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Abstract

Autonomous science agents, built on large language models (LLMs), are increas-1

ingly being investigated to generate hypotheses, design experiments, and produce2

reports. Prior science agents primarily focus on open-ended scientific problems,3

where such outputs—hypotheses, experiments, or analyses are inherently sub-4

jective and thus difficult to evaluate rigorously. In contrast, existing scientific5

coding benchmarks provide tasks with clearly defined, executable outputs that6

enable objective assessment. However, current agent-based approaches to these7

benchmarks remain engineering-driven pipelines, lacking principled framework8

design. This mismatch exposes a gap: the absence of end-to-end, principled science9

agent frameworks for scientific coding tasks. We address this gap by focusing on10

scientific coding tasks, where evaluation can be made rigorously, and introducing11

an agent framework SciNav (Scientific Navigator) that enables more effective12

solution exploration. Our framework is designed to operate efficiently under con-13

strained search budgets, moving beyond reliance on pre-defined success metrics14

and prolonged search cycles. Inspired by findings that comparative judgments often15

reveal finer-grained quality differences and therefore provide greater discriminative16

power than absolute scoring, our framework leverages pairwise relative judgments17

within a tree search process to select top-K promising solution branches, prune18

low-potential ones, and progressively narrow down the solution candidates on the19

selected branches guided by relative comparisons. We demonstrate our agent’s20

effectiveness across a range of tasks including machine learning and visualization21

on ScienceAgentBench. Experiments show that SciNav significantly outperforms22

direct prompting and prior agents like OpenHands and Self-Debug across different23

models, and exceeds different frontier comparators such as random selection and24

LLM absolute scoring. These results confirm the strength of our agent design25

and highlight the effectiveness of relative judgment–guided search for efficient,26

high-quality scientific coding, marking a step toward more practical science agents.27

1 Introduction28

Large language models (LLMs) have recently shown strong potential to advance scientific discovery,29

giving rise to science agents that aim to automate the research process end-to-end. Systems such as30

Agent Laboratory (Schmidgall et al., 2025), ResearchAgent (Baek et al., 2024), and AlphaEvolve31

(Cui et al., 2021), aspire to generate research ideas, design experiments, and draft reports. While32

this vision of broad-scope automation is compelling, it raises a central challenge: how to evaluate33

the outputs of such agents. Unlike standard benchmarks with unambiguous correctness criteria, the34

artifacts produced, including novel hypotheses, experimental protocols, and written analyses, are35

inherently open-ended and subjective, often demanding expert review or costly human studies to36

judge their scientific validity.37
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Figure 1: Illustration of Top-K Comparative Tree Search (TKCTS). Left: the search tree expands
candidate solutions from an initial set, with relative comparisons (blue dashed arrows) guiding which
branches to retain and explore. Right: comparison between absolute scoring, which assigns noisy
pointwise scores to individual solutions, and relative judgment, which evaluates pairs and provides
sharper, more reliable distinctions. Relative judgments guide the search toward higher-quality
solutions under constrained budgets.

At the same time, existing scientific coding benchmarks such as DSBench (Jing et al., 2024), DA-38

Code (Huang et al., 2024), BixBench (Mitchener et al., 2025), DiscoveryBench (Majumder et al.),39

Core-Bench (Siegel et al., 2024) and SciCode (Tian et al., 2024) define tasks with executable outputs40

that allow objective assessment. However, current agent-based approaches to these benchmarks41

largely rely on general-purpose agents such as OpenHands (Wang et al., 2024) and Auto-GPT (Yang42

et al., 2023), or primarily target engineering-oriented workflows like designing tools for Bash-based43

environment management and reading or writing files (Huang et al., 2024; Mitchener et al., 2025;44

Jing et al., 2024). Though these workflows can be adapted to the scientific coding benchmarks, they45

mainly focus on the engineering pipeline, which lack principled agent framework design that enables46

more effective solution exploration.47

As a result, a gap remains: existing science agents are primarily designed to operate end-to-end48

on open-ended scientific problems, focusing on generating hypotheses, experimental designs, and49

reports, while scientific coding benchmarks—with clearly defined, executable outputs that enable50

direct evaluation, are typically approached using general-purpose agents or engineering-centric51

pipelines that lack principled framework design. Our work addresses this gap by focusing on52

scientific coding tasks, where evaluation can be made rigorous, and by introducing a framework that53

enables more effective solution exploration. Recent efforts such as AIDE (Jiang et al., 2025) have54

taken steps in this direction by proposing specialized frameworks for machine learning coding tasks.55

However, these systems often assume (i) well-defined evaluation metrics (e.g., leaderboard accuracy)56

that agents can directly optimize, and (ii) large exploration budgets (e.g., 24-hour searches) that allow57

exhaustive solution generation and testing. Such assumptions are rarely practical, especially when58

task types are diverse: different scientific problems demand distinct evaluation criteria, many of59

which are not known in advance, and prolonged search cycles are prohibitively costly. In contrast,60

our framework produces high-quality solutions under constrained search budgets without relying on61

pre-specified metrics.62

To address the above limitations, We introduce SciNav (Scientific Navigator), an autonomous agent63

for scientific coding tasks that leverages Top-K Comparative Tree Search (TKCTS) to effectively64

navigate solution spaces under constrained budgets. Many studies have shown that relative judgments65

have higher reliability and discriminative power than absolute scoring (Yan, 2024; Liu et al., 2024;66

