
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING (L0, L1)-SMOOTH FUNCTIONS BY GRADI-
ENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study gradient methods for solving an optimization problem with an (L0, L1)-
smooth objective function. This problem class generalizes that of Lipschitz-
smooth problems and has gained interest recently, as it captures a broader range
of machine learning applications. We provide novel insights on the properties of
this function class and develop a general framework for analyzing optimization
methods for (L0, L1)-smooth function in a principled manner. While our con-
vergence rate estimates recover existing results for minimizing the gradient norm
for nonconvex problems, our approach allows us to significantly improve the cur-
rent state-of-the-art complexity results in the case of convex problems. We show
that both the gradient method with Polyak stepsizes and the normalized gradient
method, without any knowledge of the parameters L0 and L1, achieve the same
complexity bounds as the method with the knowledge of these constants. In ad-
dition to that, we show that a carefully chosen accelerated gradient method can
be applied to (L0, L1)-smooth functions, further improving previously known re-
sults. In all cases, the efficiency bounds we establish do not have an exponential
dependency on L0 or L1, and do not depend on the initial gradient norm.

1 INTRODUCTION

In this paper, we focus on the deterministic unconstrained optimization problem

f∗ := min
x∈Rd

f(x), (1)

where f : Rd → R is a smooth function. With the rise of deep learning, ensuring efficient con-
vergence has become increasingly critical. Traditional optimization methods, such as the gradient
descent method and its variants, often rely on assumptions like Lipschitz-smoothness to guarantee
convergence rates. However, in modern machine learning problems, these assumptions might be too
restrictive, especially when optimizing deep neural network models.

In experiments provided in (Zhang et al., 2019), it was shown that the norm of the Hessian correlates
with a norm of the gradient of a loss when training neural networks. This observation motivated the
authors to introduce a new, more realistic assumption on a function class named (L0, L1)-smooth.
The class of (L0, L1)-smooth functions includes the class of Lipschitz-smooth functions. Also, they
provided the convergence rate of the gradient method (GM) with fixed, normalized, and clipped step-
sizes for non-convex optimization and showed that normalized and clipped methods are favorable
in the new setting. In recent years, many works have studied methods for solving (L0, L1)-smooth
optimization problems. Despite this interest from the community, the existing convergence results
are suboptimal in some important cases, and the analysis of such methods is not satisfactory.

Motivated by this gap, the present work investigates properties of (L0, L1)-smooth functions and
gradient methods for optimizing these functions. The following subsection discusses existing results
for (L0, L1)-smooth optimization.

Contributions. Our contributions can be summarized as follows:

• In Section 2, we provide novel results and insights into the (L0, L1)-class by (i) providing new
examples and operations that preserve the (L0, L1)-smoothness of functions and (ii) deriving new

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

properties for this function class, leading to tighter bounds on descent inequalities. In Section 3,
we propose new, intuitive step sizes that follow by directly minimizing our tighter upper bounds
on the function growth. We also discuss the relation between these stepsizes and those used in the
normalized and clipped gradient method.

• For nonconvex functions, we achieve the best-known O
(
L0F0

ϵ2 + L1F0

ϵ

)
(Theorem 3.1) complex-

ity bound for finding an ϵ-stationary point, where F0 = f(x0) − f∗ is a function residual at
the initial point. For convex problems, we significantly improve existing results by achieving the
O(L0R

2

ϵ + L1R ln F0

ϵ) (Theorem 3.2) complexity bound, where R = ∥x0 − x∗∥ is an initial
distance to a solution.

• We also study two new methods: normalized gradient method (NGM) and gradient method with
Polyak stepsizes (PS-GM), which do not require the knowledge of the parameters L0, L1. For
both methods, we show that they enjoy the same O(L0R

2

ϵ + L2
1R

2) complexity bound without
knowing L0 and L1 (see Theorems 4.1 and 5.1).

• Finally, in Section 6, we present a simple procedure achieving the accelerated complexity of

O(m
√

L0R2

ϵ + L2
1R

2), where m > 0 is a number of oracle queries for solving a simple one-
dimensional problem. This procedure prescribes running the monotone version of the accelerated
gradient method Nesterov et al. (2021) from the initial point constructed after a certain number of
iterations of the (nonaccelerated) GM.

In contrast to other results in the literature, all our complexity bounds neither depend on the initial
gradient norm, nor have an exponential dependency on L1.

Related work. Following the introduction of the (L0, L1)-class by Zhang et al. (2019), subsequent
works have explored other smoothness generalizations and analyzed gradient methods under these
new assumptions. Chen et al. (2023) introduced the α-asymmetric class, relaxing the assumption on
twice differentiability and allowing a sublinear growth on the norm of a gradient. In (Li et al., 2023),
authors went further and proposed the weakest (r, l)-smooth class, which allows even quadratic
growth of the norm of the Hessian with respect to the norm of the gradient. Despite the generality
of this assumption, there are still some issues and open questions regarding the existing results even
for the basic (L0, L1)-smooth class.

