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ABSTRACT

We study gradient methods for optimizing (L0, L1)-smooth functions, a class that
generalizes Lipschitz-smooth functions and has gained attention for its relevance
in machine learning. We provide new insights into the structure of this function
class and develop a principled framework for analyzing optimization methods in
this setting. While our convergence rate estimates recover existing results for
minimizing the gradient norm in nonconvex problems, our approach significantly
improves the best-known complexity bounds for convex objectives. Moreover, we
show that the gradient method with Polyak stepsizes and the normalized gradient
method achieve nearly the same complexity guarantees as methods that rely on
explicit knowledge of (L0, L1). Finally, we demonstrate that a carefully designed
accelerated gradient method can be applied to (L0, L1)-smooth functions, further
improving all previous results.

1 INTRODUCTION

In this paper, we focus on the deterministic unconstrained optimization problem

f∗ := min
x∈Rd

f(x), (1)

where f : Rd → R is an (L0, L1)-smooth function. With the rise of deep learning, ensuring effi-
cient convergence has become increasingly critical. Traditional optimization methods, such as the
gradient descent method and its variants, often rely on assumptions like Lipschitz-smoothness to
guarantee convergence rates. However, in modern machine learning problems, these assumptions
might be too restrictive, especially when optimizing deep neural network models.

Experiments in (Zhang et al., 2019) demonstrated that the Hessian norm correlates with the gradi-
ent norm of the loss when training neural networks. This observation led the authors to propose
(L0, L1)-smoothness, a more realistic smoothness assumption that generalizes classical Lipschitz
smoothness. They also analyzed the gradient method (GM) with fixed, normalized, and clipped
stepsizes for nonconvex optimization, showing that normalized and clipped methods perform more
favorably in the new setting. In recent years, numerous studies have investigated optimization meth-
ods under (L0, L1)-smoothness. However, despite growing interest, existing convergence results
remain suboptimal in key cases, and the theoretical analysis of these methods is still incomplete.

To address this gap, this work explores the properties of (L0, L1)-smooth functions and investigates
gradient methods for their optimization.

Contributions. Our main contributions can be summarized as follows:
∗Part of the work was done while DV visited the CISPA Helmholtz Center for Information Security.
†CISPA Helmholtz Center for Information Security.
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• In Section 2, we provide novel results and insights into the (L0, L1)-smooth class by (i) presenting
new examples and operations preserving (L0, L1)-smoothness, and (ii) deriving new properties of
this function class, leading to tighter bounds on the function value and its gradient. In Section 3,
we propose new, intuitive step sizes that directly follow from minimizing our tighter upper bound
on the function growth. We also discuss the relation between these stepsizes and those used in the
normalized and clipped gradient methods.

• For nonconvex functions, our gradient methods achieve the best-known O(L0F0

ϵ2 + L1F0

ϵ ) com-
plexity bound for finding an ϵ-stationary point, where F0 := f(x0) − f∗ is the function residual
at the initial point (Theorem 3.1). For convex problems, we significantly improve existing results
by showing that an ϵ-approximate solution in terms of the function value can be found in at most
O(L0R

2

ϵ +L1R ln F0

ϵ ) gradient queries, where R = ∥x0 − x∗∥ is the initial distance to a solution
(Theorem 3.2).

• We also study two other methods: normalized gradient method (NGM) and gradient method with
Polyak stepsizes (PS-GM), neither of which requires the knowledge of (L0, L1). For both meth-
ods, we show that they enjoy the O

(
L0R

2

ϵ + [L1R]
2
)

complexity (see Theorems 4.1 and 5.1).

• Finally, in Section 6, we prove the νO
(√

L0R2

ϵ + ⌈(L1R)
2/3⌉⌈ln F0

ϵ ⌉
)

complexity bound for
the Accelerated Gradient Method with Small-Dimensional Relaxation (AGMsDR), where ν ≥ 1
denotes the number of oracle queries required for one-dimensional minimization of the objective
over an interval (see Theorem 6.2).

In contrast to other results in the literature, all our complexity bounds neither depend on the initial
gradient norm nor have an exponential dependency on L0 or L1.

Related work. Following the introduction of the (L0, L1)-class by Zhang et al. (2019), subsequent
works have explored other smoothness generalizations and analyzed gradient methods under these
new assumptions. Chen et al. (2023) introduced the α-asymmetric class, relaxing the assumption on
twice differentiability and allowing a sublinear growth on the norm of a gradient. In (Li et al., 2023),
authors went further and proposed the weakest (r, l)-smooth class, which allows even quadratic
growth of the norm of the Hessian with respect to the norm of the gradient. Despite the generality
of this assumption, there are still some issues and open questions regarding the existing results even
for the basic (L0, L1)-smooth class.

In (Zhang et al., 2020), the authors analyzed the clipped GM with momentum and improved the com-
plexity bound with respect to (L0, L1). Using the right choice of clipping parameters, Koloskova
et al. (2023) proved, for nonconvex and convex problems respectively, the O(L0F0

ϵ2 + L1F0

ϵ ) and

O(L0R
ϵ +

√
L
ϵ L1R

2) complexity bounds, where L is the standard Lipschitz-smoothness constant.
For convex problems, Li et al. (2023) proposed an (asymptotically) faster accelerated gradient

method whose complexity is O
(
(L2

1R
2 +

L2
1F0

L0
+ 1)

√
F0+L0R2

ϵ

)
1. Several works have studied

adaptive optimization methods that do not require the (L0, L1) parameters to be known. Faw et al.
(2023); Wang et al. (2023) studied convergence rates for AdaGrad for stochastic nonconvex prob-
lems. Hübler et al. (2024) proposed a gradient method with the backtracking line search and showed
the O(L0F0

ϵ2 +
L2

1F
2
0

ϵ2 ) complexity bound for nonconvex problems. For convex problems, Takezawa

et al. (2024) proved that the PS-GM method enjoys the complexity of O(L0R
ϵ +

√
L
ϵ L1R

2).

A closely related paper that appeared online independently during the finalization of our manuscript
is (Gorbunov et al., 2024). The authors introduce a new stepsize selection strategy for gradient meth-
ods on convex (L0, L1)-smooth functions, called “smooth clipping,” which, up to absolute constants,
coincides with one of our formulas. Their proof techniques differ from ours, resulting in a slightly
worse complexity bound of O(L0R

2

ϵ +[L1R]
2) compared to our O(L0R

2

ϵ +L1R ln F0

ϵ ), particularly
when the initial function value is reasonably bounded (see Section 3). They also show that PS-GM
achieves the same efficiency bound as in our work. Additionally, the authors present an accelerated

method with complexity O(1) exp(O(1)L1R)
√

L0R2

ϵ , and extend their analysis to strongly con-
vex, stochastic and adaptive methods. In contrast, our work has a slightly different focus, offering

1See Section F.
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deeper insights by deriving principled stepsize formulas, analyzing nonconvex functions, studying
nornalized gradient methods, and developing a superior acceleration scheme with significantly better
complexity. Moreover, our proof techniques differ from those in (Gorbunov et al., 2024).

2 DEFINITION AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

In this section, we state our assumptions and discuss important properties of generalized smooth
functions. We start with defining our main assumption on (L0, L1)-smooth functions.

Throughout this paper, unless specified otherwise, we use the standard inner product ⟨·, ·⟩ and the
standard Euclidean norm ∥ · ∥ for vectors, and the standard spectral norm ∥ · ∥ for matrices. We also
assume that problem (1) admits a solution.

Definition 2.1. A twice continuously differentiable function f : Rd → R is called (L0, L1)-smooth
(for some L0, L1 ≥ 0) if it holds that

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥, ∀x ∈ Rd. (2)

The class of (L0, L1)-smooth functions is a wide family which includes the class of Lipschitz-
smooth functions, and was introduced in (Zhang et al., 2019). For twice differentiable functions,
this definition is equivalent to that of α-symmetric functions with α = 1 proposed in (Chen et al.,
2023). Since any α-symmetric twice differentiable function is also (L0, L1)-smooth with a different
choice of parameters, all our subsequent results hold for α-symmetric functions as well.

For the purpose of analysis of the methods, we provide an alternative and more useful first-order
characterization of the class of (L0, L1)-smooth functions.

Lemma 2.2. Let f be a twice continuously differentiable function, Then, f is (L0, L1)-smooth if
and only if any of the following inequalities holds for any x, y ∈ Rd:2

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1∥∇f(x)∥)
eL1∥y−x∥ − 1

L1
, (3)

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ (L0 + L1∥∇f(x)∥)
ϕ(L1∥y − x∥)

L2
1

, (4)

where ϕ(t) := et − t− 1 (t ≥ 0).

The proof of Lemma 2.2 can be found in Section A.1. It is worth noting that inequality (3) is stronger
than that from (Zhang et al., 2020, Corollary A.4). The bound in inequality (4) is tighter than
those presented in previous works (see, for example, Lemma A.3 in (Zhang et al., 2020), Lemma 8
in (Hübler et al., 2024)). These tighter estimates allow us to construct gradient methods in the sequel.

In our analysis, we often use certain properties of the function ϕ and its conjugate3 ϕ∗, which we
summarize in the following lemma (see Section A.7 for the proof).

Lemma 2.3. The following statements for the function ϕ(t) = et − t− 1 hold true:

1. ϕ(t) ≤ t2

2(1− t
3 )

for all t ∈ [0, 3) and ϕ(t) ≤ t2

2 e
t for all t ≥ 0.

2. ϕ∗(γ) := maxt≥0{γt− ϕ(t)} = (1 + γ) ln(1 + γ)− γ for any γ ≥ 0.

3. γ2

2+γ ≤ ϕ∗(γ) ≤ γ2

2 for all γ ≥ 0.

When f is also convex, we have the following useful inequalities (see Section A.2 for the proof).

2Hereinafter, for L1 = 0 and any t ≥ 0, we assume that eL1t−1
L1

≡ t, ϕ(L1t)

L2
1

≡ 1
2
t2, etc., which are the

limits of these expressions when L1 → 0;L1 > 0.
3The conjugate function is defined in the standard way: ϕ∗(γ) := maxt≥0{γt− ϕ(t)}.
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Lemma 2.4. Let f be a convex (L0, L1)-smooth nonlinear4 function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
, (5)

⟨∇f(x)−∇f(y), x− y⟩ ≥ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
+
L0 + L1∥∇f(x)∥

L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(x)∥

)
,

(6)

where ϕ∗ is the function from Lemma 2.3.