Peyrard et al., 2021). As Figure 1 shows, it’s easier to compare two outputs and decide which is67

better than to assign an absolute score, as comparisons provide clearer signals of where one solution68
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Science Agents Scope Multi-Plan? Retrieval? Self-Improve Selection Artifact Evaluated Automatic Evaluation

ResearchAgent (Baek et al., 2024) Full-cycle, open-ended N Y NeurIPS review Idea + Exp. NeurIPS review
AgentLab (Schmidgall et al., 2025) Full-cycle, open-ended N Y LLM absolute score Exp. + Paper quality NeurIPS review
CodeScientist (Jansen et al., 2025) Full-cycle, open-ended N N - Paper + Code Accept/Reject Hyp.
AI Scientist-V2 (Yamada et al., 2025) Full-cycle, open-ended Y N Task-defined metric Paper NeurIPS review
AlphaEvolve (Novikov et al., 2025) Full-cycle, open-ended N N Task-defined metric Code Exec. Task-specific
SciMaster (Chai et al., 2025) QA with tool use - Y - Text answer Accuracy
AIDE (Jiang et al., 2025) Machine learning tasks Y N Task-defined metric Code Exec. Accuracy, F1 etc
SciNav (Ours) Scientific coding tasks Y N LLM relative judgments Code Exec. Task-specific

Table 1: A comparison of existing science agents with SciNav, in terms of their focus, research
artifacts being evaluated, and automatic evaluations. ‘Full-cycle’ refers to the stages from literature
review, ideation, experimentation to report writing. ‘Self-Improve Selection’ refers to the evaluation
strategy used to choose solutions from the candidate pool for further refinement. Unlike prior agents
that rely on task-defined success metrics, our agent is designed for practical scenarios where such
criteria are not available at run time. ‘Y’ indicates yes; ‘N’ indicates no; ‘–’ indicates not applicable.

succeeds or fails relative to another. By treating one solution as an anchor against which another69

is evaluated, comparative assessments sharpen distinctions between candidates, leading to more70

reliable outcomes and closer alignment with human preferences than pointwise scoring. Building on71

these findings, TKCTS integrates comparative judgments into a structured tree search. In the early72

stages, the search explores broadly but retains only the Top-K most promising branches, pruning73

low-potential ones to control cost. As the search progresses, child nodes are generated along the74

retained branches, and comparative judgments rank frontier nodes so that the Top-K are promoted75

for further expansion while the rest are discarded, until a final solution is reached. This design76

balances systematic exploration with adaptive prioritization, efficiently directing computation toward77

high-quality solutions.78

In summary, our contributions are three-fold:79

• We introduce SciNav, an autonomous science agent for scientific coding tasks that leverages80

relative judgments within a Top-K tree search to efficiently explore solution spaces under81

constrained budgets, enabling systematic reasoning and high-quality code generation.82

• We conduct a detailed analysis of each component to better understand how it affects the83

performance of our agent framework.84

• Our results show that the success rate of SciNav on ScienceAgentBench achieves a sig-85

nificant gain over other baselines across different base models with reasonable cost. For86

GPT-4o, it exceeds the best baseline agent Self-Debug with a 24% improvement for SR, and87

achieves 22.9% improvement over OpenHands for SR while reducing 53.2% cost.88

2 Related Work89

Science Agents. To situate our work, we compare existing science agents along their scope, planning90

mechanisms, retrieval usage, evaluation strategies, and target artifacts. As shown in Table 1, prior91

systems largely operate in a full-cycle, open-ended setting, aiming to cover the entire research92

pipeline that produces outputs such as hypotheses, experiments, or reports, which resist systematic93

automatic evaluation (Baek et al., 2024; Schmidgall et al., 2025; Jansen et al., 2025; Yamada et al.,94

2025; Cui et al., 2021). Some efforts focus on narrower domains (e.g., machine learning coding95

tasks) and primarily rely on commonly used task-defined metrics (e.g., accuracy and F1) that assume96

well-specified success criteria (Jiang et al., 2025), or focus on simple question answering tasks and97

integrate tool use and retrieval to produce final answers(Chai et al., 2025). In contrast, our work aims98

to have a principled agent framework to help solving scientific coding tasks, where solutions take99

the form of executable programs that can be rigorously assessed against ground truth outputs. We100

present SciNav, an agent that integrates relative judgments–guided tree search to effectively navigate101

solution spaces under constrained computational budgets.102

Test-time Scaling in LLMs. Prior work such as PlanSearch (Wang et al., 2025) and CodeMonkeys103