In (Zhang et al., 2020), the authors analyzed the clipped GM with momentum and improved
complexity bound with respect to problem parameters L0, L1. Using the right choice of clip-
ping parameters, Koloskova et al. (2023) proved, for nonconvex and convex problems, respec-

tively, the O(L0F0

ϵ2 + L1F0

ϵ) and O(L0R
ϵ +

√
L
ϵ L1R

2) oracle complexity bounds for obtaining
an ϵ-approximate solution, where L is a Lipschitz constant. For convex problems, Li et al.
(2023) proposed an (asymptotically) faster accelerated gradient method achieving the complexity

of O((L2
1R

2 +
L2

1F0

L0
+ 1)

√
F0+L0R2

ϵ)1. Several works have studied adaptive optimization methods
that do not require the (L0, L1) parameters to be known. Faw et al. (2023); Wang et al. (2023)
studied convergence rates for AdaGrad for stochastic nonconvex problems. Hübler et al. (2024)
proposed a gradient method with the backtracking line search and showed the O(L0F0

ϵ2 +
L2

1F
2
0

ϵ2)
complexity bound for nonconvex problems. For convex problems, Takezawa et al. (2024) obtained

the complexity of O(L0R
ϵ +

√
L
ϵ L1R

2), where L is a Lipschitz constant, for the PS-GM, which
requires knowing the optimal function value.

One interesting paper that is highly related to our work and independently appeared online during
the finalization of our manuscript is Gorbunov et al. (2024). In this paper, the authors propose
a new formula (called “smooth clipping”) for choosing stepsizes in the GM for convex (L0, L1)-
smooth functions; up to absolute constants, this formula coincides with one of ours. Their proof
techniques differ from ours, which leads to O(L0R

2

ϵ + L2
1R

2) complexity which is slightly worse
than our O(L0R

2

ϵ +L1R ln(F0

ϵ)), especially when initial function value is reasonably bounded (see
Section 3). The authors also show that the PS-GM achieves the same result as in our work. Addi-

tionally, they provide an accelerated method with complexity O(
√

L0R2

ϵ L1R exp(L1R)) and study

1See Appendix F.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

also the strongly convex and stochastic cases as well as some adaptive methods. In contrast, our
work has a slightly different scope and offers deeper insights by providing the intuition on arriving
at the “right” stepsize formulas, an analysis for nonconvex functions, the study of normalized gradi-
ent methods, and a superior version of the accelerated scheme with significantly better complexity.
Importantly, our proof techniques are somewhat different from those in Gorbunov et al. (2024) and
are more aligned with classical optimization theory, at least in the specific cases we consider in our
paper.

2 DEFINITION AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

In this section, we state our assumptions and discuss important properties of generalized smooth
functions. We start with defining our main assumption on (L0, L1)-smooth functions.

Throughout this paper, unless specified otherwise, we use the standard inner product ⟨·, ·⟩ and the
standard Euclidean norm ∥ · ∥ for vectors, and the standard spectral norm ∥ · ∥ for matrices. We also
assume that there exists a solution for the problem (1).
Definition 2.1. A twice continuously differentiable function f : Rd → R is called (L0, L1)-smooth
(for some L0, L1 ≥ 0) if it holds that

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rd. (2)

The class of (L0, L1)-smooth function is a wide class of functions, which includes the class of
Lipschitz-smooth functions. Definition 2.1 of generalized smooth function was introduced in (Zhang
et al., 2019). For twice differentiable function, this definition is equivalent to definition of α-
symmetric functions with α = 1 provided in (Chen et al., 2023). All our further results also hold for
α-symmetric functions, however, we use the stricter assumption for clarity in presentation. Any α-
symmetric twice differentiable function is also (L0, L1)-smooth function, but with a different choice
of parameters; thus, our results also hold for α-symmetric functions. For the purpose of analysis of
the methods, we provide an alternative and more useful first-order characterization of the class of
(L0, L1)-smooth functions.
Lemma 2.2. Let f be a twice continuously differentiable function, Then, f is (L0, L1)-smooth if
and only if any of the following inequalities holds for any x, y ∈ Rd:2

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1∥∇f(x)∥)
eL1∥y−x∥ − 1

L1
, (3)

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ (L0 + L1∥∇f(x)∥)
ϕ(L1∥y − x∥)

L2
1

, (4)

where ϕ(t) := et − t− 1 (t ≥ 0).

The proof of Lemma 2.2 can be found in Appendix A. It is worth noting that inequality (3) is
stronger than that from Corollary A.4 (Zhang et al., 2020). The bound in inequality (4) is tighter than
those presented in previous works (see, for example, Lemma A.3 in (Zhang et al., 2020), Lemma 8
in (Hübler et al., 2024)). These tighter estimates allow us to construct gradient methods in the sequel.
When the function f is also convex, we have the following useful inequalities.
Lemma 2.3. Let f be a convex (L0, L1)-smooth nonlinear3 function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
, (5)

⟨∇f(x)−∇f(y), x− y⟩ ≥ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
+
L0 + L1∥∇f(x)∥

L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(x)∥

)
,

(6)

where ϕ∗ is the function from Lemma A.4.