Lemma 2.4 is a generalization of (Nesterov, 2018, Theorem 2.1.5) to (L0, L1)-smooth functions,
and matches it when L1 = 0 (since 1

L2
1
ϕ∗(L1α) → 1

2α
2 as L1 → 0). Moreover, using Lemma 2.3,

we can simplify the lower bound in (5).

Corollary 2.5. Let f be a convex (L0, L1)-smooth nonlinear function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ ∥∇f(y)−∇f(x)∥2

2(L0 + L1∥∇f(y)∥) + L1∥∇f(y)−∇f(x)∥
. (7)

3 GRADIENT METHOD

Having established a few important properties of an (L0, L1)-smooth function f , we now turn our
attention to the gradient method (GM) for minimizing such a function:

xk+1 = xk − ηk∇f(xk), k ≥ 0, (8)

where x0 ∈ Rd is a starting point and ηk ≥ 0 are certain stepsizes.

We start with showing that the gradient update rule (8) and the “right” formula for the stepsize ηk
both naturally arise from the classical idea in optimization theory—choosing the next iterate xk+1

by minimizing the global upper bound on the objective constructed around the current iterate xk
(see (Nesterov, 2018)). Indeed, let x ∈ Rd be the current point, and let a := L0 +L1∥∇f(x)∥ > 0.
According to (4), for any y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ a

L2
1

ϕ(L1∥y − x∥).

Our goal is to minimize the right-hand of the above inequality in y. Since the last term in this bound
depends only on the norm of y − x, the optimal point y∗ = T (x) is the result of the gradient step
T (x) = x− r∗ ∇f(x)

∥∇f(x)∥ for some r∗ ≥ 0 ensuring the following progress in decreasing the function
value:

f(x)− f(T (x)) ≥ max
r≥0

{
∥∇f(x)∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥∇f(x)∥
a

)
,

where ϕ∗ is the conjugate function to ϕ (see Lemma 2.3). Furthermore, r∗ is exactly the solution of
the above optimization problem, satisfying L1∥∇f(x)∥ = aϕ′(L1r

∗). Solving this equation, using
(ϕ′)−1(γ) = ϕ′∗(γ) = ln(1 + γ), we obtain r∗ = 1

L1
ϕ′∗(

L1∥∇f(x)∥
a ) = 1

L1
ln(1 + L1∥∇f(x)∥

a ).

The above considerations lead us to the following optimal choice of stepsizes in (8):

η∗k =
1

L1∥∇f(xk)∥
ln
(
1 +

L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
, k ≥ 0, (9)

resulting in the following progress in decreasing the objective:

f(xk)− f(xk+1) ≥
L0 + L1∥∇f(xk)∥

L2
1

ϕ∗

( L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
:= ∆k. (10)

4According to Lemma 2.2, this means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd.
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The above expression for ∆k is quite cumbersome but, in fact, it behaves as the simple fraction
∥∇f(xk)∥2

L0+L1∥∇f(xk)∥ . More precisely, from Lemma 2.3(3), we see that

∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
≤ ∆k ≤ ∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
.

Thus, there is not much point in keeping the complicated expression (10) and we can safely simplify
it as follows:

f(xk)− f(xk+1) ≥
∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
. (11)

Interestingly, we can also arrive at exactly the same bound (11) by using a simpler choice of step-
sizes. Specifically, replacing ln(1 + γ) with its lower bound 2γ

2+γ (which is responsible for the
inequality in Lemma 2.3(3) that we used to simplify (10) into (11)), we obtain the following simpli-
fied stepsizes:

ηsik =
1

L0 +
3
2L1∥∇f(xk)∥

, k ≥ 0. (12)

With this choice, the iterates of method (8) still satisfy (11) (see Lemma B.1).

Further, note that, up to absolute constants, stepsize (12) acts as 1
max{L0,L1∥∇f(xk)∥} =

min{ 1
L0
, 1
L1∥∇f(xk)∥}, which is the so-called clipping stepsize used in many previous works (Zhang

et al., 2019; 2020; Koloskova et al., 2023). Thus, with the right choice of absolute constants, we can
expect the corresponding clipping stepsizes, to satisfy a similar inequality to (11). This is indeed the
case, and we can show, in particular, that the clipping stepsizes

ηclk = min
{ 1

2L0
,

1

3L1∥∇f(xk)∥

}
, k ≥ 0, (13)

do satisfy (11) although with slightly worse absolute constants (see Lemma B.1).

We have thus demonstrated in this section that clipping stepsizes (13) are simply a convenient ap-
proximation of the optimal stepsizes (9), ensuring a similar bound on the objective progress. This
observation seems to be a new insight into clipping stepsizes which has not been previously explored
in the literature.

It is not difficult to see that the three stepsizes we introduced in this section satisfy
ηclk ≤ ηsik ≤ η∗k. (14)

3.1 NONCONVEX FUNCTIONS

We are now ready to present a convergence rate result for nonconvex functions.
Theorem 3.1. Let f be an (L0, L1)-smooth function, and let {xk} be iterate sequence of GM (8)
with one of the stepsize choices given by (9), (12) or (13). Then, min0≤k≤K ∥∇f(xk)∥ ≤ ϵ for any
given ϵ > 0 whenever

K + 1 ≥ 2L0F0

aϵ2
+

3L1F0

aϵ
,

where a = 1 for stepsizes (9) and (12), and a = 1
2 for stepsize (13).

The proof of Theorem 3.1 can be found in Section B.2. The rate in Theorem 3.1 matches, up to
absolute constants, the rate in (Koloskova et al., 2023) for clipped GM with η = 1

9 (L0+cL1) for c =
L0

L1
, or equivalently the GM with stepsize ηk = 1

18L0
min{1, L0

L1∥∇f(xk)∥}. Furthermore, our rate is

significantly better than the rate O(L0F0

ϵ2 +
L2

1F0

L0
) obtained in (Zhang et al., 2019) for the clipped

GM since L1F0

ϵ ≤ L2
0F0

2ϵ +
L2

1F0

2L0
, and the latter expression can be arbitrarily far away from the former

whenever L0 is sufficiently small and L1 is distinct from zero. In addition to that, our convergence
rate result does not depend on the gradient norm at the initial point, in contrast to Li et al. (2023)
who consider a wider class of generalized-smooth functions but whose rate (polynomially) depends
on ∥∇f(x0)∥. Also, our rate from Theorem 3.1 is better than O

(
L0F0

ϵ2 +
L2

1F
2
0

ϵ2

)
provided in (Hübler

et al., 2024) for the GM equipped with a certain backtracking line search.

5
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3.2 CONVEX FUNCTIONS

Let us now provide the convergence rate for convex functions.

Theorem 3.2. Let {xk} be the iterates of GM (8) with one of the stepsize choices given in (9) (12)
or (13), as applied to problem (1) with an (L0, L1)-smooth convex function f . Let x∗ be an arbitrary
solution to the problem and let F0 := f(x0)− f∗. Then, the sequence Rk := ∥xk − x∗∥, k ≥ 0, is
nonincreasing, and f(xK)− f∗ ≤ ϵ for any given 0 < ϵ ≤ F0 whenever

K ≥ 2

a

L0R
2

ϵ
+

3

a
L1R ln

F0

ϵ

(
≤

2 + 3
e

a

L0R
2

ϵ
+

3(1 + 1
e )

a
[L1R]

2
)
,

where R := R0, and a = 1 for stepsizes (9), (12) and a = 1
2 for stepsize (13).

The proof of Theorem 3.2 can be found in Section B.3. Notice, that the second estimate
O(L0R

2

ϵ + [L1R]
2) in Theorem 3.2 comes from a very pessimistic bound on F0 with the exponen-

tially large quantity exp(L1R)
L0R

2

2 coming from Lemmas 2.2 and 2.3. However, in the case when
F0 is reasonably bounded (e.g., we apply “hot-start” or f is a well-behaved function such as the
logistic one), the O(L1R ln F0

ϵ ) term from the main estimate can be much smaller than O([L1R]
2)

from the pessimistic estimate. It is worth mentioning the work of Lobanov et al. (2024), posted
online after the ICLR rebuttal, where the same bound as in Theorem 3.2 was independently derived.

In Theorem 3.2, we do not make an assumption on L-smoothness of the objective, in contrast to

(Koloskova et al., 2023). Moreover, the rate in the theorem is better than O(L0R
2

ϵ +
√

L
ϵ L1R

2)

provided in (Koloskova et al., 2023) for the clipped GM. Also, in contrast to (Li et al., 2023), our
result does not include the gradient norm at the initial point which could be quite large (consider,
e.g., f(x) = 1

p∥x∥
p from Example A.1 for p > 2 and x0 sufficiently far from the origin).

4 NORMALIZED GRADIENT METHOD

To run GM from Section 3, it is necessary to know the parameters (L0, L1) in advance. In many
real-life examples, those parameters are unknown, and it might be computationally expensive to
estimate them. Furthermore, for any given function f , the pair (L0, L1) is generally not unique
(see Examples A.1 and A.2), and it is not clear in advance which pair would result in the best
possible convergence rate of our optimization method. To address this issue, in this section, we
present another version of the gradient method that does not require knowing (L0, L1). This is the
normalized gradient method (NGM):

xk+1 = xk −
βk

∥∇f(xk)∥
∇f(xk), k ≥ 0, (15)

where x0 ∈ Rd is a certain starting point, and βk are positive coefficients. The following result
describes the efficiency of NGM (see Section C for the proof).

Theorem 4.1. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth convex function f . Consider the constant coefficients βk = R̂√

K+1
, 0 ≤ k ≤ K − 1, where

R̂ > 0 is a parameter and K ≥ 1 is the total number of iterations of the method (fixed in advance).
Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{L0R̄

2

ϵ
,
4

9
[L1R̄]

2
}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥, and x∗ is an arbitrary solution of the problem.

The parameter R̂ in the formula for coefficients βk is an estimation of the initial distance R to a
solution, and the best complexity bound ofK∗ := O(L0R

2

ϵ +[L1R]
2) is achieved whenever R̂ = R.

Note that, even if R̂ ̸= R, the method still converges but with a slightly worse total complexity of
K∗ρ2, where ρ = max{R

R̂
, R̂R}.