(Ehrlich et al., 2025) demonstrates that increasing the number of generated candidate solutions leads104

to an approximately log-linear improvement in the proportion of problems successfully solved by105

at least one candidate. This test-time compute scaling phenomenon significantly enhances overall106

solution coverage, that can be measured by metrics such as Pass@K in code generation tasks. SFS107
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(Light et al., 2025) reveals performance gains on programming tasks by enhancing the solution108

diversity and leveraging prior search experiences. Snell et al., 2025 shows that scaling LLM test-time109

compute optimally can be more effective than scaling model parameters. Inspired by these work,110

we leverage the test-time scaling across multiple components of our agent. In addition, we uniquely111

leverage relative judgments-based frontier comparator to select and refine candidate solutions during112

tree search. This enables effective exploration and improvement without requiring explicit success113

criteria, making our approach more generalizable to real-world scientific tasks where such gold114

signals are often unavailable.115

3 Agent Framework116

Algorithm 1 Top-K Comparative Tree Search (TKCTS)
Input: Task T ; initial candidates S0; comparison budget B; beam size K
Output: Final solution s⋆

Initialize a priority queue Q← S0 ; // ranked by pairwise preference
while Q ̸= ∅ and B > 0 do

P ← SELECTPAIRS(Q) ; // choose candidate pairs to compare
foreach (si, sj) ∈ P do

w ← COMPARE(T, si, sj) ; // LLM returns which is better and why
UPDATERANKING(Q, si, sj , w) ; // noisy details abstracted
B ← B − 1

Skeep ← TOPK(Q,K); Sdrop ← Q \ Skeep PRUNE(Sdrop) ; // discard low-potential
candidates

E ← EXPAND(Skeep) ; // generate children / frontier nodes
INSERT(Q,E)

s⋆ ← SELECTFINAL(Q) ; // pairwise winner among remaining
return s⋆

3.1 Design Motivation117

Scientific discovery is rarely linear: it depends on exploration, revision, and reflection. Yet, most118

current reasoning agents make shallow, one-shot decisions, lacking the capacity to backtrack, refine,119

or evaluate solutions strategically. SciNav addresses this gap by treating scientific reasoning as120

a trajectory-driven process, where multiple candidate paths are explored, compared, and refined.121

Guided by relative judgments embedded in a tree search, the agent prioritizes top-K promising122

directions while pruning less productive ones. This design enables dynamic solution expansion,123

self-debugging, and iterative refinement, mimicking how human scientists refine rough ideas into124

more rigorous solutions. By combining structured exploration with backtracking and comparative125

evaluation, SciNav achieves more deliberate and adaptive problem-solving than prior one-shot or126

purely engineering pipeline-based agents.127

3.2 Components128

As Algorithm 1 shows: TKCTS emphasizes relative judgments as the primary evaluation signal. In129

each iteration, candidate pairs are compared, rankings are updated, the Top-K branches or candidates130

are retained, low-potential branches and candidates are pruned, and children of retained branches131

are expanded. The loop continues under a comparison budget, yielding a final solution selected by132

pairwise preference. While Algorithm 1 outlines the overall loop of TKCTS, its effectiveness relies133

on several interacting components. In what follows, we describe four major components—initial134

planning and code generation, self-debug, self-improve, and the frontier comparator—that together135

implement the framework.136

Initial Planning and Solution Generation. Existing work such as PlanSearch (Wang et al., 2025)137

and CodeMonkeys (Ehrlich et al., 2025) show that as the number of generated solutions increases,138

the fraction of problems in a dataset that are successfully solved by at least one candidate often139

grows approximately log-linearly. This test-time compute scaling effect of generating more candidate140

solutions can significantly improve the overall success solution coverage such as Pass@K in coding141
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tasks. Hence, we follow (Jiang et al., 2025) to generate a rich pool of diverse solution candidates142

to give more starting points to increase the agents’ exploration success. We first prompt LLM to143

generate multiple high-level plans, and ensure that previously generated plans are visible to the144

model to avoid repeated plans. Then for each plan, the LLM generates a corresponding program as a145

candidate solution. This approach unlocks hidden insights that would be missed by deterministic146

one-pass inference alone.147

Self-Debug for On-the-Fly Error Correction. Scientific coding tasks require the agent to produce148

executable code. SciNav incorporates a self-debugging mechanism to leverage code interpreter to149

detect and repair bugs during tree search. This reflective capability enables the agent to revise faulty150

steps without discarding entire trajectories.151

Iterative Self-Improve through Reflective Reasoning. Reasoning is not just about fixing mistakes,152

but about getting better with each step. SciNav employs iterative self-refinement by prompting the153

model to identify a specific refinement point within a selected frontier solution, based on the task154

description. This process mirrors how humans iteratively refine solutions, progressively improving155

them toward correctness and completeness.156

Frontier Comparator. Effective trajectory selection is critical to the success of SciNav. At each157

stage of search, the agent must decide which frontier solutions to expand, refine, or prune. We design158

the Frontier Comparator around comparative judgments, where candidate solutions are directly159

contrasted against each other rather than scored in isolation. This relative evaluation provides sharper160

distinctions, greater stability, and closer alignment with human preferences than noisy absolute scores.161