2Hereinafter, for L1 = 0 and any t ≥ 0, we assume that eL1t−1
L1

≡ t, ϕ(L1t)

L2
1

≡ 1
2
t2, etc., which are the

limits of these expressions when L1 → 0;L1 > 0.
3According to Lemma 2.2, this means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Moreover, using Lemma A.4, we can simplify the lower bound in (5).
Corollary 2.4. Let f be a convex (L0, L1)-smooth nonlinear function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ ∥∇f(y)−∇f(x)∥2

2(L0 + L1∥∇f(y)∥) + L1∥∇f(y)−∇f(x)∥
. (7)

Lemma 2.3 is a generalization of Theorem 2.1.5(Nesterov, 2018) to (L0, L1)-smooth functions, and
matches it when L1 = 0 (since 1

L2
1
ϕ∗(L1α) → 1

2α
2 as L1 → 0). The proof of Lemma 2.3 is

presented in Appendix A.

3 GRADIENT METHOD

Having established a few important properties of an (L0, L1)-smooth function f , we now turn our
attention to the gradient method (GM) for minimizing such a function:

xk+1 = xk − ηk∇f(xk), k ≥ 0, (8)

where x0 ∈ Rd is a starting point and ηk ≥ 0 are certain stepsizes.

We start with showing that the gradient update rule (8) and the “right” formula for the stepsize ηk
both naturally arise from the classical idea in optimization theory—choosing the next iterate xk+1 by
minimizing the global upper bound on the objective function value constructed around the current
iterate xk (see (Nesterov, 2018)). Indeed, let x ∈ Rd be the current point and let a := L0 +
L1∥∇f(x)∥ > 0. According to (4), for any y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ a

L2
1

ϕ(L1∥y − x∥).

Our goal is to minimize the right-hand of the above inequality in y. Since the last term in this bound
depends only on the norm of y − x, the optimal point y∗ = T (x) is the result of the gradient step
T (x) = x− r∗ ∇f(x)

∥∇f(x)∥ for some r∗ ≥ 0 ensuring the following progress in decreasing the function
value:

f(x)− f(T (x)) ≥ max
r≥0

{
∥∇f(x)∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥∇f(x)∥
a

)
,

where ϕ∗ is the conjugate function to ϕ (see Lemma A.4). Furthermore, r∗ is exactly the solution of
the above optimization problem, satisfying L1∥∇f(x)∥ = aϕ′(L1r

∗). Solving this equation, using
the fact that (ϕ′)−1(γ) = ϕ′∗(γ) = ln(1 + γ), we obtain r∗ = 1

L1
ϕ′∗(

L1∥∇f(x)∥
a) = 1

L1
ln(1 +

L1∥∇f(x)∥
a).

The above considerations lead us to the following optimal choice of stepsizes in (8):

η∗k =
1

L1∥∇f(xk)∥
ln
(
1 +

L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
, k ≥ 0, (9)

resulting in the following progress in decreasing the objective:

f(xk)− f(xk+1) ≥
L0 + L1∥∇f(xk)∥

L2
1

ϕ∗

(L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
:= ∆k. (10)

The above expression for ∆k is quite cumbersome but, in fact, it behaves as the simple fraction
∥∇f(xk)∥2

L0+L1∥∇f(xk)∥ . More precisely, from Lemma A.4(3), we see that

∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
≤ ∆k ≤ ∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
.

Thus, there is not much point in keeping the complicated expression (10) and we can safely simplify
it as follows:

f(xk)− f(xk+1) ≥
∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
. (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Interestingly, we can also arrive at exactly the same bound (11) by using a simpler choice of step-
sizes. Specifically, replacing ln(1 + γ) with its lower bound 2γ

2+γ (which is responsible for the
inequality in Lemma A.4(3) that we used to simplify (10) into (11)), we obtain the following sim-
plified stepsizes:

ηsik =
1

L0 +
3
2L1∥∇f(xk)∥

, k ≥ 0. (12)

With this choice, the iterates of method (8) still satisfy (11) (see Lemma B.1).

Further, note that, up to absolute constants, stepsize (12) acts as 1
max{L0,L1∥∇f(xk)∥} =

min{ 1
L0
, 1
L1∥∇f(xk)∥}, which is the so-called clipping stepsize used in many previous works Zhang

et al. (2019; 2020); Koloskova et al. (2023). Thus, with the right choice of absolute constants, we
can expect the corresponding clipping stepsizes, to satisfy a similar inequality to (11). This is indeed
the case, and we can show, in particular, that the clipping stepsizes

ηclk = min
{ 1

2L0
,

1

3L1∥∇f(xk)∥

}
, k ≥ 0, (13)

do satisfy (11) although with slightly worse absolute constants (see Lemma B.1).

We have thus demonstrated in this section that clipping stepsizes (13) are simply a convenient ap-
proximation of the optimal stepsizes (9), ensuring a similar bound on the objective progress. This
observation seems to be a new insight into clipping stepsizes which has not been previously explored
in the literature.

It is not difficult to see that the three stepsizes we introduced in this section satisfy the following
relationships:

ηclk ≤ ηsik ≤ η∗k. (14)

3.1 NONCONVEX FUNCTIONS

We are now ready to present a convergence rate result for nonconvex functions.

Theorem 3.1. Let f be an (L0, L1)-smooth function, and let {xk} be iterate sequence of GM (8)
with one of the stepsize choices given by (9), (12) or (13). Then, min0≤k≤K ∥∇f(xk)∥ ≤ ϵ for any
given ϵ > 0 whenever

K + 1 ≥ 2L0F0

aϵ2
+

3L1F0

aϵ
,

where a = 1 for stepsizes (9) and (12), and a = 1
2 for stepsize (13).

