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Abstract: Inverse probability weighting (IPW) is a general tool in survey sampling and causal inference,
used in both Horvitz–Thompson estimators, which normalize by the sample size, and Hájek/self-normal-
ized estimators, which normalize by the sum of the inverse probability weights. In this work, we study a
family of IPW estimators, first proposed by Trotter and Tukey in the context of Monte Carlo problems, that
are normalized by an affine combination of the sample size and a sum of inverse weights. We show how
selecting an estimator from this family in a data-dependent way to minimize asymptotic variance leads to
an iterative procedure that converges to an estimator with connections to regression control methods. We
refer to such estimators as adaptively normalized estimators. For mean estimation in survey sampling, the
adaptively normalized estimator has asymptotic variance that is never worse than the Horvitz–Thompson
and Hájek estimators. Going further, we show that adaptive normalization can be used to propose improve-
ments of the augmented IPW (AIPW) estimator, average treatment effect (ATE) estimators, and policy
learning objectives. Appealingly, these proposals preserve both the asymptotic efficiency of AIPW and
the regret bounds for policy learning with IPW objectives, and deliver consistent finite sample improve-
ments in simulations for all three of mean estimation, ATE estimation, and policy learning.
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1 Introduction

Consider the problem of estimating a mean from samples that are observed with nonuniform probabilities.
Formally, we want to estimate the mean μ of a set of responses …Y Y, , n1 , but only observe …Y I Y I, , n n1 1 , where
Ik is an indicator of whether unit k was observed. This problem is a fundamental primitive of many
problems in survey sampling, causal inference, and beyond. We focus on the case where the Ik are inde-
pendent and distributed as ( )I p~ Berk k , which can correspond to a randomized experiment under a
Bernoulli design with known pk or to certain observational contexts.

The standard estimators for μ are the Horvitz–Thompson and Hájek estimators [1,2], both of which are
based on the idea of inverse probability weighting (IPW). To introduce these estimators, we first define
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as estimates of the population total and sample size. Then, the Horvitz–Thompson and Hájek estimators are
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These estimators have several desirable properties: μ̂ HT is unbiased and admissible in the class of all
unbiased estimators [3], while μ̂ Hájek is approximately unbiased and often has lower variance than μ̂ HT [4].

The idea of IPW also figures prominently in the Monte Carlo literature on importance sampling (IS),
where the Horvitz–Thompson and Hájek estimators are known as the IS and self-normalized importance
sampling estimators, respectively. In 1954, working in this context, Trotter and Tukey [5] briefly entertained
the idea of a family of estimators that generalizes μ̂ HT and μ̂ Hájek , namely,
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for �∈λ . This family contains Horvitz–Thompson estimator as the special case =λ 0 and Hájek as the
special case =λ 1. Curiously, Trotter and Tukey emphasized that λ need not be constrained to [ ]0, 1 and that
values outside that range might sometimes be useful [5].

1.1 Main contributions

Although this proposal first appeared nearly 70 years ago, it has not received any significant attention in
either the Monte Carlo literature or the causal inference literature. In this article, we consider this proposal
in detail. In particular:
• We propose a method for iteratively selecting data-dependent values of λ in (1) to minimize asymptotic
variance. We refer to this as adaptive normalization and show in Section 3 how our proposal leads to an
estimator that improves on both the Horvitz–Thompson and Hájek estimators in terms of asymptotic
variance. We also study our estimator when propensities are estimated rather than known exactly and
demonstrate connections between our estimator and other ideas from the causal inference literature.

• As applications, we consider a series of problems where the Horvitz–Thompson and Hájek estimators are
traditionally used as a primitive, and evaluate the use of adaptively normalized estimators instead.
Specifically, we develop a novel extension of the augmented IPW (AIPW) estimator of ref. [6], new
estimators for average treatment effect (ATE) estimation, and a new objective for policy learning. We
show that our proposals consistently preserve desirable theoretical guarantees while improving perfor-
mance in simulations.

1.2 Motivation for adaptive normalization

Why would we want to use values of λ learned from the data in (1) rather than =λ 0 or =λ 1, especially
values of <λ 0 or >λ 1? As a starting point, consider =λ 0, the Horvitz–Thompson estimator, and =λ 1,
the Hájek estimator. As mentioned earlier, the Hájek estimator often has lower variance than the Horvitz–
Thompson estimator. One reason for this variance reduction is that the numerator and denominator of the Hájek
estimator are positively correlated, while the numerator and denominator of the Horvitz–Thompson estimator are
uncorrelated.

To see the role that this correlation plays, consider a toy example with =n 10 units with responses and
response probabilities

= = ⋯= = = = ⋯= =

−Y Y Y p p p1, 10 , 0.5.1 2 10 1
5

2 10

Then, we claim that the Horvitz–Thompson and Hájek estimators have very different behaviors on the event
that Y1 is observed. For our illustration, assume units 2–5 are observed but 6–10 are not.

For the Horvitz–Thompson estimator, if Y1 is observed, then the numerator of the estimator increases
from 8 to + / ≈

−8 1 10 105 5, while the denominator, n, remains fixed at 10, so our estimate increases from 8/
10 to ( )+ / ≈8 10 10 105 4. For the Hájek estimator, ifY1 is observed, the numerator similarly increases by 105,
but now the denominator also increases by 105, and so our estimate is less affected. The positive correlation
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between the numerator and denominator of the Hájek estimator provides a kind of shrinkage that serves to
reduce variance.

Since the covariance between numerator and denominator in the Hájek estimator is one way that it
reduces variance, we would expect that we can further reduce variance by introducing more covariance,
which motivates taking >λ 1 in (1). By increasing the weight on the random factor of n̂ in the denominator
of (1), we increase the covariance between the numerator and the denominator, and thus reduce variance.
Put crudely, if going from =λ 0 to =λ 1 reduces variance, couldn’t going from =λ 1 to =λ 2 reduce it
even more?

Of course, there is a bias-variance trade-off. Increasing λ decreases the variance of μ̂λ, but increasing λ
to be arbitrarily large also shrinks our estimates toward 0 and increases bias. Thus, the problem becomes
one of choosing a value of λ that provides the correct amount of shrinkage for a given problem. This trade-
off is visualized in Figure 1, which shows the mean squared error (MSE) of (1) for a simulated problem at a
range of values of λ. Ideally, we would choose λ to minimize the curve shown in the left panel of this figure.
Unfortunately, we cannot compute the exact MSE of μ̂λ, and even if we could, choosing λ to minimize the
MSE would lead to an asymptotically biased estimator, complicating issues of inference. (This is analogous
to the problem of constructing confidence intervals in nonparametric regression after choosing an MSE-
optimal bandwidth [7,8].) In this work, we instead take the approach of showing that μ̂λ is asymptotically
normal and then choose λ to iteratively minimize estimates of the asymptotic variance.

This approach will also nearly minimize the MSE of μ̂λ as long the bias of μ̂λ is not too large, in which the
case the variance and MSE will be almost equal; this is indeed the case in the setting of Figure 1. In general,
the bias of μ̂λ is of order /n1 and should not be a concern in reasonably large sample sizes. However, if the
sample size is small, there is a possibility that choosing λ according to our scheme will be unfavorable in an
root-mean squared error (RMSE) sense because it does not account for bias. A second-order Taylor expan-
sion of μ̂λ shows that the bias is controlled by the parameters T and π defined in (2), and these parameters
are large when pk is likely to be close to zero. Thus, in a setting with small sample sizes andmany pk close to
zero (i.e., with poor overlap), practitioners should be aware that our proposed estimators may offer
improvements only in variance, and not necessarily in MSE. We present a further simulation study of
the bias of μ̂λ in Appendix B.

Finally, we note that other procedures for selecting λ based on different criteria (e.g., minimizing upper
bounds of the MSE) would lead to other estimators, suggesting a general class of adaptively normalized
estimators that may be worthy of further study.
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Figure 1: The MSE, variance, and bias of μ̂λ as a function of λ in an instance of the normal model described in (18) with n 250= ,
μ 1= , and ρ 0.2= . Note that neither the Horvitz–Thompson estimator (λ 0= ) nor Hájek (λ 1= ) estimator minimizes the MSE,
and that the MSE-optimal choice of λ is greater than 1. The variance shows essentially the same behavior as the MSE because
the squared-bias is much smaller then the variance, and so a variance-minimizing choice of λ is nearly the same as an MSE-
minimizing choice of λ in this example.
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1.3 Related work

The present work is most closely related to the literature on variance reduction in IS. Since the proposal of
IS in ref. [9], there have been a variety of proposals for variance reduction methods, many of which are
surveyed in ref. [10]. The one most relevant to our work is the method of control variates, which is also
known as difference estimation in the survey sampling community [4]. We show in Section 3 that the
estimator we derive is algebraically equivalent to a particular kind of control variate estimator, and
although there are multiple known interpretations of control variates [11], this adaptive normalized inter-
pretation appears to be new. A slightly modified form of this estimator has also been briefly discussed by
ref. [12] and studied in Monte Carlo simulations by ref. [13]; our work differs from theirs in focusing on the
missing data model and in the development of new causal inference applications. In addition, we study this
estimator in the case where the propensities pk are estimated rather than known, an issue that is unique to
the causal inference context, relative earlier Monte Carlo studies.

Our proposed modifications of the AIPW estimator stand alongside many other proposals: for example,
refs [14,15] use an empirical likelihood approach, while [16] uses a weighting approach, among others. We
do not, however, know of any attempt or alternative derivation that is equivalent to the estimator we derive
in this context. Similarly, our policy learning proposals were build directly based on the work of ref. [17],
which is itself closely related to the work on counterfactual risk minimization in the bandit setting [18], and
was extended by ref. [19] using ideas from AIPW estimation.

Finally, our work is also related to the literature on limited overlap in two ways. First, one strand of the
limited overlap literature aims to reduce variance in the presence of small propensities, often by trimming
units with extreme propensities [20,21]. Our proposed methods can offer an alternative form of variance
reduction by exploiting correlations between these extreme propensities and the responses, and this
approach also has the advantage of not changing the estimand as trimming-based approaches do. Second,
another line of work in the limited overlap literature studies IPW estimators in a regime where the pro-
pensities are allowed to converge to 0 or 1 asymptotically [22,23]. We do not consider such a regime in this
work, but extending our results to this setting is an interesting future direction.