6
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The proof of Theorem 4.1 is based on the following two important facts (Nesterov, 2018, Section 3).
First, under the proper choice of coefficients βk, NGM ensures that the minimal value v∗K among
vk := ⟨∇f(xk),xk−x∗⟩

∥∇f(xk)∥ , 0 ≤ k ≤ K, converges to zero at the rate of R̄√
K

. These quantities vk have
a geometrical meaning—each of them is exactly the distance from the point x∗ to the supporting
hyperplane to the sublevel set of f at the point xk. Second, whenever v∗K converges to zero, so does
min0≤k≤K f(xk)−f∗. Moreover, we can relate the two quantities whenever we can bound, for any
given v ≥ 0, the function residual f(x)− f∗ over the ball ∥x− x∗∥ ≤ v:

Lemma 4.2 ((Nesterov, 2018, Lemma 3.2.1)). Let f : Rd → R be a differentiable convex function.
Then, for any x, y ∈ Rd and5 vf (x; y) :=

[⟨∇f(x),x−y⟩]+
∥∇f(x)∥ , it holds that

f(x)− f(y) ≤ max
z∈Rd

{f(z)− f(y) : ∥z − y∥ ≤ vf (x; y)}. (16)

In our case—when the function f is (L0, L1)-smooth—the corresponding bound can be obtained
from Lemma 2.2.

In Theorem 4.1, we fix the number of iterations K before running the method, which is a standard
approach for the (normalized)-(sub)gradient methods (Section 3.2 in Nesterov (2018)). However,
doing so may be undesirable in practice since it becomes difficult to continue running the method if
the time budget was suddenly increased and also prevents the method from using larger stepsizes at
the initial iterations. To overcome these drawbacks, one can use time-varying coefficients by setting
βk = R̂√

k+1
, 0 ≤ k ≤ K − 1. This results in the same worst-case theoretical complexity as in

Theorem 4.1 but with an extra logarithmic factor (see Theorem C.2). Moreover, one can completely
eliminate this extra logarithmic factor by switching to an appropriate modification of the standard
(sub)gradient method such as Dual Averaging (Nesterov, 2005).

For R̂ = R, the complexity of NGM is O(L0R
2

ϵ + [L1R]
2) which is generally worse than that of

the previously considered GM (see Theorem 3.2 and the corresponding discussion). However, recall
that GM requires knowing (L0, L1), and its rate depends on the particular choice of these constants.
In contrast, NGM does not require the knowledge of these parameters, and its “real” complexity is

O(1) min
L0,L1

{L0R̄
2

ϵ
+ [L1R̄]

2 : f is (L0, L1)-smooth
}
,

where O(1) is an absolute constant.

5 GRADIENT METHOD WITH POLYAK STEPSIZES

In the previous sections, the parameters required to run the methods were (L0, L1) for GM, and the
estimation R̂ of the initial distance to a solution R for NGM. To achieve good complexity for NGM,
the estimate R̂ should be close to the real R, otherwise the algorithm will be inefficient. Sometimes,
(L0, L1), or a good estimate R̂ are unknown, while the optimal value of the objective is available.
One such example is overparametrized models in machine learning where f∗ = 0.

In this section, we focus on the case when f∗ is known and analyze the gradient method (8) with the
Polyak stepsizes (PS-GM):

ηk =
f(xk)− f∗

∥∇f(xk)∥2
, k ≥ 0. (17)

Theorem 5.1. Let {xk} be the iterates of PS-GM (8), (17), as applied to problem (1) with an
(L0, L1)-smooth convex function f . Then, it holds that min0≤k≤K f(xk) − f∗ ≤ ϵ for any given
ϵ > 0 whenever

K + 1 ≥ max
{4L0R

2

ϵ
, [6L1R]

2
}
,

where R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of the problem.

5Here [t]+ := max{t, 0} is the nonnegative part of t ∈ R.
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Algorithm 1 AGMsDR

1: Input: Initial point x0 ∈ Rd, update rule T (·).
2: v0 = x0, A0 = 0, ζ0(x) = 1

2
∥x− v0∥2.

3: for k = 0, 1, . . . do
4: yk = argminy{f(y) : y = vk + β(xk − vk), β ∈ [0, 1]}.

5: xk+1 = T (yk), Mk = ∥∇f(yk)∥2
2[f(yk)−f(xk+1)]

(> 0).6

6: Find ak+1 > 0 from the equation Mka
2
k+1 = Ak + ak+1. Set Ak+1 = Ak + ak+1.

7: vk+1 = argminx∈Rd{ζk+1(x) := ζk(x) + ak+1[f(yk) + ⟨∇f(yk), x− yk⟩]}.

We prove the theorem by using a standard inequality for the gradient method with Polyak stepsizes
(PS-GM) for convex functions,

R2
k −R2

k+1 ≥ f2k
g2k
,

where Rk = ∥xk − x∗∥, fk = f(xk) − f∗, and gk = ∥∇f(xk)∥. We then leverage the lower
bound (7), and bound the gradient norm gk by ψ−1(fk), where ψ(g) := g2

2L0+3L1g
, obtaining

R2
k −R2

k+1 ≥ f2k
[ψ−1(fk)]2

.

Summing up these relations, passing to the minimal value of fk, and rearranging the resulting in-
equality, we obtain the desired bound. The complete proof of Theorem 5.1 can be found Section D.1.

Notice that the rate O(L0R
2

ϵ +[L1R]
2) in Theorem 5.1 is the same as that of NGM from Theorem 4.1.

Further, our rate is better than O(L0R
2

ϵ +
√

L
ϵ L1R

2) provided in (Takezawa et al., 2024), and does
not require any extra assumptions such as the L-Lipschitz smoothness of the objective. Finally, as
for NGM, the rate for PS-GM holds for any choice of (L0, L1), including the best possible one.

6 ACCELERATED GRADIENT METHOD

This section develops an accelerated method for minimizing an (L0, L1)-smooth convex function f .
The key ingredient of our analysis is a monotone variant of the accelerated gradient scheme known as
the Accelerated Gradient Method with Small-Dimensional Relaxation (AGMsDR) (Nesterov et al.,
2021). We present this method in Algorithm 1 in a slightly more general form than the original
work. Specifically, instead of computing xk+1 via a standard gradient step from yk, we allow any
update rule T (·) : Rd → Rd that ensures a strictly positive decrease in the function value:

f(x)− f(T (x)) > 0, ∀x ∈ Rd \ {x : f(x) = f∗}. (18)

Theorem 6.1. Let AGMsDR (Algorithm 1) be applied to problem (1) with a differentiable convex
objective f , and any update rule T (·) satisfying the strictly positive decrease property (18). Let x∗
be an arbitrary solution of the problem, and let R := ∥x0 − x∗∥. Then, for all k ≥ 0, we have

f(xk+1)− f∗ ≤ 2R2(∑k
i=0

1√
Mi

)2 , f(xk+1) +
1

2Mk
∥∇f(yk)∥2 = f(yk) ≤ f(xk). (19)

The proof of Theorem 6.1 is given in Section E.1. Interestingly, neither the result nor the algorithm
assumes any specific smoothness properties of the objective function. However, the convergence
rate depends on the magnitude of the quantitiesMi ≡ ∥∇f(yi)∥2

2[f(yi)−f(xi+1)]
, which quantifies the progress

made by each step T (·). For standard L-Lipschitz smooth functions, a natural choice of T (·) is a
gradient step with stepsize 1

L , yielding Mi ≤ L and the well-known rate O(LR
2

k2 ) for f(xk)− f∗.

6For the sake of simplicity, in what follows, we always assume that, at each iteration, ∇f(yk) ̸= 0. Oth-
erwise, yk is an optimal point, and we can stop the method. Note that, in view of (18), the denominator in the
definition of Mk is strictly positive.
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For (L0, L1)-smooth functions, we define xk+1 = T (yk) as a gradient step with any of the stepsize
rules discussed in Section 3 (applied to yk rather than xk), ensuring the following progress per step:

f(yk)− f(xk+1) ≥
g2k

L′
0 + L′

1gk
, (20)

where gk := ∥∇f(yk)∥, L′
0 := 2

aL0, and L′
1 := 3

aL1, with a being an absolute constant depending
on the specific stepsize rule. This impliesMk ≤ 1

2 (L
′
0+L

′
1gk), leading to the following convergence

rate estimate:

f(xk+1)− f∗ ≤ (2R)2(∑k
i=0

1√
L′

0+L
′
1gi

)2 . (21)

To obtain an explicit complexity bound from (21), we must show that the gradient norms gi do not
grow too quickly on average. This follows from (20) and the algorithm’s construction ensuring that
f(yk) ≤ f(xk). Ultimately, this yields the following complexity result whose proof is given in
Section E.2.

Theorem 6.2. Let AGMsDR (Algorithm 1) be applied to solving problem (1) with an (L0, L1)-
smooth convex objective, and T (·) being the gradient update T (x) = x−ηx∇f(x), where ηx is any
of the stepsizes (9), (12), or (13) (with xk replaced by x, respectively). Further, let x∗ be an arbitrary
solution to the problem, and define F0 := f(x0)− f∗ and R := ∥x0 − x∗∥. Then, f(xk)− f∗ ≤ ϵ
for a given 0 < ϵ ≤ F0 whenever

k ≥
√

48L0R2

aϵ
+
⌈
3( 2aL1R)

2/3
⌉⌈
log2

2F0

ϵ

⌉
,

where a = 1 for stepsize rules (9), (12), and a = 1
2 for stepsize rule (13). The total number of

first-order oracle queries required to construct xk is at most (ν + 1)k, where ν is the number of
oracle queries needed to compute yk at each iteration.

Compared to existing complexity results for accelerated gradient methods on (L0, L1)-smooth

functions—such as the O
(
(L2

1R
2 +

L2
1F0

L0
+ 1)

√
F0+L0R2

ϵ

)
bound for NAG (Li et al., 2023) (see

Section F), and the O(1) exp(O(1)L1R)
√

L0R2

ϵ bound for STM-Max (Gorbunov et al., 2024)—
our complexity estimate in Theorem 6.2 is significantly better.

At each step, AGMsDR requires solving a certain one-dimensional subproblem to compute yk,
which we assume requires at most ν oracle queries. For many practical problems, this subproblem
is computationally efficient, making the extra factor ν in the complexity estimate negligible. Nev-
ertheless, from a theoretical perspective, eliminating this one-dimensional search (as in the standard
FGM for Lipschitz-smooth functions) remains an important open question for future research.