The proof of Theorem 3.1 can be found in Appendix B.2. The rate in Theorem 3.1 matches, up to
absolute constants, the rate in (Koloskova et al., 2023) for clipped GM with η = 1

9 (L0+cL1) for c =
L0

L1
, or equivalently the GM with stepsize ηk = 1

18L0
min{1, L0

L1∥∇f(xk)∥}. Furthermore, our rate is

significantly better than the rate O(L0F0

ϵ2 +
L2

1F0

L0
) obtained in (Zhang et al., 2019) for the clipped

GM since L1F0

ϵ ≤ L2
0F0

2ϵ +
L2

1F0

2L0
, and the latter expression can be arbitrarily far away from the former

whenever L0 is sufficiently small and L1 is distinct from zero. In addition to that, our convergence
rate result does not depend on the gradient norm at the initial point, in contrast to Li et al. (2023)
who consider a wider class of generalized-smooth functions but whose rate (polynomially) depends
on ∥∇f(x0)∥. Also, our rate from Theorem 3.1 is better than O

(
L0F0

ϵ2 +
L2

1F
2
0

ϵ2

)
provided in (Hübler

et al., 2024) for the GM equipped with a certain backtracking line search.

3.2 CONVEX FUNCTIONS

Let us now provide the convergence rate for convex functions.

Theorem 3.2. Let {xk} be the iterates of GM (8) with one of the stepsize choices given in (9) (12)
or (13), as applied to problem (1) with an (L0, L1)-smooth convex function f . Let x∗ be an arbitrary

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

solution to the problem and let F0 := f(x0)− f∗. Then, the sequence Rk := ∥xk − x∗∥, k ≥ 0, is
nonincreasing, and f(xK)− f∗ ≤ ϵ for any given 0 ≤ ϵ < F0 whenever

K ≥ 2

a

L0R
2

ϵ
+

3

a
L1R ln

F0

ϵ

(
≤

2 + 3
e

a

L0R
2

ϵ
+

3(1 + 1
e)

a
L2
1R

2
)
,

where R := R0, and a = 1 for stepsizes (9), (12) and a = 1
2 for stepsize (13).

The proof of Theorem 3.2 can be found in Appendix B.3. Notice, that the second estimate O(L0R
2

ϵ +

L2
1R

2) in Theorem 3.2 comes from a very pessimistic bound on F0 with the exponentially large
quantity exp(L1R)

L0R
2

2ϵ coming from Lemmas 2.2 and A.4. However, in the case when F0 is
reasonably bounded (e.g., we apply “hot-start” or f is a well-behaved function such as the logistic
one), the O(L1R ln F0

ϵ) term from the main estimate can be much smaller than O(L2
1R

2) from the
pessimistic estimate.

In Theorem 3.2, we do not make an assumption on L-smoothness of a function, while this as-
sumption is used in (Koloskova et al., 2023). Moreover, the rate in the theorem is better than

O(L0R
2

ϵ +
√

L
ϵ L1R

2) rate provided in (Koloskova et al., 2023) for clipped GM, since it does not

have 1√
ϵ

dependency on L1 and L. Also, our result does not include the norm ∥∇f(x0)∥ of the
gradient at an initialization point in the estimate, while the rate provided in (Li et al., 2023) does
depend on ∥∇f(x0)∥ which can be large and be an order of L. Consider for example f(x) = 1

p∥x∥
p

(see Proposition A.1) for p > 2 and starting point x0 sufficiently far from the origin, in this case, the
gradient ∥∇f(x0)∥ = ∥x0∥p−1 can be arbitrary large.

4 NORMALIZED GRADIENT METHOD

To run GM from Section 3, it is necessary to know the parameters (L0, L1) in advance. In many
real-life examples, those parameters are unknown, and it might be computationally expensive to
estimate them. Furthermore, for any given function f , the pair (L0, L1) is generally not unique
(see Examples A.1 and A.2), and it is not clear in advance which pair would result in the best
possible convergence rate of our optimization method. To address this issue, in this section, we
present another version of the gradient method that does not require knowing (L0, L1). This is the
normalized gradient method (NGM):

xk+1 = xk −
βk

∥∇f(xk)∥
∇f(xk), k ≥ 0, (15)

where x0 ∈ Rd is a certain starting point, and βk are positive coefficients. The following result
describes the efficiency of the NGM.
Theorem 4.1. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth convex function f . Consider the constant coefficients βk = R̂√

K+1
, 0 ≤ k ≤ K − 1, where

R̂ > 0 is a parameter and K ≥ 1 is the total number of iterations of the method (fixed in advance).
Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{L0R̄

2

ϵ
,
4

9
L2
1R̄

2
}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥, and x∗ is an arbitrary solution of the problem.

The parameter R̂ in the formula for coefficients βk is an estimation of the initial distance R to a
solution, and the best complexity bound of K∗ := O(L0R

2

ϵ + L2
1R

2) is achieved whenever R̂ = R.
Note that, even if R̂ ̸= R, the method still converges but with a slightly worse total complexity of
K∗ρ2, where ρ = max{R

R̂
, R̂R}.