2 Problem formulation and notation

In this section, we formally specify our model and introduce notation. We assume that pairs ( ) ( )…Y p Y p, , , ,n n1 1
are drawn i.i.d. from a super-population distribution� on � [ ]× 0, 1 and that we observe both …p p, , n1 and

…Y I Y I, , n n1 1 , where Ik are independent and ∣ ( )I p p~ Berk k k .
This model differs from previous design-based work on asymptotics of the Horvitz–Thompson and

Hájek estimators in assuming a super-population model for the Yk rather than modeling Yk as a sequence
of fixed finite populations [24,25]. However, we believe that our results are still true in a finite population
model, with slightly modified proofs, and we choose to work in a super-population model mainly to avoid
making many cumbersome assumptions about the existence of limiting moments of the Yk. In particular,
although we are working in a super-population model, we make no parametric assumptions on� , such as
assuming a regression model.

Our assumption that the pk are random as well is best understood in the context of a more general
model that we consider in Sections 4.1 and 4.3. There, we consider pairs ( ) ( )…Y X Y X, , , ,n n1 1 drawn i.i.d. from
a super-population distribution� on � �× , where the Yk are responses and the Xk are known covariates.
Then, we can think of the treatment probability pk as a function ( )=p p Xk k of the observed covariates.

We assume for several of our theoretical results in Section 3 that the pk (or equivalently the map ( )⋅p )
are known exactly or estimated from a well-specified logistic regression model. This is mainly to facilitate
asymptotic comparisons, since the asymptotics of IPW estimators with estimated propensities are highly
dependent on the method of estimating the propensity. A very specific choice of propensity score estimator
has been shown to lead to efficient estimators [26], but we choose to study more general methods of
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propensity estimation and efficiency under appropriate rate and consistency conditions in the context of
AIPW estimation in Section 4.

We now specify our assumptions on � .

Assumption 1. (Boundedness and overlap) There exist constants >M δ, 0 such that ∣ ∣ ≤Y Mk and
≤ ≤ −δ p δ1k almost surely.

Under Assumption 1, all of the moments
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of � are all finite.
Throughout the next section, our goal is to estimate �[ ]=μ Yk in the model presented here. In Section 4,

we consider more diverse models and goals.

3 Adaptive normalization

In this section, we propose and analyze a novel procedure for selecting a data-dependent value of λ and
describe properties of the adaptively normalized IPW estimator that follows. We establish that the resulting
estimator has smaller asymptotic variance than either the Horvitz–Thompson estimator or Hájek estimator.

3.1 The optimal choice of λ

Before we can understand how to choose λ from the data, we must first understand the behavior of μ̂λ for a
fixed λ, as a function of λ and the problem parameters. To this end, we contribute the following central limit
theorem, which is a straightforward generalization of known results on the bias and variance of the Hájek
estimator. We defer the proof this result, as well as all other results in this section, to Appendix A.

Theorem 1. Suppose Assumption 1 holds. Then, for any fixed �∈λ , we have the CLT

�( ) ( ( )) ( ) ( ) ⎡
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d 2 2
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1
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2 (3)

With this result in hand, we now choose λ to minimize ( )σ λ2 . Moving forward, in Sections 3.1 and 3.2, we
assume that ≠μ 0, since if =μ 0, then ( )σ λ does not actually depend on λ, and minimizing over λ is no
longer meaningful. However, in Section 3.3 onward, when we study the properties of our estimator, we do
not require ≠μ 0.

Under the assumption that ≠μ 0, there is a unique value of λ that minimizes ( )σ λ 2 in (3), given by
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(4)

where π and T are the moments defined in (2). Assumption 1 precludes the possibility that =π 0.
We can interpret (4) to shed light on the role λ plays. IfYk and pk are positively correlated, thenYk and

− p
p

1 k

k
are negatively correlated, so <T μπ and <

∗λ 1. Similarly, if theYk and pk are negatively correlated, we

obtain >

∗λ 1. This interpretation of (4) extends the conventional wisdom that Hájek estimator is preferable
to Horvitz–Thompson estimator when Yk and pk are negatively correlated [4].
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3.2 Estimating λ∗ from the data

On the basis of the aforementioned asymptotic analysis, we would seem to prefer ∗μ̂λ over μ̂ HT and μ̂ Hájek .

However, we cannot use ∗μ̂λ directly as an estimator of μ because the prescribed choice of ∗λ depends on
unknown moments of� , including the very mean μ we are trying to estimate. What happens if we estimate

∗λ from data?
Our expression of ∗λ depends on three moments of� , namely,T π μ, , . The first two of these can readily

be estimated from the data by the IPW-style estimators
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and we already have the estimator μ̂ HT of μ.
Before moving forward, we address two possible questions that might be raised by (5): Can we also use

an adaptively normalized estimator when estimating T and π , rather than a standard IPW estimator? And
why do we inverse propensity weight our estimate of π, rather than using the sample mean of the
( )− /p p1 k k? For the first question, any consistent estimators of T and π will suffice for our theoretical

results, and we focus on T̂ and π̂ as defined in (5) for simplicity. In practice, for some estimators ofT and π
with lower asymptotic variance, the asymptotic variance is not a good approximation of the finite sample
behavior unless n is extremely large, thus worsening finite sample performance at moderate sample sizes.
Similarly, we could use other estimators of μ that concentrate around μ, and we focus on μ̂ HT for simplicity.
For the second, the reason we estimate π with an IPW estimator is that, to estimate ∗λ , we will use

expressions of the form /T πˆ ˆ , and IPW estimating π introduces correlation between the numerator and
denominator of this expression, thus reducing the variance of our estimate of ∗λ .

Now, the estimators in (5) lead us to estimate ∗λ and μ by
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μ S
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ˆ ˆ
ˆ ˆ

, ˆ
ˆ
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.λ

HT
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At this point, however, we can make useful observation: We expect that ∗μ̂λ̂ is a better estimator of μ than
μ̂ HT , so should we not use ∗μ̂λ̂ rather than μ̂ HT when estimating λ? In fact, every time we obtain a better
estimate of μ, we can use this to obtain a better estimate of ∗λ . On the other hand, a better estimate of ∗λ will,
because ∗λ is the optimal amount of normalization, lead to a better estimate of μ. Combining these ideas
leads to the following alternating scheme.

Formally, we construct a sequence of estimators ( )
( ) ( )λ μˆ , ˆt t initialized at ( ) ( )

( ) ( )
=λ μ μˆ , ˆ 0, ˆ0 0

HT and
defined for >t 0 by the recursions
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t
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The first equation in (7) corresponds to estimating ∗λ using ( )−μ̂ t 1 as an estimate of μ, while the second
corresponds to estimating μ using

( )λ̂ t
as an estimate of ∗λ . There are two possible stable limiting behaviors

for this sequence: the first is to trivially have ( )
→μ̂ 0t and

( )
→ ∞λ̂ t

, while the second is to converge to a
fixed point at a pair ( )μ λˆ , ˆ

AN AN satisfying
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This system of equations has the unique solution

⎛

⎝

⎞

⎠
= + −μ S

n
T
π

n
n

ˆ
ˆ ˆ

ˆ
1 ˆ .AN (8)

The following theorem formally establishes that the iterations (7) converge to the nontrivial solution,
the fixed point at (8).
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Theorem 2. Suppose Assumption 1 holds, we have ≠μ 0, and consider the sequence of estimators ( )
( ) ( )λ μˆ , ˆt t

initialized at
( ) ( )

= =λ μ μˆ 0, ˆ ˆ0 0
HT and defined for >t 0 by the recursion (7). Then

(i) the sequence ( )μ̂ t converges as → ∞t to an estimator μ̂ lim ;

(ii) the estimator μ̂ lim satisfies

�( )= =

→∞

μ μlim ˆ ˆ 1,
n lim AN

so that −μ μˆ ˆlim AN converges in probability to 0.

Thus, our attempts to develop an estimator of μ by estimating the optimal normalization parameter ∗λ
culminate in the estimator μ̂ AN , which we refer to as the adaptively normalized IPW estimator. The role of
Theorem 2 and the iterative scheme we have presented is to make explicit the connection between adaptive
normalization and the final estimator μ̂ AN . The fixed-point equations alone do not characterize this con-
nection, since, based on those equations alone, we may be led to take =μ̂ 0 and think of this as using an
infinite value of λ. Thus, this theorem fully develops the proposal of ref. [5] into a usable estimator,
providing the first complete analysis of IPW estimators with normalizations other than n or n̂.

Before proceeding, we note a very attractive property of μ̂ AN in (8): its simplicity. It is, for practical
purposes, the Horvitz–Thompson estimator with a correction term and can replace the Horvitz–Thompson
and Hájek estimators in essentially any application where they are used, with minimal additional compu-
tation. Beyond this simplicity, we will see in Section 3.3 that μ̂ AN typically has lower asymptotic variance
than either the Horvitz–Thompson estimator or the Hájek estimator, and in Section 3.4 that it is closely
related to several existing ideas in the literature.

3.2.1 An optimization perspective

It may feel unsettled to minimize the asymptotic variance and then commence an iteration scheme. We can
also derive μ̂ AN more directly by framing the problem of selecting λ as a joint minimization, over μ and λ, of
the asymptotic variance. Minimizing the asymptotic variance σλ

2 in (3) is equivalent to minimizing

� �⎡
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λμT λ μ π2 1 1 2 .k

k
k

k

k

2 2 2 2

As mentioned earlier, we use T̂ and π̂ defined in (5) to estimate T and π, but now we estimate μ by μ̂λ
directly. This leads to the nonconvex optimization problem:

− +λμ T λ μ πmin 2 ˆ ˆ ˆ ˆ .
λ λ λ

2 2

Rather than directly solving this optimization problem, we consider the equivalent problem

( )

− +

=

− +

λμT λ μ π

μ S
λ n λn

min 2 ˆ ˆ ˆ ˆ ,

s.t. ˆ
ˆ

1 ˆ
.