7 CONCLUSION

This work investigates gradient methods for (L0, L1)-smooth optimization problems. We have pro-
vided new insights into this function class, presented examples, and identified operations preserving
(L0, L1)-smoothness. Additionally, we have established refined properties of these functions, lead-
ing to tighter approximations of the objective and its gradient. Building on these improved proper-
ties, we have derived new stepsizes for the gradient method and connected them to normalized and
clipped stepsizes. For these stepsizes, we have achieved the best-known complexity O(L0F0

ϵ2 +L1F0

ϵ )
for finding an ϵ-stationary point in nonconvex problems. In the convex setting, our analysis signifi-
cantly strengthens existing results, yielding the improved complexity O(L0R

2

ϵ +L1R ln F0

ϵ ) for the
gradient method with our stepsizes. We have further analyzed the GM-PS and NGM methods, both
of which achieve the complexity O(L0R

2

ϵ + [L1R]
2), a significant improvement over previously

known bounds. Notably, these methods automatically adapt to the best possible values of (L0, L1).

Finally, we have obtained a fast complexity bound of νO
(√

L0R2

ϵ + ⌈(L1R)
2/3⌉⌈ln F0

ϵ ⌉
)

for
AGMsDR, which provides the best efficiency estimate currently available for minimizing (L0, L1)-
smooth convex functions. An interesting open question is whether line search can be eliminated in
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the accelerated method, potentially replacing ν in the complexity bound with an absolute constant.
Additionally, it remains to be seen whether the second term in the complexity bound can be further
improved or if it is indeed optimal.
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A MISSING PROOFS IN SECTION 2

A.1 PROOF OF LEMMA 2.2

(2) =⇒ (3). Let x, y ∈ Rd be arbitrary and let h := y − x ̸= 0 (otherwise the claim is trivial).
Then, for any t ∈ [0, 1], using (2), we can estimate

∥∇f(x+th)−∇f(x)∥ ≤ ∥h∥
∫ t

0

∥∇2f(x+τh)∥dτ ≤ ∥h∥
∫ t

0

(L0+L1∥∇f(x+τh)∥)dτ =: χ(t).

Our goal is to upper bound χ(1). We may assume that L1 > 0 since otherwise χ(1) = L0∥h∥ and
the proof is finished. Differentiating, we obtain, for any t ∈ [0, 1],

χ′(t) = L0∥h∥+ L1∥h∥∥∇f(x+ th)∥ ≤ (L0 + L1∥∇f(x)∥)∥h∥+ L1∥h∥χ(t),

where the final bound is due to the triangle inequality and the previous display. Hence, for any
t ∈ [0, 1], we have

d

dt
ln
[
(L0 + L1∥∇f(x)∥+ ϵ)∥h∥+ L1∥h∥χ(t)

]
≤ L1∥h∥,

where ϵ > 0 is arbitrary7. Integrating this inequality in t ∈ [0, 1] and noting that χ(0) = 0, we get

ln
L0 + L1∥∇f(x)∥+ ϵ+ L1χ(1)

L0 + L1∥∇f(x)∥+ ϵ
≤ L1∥h∥,

or, equivalently,

χ(1) ≤ (L0 + L1∥∇f(x)∥+ ϵ)
eL1∥h∥ − 1

L1
.

Passing now to the limit as ϵ→ 0, we obtain (3).

[(3) =⇒ (4)] Let x, y ∈ Rd be arbitrary points and let h := y−x. Then, using (3), we can estimate

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤
∫ 1

0

|⟨∇f(x+ th)−∇f(x), h⟩|dt

≤ (L0 + L1∥∇f(x)∥)∥h∥
∫ 1

0

eL1∥h∥t − 1

L1
dt = (L0 + L1∥∇f(x)∥)

eL1∥h∥ − L1∥h∥ − 1

L2
1

,

which is exactly (4).

[(4) =⇒ (2)] Let us fix an arbitrary point x ∈ Rd and an arbitrary unit vector h ∈ Rd. Then, for
any t > 0, it follows from (4) that

|f(x+ th)− f(x)− t⟨∇f(x), h⟩| ≤ (L0 + L1∥∇f(x)∥)
eL1t − L1t− 1

L2
1

.

Dividing both sides by t2 and passing to the limit as t→ 0, we get

|⟨∇2f(x)h, h⟩| ≤ L0 + L1∥∇f(x)∥.

This proves (2) since the unit vector h was allowed to be arbitrary.

A.2 PROOF OF LEMMA 2.4

Proof of (5). Let x, y ∈ Rd be arbitrary points and let us assume w.l.o.g. that L1 > 0. In view of
the convexity of f and (4), for any h ∈ Rd, we can write the following two inequalities:

0 ≤ f(y + h)− f(x)− ⟨∇f(x), y + h− x⟩

≤ βf (x, y) + ⟨∇f(y)−∇f(x), h⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ(L1∥h∥),

7This additional term is needed to handle the possibility of L0 + L1∥∇f(x)∥ being zero.
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where βf (x, y) := f(y) − f(x) − ⟨∇f(x), y − x⟩. Denoting a := L0 + L1∥∇f(y)∥ > 0 and
s := ∇f(y)−∇f(x), we therefore obtain

βf (x, y) ≥ max
h∈Rd

{
⟨s, h⟩ − a

L2
1

ϕ(L1∥h∥)
}
= max

r≥0

{
∥s∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥s∥
a

)
.

[Proof of (6)] Summing up (5) with the same inequality but x and y interchanged, we obtain (6).

[Proof of (7)] By using a lower bound ϕ∗(γ) ≥ γ2

2+γ in (5) and denoting a = ∥∇f(x) − ∇f(y)∥
and g = ∥∇f(y)∥, we obtain

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1g

L2
1

L2
1a

2

(L0 + L1g)2
L0 + L1g

2(L0 + L1g) + a

= f(x) + ⟨∇f(x), y − x⟩+ a2

2(L0 + L1g) + a
.

A.3 EXAMPLES AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

Let us present a few simple examples of (L0, L1)-smooth functions.
Example A.1. The function f(x) = 1

p∥x∥
p, where p > 2, is (L0, L1)-smooth with arbitrary L1 > 0

and L0 = (p−2
L1

)p−2.
Example A.2. The function f(x) = ln(1 + ex) is (L0, L1)-smooth with arbitrary L1 ∈ [0, 1] and
L0 = 1

4 (1− L1)
2.

The preceding examples also show that the choice of L0, L1 parameters is generally not unique.
While we cannot guarantee that the class is closed under all standard operations, such as the sum-
mation, affine substitution of the argument, we can still show that some operations do preserve
(L0, L1)-smoothness under certain additional assumptions.
Proposition A.3. Let f : Rd → R be a twice continuously differentiable (L0, L1)-smooth function.
Then, the following statements hold:

1. Let g : Rd → R be an L-smooth and M -Lipschitz twice continuously differentiable function.
Then, the sum f + g is (L′

0, L
′
1)-smooth with L′

0 = L0 +ML1 + L and L′
1 = L1.

2. Let fi : Rdi → R be an (L0,i, L1,i)-smooth function for each i = 1, . . . , n. Then, the function
h : Rd1 × . . .×Rdn → R given by h(x) =

∑n
i=1 fi(xi), where x = (x1, . . . , xn), is (L0, L1)-

smooth with L0 = max1≤i≤n L0,i and L1 = max1≤i≤n L1,i.

3. If f is univariate (d = 1) and h(x) = f(⟨a, x⟩ + b), x ∈ Rd, where a ∈ Rd, b ∈ R, then h is
(L′

0, L
′
1)-smooth with parameters L′

0 = ∥a∥2L0 and L′
1 = ∥a∥L1.

4. Let additionally ∇2f(x) ≻ 0 for all x ∈ Rd and f be 1-coercive8. Then, f is (L0, L1)-smooth
iff its conjugate f∗ (which is, under our assumptions, defined on the entire space and also twice
continuously differentiable) satisfies ∇2f∗(s) ⪰ 1

L0+L1∥s∥I for all s ∈ Rd, where I is the
identity matrix.

One simple example of the additive term g satisfying the assumptions in the first item of Propo-
sition A.3 is an affine function (for which L = 0); another interesting example is the soft-max
function g(x) = µ ln(

∑m
i=1 e

[⟨ai,x⟩+bi]/µ), where ai ∈ Rd, bi ∈ R, µ > 0. Based on the second
statement of Proposition A.3 and Example A.1, the function f(x) = 1

p∥x∥
p
p ≡ 1

p

∑d
i=1 |xi|p with

p > 2 is (L0, L1)-smooth with arbitrary L1 > 0 and L0 = (p−2
L1

)p−2. Using the third statement,
we can generalize Example A.2 and conclude that f(x) = ln(1 + e⟨a,x⟩) is also (L0, L1)-smooth
with arbitrary L1 ∈ [0, ∥a∥] and L0 = 1

4 (∥a∥ − L1)
2. Also, we can use the last statement of the

proposition to show that f(x) = L0

L2
1
ϕ(L1∥x∥) ≡ L0

L2
1
(eL1∥x∥−L1∥x∥−1) is (L0, L1)-smooth since

the Hessian of its conjugate f∗(s) = L0

L2
1
ϕ∗(

L1∥s∥
L0

) ≡ L0

L2
1
[(1+ L1∥s∥

L0
) ln(1+ L1∥s∥

L0
)− L1∥s∥

L0
] has the

8This means that f(x)
∥x∥ → +∞ as ∥x∥ → ∞.
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form ∇2f∗(s) =
1

L0+L1∥s∥I . In particular, we can construct an (L0, L1)-smooth function by taking
any convex function h∗, adding to it ϕ∗ and taking the conjugate (this corresponds to the infimal
convolution of h with ϕ).

A.4 PROOF OF EXAMPLE A.1

Proof. Differentiating, we obtain, for any x ∈ Rd,

∇f(x) = ∥x∥p−2x, ∇2f(x) = ∥x∥p−2

(
I + (p− 2)

xx⊤

∥x∥2

)
,

where I is the identity matrix. Hence, for any L1 > 0, the minimal value of L0 satisfying the
inequality from Definition 2.1 is given by

L0 = max
x∈Rd

{
∥∇2f(x)∥ − L1∥∇f(x)∥

}
= max
x∈Rd

{
(p− 1)∥x∥p−2 − L1∥x∥p−1

}
= max

τ≥0

{
(p− 1)τ

p−2
p−1 − L1τ

}
.

