing weights891

β.892

C Theoretical complexity comparison893

We compare theoretical complexities across894

position-based token-mixing approaches, the Trans-895

former, and Shaw et al. (2018) concerning the num-896

ber of operations and parameters in Table 8.897

D Table: The impact of gating and898

query-key information899

By depicting COMET scores in Figure 2, we visual-900

ized how the effectiveness of gating decreases with901

increased token-mixing weight expressiveness. In902

Table 6, we provide the full results with the number903

of parameters, BLEU, BLEURT, and COMET.904

E Ablation analysis: From LightConv to905

rPosNet906

With the similarities between LightConv and rPos-907

Net, we want to understand what features of rPos-908

Net are responsible for its better translation quality.909

Table 7: Starting from LightConv and progressively
implementing the features of rPosNet.

Model Params
ENÑZH

BLEU BLEURT COMET

Transformer 107M 33.8 64.3 42.5
Shaw et al. (2018) 107M 34.0 64.5 43.8

Light Convolution 101M 33.2 63.4 40.6
+ GLU [LightConv] 104M 33.0 63.5 41.1
+ GeLU Gating 104M 33.5 63.7 42.4
+ Global Context 104M 33.6 63.9 42.4

rPosNet 104M 33.8 64.2 43.1

While Wu et al. (2019) propose LightConv initially 910

with the GLU mechanism (Dauphin et al., 2017) 911

(see Equation 14), we differentiate between Light- 912

Conv with and without GLU since the effect of gat- 913

ing is a central component of our analysis. We start 914

with LightConv without GLU, denoted Light Con- 915

volution, and progressively implement the features 916

of rPosNet. In Table 7, we show the translation 917

quality on ENÑZH of the models leveraging the 918

respective position-based approach instead of self- 919

attention. Light Convolution (row 3) shows similar 920

translation quality to LightConv (row 4). Replacing 921

GLU gating with the gating mechanism of Section 922

2.3, denoted GeLU gating (row 5), increases trans- 923

lation quality noticeably by 0.5 points in BLEU, 0.2 924

points in BLEURT, and 1.3 points in COMET. Addi- 925

tionally, adding global context (row 6) by spreading 926

the outer kernel weights across the whole sequence 927

increases translation quality slightly by 0.1 BLEU 928

and 0.2 BLEURT (no improvement in COMET). The 929

remaining difference to rPosNet (row 7) is the dif- 930

ferent training scheme and rPosNet’s unshared ker- 931

nel weights across query positions. Together they 932

add additional 0.2 points in BLEU, 0.3 in BLEURT, 933

and 0.7 in COMET. The results show that all dif- 934

ferences between LightConv and rPosNet are re- 935

sponsible for their translation quality difference. 936

While the global context seems negligible for ma- 937

chine translation, GeLU gating, training scheme, 938

and unshared token-mixing weights are the most 939

important. 940

F Example failure cases of BLEU 941

Throughout our analysis, we observed that BLEU 942

often disagrees with the semantic metrics BLEURT 943

and COMET. For example, the translation quality 944

in the Base configuration on ENÑDE, of Gaus- 945

sianNet, LinearNet, (see Table 2) aPosNet without 946
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Table 8: We compare the theoretical complexity and number of parameters per attention layer. K̂ refers to the
bidirectional context size. With the formulation of position-based attention, the attention energies can be pre-
computed after training, resulting in different complexities between training and search.