λ μ, ˆ
2 2

(9)

This problem is also nonconvex, but it is more amenable to analysis. In particular, we claim that, despite its
nonconvexity, (9) can be easily solved analytically to find a unique optimum.

To solve (9), note that the objective is a quadratic function of λμ̂, and so checking first-order stationarity
conditions shows that the unconstrained minimum is achieved for any pair ( )λ μ, ˆ satisfying = /λμ T πˆ ˆ ˆ .
Then, direct algebra yields that there is a unique pair ( )λ μˆ , ˆopt opt satisfying both = /λ μ T πˆ ˆ ˆ ˆopt opt as well as

the constraint in (9), and the resulting μ̂ opt is precisely μ̂ AN .

Finally, we note that it is possible to relax the constraint in (9) to merely require that μ̂ is unbiased,
rather than that it has a particular functional form. In this case, the resulting problem would be nonconvex,
but solving a relaxation or upper bound may lead to other interesting estimators.
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3.3 Properties of adaptive normalization

We now study the asymptotic behavior of μ̂ AN , and show that its asymptotic variance generically improves
on the asymptotic variance of the Hájek and Horvitz–Thompson estimators.

3.3.1 Asymptotic variance

To understand the asymptotics of

⎛

⎝

⎞

⎠
= + −μ S

n
T
π

n
n

ˆ
ˆ ˆ

ˆ
1 ˆ ,AN

we use the fact that /T πˆ ˆ is consistent for /T π and then apply a CLT to the remaining terms. This argument
produces the following result.

Theorem 3. Under Assumption 1, and regardless of whether =μ 0, the estimator μ̂ AN satisfies the CLT

( ) ( ( ))− →

∗n μ μ N σ λˆ 0, ,
d

AN
2 (10)

where ( )⋅σ2 is the asymptotic variance of μ̂λ from (3). Furthermore, the asymptotic variance in (10) is always
smaller than the asymptotic variances of μ̂ HT and μ̂ Hájek and is strictly smaller except if =T μπ or =T 0.

We defer the proof of the CLT to Appendix A, but note here that the variance comparison follows from
the fact that ∗λ is the minimizer of ( )σ λ2 . In particular, unless =

∗λ 1, which corresponds to =T μπ, or =

∗λ 0,
which corresponds to =T 0, ( )∗σ λ2 is smaller than both of ( )σ 12 and ( )σ 02 . Thus, μ̂ AN improves on μ̂ HT and
μ̂ Hájek unless they were already using the optimal value of λ.

We also note that, since Theorem 3 does not require ≠μ 0, there should be no concerns about using the
adaptively normalized estimator in problems where the true mean may be zero. This assumption was
required for connecting the iterations (7) to μ̂ AN , but the favorable variance properties of μ̂ AN do not rely
on it. Thus, even in problems where the true mean may be zero, we recommend using μ̂ AN , since it will be
equivalent to other IPW estimators asymptotically if the true mean is zero, and lower variance asympto-
tically if the true mean is not zero.

3.3.2 Finite sample variance

Examining the form of μ̂ AN directly, we can see that if it has lower variance than μ̂ HT in finite samples, it

must be because the correction term
( )

−1T
π

n
n

ˆ
ˆ

ˆ is negatively correlated with the first term, / =S n μˆ ˆ HT .

However, by using the iterative scheme introduced in (7), we can give an alternative explanation for
why the finite sample variance of μ̂ AN is smaller than that of μ̂ HT , one that builds on the result of
Theorem 2.

To make this argument, we first combine the two update equations in (7) into the single equation

( )

( ) ( ) ( )
( )

( )

=

− +

=

/

− −

− −

−

μ S

n n

S nˆ
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1 1
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T
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T
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n

ˆ
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ˆ ˆ

ˆ
t t t1 1 1

We can write this more succinctly as ( )( ) ( )
=

−μ f μˆ ˆt t 1 , where

( ) ⎛

⎝

⎞

⎠
=

−

= = −f x ax
x b

a S
n

b T
π

n
n

,
ˆ

,
ˆ
ˆ

1 ˆ .
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In this notation, the fixed point of f is at = + =x a b μ̂ AN . Rather than working with f directly, we will

work with the two-step map ( ) ( ( ))
( )

= =

− +

g x f f x a x
x a b b

2

2 and the sub-sequence ( ) ( )
…x x, ,0 2 .

We will now argue informally that the iterations of g should be variance reducing. If it were the case
that ∣ ( )∣′ ≤g x 1 for all x, then applying g would certainly reduce variance, and we would conclude that μ̂ AN
has smaller variance than μ̂ HT . But this is not the case: ( )g x approaches ∞ as its denominator approaches

0, and so ∣ ( )∣′g x can be arbitrarily large . However, the actual sequence of iterates ( )μ̂ t2 lies, with high
probability, in an interval where ∣ ( )∣′g x is bounded by 1.

In what follows, we assume again that ≠μ 0 and that ∣ ∣ ∣ ∣>a b2 , which we show holds with high
probability by the same arguments as those in the proof of Lemma A3 of Appendix A. We also assume,
without the loss of generality, that both a and b are positive, but this is only for clarity. Now, in the proof of
Lemma A2, we show that under these conditions, the entire sequence of iterates ( ) ( )

…μ μˆ , ˆ ,0 2 lies in the
interval [ ]+a a b, 2 . By standard concentration arguments, a is concentrated around μ and b is concentrated
around 0, so the interval between [ ]+a a b, 2 lies with high probability in a small interval � centered at μ.
On the other hand, we can check by direct computation that ∣ ( )∣′ ≤g x 1 for x outside the interval ( )− b b3 , .
Again by concentration arguments, for large n, this interval will be concentrated around zero and thus be
disjoint from the interval � centered at μ.

To summarize, there exists an interval � centered around μ such that, with high probability, �( )
∈x t2

for all >t 0 and ∣ ( )∣′ ≤g x 1 for all �∈x . If the function g were fixed, this would be enough to conclude that
each application of g reduces variance, and thus that μ̂ AN has smaller variance than μ̂ HT . Unfortunately,
because the function g is random, this is not a rigorous argument, only an intuitive one. However, it is clear
from simulations, the results of which are shown in Figure 2, that each successive ( )μ̂ t2 does in fact have
lower variance.

We note that an argument similar to ours appears in Section 5 of ref. [27]. In that context, when studying
a generalized method of moments estimator, the authors iterate a random data-dependent estimate of an
underlying true function. The underlying true function is a contraction mapping and thus reduces variance
when applied to a random variable, so they argue heuristically that the iterations of the data-dependent
estimated function should reduce variance as well.

In addition, the following theorem verifies the finite-sample variance reduction properties of μ̂ AN in the
special case where pk is constant.

0.1

0.3

1.0

3.0

0 10 20 30 40 50

Number of iterations, t

Va
ria

nc
e

Figure 2: The variance of μ̂ t( ) as a function of t . Although a single iteration may increase the variance, we observe that, in this
simulation, every two iterations reduce variance. The data here are generated from the normal model (18) in Section 5 with
n 100= , ρ 0.1= , and μ −1= .
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Theorem 4. Under Assumption 1, if =p pk is constant, then ( ) ( )≤μ μvar ˆ var ˆ .AN HT

We make two important comments on this result. First, in this special case, μ̂ AN is equivalent to both
the sample mean of …Y I Y I, , n n1 1 and μ̂ Hájek . As such, this case is a simple model that does not fully showcase

all of the subtleties of the problem, but still presents evidence for the desirable finite-sample variance
properties of μ̂ AN . Second, although μ̂ AN is equivalent to the observed mean in this case, Theorem 4 differs
from classical results on the difference-of-means estimators for completely randomized experiments in
assuming a Poisson sampled design, which, to the best of our knowledge, has not been previously con-
sidered [28].

3.3.3 Estimated propensities

We have been assuming until now that pk is known, or equivalently that the propensity map ( )p Xk for
covariates Xk is known. In practice, and especially in the context of observational data, ( )⋅p must often be
estimated. In such a setting, the results of ref. [29] imply that the semiparametric efficiency bound for
estimating μ is

� � � �⎡

⎣⎢

( ∣ )
( [ ∣ ] ) ⎤

⎦⎥
( ) ⎡

⎣⎢
( [ ∣ ]) ⎤

⎦⎥
+ − = + −

−Y X
p

Y X μ Y Y Y X p
p

var var 1 .1 1

1
1 1

2
1 1 1 1

2 1

1
(11)

Comparing (11) with the result of Theorem 1, we see that the family μ̂λ cannot achieve the semiparametric
lower bound, because the asymptotic variances of μ̂λ have a −Y λμ1 term instead of �[ ∣ ]−Y Y X1 1 term.

However, [26] has shown that estimation of the propensities actually reduces the asymptotic variance of
IPW estimators. In fact, [26] also shows that when using a linear or logistic sieve estimator for the propensity
score, the Horvitz–Thompson and Hájek estimators achieve the semiparametric lower bound in (11). In this
work, we do not consider such nonparametric propensity estimators, and instead focus on the case of propen-
sities estimated from awell-specified logisticmodel; we consider the analysis of μ̂ AN with propensities estimated
from a linear or logistic sieve, or other nonparametric estimators (to which the results of ref. [26] may be
generalizable), and a study of efficiency properties like those in ref. [26] to be an interesting future direction.
For users who are interested in achieving semiparametric efficiency with our methods, we apply our methods to
double machine learning methods in Section 4.1 and give a semiparametrically efficient estimator there.

Now, in the case of propensities estimated from a well-specified logistic model, it is natural to ask how
this variance reduction from propensity estimation interacts with the variance reduction of μ̂ AN , a question
we answer via the following theorem comparing the asymptotic variances of μ̂ AN and μ̂ HT in this case.