Concretely, given a pool of candidate solutions, the comparator selects promising branches through162

iterative pairwise comparisons. The top-K branches are retained for further exploration, while163

low-potential ones are pruned. As the search deepens, new child solutions are introduced into the pool164

and evaluated in the same pairwise manner, allowing the agent to dynamically allocate its limited165

budget toward the most promising directions. Crucially, this mechanism supports backtracking: if the166

currently preferred path stagnates or fails, the agent can revisit previously lower-ranked candidates167

and continue exploration from there. This design prevents premature commitment to suboptimal168

solutions and enables adaptive recovery, making the search more resilient.169

4 Experimental Setup170

Agent-level Baselines. To evaluate the effectiveness of SciNav, we compare it against the following171

three baselines, each representing a different strategy for program generation and reasoning: 1) Direct172

Prompting: This baseline uses an LLM to generate a solution in a single pass using a task-specific173

prompt. It reflects the standard zero-shot setting commonly used in prior work. This method serves as174

a simple and widely adopted baseline for evaluating initial model generation quality. 2) Self-Debug175

(Chen et al., 2024): In this baseline, the model generates an initial solution and then attempts to176

improve it via self-debugging based on the Python interpreter execution feedback. While this method177

allows for limited reflection, it does not incorporate trajectory search, external verification, or ranking.178

It evaluates the isolated effect of a self-correction loop without broader solution exploration. 3)179

OpenHands (Wang et al., 2024): OpenHands is a general agent that is designed for multiple domains180

including Web and software engineering tasks. It builds on the ReAct framework (Yao et al., 2023) to181

generate the next action based on the previous observation. Instead of directly generating the entire182

program solution at once, OpenHands gradually finishes the solution step by step.183

Frontier Comparator Baselines. We compare our Frontier Comparator against several alternative184

selection strategies: (1) Random Selection, which randomly picks a candidate solution from the185

pool; 2) LLM-Absolute: The LLM assigns a numerical score to each candidate solution, and the186

highest-scoring solution is selected for further refinement. 3) Rubric-Absolute (Chen et al., 2025):187

The LLM scores each candidate according to a structured rubric derived from the ground truth188

program. These serve as baselines to evaluate the advantage of pairwise comparative judgments.189

Dataset. To evaluate SciNav in realistic scientific coding scenarios, we use ScienceAgentBench190

(Chen et al., 2025), a curated benchmark designed to assess agents’ capabilities in scientific discovery.191

This dataset includes a diverse set of tasks that cover the entire workflow such as model development,192

data analysis, and visualization, spanning from four scientific disciplines: Bioinformatics, Computa-193

tional Chemistry, Geographical Information Science, and Psychology & Cognitive Neuroscience. All194

of our experiments are done on their “without expert-provided knowledge" setting.195
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Base Model Agents SR VER Cost ↓

GPT-4o (2024-05-13)

Direct Prompting 7.50 (0.5) 42.2 (1.6) 0.011 (0.000)
OpenHands 13.1 (2.6) 62.8 (2.9) 1.093 (0.071)
Self-Debug 14.7 (3.2) 71.2 (1.2) 0.057 (0.001)

SciNav (Ours) 16.1 (1.2) 66.0 (3.5) 0.512 (0.009)

GPT-4o (2024-11-20) Self-Debug 15.0 (4.8) 67.0 (7.4) 0.030 (0.010)
SciNav (Ours) 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)

Table 2: Mean performances of each agent and standard deviations on ScienceAgentBench (Chen
et al., 2025). Among the reported metrics, SR (Success Rate) is the most important as it directly
reflects task success. VER (Valid Execution Rate) indicates whether a program can be executed
without errors and is closely related to the number of debugging steps. Note that we run SciNav
with 3 debug steps, while Self-Debug is run with 10 debug steps, which may occasionally allow
Self-Debug to achieve higher VER than SciNav.

Experiment Details. We experiment with GPT-4o (both the 0513 version and the 1120 version)196

(OpenAI, 2024), Claude-3.7 (sonnet-20250219-v1:0 version) (Anthropic, 2025) and DeepSeek-R1197

(DeepSeek-AI, 2025). Since GPT-4o (2024-11-20) version is much cheaper than GPT-4o (2024-05-198

13) version, we try both versions for the main experiments, but use GPT-4o (2024-11-20) version for199

the ablation study and frontier comparator part. For all experiments, we use the same hyperparameters.200

For temperature, we use 0.5 for code generation and 0.5 for debug, analysis and summary, and 0 when201

leveraging LLMs to compare or judge the solutions. For top-p, we use top 0.95, and perform 0-shot202

prompting via the APIs. For each baseline, we run three times to get the mean and standard deviation203

of the performance. For each frontier comparator, we run the agent twice to get the mean and204

standard deviation of the performance. To constrain the budget, we set the initial solution number to205

5, maximum debug step to 3 and total exploration step to 10, which will include the self-improvement206

step if the budget has not been exhausted by self-debug.207

Evaluation Metrics. We follow previous work (Chen et al., 2025) to comprehensively evaluate each208

generated program using three key metrics. (1) Valid Execution Rate (VER) measures whether a209

program can execute without errors. (2) Success Rate (SR) assesses whether the output satisfies the210

specific task goal, such as passing predefined criteria, matching expected predictions, or producing211

a high-quality visualization. These criteria are implemented as task-specific evaluation programs212

during the benchmark annotation process. SR is conditioned on VER: if a program fails to execute or213

save its output correctly, its SR is 0. (3) API Cost (Cost) reports the average dollar cost required to214

complete a single task using the agent. This metric accounts for API usage and serves to highlight215

the importance of designing cost-efficient agents, as emphasized by Kapoor et al., 2024.216