The solution of the latter problem is τ∗ = (p−2
L1

)p−1. Substituting this value, we obtain

L0 = (p− 1)
(p− 2

L1

)p−2

− L1

(p− 2

L1

)p−1

=
(p− 2

L1

)p−2

.

A.5 PROOF OF EXAMPLE A.2

Proof. Differentiating, we obtain, for any x ∈ R,

f ′(x) =
ex

1 + ex
∈ (0, 1), f ′′(x) =

ex

(1 + ex)2
= f ′(x)(1− f ′(x)).

Thus, for any L1 ∈ [0, 1], the minimal value of L0 satisfying the inequality from Definition 2.1 is

L0 = max
x∈R

{|f ′′(x)| − L1|f ′(x)|} = max
τ∈(0,1)

{τ(1− τ)− L1τ}

= max
τ∈(0,1)

{(1− L1)τ − τ2} =
1

4
(1− L1)

2.

A.6 PROOF OF PROPOSITION A.3

Proof. [Claim 1] Since, g and ∇g are M and L Lipschitz continuous, ∥∇g(x)∥ ≤ M and
∥∇2g(x)∥ ≤ L for all x ∈ R. Let F = f + g, then, for any x ∈ Rd, we can estimate

∥∇2F (x)∥ ≤ ∥∇2f(x)∥+ ∥∇2g(x)∥ ≤ L0 + L+ L1∥∇f(x)∥
≤ L0 + L+ L1∥∇g(x)∥+ L1∥∇F (x)∥
≤ (L0 + L1M + L) + L1∥∇F (x)∥.

[Claim 2] Notice, that the gradient of f is ∇f(x) = (∇f1(x1)⊤, . . . ,∇fn(xn)⊤)⊤ and the Hessian
of f is ∇2f(x) is a block-diagonal matrix, with ∇2fi(xi) blocks. Thus,

∥∇2f(x)∥ = max
1≤i≤n

∥∇2fi(xi)∥ ≤ max
1≤i≤n

{L0,i + L1,i∥∇fi(xi)∥}

≤ max
1≤i≤n

{L0,i + L1,i∥∇f(x)∥} ≤ max
1≤i≤n

L0,i + ( max
1≤i≤n

L1,i)∥∇f(x)∥.

[Claim 3] Observe that the gradient of a function is ∇f(x) = g′(⟨a, x⟩ + b)a, and the Hessian is
∇2f(x) = g′′(⟨a, x⟩+ b)aa⊤. Hence,

∥∇2f(x)∥ = |g′′(⟨a, x⟩+ b)|∥a∥2 ≤ (L0 + L1|g′(⟨a, x⟩+ b)|)∥a∥2

= L0∥a∥2 + ∥a∥L1∥∇f(x)∥.
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[Claim 4] Under our assumptions, s = ∇f(x) is a one-to-one transformation from Rd to Rd (whose
inverse transformation is x = ∇f∗(s)); moreover, the Hessians at such a pair of points are inverse
to each other: ∇2f∗(s) = [∇2f(x)]−1 (see, e.g., Corollaries 4.1.4 and 4.2.10 in (Hiriart-Urruty
& Lemaréchal, 1993), as well as Example 11.9 from (Rockafellar & Wets, 2009)). Thus, for any
pair of points x, s ∈ Rd such that s = ∇f(x), our assumption ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥
which, due to the convexity of f , can be equivalently rewritten as ∇2f(x) ⪯ (L0 + L1∥∇f(x)∥)I ,
is equivalent to

∇2f∗(s) ≡ [∇2f(x)]−1 ⪰ 1

L0 + L1∥∇f(x)∥
I ≡ 1

L0 + L1∥s∥
I.

This proves the claim since the transformation s = ∇f(x) is one-to-one.

A.7 PROOF OF LEMMA 2.3

Proof. [Claim 1] Indeed, for any t ∈ [0, 3), we have

ϕ(t) = et − t− 1 =

∞∑
i=2

ti

i!
=

∞∑
i=0

t2+i

(2 + i)!
=
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

3i
=

t2

2(1− t
3 )
.

Similarly, for any t ≥ 0,

ϕ(t) =
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

i!
=
t2

2
et.

[Claim 2] By the definition, for any γ ≥ 0, we have
ϕ∗(γ) = max

t≥0
{γt− ϕ(t)} = max

t≥0
{(1 + γ)t− et}+ 1.

Differentiating, we see that the solution of this optimization problem is t∗ = ln(1 + γ). Hence,
ϕ∗(γ) = (1 + γ) ln(1 + γ)− (1 + γ) + 1 = (1 + γ) ln(1 + γ)− γ.

[Claim 3] We first show that, for any γ ≥ 0,

ln(1 + γ) ≥ 2γ

2 + γ
.

Since both functions coincide at γ = 0, it suffices to verify the corresponding inequality for the
derivatives:

1

1 + γ
≥ 4

(2 + γ)2
≡ 4

4 + 4γ + γ2
≡ 1

1 + γ + γ2

4

.

But this is obviously true. Applying the derived inequality, we get, for any γ ≥ 0,

ϕ∗(γ) ≡ (1 + γ) ln(1 + γ)− γ ≥ 2γ(1 + γ)

2 + γ
− γ =

γ[2(1 + γ)− (2 + γ)]

2 + γ
=

γ2

2 + γ
,

which proves the first part of the claim.

For the second part, we note that ϕ∗(γ) and γ2

2 coincide at γ = 0. Hence, it suffices to check the
corresponding inequality for the derivatives, i.e., to verify that, for all γ ≥ 0,

ϕ′∗(γ) ≡ ln(1 + γ) ≤ γ.

But this follows from the concavity of the logarithm.

B MISSING PROOFS IN SECTION 3

B.1 ONE-STEP PROGRESS

Lemma B.1. Let f : Rd → R be an (L0, L1)-smooth function, let x ∈ Rd, and let T (x) =
x− η∇f(x), where η is given by one of the following formulas:

(1) η∗ =
1

L1∥∇f(x)∥
ln
(
1 +

L1∥∇f(x)∥
L0 + L1∥∇f(x)∥

)
, (2) ηsi =

1

L0 +
3
2L1∥∇f(x)∥

,

(3) ηcl = min
{ 1

2L0
,

1

3L1∥∇f(x)∥

}
.

15
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Then,

f(x)− f(T (x)) ≥ a∥∇f(x)∥2

2L0 + 3L1∥∇f(x)∥
,

where a = 1 in cases (1) and (2), and a = 1
2 in case (3).

Proof. [Case (1)] The proof of this case was already presented in Section 3.

For the other two cases, we start by applying Lemma 2.2 to get

∆ := f(x)− f(T (x)) ≥ ⟨∇f(x), x− T (x)⟩ − L0 + L1∥∇f(x)∥
L2
1

ϕ(L1∥T (x)− x∥)

= η∗g
2 − L0 + L1g

L2
1

ϕ(η∗L1g),

where g := ∥∇f(x)∥ and ϕ(t) = et − t− 1.

[Case (2)] Estimating ϕ(t) ≤ 3t2

6−2t ≤ t2

2−t (Lemma 2.3) and substituting the definition of ηsi, we
can continue as follows:

∆ ≥ ηsig
2 − L0 + L1g

L2
1

η2siL
2
1g

2

2− ηsiL1g
=

(
1− (L0 + L1g)ηsi

2− ηsiL1g

)
ηsig

2

=

(
1− L0 + L1g

(L0 +
3
2L1g)(2− L1g

L0+
3
2L1g

)

)
g2

L0 +
3
2L1g

=
g2

2L0 + 3L1g
.

[Case (3)] Observe that
1

2L0 + 3L1g
≤ ηcl ≡

1

max{2L0, 3L1g}
≤ 1

L0 +
3
2L1g

.

Combining these bounds with ϕ(t) ≤ 3t2

6−2t (Lemma 2.3 (1)), we get

∆ ≥ ηclg
2 − L0 + L1g

L2
1

3L2
1η

2
clg

2

6− 2ηclL1g
=

(
1− 3ηcl(L0 + L1g)

6− 2ηclL1g

)
ηclg

2

≥
(
1− 3(L0 + L1g)

(L0 +
3
2L1g)(6− 2L1g

L0+
3
2L1g

)

)
g2

2L0 + 3L1g

=

(
1− 3(L0 + L1g)

6L0 + 7L1g

)
g2

2L0 + 3L1g
≥ 1

2

g2

2L0 + 3L1g
.

Lemma B.2. Let f : Rd → R be a convex (L0, L1)-smooth function, let x ∈ Rd, and let T (·) be
any of the update rules from Lemma B.1. Further, let x∗ be a minimizer of f . Then,

∥T (x)− x∗∥ ≤ ∥x− x∗∥.

Proof. Denote β = ⟨∇f(x), x−x∗⟩ and g = ∥∇f(x)∥. According to the update rule T (·), we have

∥T (x)− x∗∥ = ∥x− x∗∥2 − 2ηβ + η2g2.

Therefore, to prove that ∥T (x)− x∗∥ ≤ ∥x− x∗∥2, we need to show that

ηg2 ≤ 2β.

Applying bound (7) twice, we see that

βk ≡ [f(x)− f∗] + [f∗ − f(x)− ⟨∇f(x), x∗ − x⟩]

≥ g2

2L0 + 3L1g
+

g2

2L0 + L1g
≥ g2

L0 + L1g
,

where the final inequality follows from the fact that 1
a + 1

b ≥ 4
a+b (convexity of t 7→ 1

t ). Thus, we
need to check if

η ≤ 2

L0 + L1g
. (22)
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Furthermore, it suffices to check this inequality only for the largest among the three stepsizes we
consider. This is the stepsize η∗ (see (14)). Applying ln(1 + γ) ≤ γ (which holds for any γ ≥ 0),
we see that

η∗ ≡ 1

L1g
ln
(
1 +

L1g

L0 + L1g

)
≤ 1

L0 + L1g
,

so (22) is indeed satisfied.