Theorem 5. Suppose Assumption 1 holds and that the pk are estimated from a well-specified logistic model,

i.e., ( ( ))= +

∗ −p X θ1 expk k
T 1 , and we estimate ∗θ by the maximum-likelihood estimate θ̂ based on the data

( ) ( )…X I X I, , , ,n n1 1 . Let μ̂ HT, logistic and μ̂ AN, logistic be estimates of μ using θ̂. Then, these estimators satisfy the
CLTs:

( ) ( ) ( ) ( )− → − →n μ μ N σ n μ μ N σˆ 0, , ˆ 0,
d d

HT, logistic HT, logistic
2

AN, logistic AN, logistic
2

and

( ) ( )− = − + −

∗ − ∗ −σ σ T
π

T
π

u I θ u T
π

u I θ u2 T T
AN, logistic
2

HT, logistic
2

2
2

1
1

2

2 2
1

2 (12)

where �[ ( ( )) ]= −

∗u Y p X θ X1k k
T

k1 , �[( ( )) ]= −

∗u p X θ X1 k
T

k2 , and �( ) [( ( )) ( ) ]= −

∗ ∗ ∗I θ p X θ p X θ X X1 k
T

k
T

k k
T are the

Fisher information.

The value of Theorem 5 is that it highlights that some caution is necessary when choosing between μ̂ AN
and μ̂ HT in a problemwith estimated propensities, and suggests an approach to making this choice by using
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the right-hand side of (12) as a diagnostic quantity. That is, we can select between μ̂ HT and μ̂ AN by
estimating the right-hand side of (12), and using μ̂ HT if it is positive, and μ̂ AN if it is negative. However,
practically speaking, when estimating propensities and choosing between μ̂ HT and μ̂ AN , we should prefer
neither – rather, we should use modern doubly robust methods like the AIPW estimator. We discuss these
methods, and the role of adaptive normalization in them, in Section 4.1.

3.4 Connections to regression/control variate methods

In this section, we show how μ̂ AN can be understood as a control variate/regression control method. We
note briefly that arguments similar to the one’s presented here can be used to draw connections between
μ̂ AN and the AIPW estimator of ref. [6], as well as the estimator of ref. [30].

A popular technique for variance reduction in survey sampling is the use of regression controls, and
this technique is also known in the Monte Carlo literature, where regression controls are referred to as
control variates. We will now show that μ̂ AN is equivalent to a particular choice of regression control/
control variate that is known in the Monte Carlo community, but does not appear to have been widely
adopted in the survey sampling and causal inference communities.

We follow the discussion in ref. [10], where the author strongly recommends using the importance
weights as control variates whenever they are known, based on the results of ref. [13]. In our setting, the
random variables = /w I pk k k play the role of the importance weights, since they have mean 1 and re-weight
the observed Y Ik k to have mean μ. Then, following ref. [10], we define the family of estimators:

⎜ ⎟
⎛

⎝

⎞

⎠

∑ ∑
= − −

= =

μ
n

Y w β
n

wˆ 1 1 1 .β
k

n

k k
k

n

k
1 1

(13)

Each estimator in this family is unbiased, so we choose β to minimize variance. The variance of μ̂β is

( ) ( ) ( )− +

n
Y w β

n
Y w w β

n
w1 var 2 cov , var ,k k k k k k

2

which is minimized for ( ) ( )= /

∗β Y w w wcov , vark k k k .
Direct computation gives

� �( ) ⎡

⎣⎢
⎤

⎦⎥
( ) ⎡

⎣⎢
⎤

⎦⎥
=

−

= =

−

=Y w w Y p
p

T w p
p

πcov , 1 and var 1 ,k k k k
k

k
k

k

k

connecting the IS problem to the notation of our survey sampling problem given in (2). Thus, estimating the
numerator and denominator of ∗β separately by T̂ and π̂ , respectively, gives the estimator = /β T πˆ ˆ ˆ0 0 of ∗β .
The resulting estimator of μ becomes

⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
∑ ∑

= − − = + −

= =

μ
n

Y w T
π n

w μ T
π

n
n

ˆ 1 ˆ
ˆ

1 1 ˆ
ˆ
ˆ

1 ˆ ,β
k

n

k k
k

n

kˆ
1 1

HT

which is algebraically equivalent to the estimator μ̂ AN in (8) derived via adaptive normalization. We note
that the version of this estimator in refs [10,13] estimates ( )Y wcov ,k k and ( )wvar k directly rather than first
simplifying, a minor difference with our version.

3.4.1 Value of adaptive normalization as a perspective

While the adaptively normalized estimator we have derived is algebraically equivalent to a known estimator
in the Monte Carlo literature, we feel that our derivation, based on the simple idea of combining the
denominators of μ̂ HT and μ̂ Hájek , offers a valuable and unique motivation. Furthermore, our iterative
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analysis of μ̂ AN provides instructive intuition for finite-sample variance reduction. Finally, we have focused
on choosing λ to minimize asymptotic variance – choosing λ by minimizing a different criteria, such as
mean-squared error, or choosing λ using an alternative approach such as Lepski’s method, would lead to
other estimators that may be worthy of further study.

Finally, despite these other guises in which the adaptively normalized estimator has appeared, it has not
received significant attention in the survey sampling or causal inference community. This inattention is espe-
cially surprising when we consider that, in the Monte Carlo setting, the importance weights are often not
computable in closed form, and so they cannot be used as control variates. In contrast, in the causal inference
setting, the treatment probabilities are often known from the experimental design, and so μ̂ AN is usually
available as an immediate improvement over μ̂ HT or μ̂ Hájek . Thus, it seems that μ̂ AN is more widely known

in the community where it is of less practical value; we hope our work will remedy this gap by presenting μ̂ AN in
a causal inference context and addressing issues specific to this context, such as the estimation of propensity
scores. To this end, we proceed in the next section to identify a variety of template settings in causal inference
where μ̂ HT and μ̂ Hájek are used by default, and it is desirable to replace them with μ̂ AN .

4 Applications

In this section, we consider various causal inference settings in which the Horvitz–Thompson and Hájek
estimators are used “by default” and show how adaptively normalized estimators act as a free upgrade.

4.1 AIPW estimation

Our first application of adaptive normalization focuses on AIPW estimation. A basic version of AIPW was
first introduced for survey sampling in the 1980s [31,32] and then re-discovered and significantly expanded
on for ATE estimation by the causal inference community [6,33], where it is also known as the doubly robust
estimator. Our approach follows the one developed in ref. [33], although we concentrate on a single group
for now and defer ATE estimation until further on.

We discuss AIPW estimation in the more general model where we have access to covariate information.
Specifically, we assume the pairs ( ) ( )…Y X Y X, , , ,n n1 1 are i.i.d. from a distribution � on � �× , and we
observe all of …X X, , n1 in addition to …Y I Y I, , n n1 1 , where Ik are independently ( )pBer k and ( )=p p Xk k is a
function of the covariates. Then, the AIPW estimate of μ is expressed as follows:

� �

( )
( ( ))

( )

( )

( )
∑ ∑ ∑ ∑

= +

−

= ∈

−

= ∈

−

−

μ
n n

μ X
n

Y μ X I
p X

ˆ 1 1 ˆ 1 ˆ
ˆ

,
j

K

i

j
k

j

K

i

k
j

k k
j

k
AIPW

1 1j j

(14)

where � �…, , K1 is a partition of the data into K folds, ( )( )−μ Xˆ j
k is an estimate of �( ) [ ∣ ]=μ X Y Xk k k based on all

the data except �j, and ( )p Xˆ k is an estimate of ( )p Xk based on all the data except �j. We denote by �
−j the

data on which ( )−μ̂ j and ( )−p̂ j are trained. Thus, our estimators are cross-fit as shown in ref. [33]. We will
require that ( )( )

⋅

−μ̂ j and ( )( )
⋅

−p̂ j satisfy the following standard conditions for each ≤ ≤j K1 [33]:

Assumption 2. (Consistency) As → ∞n , ( )( )
⋅

−μ̂ j , and ( )( )
⋅

−p̂ j satisfy

�

� �

∣ ( ) ( )∣ ∣ ( ) ( )∣( ) ( )
− − →

∈

−

∈

−μ x μ x p x p xsup ˆ , sup ˆ 0.
x

j

x

j

Assumption 3. (Risk decay) We have that ( ) ( )( ) ( )
⋅ ⋅

− −μ pˆ , ˆj j satisfy

� �� �[( ( ) ( )) ∣ ] [( ( ) ( )) ∣ ] ( )( ) ( )
− × − =

−

−

−

−

−μ X μ X p X p X o nˆ ˆ .j
k k j

j
k k j P

2 2 1
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Under Assumptions 2 and 3, the estimator μ̂ AIPW is semi-parametrically efficient [29], making it a
natural starting point for potential improvements. Of course, this efficiency result means that any potential
usage of adaptive normalization will not reduce the asymptotic variance of μ̂ AIPW , but we will see that we
can still use the ideas of adaptive normalization to develop an estimator that has the same asymptotic
efficiency as μ̂ AIPW , and also has better finite-sample MSE in simulations.

Consider the estimator in (14). The first term is an estimate of μ based on imputing all of the Yk by

( )( )−μ Xˆ j
k , while the second term is an inverse probability weighted estimate of the bias of the ( )( )−μ Xˆ j

k . In
light of our work in Section 3, we naturally propose replacing the second term with a adaptively normalized
estimator, yielding the new estimator

� �

�

( )
( ( ))

( )

⎛

⎝
⎜

( ( ))
( )

( ) ( )

⎞

⎠
⎟

⎛

⎝

⎞

⎠

( )
( )

( )

( )
( )

( ) ( )

∑ ∑ ∑ ∑

∑ ∑

= +

−

+ −

−

−

= ∈

−

= ∈

−

−

= ∈

−

−

− −

μ
n

μ X
n

Y μ X I
p X

π
Y μ X p X

p X
I

p X
n
n

ˆ 1 ˆ 1 ˆ
ˆ

1
ˆ

ˆ 1 ˆ
ˆ ˆ

1 ˆ ,

j

K

i

j
k

j

K

i

k
j

k k
j

k

j

K

i
k

j
k

j
k

j
k

k
j

k

AIPW,AN
1 1

1

j j

j

(15)

where now

� �

( )

( ) ( ) ( )

( )

( ) ( ) ( )
∑ ∑ ∑ ∑

=

−

=

= ∈

−

− −

= ∈

−

π
n

p X
p X

I
p X

n I
p X

ˆ 1 1 ˆ
ˆ ˆ

, ˆ
ˆj

K

i

j
k

j
k

k
j

k j

K

i

k
j

k1 1j j

are functions of the estimated propensities, rather than the true treatment probabilities as shown in
Section 3.