5 Result Analysis217

5.1 Main Results218

Table 2 compares the performance of different agent strategies using two versions of GPT-4o (2024-219

05-13 and 2024-11-20) across three metrics: Success Rate (SR), Valid Execution Rate (VER), and220

Cost. The experiment results show that our proposed agent SciNav consistently outperforms baseline221

approaches across both model versions. Under the 2024-05-13 model, SciNav achieves an SR of222

16.1%, surpassing Self-Debug (14.7%) and OpenHands (13.1%), while maintaining a strong VER of223

66.0%. Although the cost (0.512) is higher than Self-Debug (0.057) and Direct Prompting (0.011),224

SciNav offers a better balance between performance and cost-effectiveness compared to OpenHands225

(1.093), which is substantially more expensive despite lower SR and VER.226

With the updated GPT-4o (2024-11-20), in order to save the cost, we only choose the best baseline227

Self-Debug for comparison. SciNav achieves a large performance gain compared to Self-Debug,228

with a 24% improvement for SR and a 2.9-point improvement for VER.229

Generalization to Other Base Models. We further evaluate SciNav on Claude-3.7 and DeepSeek-230

R1 to examine its generalization beyond GPT-4o. As shown in Table 5 in Appendix B, SciNav231

consistently achieves higher success rates (SR) than Self-Debug on both models. These results232

suggest that SciNav generalizes effectively across different base models.233
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Models Frontier Comparator SR VER Cost ↓

GPT-4o (2024-11-20)
Random Selection 15.2 (0.7) 64.7 (1.4) 0.180 (0.006)

LLM-Absolute 16.2 (3.5) 69.1 (0.7) 0.253 (0.013)
Relative Judgments 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)

GPT-4o (2024-11-20) Rubric-Absolute (w/ GT) 21.1 (2.1) 74.5 (2.8) 0.303 (0.016)

Table 3: The effect of different frontier comparators on our agent. “w/ GT" means using ground truth
program judge signal.

5.2 Frontier Comparator Analysis234

Table 3 evaluates the impact of different frontier comparators on agent performance using GPT-4o235

(2024-11-20). Among the random selection, LLM-Absolute and Relative Judgments achieves the236

highest SR (18.6%) and VER (69.9%), outperforming both other two baselines, which attain lower237

SR of 15.2% and 16.2%, respectively and lower VER of 64.7% and 69.1% respectively.238

The Rubric-Absolute achieves the highest SR and VER among all frontier comparators, benefiting239

from access to ground truth rubric descriptions that detail the correct solution steps. While this240

method partially leverages ground truth signals, it highlights the potential performance gains from241

incorporating reliable supervision when available. However, such rubric-based evaluations are often242

impractical in real-world scientific tasks, where detailed grading criteria are rarely accessible. In243

contrast, our relative judgments-based frontier comparator offers a more generalizable solution, as244

it operates independently of ground truth labels while still delivering strong performance. Due245

to its effectiveness and applicability in reality, we adopt relative judgments as the default frontier246

comparator in our main agent framework.247

5.3 Component Ablation Study248

Num of Init. Use Self-Improve? Avg # of Successful Avg # of Success RateSolutions Init. Solutions Successful Nodes

1 No 0.24 0.40 40.5
2 No 0.40 0.57 40.5
5 No 0.98 1.14 45.2
5 Yes 1.17 2.69 57.1

Table 4: Component ablation on our agent. Model: GPT-4o (2024-11-20). The experiment is done on
42 selected tasks, where each task has been solved at least once by either a baseline or our agent.

Table 4 presents a component-wise ablation study evaluating the impact of the number of initial249

solutions and the use of the self-improvement mechanism in our agent framework. We obvserve that:250

(1) Number of successful initial solutions directly contributes to end-to-end success rate. The table251

shows a strong correlation between the average number of successful initial solutions and the overll252

success rate. Without self-improvement, increasing the number of initial solutions from 1 to 5 yields253

a steady improvement in the average number of successful initial solutions (from 0.24 to 0.98), the254

average number of successful nodes (from 0.40 to 1.14) and the overall success rate (from 40.5% to255

45.2%). This indicates that generating multiple initial solutions increases the chance that at least one256

initial solution is close to correct, thus improving the agent’s final performance. The more successful257

starting points the agent has, the more likely it is to select or build upon a valid reasoning path.258

(2) Self-improvement enables the agent to generate more correct programs and achieve the highest259

success rate. The final row of Table 4 isolates the effect of enabling self-improvement: for the same260

initial solution size 5, when self-improvement is disabled (row 3), the agent achieves an average of261

1.14 successful nodes and 45.2% success rate, while when self-improvement is enabled (row 4), the262

number of successful nodes jumps to 2.69, and the success rate increases significantly to 57.1%. This263

demonstrates that self-improvement nearly doubles the number of correct programs, allowing the264

agent to refine and expand upon flawed or incomplete initial solutions. The improvement in both265

node-level correctness and overall task success confirms that self-improvement is a key driver of266

end-to-end performance.267

Overall, the findings highlight the complementary roles of solution diversity and iterative refinement268

in enhancing agent performance on the tasks.269
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5.4 Error Analysis270