B.2 PROOF OF THEOREM 3.1

Proof. According to Lemma B.1, for any k ≥ 0, we have

f(xk)− f(xk+1) ≥
a∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
,

where a is an absolute constant defined in the statement depending on the stepsize choice. Denote
fk = f(xk)− f∗ (≥ 0) and gk = ∥∇f(xk)∥. In this notation, the above inequality reads

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
.

Summing up these inequalities for all 0 ≤ k ≤ K and denoting g∗K = min0≤k≤K gk, we get

F0 ≥ f0 − fK ≥ a

K∑
k=0

ψ(gk) ≥ a(K + 1)ψ(g∗K),

where the final inequality holds since ψ is an increasing function. Denoting the corresponding
inverse function by ψ−1, we come to the conclusion that

g∗K ≤ ψ−1
( F0

a(K + 1)

)
≤ ϵ

whenever
F0

a(K + 1)
≤ ψ(ϵ),

or, equivalently,

K + 1 ≥ F0

aψ(ϵ)
≡ 2L0F0

aϵ2
+

3L1F0

aϵ
.

B.3 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. Let k ≥ 0 be arbitrary and denote fk := f(xk) − f∗ and gk := ∥∇f(xk)∥.
According to Lemma B.1, we have

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
,

where a is an absolute constant defined in the statement depending on the stepsize choice. Further,
according to Lemma B.2, the distances Rk := ∥xk − x∗∥ are nonincreasing. In particular, Rk ≤
R0 ≡ R. Hence, in view of the convexity of f , we can estimate

fk ≤ ⟨∇f(xk), xk − x∗⟩ ≤ gkRk ≤ gkR.

Combining the above two displays and using the fact that the function ψ is increasing, we obtain

fk − fk+1 ≥ aψ
(fk
R

)
.

Consequently,

a ≤ fk − fk+1

ψ( fkR )
≤
∫ fk

fk+1

dt

ψ( tR )
=

∫ fk

fk+1

(2L0R
2

t2
+

3L1R

t

)
dt

= 2L0R
2
( 1

fk+1
− 1

fk

)
+ 3L1R ln

fk
fk+1

.

17
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Summing up these inequalities for all 0 ≤ k ≤ K − 1 and dropping the negative 1
f0

term, we get

aK ≤ 2L0R
2

fK
+ 3L1R ln

f0
fK

.

Hence, fK ≤ ϵ whenever

K ≥ 2L0R
2

aϵ
+

3

a
L1R ln

f0
ϵ

=: K(ϵ).

To upper bound K(ϵ), we first estimate f0 using Lemmas 2.2 and 2.3:

f0 ≤ L0

L2
1

ϕ(L1R) ≤
L0R

2

2
eL1R.

This gives us

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3L1R

(
L1R+ ln

L0R
2

ϵ

)
=

2L0R
2

ϵ
+ 3[L1R]

2 + 6L1R ln

(√
L0R2

ϵ

)
.

Estimating ln t ≤ t
e (holding for any t > 0) and applying the AM-GM inequality, we get

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3[L1R]

2 +
6

e

√
L0R2

ϵ
[L1R]2 ≤

(2 + 3
e )L0R

2

ϵ
+
(
3 +

3

e

)
[L1R]

2.

C MISSING PROOFS IN SECTION 4

C.1 GENERAL RESULT

Lemma C.1. Let {xk} be the iterates of NGM (15) with arbitrary coefficients βk > 0, as applied
to problem (1) with an (L0, L1)-smooth convex function f . Then, min0≤k≤K f(xk) − f∗ ≤ ϵ for
any given K ≥ 0 and ϵ > 0 whenever

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
,

where R := ∥x0 − x∗∥ is the distance from the initial point to a solution x∗ of the problem.

Proof. According to (15), for any k ≥ 0, we have

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

= ∥xk − x∗∥2 − 2βkvk + β2
k,

where vk := ⟨∇f(xk),xk−x∗⟩
∥∇f(xk)∥ (≥ 0). Summing up these relations over k = 0, . . . ,K and rearranging

the terms, we obtain

2

K∑
k=0

βkvk ≤ R2 +

K∑
k=0

β2
k.

Denoting v∗K = min0≤k≤K vk, we get

v∗K ≤
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

=: δK . (23)

Let f∗K := min0≤k≤K f(xk). Then, by Lemma 4.2,

f∗K − f∗ ≤ max
z

{f(z)− f∗ : ∥z − x∗∥ ≤ v∗K}.

Applying Lemma 2.2 and the fact that ϕ(t) ≤ 3t2

6−2t for any t ∈ [0, 3) (Lemma 2.3), we obtain

f∗K − f∗ ≤ L0

L2
1

ϕ(L1v
∗
K) ≤ 3L0(v

∗
K)2

6− 2L1v∗K

18
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whenever L1v
∗
k < 3. To achieve the desired accuracy ϵ, it thus suffices to ensure that the following

two inequalities are satisfied:

2L1v
∗
K ≤ 3, L0(v

∗
K)2 ≤ ϵ.

This is equivalent to

v∗K ≤ min
{ 3

2L1
,

√
ϵ

L0

}
=: δ(ϵ),

and follows from δk ≤ δ(ϵ) in view of (23).

C.2 PROOF OF THEOREM 4.1

Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

In our case,

δK =
R2 + R̂2

2R̂
√
K + 1

=
R̄√
K + 1

.

Therefore, δK ≤ δ(ϵ) iff

K + 1 ≥ R̄2

δ2(ϵ)
≡ max

{4
9
[L1R̄]

2,
L0R̄

2

ϵ

}
.

C.3 ANALYSIS FOR TIME-VARYING STEP SIZE

Theorem C.2. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth nonlinear9 convex function f . Consider decreasing coefficients βk = R̂√

k+1
, k ≥ 0, where

R̂ > 0 is a parameter. Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{
4NR̄(ϵ),

( e

e− 1

)2
NR̂(ϵ)[ln(4NR̂(ϵ))]

2
+

}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥ (x∗ is an arbitrary solution of the problem), and

ND(ϵ) := max
{4
9
[L1D]2,

L0D
2

ϵ

}
.

Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

For our choice of βk, we obtain, by standard results (e.g., Lemma 2.6.3 in Rodomanov (2022)), that

K∑
k=0

β2
k = R̂2

K+1∑
k=1

1

k
≤ R̂2[1 + ln(K + 1)],

K∑
k=0

βk = R̂

K+1∑
k=1

1√
k
≥ R̂

√
K + 1.

Hence,

δK ≤ R2 + R̂2[1 + ln(K + 1)]

2R̂
√
K + 1

=
R̄√
K + 1

+
R̂ ln(K + 1)

2
√
K + 1

.

To ensure that δK ≤ δ(ϵ), it suffices to ensure that the following two inequalities are satisfied:

R̄√
K + 1

≤ δ(ϵ)

2
,

R̂ ln(K + 1)√
K + 1

≤ δ(ϵ).

9This means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd, see Lemma 2.2.
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The first inequality is equivalent toK+1 ≥ 4R̄2

δ2 . To get the second one, it suffices to take, according
to Lemma C.3 (with p = 1

2 and δ′ = δ(ϵ)

R̂
),

K + 1 ≥
(

e

e− 1

2R̂

δ(ϵ)

[
ln

2R̂

δ(ϵ)

]
+

)2

≡
( e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+
.

Putting these two inequalities together and substituting our formula for δ(ϵ), we come to the require-
ment that

K + 1 ≥ max

{
4R̄2

δ2(ϵ)
,
( e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+

}
= max

{
4NR̄(ϵ),

( e

e− 1

)2
NR̂(ϵ)[ln(4NR̂(ϵ))]

2
+

}
,

where

ND(ϵ) :=
D2

δ2(ϵ)
= max

{4
9
[L1D]2,

L0D
2

ϵ

}
.

Lemma C.3. For any real p, δ > 0, we have the following implication10:

t ≥
(

e

e− 1

[ln 1
pδ ]+

pδ

) 1
p

=⇒ ln t

tp
≤ δ.

Proof. W.l.o.g., we can assume that p = 1, and our goal is to prove the implication

t ≥ e

e− 1

[ln 1
δ ]+

δ
=: t(δ) =⇒ ϕ(t) :=

ln t

t
≤ δ.

The general case then follows by the change of variables t = (t′)p and δ = pδ′.

Further, we can assume that δ ≤ 1
e since otherwise ϕ(t) ≤ 1

e ≤ δ for any t ≥ 0 (since the maximum
of ϕ is achieved at t∗ = e). Under this additional assumption, [ln 1

δ ]+ = ln 1
δ .

Let us now assume that t ≥ t(δ) (≥ e2

e−1 ≥ e since δ ≤ 1
e ). Since the function ϕ is decreasing on

the interval [e,+∞), we have

ϕ(t) ≤ ϕ(t(δ)) =
ln t(δ)

t(δ)
=

ln t(δ)
e
e−1 ln

1
δ

δ.

To finish the proof, it remains to show that the final fraction in the above display is ≤ 1, or, equiva-
lently, that

t(δ) ≡ e

e− 1

ln 1
δ

δ
≤
(1
δ

) e
e−1

.

Rearranging and denoting u := ( 1δ )
1

e−1 , we see that the above inequality is equivalent to

ϕ(u) ≡ lnu

u
≤ 1

e
.

But this is indeed true since ϕ attains its maximum value at u = e.

D MISSING PROOFS IN SECTION 5

D.1 PROOF OF THEOREM 5.1

Proof. Let x∗ be an arbitrary solution. By the method’s update rule and convexity of f(·), we get,
for all k ≥ 0,

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

≤ ∥xk − x∗∥2 − [f(xk)− f∗]2

∥∇f(xk)∥2
.

10For t = 0, we define by continuity ln t
tp

≡ −∞.
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Denote Rk = ∥xk − x∗∥, gk = ∥∇f(xk)∥ and fk = f(xk) − f∗. According to Lemma 2.4, for
each k ≥ 0, it holds that

fk ≥ ψ(gk), where ψ(g) :=
g2

2L0 + 3L1g
, g ≥ 0.

Observe that the function ψ is increasing, so its inverse ψ−1 is well-defined and is increasing as
well. In terms of this function, gk ≤ ψ−1(fk) and hence

R2
k −R2

k+1 ≥ f2k
g2k

≥
( fk
ψ−1(fk)

)2
.

Summing up these inequalities over 0 ≤ k ≤ K and rearranging, we get
K∑
k=0

( fk
ψ−1(fk)

)2
≤ R2

0 −R2
K+1 ≤ R2

0 ≡ R2.