The following theorem shows that this correction is asymptotically negligible; the proof is presented in
Appendix A.4.

Theorem 6. Suppose Assumptions 1–3 hold. Then
�

( )− →n μ μˆ ˆ 0AIPW AIPW,AN .

Crucially, Theorem 6 implies that μ̂ AIPW,AN has the same asymptotic variance as μ̂ AIPW under the given

conditions. These are exactly the conditions required for the efficiency of μ̂ AIPW , so we conclude that
μ̂ AIPW,AN is efficient whenever μ̂ AIPW is. On the other hand, in finite samples, the additional correction

term in μ̂ AIPW,AN is negatively correlated with the other terms, and reduces variance, a fact we demonstrate

empirically in Section 5. Taken together, these observations suggest that μ̂ AIPW,AN should typically be

preferred to μ̂ AIPW .
Our proposal is by no means the only attempt to improve on μ̂ AIPW . However, our proposal differs from

existing work in two important ways. First, many other proposals are meant to improve on AIPW in the case
when μ̂ is misspecified, which is not our motivation here, although we do explore this setting in simulation
and see that μ̂ AIPW,AN handles misspecification better than μ̂ AIPW . Second, and more importantly, other
proposed estimators are significantly more complex, and sometimes requires solving certain estimating
equations numerically. In contrast, μ̂ AIPW,AN has an explicit, simple, closed form, and computing it requires

nothing more than what is required to compute μ̂ AIPW .

4.2 ATE estimation

Another setting in which IPW estimators play a key role is in the problem of ATE estimation. Our model for
ATE estimation is that there are triplets

( ( ) ( ) ) ( ( ) ( ) )…Y Y p Y Y p1 , 0 , , , 1 , 0 ,n n n1 1 1
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drawn i.i.d. from a distribution� on� � [ ]× × 0, 1 satisfying Assumption 1 for both ( )Y 1k and ( )Y 0k . We assume
that we observe ( ) ( )…Y I Y I, , n n1 1 , where ∣ ( )I p p~ Berk k k , and want to estimate the ATE �[ ( ) ( )]= −τ Y Y1 0k k from
these observations. There are a variety of general approaches to estimating τ [34]; the one relevant to ourwork is the
approach of using IPW estimators to separately estimate �[ ( )]=μ Y 1k1 and �[ ( )]=μ Y 0k0 , and then subtracting the
two estimates.

Since the problems of estimating μ1 and μ0 are survey sampling problems, they are often estimated with
Horvitz–Thompson and Hájek estimators. Continuing our general theme, why not use μ̂ AN instead? Thus,
we propose

= −τ μ μˆ ˆ ˆ ,AN 1, AN 0, AN (16)

where μ̂1, AN is the adaptively normalized estimator based on ( ) ( )…Y I Y I1 , , 1n n1 1 and μ̂0, AN is the same based
on ( )( ) ( )( )− … −Y I Y I0 1 , , 0 1n n1 1 .

This is not the only possible use of adaptive normalization in this setting. Note that μ̂1, AN and μ̂0, AN here
are designed to minimize variance within each group, even though our target estimand is the difference
between groups. It is natural to ask what happens if we instead attempt to directly minimize the variance of
the estimated difference between the two groups; we discuss this approach in detail in Appendix C and
compare it to τ̂AN from (16). We conclude that estimating the two groups separately and taking the differ-
ence is reasonable and generally advised, except in the presence of strong correlation between the
responses and the propensities, in which case the second approach may be preferable.

Similarly, rather than using AIPW estimation in each group for ATE estimation, we can also use
adaptively normalized AIPW estimation in each group instead. Indeed, we will show in Section 5 that these
estimators improve on both of the usual estimators in simulation.

Finally, we note that, since the adaptively normalized estimator is also a regression control estimator,
τ̂AN corresponds to a particular form of the interaction estimator of ref. [35]. Appealingly, we derive the
same estimator without any reference to an ordinary least squares model, side-stepping issues like those
discussed in refs [35,36] of whether the model is correct or can only be used “agnostically.”

4.3 Policy evaluation

The final setting in which we propose replacing an IPW estimator with an adaptively normalized estimator
is policy evaluation. In this context, we wish to learn a statistical rule for assigning treatments to a
population that maximizes the total welfare. We follow the regret minimization framework introduced by
ref. [37] and build directly on the work of ref. [17], although much of our notation is drawn from [19].

Formally, suppose that individual k has potential outcomes ( )Y 1k and ( )Y 0k depending on whether they
receive a treatment, and we wish to learn a policy π that maps known covariates �∈Xk to a treatment
assignment in { }0, 1 . The value of a policy π (note that we are no longer using π to represent moments of the
unknown distribution as in Section 3) is �( ) [ ( ( ))]=V π Y π Xi i , the average outcome of an individual treated
using the policy. Assuming we are restricted to a class of policies Π , the best possible policy is

( )= ′

∗

′∈

π V πarg maxπ Π , and we evaluate a policy based on its regret ( ) ( )−

∗V π V π .
Ideally we would learn a policy by maximizingV , but we cannot computeV . Instead we estimateV from

historical data ( ( ) ) ( ( ) )…Y I X Y I X, , , ,n n n1 1 1 , where ( ( ))I p X~ Berk k is an indicator of whether Yk received the
treatment, and we assume that Assumption 1 holds. Under the assumption that the propensity map ( )⋅p is
known, ref. [17] proposed

�
( )

{ ( )}

( ( )∣ )
∑

=

=

=

=

V π
n

I π X Y
I π X X

1ˆ 1

k

n
k k k

k k k
IPW

1

as an unbiased estimate of ( )V π .
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Of course, at this point, we can sense that a better estimate of V would be the adaptively normalized

�

�

� �

�

� �

⎜ ⎟( )
⎛

⎝

{ ( )}

( ( )∣ )

⎞

⎠

( ( ) ∣ )

( ( ) ∣ )

{ ( )}

( ( ) ∣ )
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( ( ) ∣ )

{ ( )}
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∑
= +

∑

∑

−

=

=

=

− =

=

=

=

=

− =

=

=

=

=
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n
I π X

I π X X
1ˆ ˆ 1 1 .

k
n

k
I π X X

I π X X
I π X

I π X X

k
n I π X X

I π X X
I π X

I π X X k

n
k k

k k k

1

1AN IPW
1

1

1
1

1

k k k

k k k

k k

k k k

k k k

k k k

k k

k k k

(17)

The main result of ref. [17] showed that maximizing ( )V πˆIPW yields a policy whose regret decays at a rate of
/ n1 . We now give an analogous result for V̂AN .

Theorem 7. Let ( )=

∈

π V πˆ argmin ˆπ ΠAN AN and suppose that Π has finite VC-dimension. Then

� ⎜ ⎟[ ( ) ( )] ⎛

⎝

( ) ⎞

⎠

− ≤

∗V π V π O M
δ

Π
n

ˆ VC .AN

Thus, V̂AN preserves the theoretical guarantees associated with V̂IPW , and we verify in the next section

that policies learned with V̂AN are closer to the optimal policy. One drawback of V̂AN , however, is that V̂IPW

can be interpreted as a weighted classification objective [17,19], facilitating optimization, while V̂AN unfor-
tunately does not have such an interpretation. Finally, we note that [19] introduced the idea of policy
learning based on AIPW estimation instead of IPW estimation; applying these ideas in our setting is an
exciting opportunity for future work.

5 Experiments

In this section, we use a series of experiments to evaluate the empirical performance of adaptive normal-
ization. The goal of our experiments is to validate that applying adaptive normalization for mean estimation
as well as in the various settings of Section 4 actually pays the dividends we expect.

Our first set of experiments are focused on survey sampling as discussed in Section 3 and make use of
semi-synthetic data to compare μ̂ AN to μ̂ HT and μ̂ Hájek . Our second set of experiments are simulations

comparing ATE estimation using all of the aforementioned estimators, and also using μ̂ AIPW,AN and μ̂ AIPW .
Our third set of experiments studies the coverage of confidence intervals for these estimators constructed

using asymptotic normal approximations. Finally, we use a simulation experiment to compare V̂AN to V̂IPW
as a policy learning objective. Additional experiments appear in Appendix B.

5.1 Survey experiments

We work with a dataset of Swiss municipalities, provided by the R package sampling [38] under the GPL-2
license. This data set contains demographic and financial data for 2,896 different municipalities in Switzer-
land, and we consider two responses:Y1, the wooded area of a municipality, andY2, the industrial area of a
municipality. We assume the standard sampling scheme for studies of this dataset in which the probability
pk of observing Yk is proportional to the total area of municipality k, and set ∑ pk k (the expected number of
observations) to be either 50 or 250. We resample the set of observed municipalities according to these
probabilities and compare the three estimators with the true mean of the Yk. The RMSE of the Hor-
vitz–Thompson estimator, Hájek estimator, and adaptively normalized estimator for the four specifications
are presented in Table 1.

To better understand Table 1, we remark thatY1 is strongly positively correlated with pk andY2 is weakly
positively correlated with pk. Thus, in the first two columns of Table 1, the Horvitz–Thompson estimator is
much better than the Hájek estimator, but not as good as the adaptively normalized estimator, in accor-
dance with our observations about ∗λ in Section 3. In the latter two columns, the correlation is weaker, so
the Horvitz–Thompson and Hájek estimators are more comparable, but the adaptively normalized estimator
still improves on both. These results demonstrate that although it may be unclear whether the
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Horvitz–Thompson estimator or Hájek estimator should be used in a particular problem, the adaptively
normalized estimator circumvents this question by always improving on both of the other two estimators.
For reference, plots of the MSE in each problem as a function of different values of λ are shown in Figure 3.