To evaluate the effectiveness of our different frontier comparators, we conducted an error analysis271

on 20 randomly selected unsuccessful tasks from ScienceAgentBench using SciNav. We categorize272

errors into two main types: exploration errors and verification errors. An exploration error occurs273

when the agent’s entire trajectory fails to produce any solution that meets the success criteria. In274

contrast, a verification error arises when at least one successful solution exists in the trajectory, but275

the agent fails to identify or select it as the final output.276

Figure 2: Error analysis on 20 randomly selected unsuccessful tasks of ScienceAgentBench.

We further subdivide exploration errors into two categories: not executable, where all generated277

solutions are buggy, and executable but unsuccessful, where some solutions are runnable but do not278

satisfy the task requirements. As shown in Figure 2, only 15.8% of the failures were due to verification279

errors, suggesting that our relative judgments-based frontier comparator is generally effective at280

recognizing correct solutions. The remaining 84.2% of failures were attributed to exploration errors,281

with 15.8% resulting from non-executable programs and 68.4% from executable but incorrect outputs.282

This analysis highlights that the dominant source of failure lies in the exploration stage. It suggests283

that more test-time compute is needed in order to cover successful solution in the trajectory, such as284

increasing the initial solution size or self-improve more steps.285

6 Conclusion286

In summary, we introduced SciNav, an autonomous science agent framework tailored for scientific287

coding tasks. Unlike prior science agents that operate on open-ended problems with subjective288

evaluation criteria, SciNav leverages the objectivity of coding benchmarks while moving beyond289

engineering-driven pipelines. Our key contribution is a tree search framework guided by pairwise290

relative judgments, which enables systematic exploration, adaptive refinement, and efficient use of291

constrained computational budgets. Through extensive experiments on ScienceAgentBench, we292

demonstrated that SciNav consistently outperforms direct prompting, prior agent baselines such as293

OpenHands and Self-Debug across different base models, and exceeds alternative frontier comparators.294

These findings highlight the value of relative judgment–guided tree search for high-quality scientific295

code generation, marking a step toward more practical and robust science agents.296

Limitations297

One limitation of our current framework is that it requires generating an entire code block in a298

single step, without support for incremental synthesis or partial execution feedback. As a result,299

for tasks that demand generating very long programs which are beyond the model’s capacity, our300

agent may become unsuitable for effectively handling such cases. Additionally, once the agent enters301

the self-improvement stage, it lacks the ability to autonomously determine when to stop; instead,302

it continues until the predefined maximum number of total steps is reached. This rigid stopping303

criterion can result in unnecessary computation or missing a high-quality solution that has already304

been found earlier.305
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responses. Taking the response pair Pi and Pj as an example, we obtain their match results Si and397

Sj :398

Expected scores: When response Pi faces response Pj , the expected score for Pi (denoted Ei) is:399

Ei =
1

1 + 10(Rj−Ri)/400
(1)

Similarly, the expected score for Pj is Ej = 1− Ei.400

After the match:401

• If Pi wins: Si = 1, Sj = 0402

• If Pi loses: Si = 0, Sj = 1403

• If it’s a draw: Si = 0.5, Sj = 0.5404

Rating update rule: Use the standard Elo update formula. For response Pi:405

R′
i = Ri +K · (Si − Ei) (2)

Where:406

• Ri is the old rating, R′
i is the new rating.407

• Si is the actual score.408

• Ei is the expected score.409

• K is a constant. We set it to 32 to determine how fast ratings change.410

For each pair of responses, we update both of their Elo scores once. After all pairwise comparisons,411

we obtain the final Elo scores for all responses, which can be used to derive a ranking.412

B Generalization to Other Base Models413

Base Model Agents SR VER Cost ↓

Claude-3.7 Self-Debug 22.5 84.3 0.066
SciNav (Ours) 25.5 72.5 0.893

DeepSeek-R1 Self-Debug 18.6 59.8 0.023
SciNav (Ours) 19.6 67.6 0.298

Table 5: Generalization of SciNav to other base models. Mean performances of each agent on
ScienceAgentBench (Chen et al., 2025). Among the reported metrics, SR (Success Rate) is the
most important as it directly reflects task success. VER (Valid Execution Rate) indicates whether
a program can be executed without errors and is closely related to the number of debugging steps.
Note that we run SciNav with 3 debug steps, while Self-Debug is run with 10 debug steps, which
may occasionally allow Self-Debug to achieve higher VER than SciNav.
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Initial Planning and Code Generation
You are a scientific coding expert to write code based on the task description. You need to come up with
an excellent, reasonable and creative plan for a solution and then implement this solution in Python. We
will now provide a description of the task.

Task description: {}

Task goal: You are an expert Python programming assistant that helps scientist users to write
high-quality code to solve their tasks. Given a user request, you are expected to write a complete
program that accomplishes the requested task and save any outputs in the correct format. Please wrap
your program in a code block that specifies the script type, python. For example:

Listing 1: Example Python code
print("Hello World!")