The proof of Theorem 4.1 is based on the following two important facts (Nesterov, 2018, Section 3).
First, under the proper choice of coefficients βk, NGM ensures that the minimal value v∗K among
vk := ⟨∇f(xk),xk−x∗⟩

∥∇f(xk)∥ , 0 ≤ k ≤ K, converges to zero at the rate of R̄√
K

. These quantities vk have

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

a geometrical meaning—each of them is exactly the distance from the point x∗ to the supporting
hyperplane to the sublevel set of f at the point xk. Second, whenever v∗K converges to zero, so does
min0≤k≤K f(xk)−f∗. Moreover, we can relate the two quantities whenever we can bound, for any
given v ≥ 0, the function residual f(x)− f∗ over the ball ∥x− x∗∥ ≤ v:
Lemma 4.2 ((Nesterov, 2018, Lemma 3.2.1)). Let f : Rd → R be a differentiable convex function.
Then, for any x, y ∈ Rd and4 vf (x; y) :=

[⟨∇f(x),x−y⟩]+
∥∇f(x)∥ , it holds that

f(x)− f(y) ≤ max
z∈Rd

{f(z)− f(y) : ∥z − y∥ ≤ vf (x; y)}. (16)

In our case—when the function f is (L0, L1)-smooth—the corresponding bound can be obtained
from Lemma 2.2. The complete proof of Theorem 4.1 can be found in Appendix C.

In Theorem 4.1, we fix the number of iterations K before running the method, which is a standard
approach for the (normalized)-(sub)gradient methods (Section 3.2 in Nesterov (2018)). However,
doing so may be undesirable in practice since it becomes difficult to continue running the method if
the time budget was suddenly increased and also prevents the method from using larger stepsizes at
the initial iterations. To overcome these drawbacks, one can use time-varying coefficients by setting
βk = R̂√

k+1
, 0 ≤ k ≤ K − 1. This results in the same worst-case theoretical complexity as in

Theorem 4.1 but with an extra logarithmic factor (see Theorem C.2). Moreover, one can completely
eliminate this extra logarithmic factor by switching to an appropriate modification of the standard
(sub)gradient method such as Dual Averaging Nesterov (2005).

For R̂ = R, the complexity of NGM is O(L0R
2

ϵ + L2
1R

2) which is generally worse than that of the
previously considered GM (see Theorem 3.2 and the corresponding discussion). However, recall
that GM requires knowing (L0, L1), and its rate depends on the particular choice of these constants.
In contrast, NGM does not require the knowledge of these parameters, and its “real” complexity is

O(1) min
L0,L1

{L2
0R̄

2

ϵ
+ L2

1R̄
2 : f is (L0, L1)-smooth

}
,

where O(1) is an absolute constant.

5 GRADIENT METHOD WITH POLYAK STEPSIZES

In the previous sections, the parameters required to run the methods were L0, L1 for GM, and the
estimation R̂ of the initial distance for a solution R for NGM. To achieve good complexity for
NGM, the estimate R̂ should be close to real R, otherwise the multiplicative factor {R

R̂
, R̂R} will

lead to an arbitrary large complexity estimate. Sometimes, parameters L0, L1 and a good estimate
R̂ are unknown, while the optimal value of the function is available. One of the examples of such
problems is over-parametrized models in machine learning where f∗ is usually 0.

In this section, we focus on the case when f∗ is known and analyze the gradient method (8) with the
Polyak stepsizes:

ηk =
f(xk)− f∗

∥∇f(xk)∥2
, k ≥ 0. (17)

Theorem 5.1. Let {xk} be the iterates of PS-GM (8), (17), as applied to problem (1) with an
(L0, L1)-smooth convex function f . Then, it holds that min0≤k≤K f(xk) − f∗ ≤ ϵ for any given
ϵ > 0 whenever

K + 1 ≥ max
{4L0R

2

ϵ
, 36L2

1R
2
}
,

where R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of the problem.

We prove the theorem by using a standard inequality for the gradient method with Polyak stepsizes
(PS-GM) for convex functions,

R2
k −R2

k+1 ≥ f2k
g2k
,

4Here [t]+ := max{t, 0} is the nonnegative part of t ∈ R.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Rk = ∥xk − x∗∥, fk = f(xk) − f∗, and gk = ∥∇f(xk)∥. We then leverage the lower
bound (7), and bound gradient norm gk by ψ−1(fk), where ψ(g) := g2

2L0+3L1g
, obtaining

R2
k −R2

k+1 ≥ f2k
[ψ−1(fk)]2

.

Summing up these relations, passing to the minimal value of fk, and rearranging the resulting
inequality, we obtain the desired bound. The complete proof of Theorem 5.1 can be found Ap-
pendix D.1.

Notice that the rate O(L0R
2

ϵ + L2
1R

2) in Theorem 5.1 is the same as the rate NGM in Theorem 4.1.

Further, our rate is better than O(L0R
2

ϵ +
√

L
ϵ L1R

2) provided in Takezawa et al. (2024), since it
does not have a dependency on ϵ with respect to L1 and L parameters. Furthermore, it is more
general since we do not assume L-smoothness of the function. Finally, it is worth mentioning that
the rate for PS-GM holds for any choice of (L0, L1). Thus, the rate holds for the best choice of
(L0, L1) pair and is the same as for the NGM.