Table 1: RMSE of estimators on Swiss municipality data; Y1 is wood area and Y2 is industrial area; probabilities are chosen
proportional to total municipality area, which is strongly positively correlated withY1 and weakly positively correlated with Y2.
RMSEs are averaged over 100,000 trials and standard errors are over 10 replications of the 100,000 trials

Problem specification

p Y50,k 1∑ = p Y250,k 1∑ = p Y50,k 2∑ = p Y250,k 2∑ =

μ̂HT 68.4 0.1030± 27.8 0.0710± 2.51 0.0051± 1.07 0.0026±

μ̂Hájek 95.3 0.3587± 39.3 0.1510± 2.52 0.0076± 1.06 0.00244±

μ̂AN 61.5 0.1035± 23.1 0.0538± 2.45 0.0086± 1.01 0.0028±

MSE |bias| Var.
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Figure 3: Top: the estimated absolute value of bias, variance, and MSE for estimators applied to data from model (18) with
n 500= , μ 1= , and varying θ. Bottom: the same, but with data from model (19) with n 500= and varying α. Results are
averaged across 10,000 trials. We omit τ̂HT due to extremely large variance. Across the board, adaptively normalized estimators
effectively trade off bias and variance to achieve lower MSE than their traditional counterparts.
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5.2 ATE experiments

For ATE estimation, we consider two models, one of which represents a benign setting in which Yk and pk
have roughly linear relationship, and one of which represents a more difficult setting in which Yk and pk
have an extremely strong negative relationship.

The first model, which we refer to as our normal model, is a model in which we generate

⎜ ⎟( ( ) ) ⎛

⎝
⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎞

⎠
Y X N

μ θ
θ

1 , ~ 0 , 1
1

,k k (18)

and ( ) ( ) ( ( ))= − = + −

−Y Y τ p X0 1 , 1 exp 2k k k k
1 . In this model, θ controls the correlation between Yk and Xk,

and indirectly the correlation between Yk and pk. To satisfy Assumption 1, we truncate pk and Yk
with = =M δ50, 0.01.

The second model we consider is our power law model, where we generate

( ) ( ) ( )− = +

−p ε ε Y p N σ~ Uni , 1 , 1 0, ,k k k
α 2 (19)

and ( ) ( ) (( ) )= − = − /Y Y τ X p p0 1 , log 1k k k k k . In this model, α controls the strength of the nonlinear negative
relationship between Yk and pk, while σ2 is a noise parameter we set to 1. To satisfy Assumption 1, we take

=

−ε 10 2 and truncate Yk at =M 106.
In both models, we estimate pk from logistic regression with covariate Xk and estimate �[ ∣ ]Y Xk k with a

generalized additive model. For AIPW estimators, we use two-fold cross-fitting. The treatment effect is set to
=τ 0.5. We simulate data from both models, fixing =n 500 and =τ 0.5 while varying θ and α, and compare

the biases, variance, and MSEs of various ATE estimators. The results are shown in Figure 4, omitting τ̂HT
for clarity.

We discuss the classical and semi-parametric estimators separately. Comparing τ̂Hájek and τ̂AN , we see

in the normal model that τ̂AN has larger bias but smaller variance than τ̂Hájek across all values of θ. Because
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Figure 4: Coverage of 95% confidence intervals for different estimators of the mean μ of Y 1k( ) in the normal model (18) when
μ θ1, 0.1= = , and n varies, along with empirical variances and estimated variances based on asymptotics. We see in general
that μ̂AN and μ̂AIPW,AN achieve nearly the target coverage, but that μ̂AIPW and μ̂AN lag behind. Finite sample coverage issues for
μ̂AIPW are known in the literature, and the weaker coverage of μ̂AN is driven by its larger bias in finite samples (as shown in
Figure 4). Thus, some caution is needed when constructing confidence intervals for μ̂AN .

Adaptive normalization for IPW estimation  17



the MSE is dominated by the variance, τ̂AN also has consistently lower MSE than τ̂Hájek , and the same

behavior is found in the power law model. By comparing τ̂AIPW and τ̂AIPW,AN , we see in the normal model
that they both have nearly no bias, but that τ̂AIPW, AN has slightly lower variance and thus lower MSE across
all values of θ. We again see the same behavior in the power law model, except that the difference between
τ̂AIPW and τ̂AIPW, AN is more substantial in this model. The reason for this difference is that estimating ∣Y Xk k is
more difficult in the power law model, so the more careful estimate of the bias used by τ̂AIPW,AN pays larger
dividends.

5.3 Coverage experiments

We now turn to the issue of inference, and consider the problem of constructing confidence intervals for our
estimators. For μ̂ HT , μ̂ Hájek , and μ̂ AN , this can be done using the asymptotic variances in Theorems 1 and 3

and an asymptotic normal approximation; for μ̂ AIPW and μ̂ AIPW,AN , we use the known asymptotic variance of
the AIPW estimator (see, e.g., ref. [29]) and an asymptotic normal approximation. We use the same asymp-
totic variance for both μ̂ AIPW and μ̂ AIPW,AN because, as shown in Theorem 6, these two estimators have the
same limiting distributions. We generate data from the model (18), and attempt to construct a 95% con-
fidence interval for the mean μ of ( )Y 1k when = =μ θ1, 0.1, and n varies. The results are shown in Figure A1.

We see in the top panel of Figure A1 that the coverage of confidence intervals for μ̂ Hájek and μ̂ AIPW,AN is

fairly close to the target coverage level of 95%. However, the coverage of confidence intervals for μ̂ AIPW and
μ̂ AN is weaker, especially in smaller samples. Issues with the coverage of confidence intervals for the AIPW
estimator are known in the literature [39,40], and we see from the bottom two panels of Figure A1 that these
are caused by the empirical variance of the AIPW estimator being larger than our asymptotic approximation
of it in the sample sizes considered. Since μ̂ AIPW,AN has smaller empirical variance than μ̂ AIPW , it also enjoys

better coverage in finite samples. On the other hand, the asymptotic approximation of the variance of μ̂ AN
appears relatively accurate, but the confidence intervals are slightly below the target coverage level because
of the larger bias of μ̂ AN , as shown in Figure 4. For this reason, practitioners should be aware that con-
fidence intervals for μ̂ AN may slightly undercover unless the sample size is quite large. This issue could be
remedied by using some kind of bias correction, and is an important future direction.

5.4 Policy evaluation experiments

Our final simulation compares the two policy learning objectives, V̂IPW and V̂AN of the policy evaluation
application in Section 4. Our data generating model is inspired by the simulations of ref. [19], and sets
(letting Xk i, be the i th entry of Xk)

( ) ( )
( )

=

+ −

×

X N I p X
X

~ 0, , 1
1 exp

,k k
k

3 3
,1

(20)

with potential outcomes ( ) ( ) ( ) ( )= = − +Y X Y Y X X1 , 0 1 sgnk k k k k k,1 ,2 ,3 . In general, minimizing V̂IPW or V̂AN is
nonconvex. To obtain a tractable problem, we restrict the class Π to be the set of policies of the form

( ) { }= >π X X T1k k,2 for [ ]∈ −T 1, 1 . Note that this is a misspecified setting, in the sense that the optimal
policy ( ) { }= + >π X X X1 0k k k,2 ,3 is not in the class we are optimizing over. For each of V̂IPW and V̂AN , we
generate a sample of size n from (20) and learn a cut-off T that minimizes the corresponding objective by
grid search on [ ]∈ −T 1, 1 .

The average threshold learned, for a range of values of n, is presented in Table 2. The optimal policy is
to threshold at =T 0, and so we take this as a point of comparison. We see that the thresholds learned from

minimizing V̂AN are consistently closer to the optimal threshold of zero than those learned by minimizing

V̂IPW , and that the gap between the performance of the two objectives is consistent across the range of
values of n we consider.

18  Samir Khan and Johan Ugander



6 Discussion

In this article, we study adaptive normalization for IPW estimators: rather than normalizing by the sample
size or by the sum of the weights, we propose normalizing by a data-dependent affine combination of the
two. For mean estimation in survey sampling, our proposed estimator is algebraically equivalent to a
control variate method from the Monte Carlo literature that has not been studied in the causal inference
literature before. We further develop the adaptive normalization idea in causal inference settings by using it
to improve on the AIPW estimators, to propose new estimators for the ATE in randomized experiments, and
new objectives for policy learning.

There are several possible future directions for this work. One is to relax the assumption that the
treatment indicators Ik are independent, an unrealistic assumption in many observational datasets and
also directly violated in certain experimental designs. However, if the correlation structure of the Ik is
known or possible to estimate, analogues of our limit theorems and estimators could be developed. If
the correlation between the Ik is sufficiently weak, Theorem 1 may hold without modification, and we
expect the remainder of our results would go through as well. However, if the correlation between the Ik
is strong enough to affect the asymptotic variance in Theorem 1, then the optimal choice of λ would change,
and these changes would propagate through the analysis. In such a case, we expect that the general form of

μ̂ AN would remains similar, but the /T πˆ ˆ term would be replaced by a more complex expression.
In addition, estimands other than the mean, such as quantiles and distributions, are also of interest in

causal inference and program evaluation and can be estimated using IPW-style estimators [41–43].
Extending our results to these other estimands is another possible line of further work and will likely
give very different results from the ones presented here. IPW estimators for the mean have a simple closed
form involving the weights, whereas IPW estimators for other estimands are typically defined as weighted
M-estimators and do not have such a closed form [42,43]. Thus, the weights enter into the estimator in a
different fashion in such cases, and we would expect the analogue of the adaptively normalized estimator to
look different as well. In fact, we are not even aware of any work studying Hájek/self-normalized estimators
in these other contexts, and the comparison between the Hájek and Horvitz–Thompson estimators may be
different as well.

In a different direction, there are many places within and beyond causal inference where inverse
probability weighted estimators are used in context-specific ways, such as off-policy evaluation on net-
works [44], recommender system evaluation [45], in learning to rank problems [46], and inference from
bandits [47,48]. Developing and applying similar ideas in these contexts suggests many promising lines of
future work.
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Table 2: Thresholds learned by V̂IPW and V̂AN for varying n for data generated according to (20). Each entry is an average over
100,000 replications and standard errors are over 10 replications of the 100,000 trials. The optimal policy is to threshold at 0;
minimizing V̂AN consistently learns better thresholds

Objective n 250= n 500= n 750= n 1,000=

V̂IPW −0.057 0.0013± −0.035 0.0011± −0.026 0.0011± −0.020 0.0014±

V̂AN −0.039 0.0018± −0.015 0.0014± −0.010 0.0009± −0.004 0.0009±
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Appendix

A Technical proofs

A.1 Proofs of Theorems 1, 3, and 5

In this section, we detail the calculations underlying the CLTs in Section 3. The building block of our results

is a joint CLT for the vector ( )= / /β S n n nˆ ˆ , ˆ , which has mean ( )=β μ, 1 .