Please keep your response concise and do not use a code block if it’s not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires the
user to modify.
Please do not use any interactive Python commands in your program, such as ‘!pip install numpy’,
which will cause execution errors.

Memory: {},

Response format:
Your response should be a brief outline/sketch of your proposed solution in natural language (3-5
sentences), followed by a single markdown code block (wrapped in “‘) which implements this solution
and if it’s a machine learning task, then prints out the evaluation metric. There should be no additional
headings or text in your response. Just natural language text followed by a newline and then the
markdown code block.

Solution sketch guideline:
Take the Memory section into consideration when proposing the design, don’t propose the same
solution.
If it’s a machine learning task, then keep the evaluation the same.
The solution sketch should be 3-5 sentences.
If the task is a machine learning task, propose an evaluation metric that is reasonable for this task.
The data is already prepared and available in the ‘./input’ directory. There is no need to unzip any files.
For any provided file path, you should replace it with ‘./input’ plus the file name and ignore other
dictionary or subdirectionary name in the path.

Implementation guideline:
The code should **implement the proposed solution**. If the task is a machine learning task, you
should **print the value of the evaluation metric computed on a hold-out validation set**.
The code should be a single-file python program that is self-contained and can be executed as-is. No
parts of the code should be skipped, don’t terminate before finishing the script.
Your response should only contain a single code block.
Be aware of the running time of the code, it should complete within 15 minutes.
All the provided input data is stored in ‘./input’ directory. **If there is test data provided for this task,
please save the test predictions in a ‘submission.csv’ file in the ‘./working’ directory as described in the
task description**. This is extremely important since this file is used for grading/evaluation. DO NOT
FORGET THE submission.csv file!
You can also use the ‘./working’ directory to store any temporary files that your code needs to create.
The evaluation should be based on 5-fold cross-validation but only if that’s an appropriate evaluation
for the task at hand.

Installed Packages:
Your solution can use any relevant machine learning packages such as: torchvision, scikit-learn, torch,
torch-geometric, lightGBM, timm, xgboost, pandas, numpy, bayesian-optimization, statsmodels. Feel
free to use any other packages too (all packages are already installed!). For neural networks we suggest
using PyTorch rather than TensorFlow.

Data Overview: {}
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Self-Debug Prompt
You are a scientific coding expert to write code based on the task description. Your previous solution
had a bug, so based on the information below, you should revise it in order to fix this bug. Your
response should be an implementation outline in natural language, followed by a single markdown
code block which implements the bugfix/solution.’, ’Task description’: ’Task goal’: ’You are an expert
Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested
task and save any outputs in the correct format.
Please wrap your program in a code block that specifies the script type, python. For example:

Listing 2: Example Python code
print("Hello World!")

Please keep your response concise and do not use a code block if itś not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires the
user to modify.
Please do not use any interactive Python commands in your program, such as ‘!pip install numpy’,
which will cause execution errors.

Here’s the user request you need to work on: {task description}

Previous (buggy) implementation: {}
Execution output:

Listing 3: Execution Output
Traceback (most recent call last):
File "runfile.py", line 179, in <module >
pair_plot_img = np.frombuffer(pair_plot.fig.canvas.tostring_rgb (),

dtype=np.uint8)
AttributeError:'FigureCanvasMac ' object has no attribute '

tostring_rgb '. Did you mean: 'tostring_argb '?
Execution time: 13 seconds seconds (time limit is 15 minutes).\n

Response format:
Your response should be a brief outline/sketch of your proposed solution in natural language (3-5
sentences), followed by a single markdown code block (wrapped in “‘) which implements this solution
and if it’s a machine learning task, then prints out the evaluation metric. There should be no additional
headings or text in your response. Just natural language text followed by a newline and then the
markdown code block.

Bugfix improvement sketch guideline:
You should write a brief natural language description (3-5 sentences) of how the issue in the previous
implementation can be fixed.
The data is already prepared and available in the ‘./input‘ directory. There is no need to unzip any
files. For any provided file path, you should replace it with ‘./input‘ plus the file name and ignore other
dictionary or subdirectionary name in the path.

Implementation guideline:
The code should **implement the proposed solution**. If the task is a machine learning task, you
should **print the value of the evaluation metric computed on a hold-out validation set**.
The code should be a single-file python program that is self-contained and can be executed as-is.
No parts of the code should be skipped, don’t terminate before finishing the script.
Your response should only contain a single code block.
Be aware of the running time of the code, it should complete within 15 minutes.
All the provided input data is stored in ‘./input’ directory.
**If there is test data provided for this task, please save the test predictions in a ‘submission.csv’ file in
the ./working’ directory as described in the task description**. This is extremely important since this
file is used for grading/evaluation. DO NOT FORGET THE submission.csv file!
You can also use the ‘./working’ directory to store any temporary files that your code needs to create.
The evaluation should be based on 5-fold cross-validation but only if that’s an appropriate evaluation
for the task at hand.