6 ACCELERATED GRADIENT METHOD

This section focuses on developing an accelerated method for minimizing an (L0, L1)-smooth func-
tion f .

We start with the following observation. Consider a point x ∈ Rd with ∥∇f(x)∥ ≤ L0

L1
. Then, by

the definition of (L0, L1)-smoothness, ∥∇2f(x)∥ ≤ L0+L1∥∇f(x)∥ ≤ 2L0. Hence, in the region

Q :=
{
x ∈ Rd : ∥∇f(x)∥ ≤ L0

L1

}
,

the function f behaves like a standard 2L0-smooth function. Consequently, we may try to apply the
Fast Gradient Method (FGM) to minimize f expecting (after we have found an initial point inQ) the

O(
√

L0R2

ϵ) oracle complexity for finding an ϵ-approximate solution, where R is the initial distance
to the solution. The problem with the above approach is ensuring that the iterates of FGM stay
in Q. In general, the set Q may have a complicated structure and might even be nonconvex. One
reasonable idea is to find another, better-structured region, contained in Q in which we can keep all
the iterates of the method. A good candidate for such a region is the initial feasible set

F0 := {x ∈ Rd : f(x) ≤ f(x0)}. (18)

According to Lemma 2.3, for any x ∈ F0, we can upper bound the corresponding gradient norm by
the function residual which is, in turn, bounded by the initial function residual:

ψ(∥∇f(x)∥) ≤ f(x)− f∗ ≤ f(x0)− f∗ =: F0,

where ψ(γ) := γ2

2L0+3L1γ
. Since ψ is increasing, to ensure that ∥∇f(x)∥ ≤ L0

L1
, it suffices to require

that the initial function residual is sufficiently small:

F0 ≤ ψ
(L0

L1

)
≡ L0

5L2
1

=: ∆. (19)

Thus, whenever F0 ≤ ∆, we have the inclusion F0 ⊆ Q, meaning that the function f is 2L0-
smooth over F0. Note that we can find an initial point x0 satisfying (19) by using any of our
basic (nonaccelerated) methods considered previously. For instance, running GM from Section 3
from a certain initial point xs, we can ensure (19) in O(L0R

2

∆ + L2
1R

2) = O(L2
1R

2) gradient-
oracle queries, where R = ∥xs − x∗∥ (see Theorem 3.2); furthermore, the obtained point x0 does
not go far from x∗ compared to our initial point xs, specifically, it holds that ∥x0 − x∗∥ ≤ R
(again, see Theorem 3.2). Thus, if we could guarantee that FGM, when started from x0, keeps its

iterates in the initial sublevel set F0, we would obtain the total complexity of O(
√

L0R2

ϵ + L2
1R

2),
which is better than that of the basic methods (at least in the case when ϵ is not too large).

However, for most classical versions of FGM (such as those presented in Nesterov (2018)), the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 AGMsDR(x0, T (·), L,K) Nesterov et al. (2021)

1: Input: Initial point x0 ∈ Rd, update rule T (·), constant L > 0, number of iterations K ≥ 1.
2: v0 = x0, A0 = 0, ζ0(x) = 1

2
∥x− x0∥2.

3: for k = 0, 1, . . . ,K − 1 do
4: yk = argminy{f(y) : y = vk + β(xk − vk), β ∈ [0, 1]}.
5: xk+1 = T (yk).
6: Find ak+1 > 0 from the equation La2

k+1 = Ak + ak+1. Set Ak+1 = Ak + ak+1.
7: vk+1 = argminx∈Rd{ζk+1(x) := ζk(x) + ak+1[f(yk) + ⟨∇f(yk), x− yk⟩]}.

return xK .

Algorithm 2 Two-Stage Acceleration Procedure

1: Input: Initial point xs ∈ Rd, constants ∆, L > 0, update rule T (·), number of iterations K.
2: Run GM with stepsize rule (9), (12) or (13) from xs to get x0 : f(x0)− f∗ ≤ ∆.
3: return xK = AGMsDR(x0, T (·), L,K).

monotonic decrease of the function value cannot be guaranteed. Nevertheless, one monotone version
of FGM does exist, namely, the Accelerated Gradient Method with Small-Dimensional Relaxation
(AGMsDR) (Nesterov et al., 2021). We present this method in Algorithm 1, in a slightly more
general form compared to the original work. Specifically, instead of computing the point xk+1 by
the standard gradient step from a point yk, we allow to use any update rule T (·) : Rd → Rd, as long
as it ensures a sufficient decrease in the function value:

f(x)− f(T (x)) ≥ 1

2L
∥∇f(x)∥2, ∀x ∈ F0. (20)

where L > 0 is a certain fixed constant. As long as there exists such a T (·) for our function class, we
can prove that the points xk and yk constructed by the method remain in F0, and f(xk) converges
at the O(LR

2

k2) rate (see Appendix E.1 for the proof):
Theorem 6.1. Consider problem (1) with a differentiable convex objective f . Let AGMsDR (Algo-
rithm 1) be applied to solving this problem, given an update rule T (·) satisfying, for a certain fixed
constant L > 0, the sufficient decrease property (20) over the initial sublevel set (18). Then, for all
k ≥ 0, it holds that

f(xk+1) ≤ f(yk) ≤ f(xk), f(xk)− f∗ ≤ 2LR2

k2
,

where R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of the problem.