Lemma A1. Under Assumption 1, we have

( ) ( )− →n β β Nˆ 0, Σ ,
d

where the entries of Σ are given by
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Proof. For any vector �∈v 4, the quantity ( )−n v β v βˆT T is a sum of i.i.d. random variables. These random
variables have finite variance by Assumption 1, so the classical Lindeberg CLT applies with a limiting
distribution that is ( )N v v0, ΣT . The lemma then follows from the Cramer-Wold device. □

The CLT for μ̂λ now follows from an application of the delta method.

Proof of Theorem 1. Note that ( )=μ f βˆ ˆ
λ for ( )

( )
=

+ −

f x y λ, ; x
λ λ y1 . The function f is differentiable at the

point β and has gradient ( ( ) )∇ = − −f λ μ1, 1β , and so by the delta method, we conclude that μ̂λ satisfies a
CLT with the asymptotic variance
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which rearranges to the variance in (3), as desired. □

Proof of Theorem 3. The key step is to replace the factor of /T πˆ ˆ in μ̂ AN with /T π, so that we can then apply
a standard CLT. Thus, we write
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where the second equality holds because ( )− = o 1T
π

T
π P

ˆ
ˆ by the consistency ofT and π , and ( )− =
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by the CLT for i.i.d. sums.
Thus, the limiting distribution of ( )−n μ μˆ AN is the same as the limiting distribution of
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This last expression is the difference of two i.i.d. mean zero sums, and so its limiting distribution is
asymptotically normal with variance
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( ) ( ) ( ) ( ) ( )/ − / / / + / /Y I p T π Y I p I p T π I pvar 2 cov , var ,k k k k k k k k k k
2

which simplifies to ( )∗σ λ2 . □

Next we turn to the CLT for the case of estimated propensities. Recall that our set-up here is that

( ( ))= +

∗ −p X θ1 expk k
T 1 , and we estimate ∗θ by the maximum-likelihood estimate θ̂. In what follows, we

abuse notation and write ( )p X θk
T for ( ( ))+

−X θ1 exp k
T 1 .

Proof of Theorem 5. Consider the family of estimators
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1 1

Then μ̂ HT corresponds to =β 0, and it follows from the consistency and asymptotic normality of θ̂ that we
can repeat the arguments of (A3) and show that μ̂ AN is first-order equivalent to = /β T π . Thus, to establish
the theorem, it suffices to characterize the asymptotic variance of ( )μ θˆ ˆ

β and compare the cases =β 0
and = /β T π .

To understand the asymptotic of ( )μ θˆ ˆ
β , we first Taylor expand around ∗θ and obtain
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Next, it follows from standard results on M-estimators that ( ) ( ) ( )− = +

∗ ∗ − ∗ − /θ θ I θ S θ o nˆ P
1 1 2 , where

�( ) [ ( )( ( )) ] ( ) ( ( ))
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are the Fisher information and score. Also, by direct computation,
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(A6)

which has expectation �[( )( ( )) ]− − −

∗Y β p X θ X1k k
T

k at ∗θ .
Combining (A4), (A5), and (A6) gives
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(A7)

Since each term of (A7) is a sum of mean-zero i.i.d. terms, we can compute the asymptotic variance directly.
In particular, the terms that depend on β are
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where �[ ( ( )) ]= −

∗u Y p X θ X1k k
T

k1 and �[( ( )) ]= −

∗u p X θ X1 k
T

k2 . The first two terms of (A8) are −β π Tβ22 . To
simplify the remaining terms, we compute
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Together, these imply that (A8) can be written as follows:

( ) ( ) ( ) ( ) ( )= − + + + − −
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( ( ) ) ( )= − + −

∗ − ∗ −β π βT β u I θ u β u I θ u2 2 .T T2
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1

2
2

1
2 (A15)

Finally, recall that μ̂ HT corresponds to =β 0 and μ̂ AN corresponds to = /β T π . Since (A15) evaluated at
=β 0 is 0, the difference in asymptotic variance between μ̂ HT and μ̂ AN will be equal to (A15) evaluated at
= /β T π, which is − + −u Au u AuT

π
T
π

T T
π

T2
2 1 2 2

2 2

2 , completing the argument. □

A.2 Proof of Theorem 2

This subsection contains the proof of Theorem 2 and details for the heuristic argument for variance reduc-
tion given in the main text.

As mentioned earlier, we combine the two equations in (7) to obtain
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and write this as ( )( ) ( )
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In this notation, the fixed point of f is = + =x a b μ̂ AN .
The proof now proceeds in two steps: first, we generalize the problem slightly and consider the discrete

dynamical system ( )x t initialized at ( )
=x a0 and with iterative map ( )( ) ( )

=

−x f xt t 1 for arbitrary fixed a and b.
For this dynamical system, we show that if ∣ ∣ ∣ ∣>a b , then ( )x t converges to +a b. Second, we show that, with
high probability, the particular a and b defined in (A16) satisfy these conditions.

A.2.1 Analyzing the dynamical system

The function f has two fixed points at =

∗x 01 and at = +

∗x a b2 . To understand the stability of these fixed
points, we compute the derivative

∣ ( )∣
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∣ ( )∣
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∣ ∣

∣ ∣
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−

⇒ ′ = ′ =

∗ ∗f x ab
x b

f x a
b

f x b
a

, .2 1 2
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A fixed point ∗x of the map f is stable if and only if ∣ ( )∣′ <

∗f x 1, so we see that if ∣ ∣ ∣ ∣>a b , then ∗x1 is unstable
and ∗x2 is stable, and if ∣ ∣ ∣ ∣<a b , then ∗x1 is stable and ∗x2 is unstable. The case ∣ ∣ ∣ ∣=a b occurs with probability
zero, and so we do not consider it.

In light of these stabilities, we should expect ( )x t to converge to +a b whenever ∣ ∣ ∣ ∣>a b . The following
lemma confirms this.

Lemma A2. If ∣ ∣ ∣ ∣>a b , then the dynamical system with initial point =x a0 and iterative map ( )=

+

x f xt t1
converges to = +

∗x a b.

Proof. Our analysis relies on the two-step map

( ( ))
( )
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− +

f f x a x
x a b b

.
2

2

In particular, we will show that the subsequences …x x, , ,0 2 and …x x, , ,1 3 both converge to ∗x , and this will
prove the lemma. In both cases, the key observation is that

∣ ( ( )) ∣
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( )
( )

∣ ( )∣− =

− +

− + =

− +

⋅ − +
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2

2 (A17)

We first consider the subsequence …x x, ,0 2 , which for convenience we denote by =y xt t2 . We claim that for
any ≥t 0, we have

∣ ∣
∣ ∣

∣ ∣
∣ ∣− ≤ −

+

∗ ∗y x b
a

y x .t t1 (A18)

The proof of the claim is by induction. For the base case, which is =t 0 and =y a0 , we have that

( )

∣ ∣
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≤ =

b
a a b b

b
ab

b
a

,
2

2

2

and substituting this into (A17) gives (A18).
For the inductive step, suppose the result holds for …

−

y y, , t1 1. We will show that yt also satisfies

( )

∣ ∣

∣ ∣− +

≤

b
y a b b

b
a

,
t

2

2

and this together with (A17) will prove the claim. The previous display is equivalent to

∣ ( ) ∣ ∣ ∣− + ≥y a b b ab .t
2 (A19)

This inequality can be established by casework on the signs of a and b. We discuss the case > >a b0, 0 in
detail; the other three cases are analogous.

If >a 0 and >b 0, then + >a b a, and since by the inductive hypothesis, yt is closer to +a b than a is,
we must have ≤ ≤ +a y a b2t . Thus,

∣ ( ) ∣ ∣ ( ) ∣− + ≥ − +

≤ ≤ +

y a b b t a b bmin .t a t a b
2

2
2

Since the function we are minimizing is piecewise linear, the minimum must be attained at an endpoint
( =t a or = +t a b2 ) or where ( )− + =t a b b 02 .

At =t a, the objective is ∣ ∣ ∣ ∣− + ≥a ab b ab2 2 ; at = +t a b2 , the objective is ∣ ∣+ −a ab b2 2 . Since ∣ ∣ ∣ ∣>a b
and a b, are both positive, this is equal to + − ≥a ab b ab2 2 as well. Finally, ( )− + =t a b b 02 is not

possible because this requires =

−

t b
b a

2
and because >a b, < <

−

a0b
b a

2
. Thus, we conclude that (A19) holds,

and this completes the induction for the case >a 0 and >b 0. The other cases are analogous, and com-
bining them establishes (A18).

Now, by using our claim in (A18) repeatedly, we have that for any >t 0,
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⎜ ⎟∣ ∣
∣ ∣

∣ ∣
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∣ ∣
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⎠
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y x b
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y x .t t

t

1 0

Since ∣ ∣ ∣ ∣<b a , we thus have ∣ ∣− →

∗y x 0t as → ∞t , proving the convergence.
Recalling that =y xt t2 , we have shown that the subsequence …x x, , ,0 2 converges to ∗x . An analogous

argument gives that …x x, ,1 3 converges to ∗x as well, and these two together imply that →

∗x xt . □

A.2.2 High-probability guarantees

Our next lemma carries out the proof of the second part of Theorem 2, which is showing that a and b as
defined in (A16) satisfy ∣ ∣ ∣ ∣>a b with high probability.

Lemma A3. Suppose Assumption 1 holds and that ≠μ 0. Then,
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the union bound,
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The second inequality follows from the bound
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(A20)

which implies that ∣ ∣/ ≤T π Mˆ ˆ . The third inequality follows from applying Hoeffding’s inequality to each
term with the bounds ∣ ∣/ ≤ /Y I p M δk k k and ∣ ∣/ ≤ /I p δ1k k .