Note that ψ
−1(t)
t is increasing in t (as the composition of increasing in γ function ψ(γ)

γ ≡ γ
2L0+3L1γ

with increasing in t function γ = ψ−1(t)). Thus, by taking a minimum over the terms on the
left-hand side of the above display and denoting f∗K := min0≤k≤K fk, we get

(K + 1)
( f∗K
ψ−1(f∗K)

)2
≤ R2.

Rearranging, we obtain

ψ−1(f∗K) ≥
√
K + 1f∗K
R

,

or, equivalently,

f∗K ≥ ψ
(√K + 1f∗K

R

)
≡ (K + 1)(f∗K)2

R2
(
2L0 + 3L1

√
K+1f∗

K

R

) =
(f∗K)2

2L0R2

K+1 + 3L1R√
K+1

f∗K
.

Hence,

f∗K ≤ 2L0R
2

(K + 1)(1− 3L1R
√
K + 1)

,

whenever 3L1R
√
K + 1 < 1. Thus, to achieve desired accuracy ϵ > 0, the number K of iterations

should satisfy the following conditions:

3L1R
√
K + 1 ≤ 1

2
,

4L0R
2

K + 1
≤ ϵ.

Thus, the final iteration complexity is K + 1 ≥ max{ 4L0R
2

ϵ , [6L1R]
2}.

E MISSING PROOFS IN SECTION 6

The proof of Theorem 6.1 is similar to the original proof Theorem 1 in (Nesterov et al., 2021), but,
instead of the Lipschitz-smoothness of f , we use the definition of Mk.

E.1 PROOF OF THEOREM 6.1

Proof. Let us prove by induction that, for any k ≥ 0, we have

Akf(xk) ≤ ζ∗k := ζk(vk). (24)

This trivially holds for k = 0 since A0 = 0 and ζ∗0 = 0. Now assume that (24) is satisfied for some
k ≥ 0 and let us prove that it is also satisfied for the next index k′ = k + 1. We start by noting that

ζ∗k+1 = ζk+1(vk+1) = ζk(vk+1) + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ ζ∗k +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ Akf(xk) +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩], (25)
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where the first inequality holds due to the strong convexity of ζk, and the second one is due to the
induction hypothesis. Further, note that, by construction, yk ∈ [vk, xk]. Considering separately any
of the three possible situations, yk = vk, yk = xk and yk ∈ (vk, xk), we see that, in all cases,

⟨∇f(yk), vk − yk⟩ ≥ 0.

Substituting this estimate into (25) and using the fact that f(yk) ≤ f(xk) (by construction), we
obtain

ζ∗k+1 ≥ Akf(xk) + ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk)−
a2k+1

2
∥∇f(yk)∥2 = Ak+1

[
f(yk)−

1

2Mk
∥∇f(yk)∥2

]
= Ak+1f(xk+1),

where the final identity is due to the definition of Mk, while the preceeding one follows from the
definition of ak+1, which ensures that

Mka
2
k+1 = Ak+1. (26)

The induction is now complete.

Let k ≥ 1 be arbitrary. By the convexity of f and the definition of Ak, we have

ζ∗k ≤ ζk(x
∗) =

1

2
R2 +

k−1∑
i=0

ai+1[f(yi) + ⟨∇f(yi), x∗ − yi⟩] ≤
1

2
R2 +Akf

∗.

where R ≡ ∥x0 − x∗∥. Combining this with (24), we conclude that

f(xk)− f∗ ≤ R2

2Ak
. (27)

It remains to estimate the rate of growth of the coefficientsAk. From (26) and the definition ofAk+1,
it follows, for any k ≥ 0, that√

Ak+1

Mk
= ak+1 = Ak+1 −Ak = (

√
Ak+1 +

√
Ak)(

√
Ak+1 −

√
Ak)

≤ 2
√
Ak+1(

√
Ak+1 −

√
Ak).

Cancelling
√
Ak+1 on both sides and telescoping the resulting inequalities, we get, for any k ≥ 1,

Ak ≥ 1

4

(
k−1∑
i=0

√
1

Mi

)2

.

Substituting this estimate into (27), we obtain the first relation in (19). The second one follows
trivially from the definition of Mk and the fact that f(yk) ≤ f(xk).

E.2 PROOF OF THEOREM 6.2

Proof. Let k ≥ 0 be arbitrary, and denote fk := f(xk) − f∗ and gk := ∥∇f(yk)∥. According to
Theorem 6.1, we have

fk+1 ≤ 2R2(∑k
i=0

1√
Mi

)2 , fk − fk+1 ≥ g2k
2Mk

,

where Mk = ∥∇f(yk)∥2

2[f(yk)−f(xk+1)]
. Further, from the fact that xk+1 = T (yk) and Lemma B.1, we know

that

Mk ≤ 2L0 + 3L1gk
2a

≡ 1

2
(L′

0 + L′
1gk),
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where L′
0 := 2

aL0, L′
1 := 3

aL1, and a is as defined in the statement. Thus,

fk+1 ≤ (R′)2(∑k
i=0

1√
L′

0+L
′
1gi

)2 , fk − fk+1 ≥ g2k
L′
0 + L′

1gk
,

where R′ := 2R. Applying Lemma E.1, we conclude that fk ≤ ϵ for a given 0 < ϵ ≤ f0 whenever
k ≥ K(ϵ), where

K(ϵ) :=

√
6L′

0(R
′)2

ϵ
+
⌈
31/3(L′

1R
′)2/3

⌉⌈
log2

2f0
ϵ

⌉
=

√
6( 2aL0)(2R)2

ϵ
+
⌈
31/3

{
( 3aL1)(2R)

}2/3⌉⌈
log2

2f0
ϵ

⌉
=

√
48L0R2

aϵ
+
⌈
3( 2aL1R)

2/3
⌉⌈

log2
2f0
ϵ

⌉
.

To estimate the oracle complexity, it remains to note that each iteration of the algorithm requires
exactly one computation of the gradient plus at most ν oracle queries for the line search. Hence, the
overall oracle complexity to compute xk is at most (ν + 1)k.

Lemma E.1. Let (fk)∞k=0, (gk)∞k=0 be nonnegative real sequences such that, for any k ≥ 0, the
following inequalities hold:

fk+1 ≤ R2(∑k
i=0

1√
L0+L1gi

)2 , fk − fk+1 ≥ g2k
L0 + L1gk

,

where R,L0, L1 ≥ 0 are certain constants, and L0 +L1gk > 0 for all k ≥ 0. Then, for any integer
k ≥ 0 and N ≥ 1, it holds that

fk+N ≤ 3L0R
2

2N2
+

3(L1R)
2

2N3
fk.

Consequently, fk ≤ ϵ for a given 0 < ϵ ≤ f0 whenever

k ≥
√

6L0R2

ϵ
+
⌈
31/3(L1R)

2/3
⌉⌈
log2

2f0
ϵ

⌉
.

Proof. Let k ≥ 0 and N ≥ 1 be arbitrary. Denote ḡk,N := 1
N

∑k+N−1
i=k gi. Then, dropping part of

the nonnegative terms and applying Jensen’s inequality to the convex function τ 7→ 1√
τ

, we see that

k+N−1∑
i=0

1√
L0 + L1gi

≥
k+N−1∑
i=k

1√
L0 + L1gi

≥ N√
L0 + L1ḡk,N

.

Hence,

fk+N ≤ (L0 + L1ḡk,N )R2

N2
.

Our goal now is to estimate how fast ḡk,N can grow.

According to our assumptions, for any i ≥ 0, we have fi − fi+1 ≥ ψ(gi), where ψ : [0,+∞) → R
is an increasing convex function ψ(g) := g2

L0+L1g
. Summing up these inequalities and applying

Jensen’s inequality, we obtain

fk − fk+N ≥
k+N−1∑
i=k

ψ(gi) ≥ Nψ(ḡk,N ) (≥ 0).

Hence, ḡk,N ≤ ψ−1( fk−fk+N

N ), where ψ−1 is the inverse function of ψ. Consequently,

fk+N ≤
[L0 + L1ψ

−1( fk−fk+N

N )]R2

N2
.
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Note that, for any γ ≥ 0, we have ψ−1(γ) =
√
L0γ + 1

4L
2
1γ

2 + 1
2L1γ ≤

√
L0γ + L1γ, whence

L0 + L1ψ
−1(γ) ≤ L0 + L1(

√
L0γ + L1γ) = L0 + L2

1γ +
√
L0L2

1γ ≤ 3

2
(L0 + L2

1γ).

Thus,

fk+N ≤
3(L0 + L2

1
fk−fk+N

N )R2

2N2
=

3L0R
2

2N2
+

3(L1R)
2

2N3
(fk − fk+N ),

which proves the first part of the claim.

Applying now Lemma E.2, we conclude that fk ≤ ϵ for a given 0 < ϵ ≤ f0 whenever

k ≥

√
4 · 3

2L0R2

ϵ
+
⌈
(2 · 3

2 (L1R)
2)1/3

⌉⌈
log2

2f0
ϵ

⌉
=

√
6L0R2

ϵ
+
⌈
31/3(L1R)

2/3
⌉⌈
log2

2f0
ϵ

⌉
.

Lemma E.2. Let (fk)∞k=0 be a nonnegative sequence of reals such that, for any integer k ≥ 0 and
N ≥ 1, it holds that

fk+N ≤ α

N2
+

β

N3
fk,

where α, β ≥ 0 are certain constants. Then, fk ≤ ϵ for a given 0 < ϵ ≤ f0 whenever

k ≥
√

4α

ϵ
+
⌈
(2β)1/3

⌉⌈
log2

2f0
ϵ

⌉
.

Proof. We assume that β > 0 (otherwise the claim is trivial). Let N1 := ⌈(2β)1/3⌉ (≥ 1). Then, for
any k ≥ 0, we have

fk+N1 ≤ α

N2
1

+
β

N3
1

fk ≤ ∆+
1

2
fk,

where ∆ := α
N2

1
≤ α

(2β)2/3
. Applying now Lemma E.3 to the subsequence (fN1t)

∞
t=0, we obtain, for

any t ≥ 0, that

fN1t ≤ 2∆ +
1

2t
f0.