For our class of (L0, L1)-smooth functions, we can choose T (·) as the gradient step T (x) = x −
ηx∇f(x) with any of the stepsize rules (9), (12), or (13) (with xk replaced by x). Then, according to
Lemma B.1 and the fact that, under our assumption (19), for any x ∈ F0, it holds that ∥∇f(x)∥ ≤
L0

L1
, we obtain

f(x)− f(T (x)) ≥ a∥∇f(x)∥2

2L0 + 3L1∥∇f(x)∥
≥ a

5L0
∥∇f(x)∥2,

where a = 1 for stepsize rules (9), (12), and a = 1
2 for stepsize rule (13). Thus, such a T (·) indeed

satisfies (20) with

L =
5

2a
L0. (21)

We are now ready to formally define our two-stage acceleration procedure, see Algorithm 2. Our
main result can be summarized as follows (see Appendix E.2 for a formal proof):
Theorem 6.2. Consider problem (1) with an (L0, L1)-smooth convex function f . Let xK be the
output of Algorithm 2 as applied to solving this problem with ∆ given by (19), T (·) being the
gradient update T (x) = x− ηx∇f(x) with any of the stepsize rules (9), (12), or (13), and L given
by (21), where a = 1 for stepsize rules (9), (12) and a = 1

2 for stepsize rule (13). Then, to ensure
that f(xK)− f∗ ≤ ϵ for a given 0 < ϵ<∆ and an appropriately chosen K, the algorithm requires
at most the following number of first-order oracle queries:

(m+ 1)

⌈√
5L0R2

aϵ

⌉
+

⌈
13 + 18

e

a
L2
1R

2

⌉
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where R := ∥xs − x∗∥, x∗ is an arbitrary solution of the problem, and m ≥ 1 is the number of
oracle queries needed to compute yk at each iteration of AGMsDR (Algorithm 1).

Observe that, at every step, AGMsDR requires solving a certain one-dimensional subproblem to
find yk, which we assume can be done in at most m oracle queries. For many practical problems,
this subproblem can usually be solved quite efficiently, so the extra factor m in the complexity es-
timate from Theorem 6.2 is typically insignificant. Nevertheless, from the theoretical point of view,
understanding how to to completely remove the one-dimensional search (as in the standard FGM for
Lipschitz-smooth functions) is still an important question which we leave for future research.

Let us now compare the obtained complexity with that of other existing accelerated methods. In Li

et al. (2023), the authors showed O((L2
1R

2 +
L2

1F0

L0
+ 1)

√
F0+L0R2

ϵ) complexity for Nesterov Ac-
celerated Gradient (NAG) method, which is significantly worse than ours. Even when F0 satis-

fies (19), NAG complexity simplifies to O((L2
1R

2 + 1)
√

L0R2

ϵ); while our bound have summa-
tion instead of a product of two terms which is significantly better. In (Gorbunov et al., 2024),
the complexity estimate for a normalized variant of Similar Triangles Method Max (STM-Max)

is O(1) exp(O(1)L1R)
√

L0R2

ϵ which is also worse than our rate provided in Theorem 6.2 and is
worse than the complexity of NAG when (19) holds. Both STM and NAG do not guarantee the
monotonic decrease of the value function; both methods can escape the initial sublevel set F0, and
consequently, the gradient norm might increase during optimization. While our Algorithm 2 guar-
antees that after the first stage, the gradient norm becomes smaller than L0

L1
and all the iterates of

the second stage maintain this property and stay in the sublevel set F0 by construction. However,
Algorithm 2 requires additional knowledge of f∗ to stop the first stage of the procedure.

7 CONCLUSION

This work investigates gradient methods for (L0, L1)-smooth optimization problems. We have pro-
vided new insights into this function class and presented examples along with the operations preserv-
ing the (L0, L1)-smoothness. Moreover, we have provided new properties of the function class that
have rendered tighter bounds on the descent inequalities. Based on these tighter bounds, we derived
new stepsizes for the gradient method and connected them with normalized and clipped stepsizes.
For such stepsizes, we have shown the best-known O(L0F0

ϵ2 + L1F0

ϵ) complexity for finding an ϵ-
stationary point in non-convex problems. For convex problems, we have significantly improved the
existing results and obtained the O(L0R

2

ϵ + L1R ln F0

ϵ) complexity for the gradient method with
our stepsizes. We have also analyzed the gradient method with Polyak stepsizes and a normalized
gradient method that achieve O(L0R

2

ϵ +L2
1R

2) complexity bound, which is significantly better than
previously known complexity bounds. Both of these methods are useful because they automatically
adjust to the best possible pair of possible parameters (L0, L1). Finally, we have proposed a new
procedure by combining our results on the gradient method with the AGMsDR method, and showed

fast O(m
√

L0R2

ϵ + L2
1R

2) complexity bound which does not have the dependency on the initial
gradient norm and does not have an exponential dependency on L1, in contrast to previous works.
Whether it is possible to eliminate the line search for determining yk in AGMsDR method is an
interesting open question for further research. Another interesting question is how to improve the
L2
1R

2 complexity of the first phase.