Finally, we choose ε to balance these two terms. The optimal choice is ∣ ∣=

+

ε μM
M 1 , and with this value of

ε, we conclude that

� ⎜ ⎟( ) ⎛

⎝ ( )
⎞

⎠
≥ − −
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E μ n
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1 4 exp 2
1

,1
2

2 2

finishing the proof. □

A.2.3 Combining the lemmas

With these two lemmas, the proof of Theorem 2 is straightforward.

26  Samir Khan and Johan Ugander



Proof of Theorem 2. Let a b, be as defined in (A16).
For (i), if ∣ ∣ ∣ ∣>a b , then Lemma A2 implies the result with =μ μˆ ˆlim AN . If ∣ ∣ ∣ ∣<a b , then an argument

similar to the one in the proof of Lemma A2 establishes that ( )
→x 0t as → ∞t , and so the statement holds

with =μ̂ 0lim .
For (ii), we have
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where the first inequality is from the contrapositive of Lemma A2 and the second is from that of Lemma A3.
This bound goes to zero, implying (ii). □

A.3 Proof of Theorem 4

Before presenting the proof, we remark that for this result, we must deal explicitly with the possibility that
∑ =I 0k , i.e., no units receive treatment. We do not discuss this case elsewhere because our other results are
asymptotic, and this event occurs with a probability that is exponentially small in n and so can be ignored,
but since Theorem 4 is a finite-sample result, we must account for this possibility.

Proof. Recall that

�( ) ( ) [ ]= +

−μ Y Y p
p

var ˆ var 1 ,HT 1 1
2 (A21)

so we must upper bound ( )μvar ˆ AN by the right-hand side of (A21). Now, under the assumption that =p pk is
constant, μ̂ AN simplifies to
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For convenience, let = ∑N Ik. Then we decompose

� �( ) [ ( ∣ )] ( [ ∣ ])= +μ μ N μ Nvar ˆ var ˆ var ˆAN AN AN (A23)

and compute
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Substituting (A24) into (A23) yields
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� � � �( ) [ ∣ ] [ ] ( ) ( )= / ≠ + = ≠Y N N Y N Nvar 1 0 0 01 1
2 (A26)

� �( ) [ ] ( )≤ + =Y Y Nvar 01 1
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p

var 1 ,1 1
2 (A28)

giving the result. Here, the first equality uses � �( ) ( )= + ≠ =N N0 0 1 and algebra, the second inequality
uses the fact that / ≤N1 1 conditional on ≠N 0, and the third inequality uses the fact that�( ) ( )= = −N p0 1 n

together with the elementary inequality ( )− ≤

−p1 n p
p

1 for ( )∈p 0, 1 . □
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A.4 Proof of Theorem 6

Proof. For the ease of notation, we work within a single fold of the cross-fitted estimator and let �n be an
auxiliary data set of size n on which ( )⋅μ̂ and ( )⋅p̂ are trained. This is equivalent to twofold cross-fitting; the
case of more folds is analogous. Then, it is sufficient to show that the correction term we have introduced is
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1 2 . That error term is
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where the second inequality follows from the fact that, by the consistency of ( )⋅p̂ , we have ( )/ ≤ ≤ − /δ p x δ2 ˆ 1 2
for all �∈x for sufficiently large n, the fourth inequality applies the triangle inequality and the CLT for i.i.d.
sums, and the final equality uses Assumption 2. (Note that since ( )⋅p is bounded, the consistency of p̂ implies the
consistency of /p1 ˆ as well.)

Examining (A35), the first two terms are ( )− /o nP
1 2 as needed, so it remains to analyze the final term. We
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where the first inequality is Cauchy-Schwarz, the second equality expands the product and drops the = ℓk
terms, the fourth equality uses the fact that the terms of the sum are equal after conditioning on �n, and the
fifth equality uses the fact that the two errors are independent after conditioning on �n.

By Assumption 3, the product of conditional expectations in (A40) is ( )−o nP
1 . Since ( )μ Xk and ( )

ℓ

p X are
bounded by Assumption 1, and ( )⋅μ̂ and ( )⋅p̂ are sup-norm consistent by Assumption 2, that product of
conditional expectations is eventually dominated by a constant, and so the expectation in (A40) is ( )−o n 1 as
well, completing the proof. □

A.5 Proof of Theorem 7

Our proof closely follows ideas and tools developed in ref. [17].

Proof. Our goal is to control ( ) ( )−
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The second term of (A44) is bounded in Theorem 2.1 of ref. [17], and so we are interested in bounding

the first term. By the definitions of V̂IPW and V̂AN , that first term of (A44) is
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by a calculation analogous to the one in (A20). Combining (A44) and (A46) gives
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Finally, the expectation in the first term of (A47) can be bounded by using standard empirical process tools;
in particular, Lemmas A.1 and A.4 of ref. [17] imply that it is ( )

( )

O δ
Π

n
1 VC , finishing the proof. □
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B Further experiments

B.1 RMSE plots for Swiss data

The plots in Figure 3 show the RMSE of the various problem specifications of our survey sampling simula-
tions in Section 5 as a function of λ. Interestingly, the optimal choices of λ are all between 0 and 1,
suggesting that the Hájek estimator is actually “over-normalizing” in this case.

B.2 Overlap and bias

In this section, we further study the bias of μ̂λ and μ̂ AN in small samples. To do this, we generate data from
the normal model (18) with =μ 0.1 and =θ 0.9, and attempt to estimate the mean μ of ( )Y 1k for varying
values of n, the sample size, and also for varying values of δ, the cut-off to which the pk are truncated (i.e.,
when δ is smaller, we allow smaller pk, and thus worse overlap). Estimates for the bias of μ̂λ with

=λ 0.25, 0.5, and 0.75, as well as for μ̂ AN under these conditions are shown in Figure A2. These experiments
confirm the expected behavior of the bias based on theory: the bias of μ̂λ decreases at approximately a /n1
rate, and is larger in the presence of worse overlap. Thus, our proposal to select λ by minimizing
the asymptotic variance can also be expected to reduce MSE as long as the data have good overlap.
The bias of μ̂ AN shows similar behavior and also appears to decrease more quickly in the presence of better
overlap.
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Figure A1: MSE of μ̂λ as a function of λ for the four problem specifications of the Swiss municipality data.
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C Joint adaptive normalization in ATE estimation

This appendix explores some subtleties of how the adaptive normalizations should be chosen for ATE
estimation. In particular, the estimator in (16) is equivalent to selecting λ in (1) to separately minimize
the asymptotic variance of the two mean estimates. However, this “plug-in” use of adaptive normalization
ignores the fact that the asymptotic variance of an adaptively normalized ATE estimator depends not only
on the variances of the two mean estimators but also their covariance.

In what follows, we jointly choose the normalizations of each mean estimator to minimize the asymp-
totic variance of estimating the combined estimand τ. Specifically, we define
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Combining these estimators leads to the estimator = −τ μ μˆ ˆ ˆλ λ λ λ, 1, 0,1 0 1 0
of τ. To follow the program of

Section 3, we seek to choose λ1 and λ0 to minimize the following asymptotic variance.

Theorem A1. Assuming that both ( )Y 1k and ( )Y 0k satisfy Assumption 1, we have
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Figure A2: The absolute value of the biases of μ̂λ for λ 0.25= , 0.5, and 0.75 and μ̂AN as n, the sample size, and δ, the lower
bound on the overlap, vary in the normal model (18). We see that bias decreases with n at roughly a n1/ rate, as the theory
suggests, and that overlap plays an important role in the bias: worse overlap consistently leads to larger bias.
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and C denotes terms that do not depend on either λ1 or λ0.

As with our other CLTs, this is a routine delta method calculation.
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with mean ( )=β μ μ, , 1, 11 0 . By the same arguments as in A1, β̂ satisfies the usual CLT for the mean of i.i.d.
random variables, and so we can apply the delta method with the function ( ) = −
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where C denotes terms that do not depend on either λ1 or λ2.
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We now minimize the asymptotic variance of Theorem A1 in λ1 and λ0. The first-order stationary
conditions tell us that the optimal pair ( )∗ ∗λ λ,1 0 will satisfy
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As mentioned earlier, we replaceT T π, ,0 1 0, and π1 with IPW estimatesT T πˆ , ˆ , ˆ0 1 0, and π̂1, and then jointly
estimate λ λ μ, ,0 1 0, and μ1 by solving the system of fixed point equations:
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(Note that we have slightly overloaded the notation μ̂1, AN , which is used differently in Section 4.2. In the
entirety of this appendix, the definition mentioned earlier is the one used.)

To actually solve this system, we focus first on (A48), noting that it is linear in λ μˆ ˆ1, AN 1, AN and λ μˆ ˆ0, AN 0, AN
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Then, we rewrite (A49) as follows:
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By using (A50), we can conclude that μ̂1, AN and μ̂0, AN must satisfy the system of linear equations:
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Finally, solving these equations to recover μ̂1, AN , μ̂0, AN , and ≔ −τ μ μˆ ˆ ˆAN 1, AN 0, AN2 can be done using

any standard matrix inversion technique. We refer to the resulting estimator as τ̂ AN 2 to distinguish it
from τ̂AN .

Somewhat surprisingly, τ̂ AN 2 does not always improve on the MSE of τ̂AN . The results of a simulation are
shown in Figure A3. Both the normal model and power lawmodel simulations suggest that τ̂ AN 2 and τ̂AN are
preferable in different regimes. This suggests that, although τ̂ AN 2 is estimating the optimal values of λ1 and
λ0, the complicated functional form of the data-dependent estimates of the optimal values sometimes
inflates the variance. Although τ̂AN is estimating a sub-optimal pair of values λ1 and λ0, its estimates of
those values are lower variance and thus sometimes lead to a lower variance estimator. Examining the
results in Figure A3, it seems that τ̂ AN 2 is preferable to τ̂AN in the presence of strong correlation betweenYk
and pk, but not otherwise.
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Figure A3: Comparison of τ̂ AN 2 and τ̂AN in the normal model with n μ500, 1= = (left) and power law model with n 500= (right).
In both models, we see that τ̂ AN 2 is preferable to τ̂AN when there is a strong correlation between responses and treatment
probabilities.
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