Hence, for any t ≥ 0 and any N ≥ 1, it holds that

fN1t+N ≤ α

N2
+

β

N3
fN1t ≤

α

N2
+

2β∆

N3
+

βf0
N32t

≤ α

N2

(
1 +

N1

N

)
+

βf0
N32t

.

Therefore, to ensure that fN1t+N ≤ ϵ, it suffices to satisfy the following three inequalities:

2α

N2
≤ ϵ

2
, N ≥ N1,

βf0
N32t

≤ ϵ

2
.

Note that, for each N ≥ N1, we have β
N3 ≤ β

N3
1
≤ 1

2 . Hence, to satisfy the above three inequalities,
it suffices to ensure that

N ≥ max
{√4α

ϵ
,N1

}
=: N2, t ≥ T :=

⌈
log2

f0
ϵ

⌉
.

We have thus proved that fk ≤ ϵ whenever k ≥ N1T +N2. It remains to note that

N1T +N2 ≤ N1(T + 1) +

√
4α

ϵ
=
⌈
(2β)1/3

⌉⌈
log2

2f0
ϵ

⌉
+

√
4α

ϵ
,

where we have first estimated the maximum by the sum and then used the fact that ⌈log2 τ⌉ + 1 =
⌈log2 τ + 1⌉ = ⌈log2(2τ)⌉ for any τ ≥ 1.
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Lemma E.3. Let (γk)∞k=0 be a nonnegative real sequence such that, for any k ≥ 0,

γk+1 ≤ ∆+ qγk,

where ∆ ≥ 0 and q ∈ [0, 1) are certain constants. Then, for any k ≥ 1, it holds that

γk ≤ 1− qk

1− q
∆+ qkγ0 ≤ ∆

1− q
+ qkγ0.

Proof. We can assume that q > 0 since otherwise the claim is trivial. Dividing both sides of the
inequality from the statement by qk+1, we obtain, for any k ≥ 0,

γk+1

qk+1
≤ ∆

qk+1
+
γk
qk
.

Summing up these inequalities, we get, for any k ≥ 1,

γk
qk

≤
k−1∑
i=0

∆

qi+1
+
γ0
q0

= ∆

k∑
i=1

1

qi
+ γ0 =

1

q

1
qk

− 1
1
q − 1

∆ + γ0 =

1
qk

− 1

1− q
∆+ γ0,

and the claim follows.

F COMPLEXITY OF NAG

Unfortunately, the NAG algorithm presented in (Li et al., 2023) is not scale-invariant and its com-
plexity reported in (Li et al., 2023, Theorem 4.4) is not written explicitly. To streamline the com-
parison of the complexity bound for NAG with those for other methods for minimizing an (L0, L1)-
smooth function, we provide a simple fix making the algorithm scale-invariant and also rewrite the
result of (Li et al., 2023, Theorem 4.4) (assuming it is true) in an explicit form.
Theorem F.1. Consider problem (1) with an (L0, L1)-smooth convex function f assuming L0 > 0.
Let NAG (Li et al., 2023) be applied to solving the rescaled version of this problem:

f̃∗ := min
x∈Rd

{
f̃(x) :=

1

L0
f(x)

}
,

starting from a certain point x0 ∈ Rd. Then, for an appropriate choice of parameters, NAG finds
a point x̄ ∈ Rd such that f(x̄) − f∗ ≤ ϵ for a given ϵ > 0 after at most the following number of
iterations / gradient-oracle queries:

16
(
128L2

1R
2 +

128L2
1F0

L0
+ 1
)√F0 + L0R2

ϵ
,

where F0 := f(x0)− f∗, R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of our problem.

Proof. By construction, f̃ is an (L̃0, L̃1)-smooth with L̃0 = 1 and L̃1 = L1. In the terminology of
(Li et al., 2023), this means that f̃ is ℓ-smooth w.r.t. the function

ℓ(G) := L̃0 + L̃1G ≡ 1 + L1G.

Theorem 4.4 from (Li et al., 2023) then tells us that the sequence of the iterates {xt} constructed by
NAG satisfies

f̃(xt)− f̃∗ ≤ 4(F̃0 +R2)

ηt2 + 4
, (28)

where F̃0 := f̃(x0)− f̃∗, R := ∥x0 − x∗∥, and η > 0 is the stepsize parameter required to satisfy

η ≤ min
{ 1

16[ℓ(2G)]2
,

1

2ℓ(2G)

}
≡ 1

16[ℓ(2G)]2
≡ 1

16(1 + 2L1G)2
, (29)

where G is an arbitrary constant such that

G ≥ max
{
8

√
ℓ(2G)(F̃0 +R2), g̃0

}
≡ max

{
8

√
(1 + 2L1G)(F̃0 +R2), g̃0

}
. (30)
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where g̃0 := ∥∇f̃(x0)∥.

In terms of our original function f , the guarantee (28) reads

ft := f(xt)− f∗ ≤ 4(F0 + L0R
2)

ηt2 + 4
.

To achieve the fastest possible convergence, we select the largest possible stepsize η which is, ac-
cording to (29),

η =
1

16(1 + 2L1G)2
.

Substituting this formula into the previous display and dropping the (useless for improving the con-
vergence rate) constant 4 from the denominator, we obtain

ft ≤
64(1 + 2L1G)

2(F0 + L0R
2)

t2
≤ ϵ

whenever

t ≥ 8(1 + 2L1G)

√
F0 + L0R2

ϵ
=: t(ϵ). (31)

The obtained t(ϵ) is exactly the iteration complexity of the algorithm for obtaining an ϵ-approximate
solution for the original problem, and is also its gradient oracle complexity since the method makes
precisely one gradient-oracle query at each iteration.

It remains to choose the smallest possible parameter G satisfying (30). We start with rewriting this
inequality in terms of the original function:

G ≥ max
{
8

√
(1 + 2L1G)

(F0

L0
+R2

)
,
g0
L0

}
≡ max

{√
(1 + 2L1G)∆,

g0
L0

}
where g0 := ∥∇f(x0)∥ and ∆ := 64(F0

L0
+ R2). This inequality is equivalent to the system of two

inequalities:
G2 ≥ (1 + 2L1G)∆, G ≥ g0

L0
.

Rearranging, we see that the first inequality is equivalent to

G ≥
√

∆+ L2
1∆

2 + L1∆ =: G∗

Further, it turns out thatG∗ ≥ g0
L0

. Indeed, according to (7), we have F0 ≥ g20
2L0+3L1g0

, meaning that

g0 ≤
√
2L0F0 +

9
4L

2
1F

2
0 + 3

2L1F0 ≤
√
2L0F0 + 3L1F0; on the other hand, estimating ∆ ≥ 64F0

L0
,

we see that L0(
√
∆+L1∆) ≥ 8

√
L0F0+64L1F0. Thus, the smallest possible value ofG satisfying

the original requirement (30) is in fact G = G∗.

Choosing now G = G∗ and substituting the definition of ∆, we obtain

1 + 2L1G =
G2

∗
∆

≤ 2(∆ + L2
1∆

2) + 2L2
1∆

2

∆
= 2(1 + 2L2

1∆) = 2
(
1 +

128L2
1F0

L0
+ 128L2

1R
2
)
.

Substituting this bound into (31), we obtain the claimed bound on t(ϵ).

G NUMERICAL RESULTS

In Fig. 1, we compare the performance of the analyzed methods for solving optimization prob-
lem (1) with a function f(x) = 1

p∥x∥
p. We fix L1 = 1 and choose L0 = (p−2

L1
)p−2 according

to Example A.1. For GM, we choose stepsizes according to (9), (12) and (13). For NGM, we use
time-varying coefficients βk = R̂

k+1 with different values of R̂ ∈ { 1
2R, 2R, 10R}, which allows

us to study the robustness of this method to our initial guess of the unknown initial distance to the
solution. Note that, for this particular problem, the choice of R̂ = R is rather special and allows the
method to find the exact solution after one iteration, so we are not considering it. We observe that,
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Figure 1: Comparison of gradient methods for f(x) = 1
p
∥x∥p. R̂

R
-NGD stands for Normalized Gradient

Method, where R̂ is an estimation of the true initial distance to a solution R. η∗-GD, ηsi-GD, ηcl-GD stand
for gradient method with stepsizes (9), (12) and (13) respectively, PS-GD stands for Polyak stepsizes gradient
method, and AGMsDR stands for Algorithm 1.
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Figure 2: Convergence of the gradient method on the same function but with different choices of (L0, L1).

NGM and PS-GM outperform GM with stepsizes from (9), (12) and (13). This can be explained by
the fact that the complexity of GM depends on the particular choice of (L0, L1), while complexity
of NGM and PS-GM involves the optimal parameters L0, L1 as discussed in Section 4. Moreover,
closer initial distance estimation R̂ to a true value R leads to a faster convergence of NGM to a
solution.

In Fig. 2, we present an experiment studying the performance of the GM with the stepsize rule (9)
based on the choice of (L0, L1). For each choice of L1 ∈ {1, 2, 4, 8, 16} we set L0 = (p−2

L1
)p−2,

according to Example A.1. As expected from the theory (see the corresponding discussion at the
end of Section 4), the choice of (L0, L1) pair is crucial in practice for the performance of GM and
depends on a target accuracy ϵ.

In Fig. 3, we conduct an experiment for accelerated methods and consider GM with stepsize (9),
Algorithm 1 with T (·) being the gradient update with stepsize (9), and two variants of normal-
ized Similar Triangles Methods (STM, and STM-Max) from Gorbunov et al. (2024). STM uses
normalization by the norm of the gradient at the current point in a gradient step, while STM-Max
normalizes by the largest norm of the gradient over the optimization trajectory. It is worth noticing
that only STM-Max has theoretical convergence guarantees. We set L1 = 1, L0 = (p−2

L1
)p−2 (see

Example A.1) with various p. We observe that for smaller values of p, Algorithm 1 outperforms
STM and STM-max.
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(a) p = 4.0
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(b) p = 6.0

0 100 200 300 400 500
Number of iterations

10 2

10 1

100

101

102

103

f(x
k)

f*

Convergence

* -GD
AGMsDR
STM
STM-max

(c) p = 8.0

Figure 3: Comparison of Algorithm 1 denoted by AGMsDR with Similar Triangles Method (SMT) and Similar
Triangles Method Max (STM-max) for f(x) = 1

p
∥x∥p, with different values p.
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