Data Overview: {}
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Self-Improvement Prompt
You are a scientific coding expert to write code based on the task description. You are provided with a
previously developed solution below and should improve it in order to further increase the performance.
For this you should first outline a brief plan in natural language for how the solution can be improved
and then implement this improvement in Python based on the provided previous solution.’, ’Task
description’: ’Task goal’: ’You are an expert Python programming assistant that helps scientist users to
write high-quality code to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested
task and save any outputs in the correct format.
Please wrap your program in a code block that specifies the script type, python. For example:

Listing 4: Example Python code
print("Hello World!")

Please keep your response concise and do not use a code block if itś not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires the
user to modify.
Please do not use any interactive Python commands in your program, such as ‘!pip install numpy‘,
which will cause execution errors.
Hereś the user request you need to work on: {Task description}

Memory: {Previous <plan, code, results>},

Response format:
Your response should be a brief outline/sketch of your proposed solution in natural language (3-5
sentences), followed by a single markdown code block (wrapped in “‘) which implements this solution
and if it’s a machine learning task, then prints out the evaluation metric. There should be no additional
headings or text in your response. Just natural language text followed by a newline and then the
markdown code block.

Solution improvement sketch guideline:
The solution sketch should be a brief natural language description of how the previous solution can be
improved.
You should be very specific and should only propose a single actionable improvement.
This improvement should be atomic so that we can experimentally evaluate the effect of the proposed
change.
Take the Memory section into consideration when proposing the improvement.
The solution sketch should be 3-5 sentences.
The data is already prepared and available in the ‘./input’ directory. There is no need to unzip any files.
For any provided file path, you should replace it with ‘./input’ plus the file name and ignore other
dictionary or subdirectionary name in the path.

Implementation guideline:
The code should **implement the proposed solution**. If the task is a machine learning task, you
should **print the value of the evaluation metric computed on a hold-out validation set**.
The code should be a single-file python program that is self-contained and can be executed as-is.
No parts of the code should be skipped, don’t terminate before finishing the script.
Your response should only contain a single code block.
Be aware of the running time of the code, it should complete within 15 minutes.
All the provided input data is stored in ‘./input’ directory.
**If there is test data provided for this task, please save the test predictions in a ‘submission.csv’ file in
the "./working" directory as described in the task description**. This is extremely important since this
file is used for grading/evaluation. DO NOT FORGET THE submission.csv file!
You can also use the "./working" directory to store any temporary files that your code needs to create.
The evaluation should be based on 5-fold cross-validation but only if that’s an appropriate evaluation
for the task at hand.

Previous solution: {program}

14



Feedback Prompt
You are a scientific coding expert to write code based on the task description. You have written code to
solve this task and now need to evaluate the output of the code execution. You should determine if there
were any bugs as well as report the empirical findings.
Task description: {}

Task goal: You are an expert Python programming assistant that helps scientist users to write high-
quality code to solve their tasks. Given a user request, you are expected to write a complete program
that accomplishes the requested task and save any outputs in the correct format. Please wrap your
program in a code block that specifies the script type, python. For example:

Listing 5: Example Python code
print("Hello World!")

Please keep your response concise and do not use a code block if it is not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires the
user to modify. Please do not use any interactive Python commands in your program, such as ‘!pip
install numpy‘, which will cause execution errors. Here is the user request you need to work on: {}
Implementation: {program}

Execution output:
{Example: Analysis complete. Figure saved to pred_results/dkpes_molecular_analysis_pred.png}
Execution time: 13 seconds seconds (time limit is 15 minutes).

Relative Judgments Prompt
Please act as an impartial judge and evaluate the quality of the code responses provided by
len(nodes_to_compare) AI assistants to the programming question displayed below (QUESTION
and RESPONSE).
You will be given len(nodes_to_compare) answers from different assistants respectively. Your job is
to evaluate and rank these len(nodes_to_compare) answers based on their correctness, quality and
the relevance to the given question. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.
Please rank them from the best to the worst. After providing a fine-grained analysis of the differences
among the len(nodes_to_compare) code responses, output your final ranking sequence by strictly
following this format:

Rating node.id: [[1-10]]

Rank Sequence: [[
[QUESTION]Task description
[The start of Assistant node.id’s RESPONSE]
node.code
[The end of Assistant node.id’s RESPONSE]

You need to use the following output format:
<<OUTPUT>>
Explanation: Here is a explanation
Rating node.id: [[1-10]]
Rank Sequence: [[Put your rank sequence here. The rank should be the Assistant id]]
<<OUTPUT>>
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LLM-Absolute Prompt
Task Description: {}
Response Summary: {}
The generated code program is as following: {program}.
Please generate a score between 0 to 100 to indicate how good and suitable the generated code matches
the request.

You can have the explanation, reasoning or analysis, but please explicitly generate the score using the
format **Score: **, e.g., **Score: 37** in your response."

Rubric-Absolute Prompt
Task Description: {}
Response Summary: {}
The generated code program is as following: {program}. The grading rubric is shown in the following
JSON string: {rubric description}.

Please generate a score between 0 to 100 based on the given grading rubric (criteria) to indicate how
good and suitable the figure matches the request.

You can have the explanation, reasoning or analysis, but please explicitly generate the score using the
format **Score: **, e.g., **Score: 37** in your response."
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