Model
Parameters Operations

Train Search Train Search

Transformer 4D2 2N2D ` 4ND2

Shaw et al. (2018) K̂D ` 4D2 K̂ND ` 2N2D ` 4ND2

FNet 2D2 N logpNqD ` D logpDqN

GaussianNet 2D2 K̂ND ` 2ND2

LinearNet HN2 ` 2D2 N2D ` 2ND2

LightConv HK̂ ` 3D2 K̂ND ` 3ND2

gLinearNet HN2 ` 3D2 N2D ` 3ND2

aPosNet 5D2 HN2 ` 3D2 2N2D ` 5ND2 N2D ` 3ND2

rPosNet K̂D ` 4D2 HK̂N ` 3D2 K̂ND ` N2D ` 4ND2 N2D ` 3ND2

gating, and rPosNet without gating (see Table 6)947

is similarly measured by BLEU but varies signifi-948

cantly in BLEURT and COMET. We analyzed trans-949

lation samples of GaussianNet and LinearNet and950

observed that BLEU often falsely depicts transla-951

tion quality when hypotheses have little overlap952

with the reference or changing a single word alters953

the meaning of the sentence. While the inaccu-954

racies of BLEU are already known (Kocmi et al.,955

2021), we want to show exemplarily how BLEU956

would have misled our analysis. Without using957

BLEURT and COMET, we would have concluded958

that aPosNet and rPosNet would be equally good959

without gating and that the hard-coded weights of960

GaussianNet are as good as the learnable weights961

of LinearNet.962
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Table 9: Example failure cases on ENÑDE in which BLEU depicts a misleading score. These inaccurate BLEU
scores are best visualized when comparing GaussianNet and LinearNet. Both models achieve the same corpus-level
BLEU score but differ significantly in BLEURT and COMET (see Table 2). The translations show that measuring
the syntactical overlap between the hypothesis and reference translation is not an accurate measure of translation
quality.

BLEU BLEURT COMET

Source Haigerloch: Focus on the Abendmahlskirche
Reference Haigerloch: Abendmahlskirche rückt in den Blickpunkt
LinearNet Haigerloch: Fokus auf die Abendmahlskirche 15.2 84.0 72.3
GaussianNet Haigerloch: Focus on the Abendmahlskirche 15.2 35.6 ´15.0

Source Does he know about phone hacking?
Reference Weiß er über das Telefon-Hacking Bescheid?
LinearNet Weiß er von Telefonhacking? 15.8 80.2 72.5
GaussianNet Kennt er über Telefon-Hacking? 17.0 38.2 8.8

Source The new season in the Falkenberg "Blue Velvet" club has begun.
Reference Die neue Saison in der Falkenberger Discothek "Blue Velvet" hat begonnen.
LinearNet Die neue Saison im Falkenberg "Blue Velvet" Club hat begonnen. 33.1 75.3 85.7
GaussianNet Die neue Saison im Falkenberg "Blue Velvet" hat begonnen. 53.7 72.2 74.5

Source Finally, let’s talk pumpkins.
Reference Aber kommen wir endlich zu den Kürbissen.
LinearNet Abschließend möchte ich noch auf die Kürbisse eingehen. 4.8 71.4 41.0
GaussianNet Schließlich, lassen Sie uns reden Kürbisse. 5.5 36.0 ´60.3

Source A combined English literature and language course will be scrapped.
Reference Der kombinierte Kurs aus englischer Literatur und Sprache wird abgeschafft.
LinearNet Eine kombinierte englische Literatur und Sprachkurs wird verschrottet. 9.6 60.8 44.0
GaussianNet A combined German literature and language course will be scrapped. 3.7 19.8 ´42.8

Source However, there was no sigh of relief to be heard from Ludwigsburg.
Reference Ein erstes Aufatmen war aus Ludwigsburg dennoch nicht zu vernehmen.
LinearNet Von Ludwigsburg war jedoch kein Seufzer der Erleichterung zu hören. 5.3 76.7 46.7
GaussianNet Es gab jedoch keinen Seufzer der Erleichterung, von Ludwigsburg gehört zu werden. 3.7 45.1 ´30.3

Source Sayings come from the Bible
Reference Sprichwörter kommen aus der Bibel
LinearNet Sprichwörter stammen aus der Bibel 42.7 90.3 108.0
GaussianNet Sayings kommen aus der Bibel 66.9 60.7 3.7

Source Uwe Link has an offer for anyone who wants to set off in a carriage.
Reference Wer dann mit der Kutsche vorfahren will, für den hat Uwe Link ein Angebot.
LinearNet Uwe Link hat ein Angebot für jeden, der in einer Kutsche starten will. 9.0 70.0 59.0
GaussianNet Uwe Link hat ein Angebot für jeden, der einen Wagen starten möchte. 8.5 46.3 ´10.0

Source Solicitors should uphold the highest standards of integrity
and should instil trust and confidence in the public.

Reference Anwälte müssen die höchsten Standards an Integrität aufrechterhalten
und in der Öffentlichkeit für Vertrauen und Zuversicht sorgen.

LinearNet Die Staatsanwälte sollten die höchsten Standards der Integrität wahren
und Vertrauen in die Öffentlichkeit schaffen.

10.9 77.9 67.4

GaussianNet Die Umweltschützer sollten die höchsten Standards der Integrität einhalten
und Vertrauen und Vertrauen in die Öffentlichkeit schaffen.

12.2 53.6 ´0.7
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