REFERENCES

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimiza-
tion is as efficient as smooth nonconvex optimization. In International Conference on Machine
Learning, 2023.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 89–160. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel
Horváth, and Martin Takáč. Methods for convex (l0, l1)-smooth optimization: Clipping, ac-
celeration, and adaptivity. arXiv preprint arXiv:2409.14989, 2024.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algo-
rithms II: Advanced Theory and Bundle Methods. Springer Berlin Heidelberg, 1993. ISBN
9783662064092. doi: 10.1007/978-3-662-06409-2. URL http://dx.doi.org/10.1007/
978-3-662-06409-2.

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine Learn-
ing, pp. 17343–17363. PMLR, 2023.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Program-
ming, 120:221–259, 2005. URL https://api.semanticscholar.org/CorpusID:
14935076.

Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer Optimization and Its
Applications Series, 2nd edition, 2018.

Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual ac-
celerated gradient methods with small-dimensional relaxation oracle. Optimization Methods and
Software, 36(4):773–810, 2021.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Anton Rodomanov. Quasi-Newton Methods with Provable Efficiency Guarantees. PhD thesis, PhD
thesis, Université Catholique de Louvain, 2022.

Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
free clipped gradient descent. arXiv preprint arXiv:2405.15010, 2024.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. Advances in Neural Information Processing Systems, 33:15511–15521,
2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

11

http://dx.doi.org/10.1007/978-3-662-06409-2
http://dx.doi.org/10.1007/978-3-662-06409-2
https://api.semanticscholar.org/CorpusID:14935076
https://api.semanticscholar.org/CorpusID:14935076

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A MISSING PROOFS IN SECTION 2

A.1 PROOF OF LEMMA 2.2

Proof. [(2) =⇒ (3)] Let x, y ∈ Rd be arbitrary and let h := y − x ̸= 0 (otherwise the claim is
trivial). Then, for any t ∈ [0, 1], using (2), we can estimate

∥∇f(x+th)−∇f(x)∥ ≤ ∥h∥
∫ t

0

∥∇2f(x+τh)∥dτ ≤ ∥h∥
∫ t

0

(L0+L1∥∇f(x+τh)∥)dτ =: ν(t).

Our goal is to upper bound ν(1). We may assume that L1 > 0 since otherwise ν(1) = L0∥h∥ and
the proof is finished. Differentiating, we obtain, for any t ∈ [0, 1],

ν′(t) = L0∥h∥+ L1∥h∥∥∇f(x+ th)∥ ≤ (L0 + L1∥∇f(x)∥)∥h∥+ L1∥h∥ν(t),

where the final bound is due to the triangle inequality and the previous display. Hence, for any
t ∈ [0, 1], we have

d

dt
ln
[
(L0 + L1∥∇f(x)∥+ ϵ)∥h∥+ L1∥h∥ν(t)

]
≤ L1∥h∥,

where ϵ > 0 is arbitrary5. Integrating this inequality in t ∈ [0, 1] and noting that ν(0) = 0, we get

ln
L0 + L1∥∇f(x)∥+ ϵ+ L1ν(1)

L0 + L1∥∇f(x)∥+ ϵ
≤ L1∥h∥,

or, equivalently,

ν(1) ≤ (L0 + L1∥∇f(x)∥+ ϵ)
eL1∥h∥ − 1

L1
.

Passing now to the limit as ϵ→ 0, we obtain (3).

[(3) =⇒ (4)] Let x, y ∈ Rd be arbitrary points and let h := y−x. Then, using (3), we can estimate

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤
∫ 1

0

|⟨∇f(x+ th)−∇f(x), h⟩|dt

≤ (L0 + L1∥∇f(x)∥)∥h∥
∫ 1

0

eL1∥h∥t − 1

L1
dt = (L0 + L1∥∇f(x)∥)

eL1∥h∥ − L1∥h∥ − 1

L2
1

,

which is exactly (4).

[(4) =⇒ (2)] Let us fix an arbitrary point x ∈ Rd and an arbitrary unit vector h ∈ Rd. Then, for
any t > 0, it follows from (4) that

|f(x+ th)− f(x)− t⟨∇f(x), h⟩| ≤ (L0 + L1∥∇f(x)∥)
eL1t − L1t− 1

L2
1

.

Dividing both sides by t2 and passing to the limit as t→ 0, we get

|⟨∇2f(x)h, h⟩| ≤ L0 + L1∥∇f(x)∥.

This proves (2) since the unit vector h was allowed to be arbitrary.

A.2 PROOF OF LEMMA 2.3

Proof. [Proof of (5)] Let x, y ∈ Rd be arbitrary points and let us assume w.l.o.g. that L1 > 0. In
view of the convexity of f and (4), for any h ∈ Rd, we can write the following two inequalities:

0 ≤ f(y + h)− f(x)− ⟨∇f(x), y + h− x⟩

≤ βf (x, y) + ⟨∇f(y)−∇f(x), h⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ(L1∥h∥),

5This additional term is needed to handle the possibility of L0 + L1∥∇f(x)∥ being zero.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

where βf (x, y) := f(y) − f(x) − ⟨∇f(x), y − x⟩. Denoting a := L0 + L1∥∇f(y)∥ > 0 and
s := ∇f(y)−∇f(x), we therefore obtain

βf (x, y) ≥ max
h∈Rd

{
⟨s, h⟩ − a

L2
1

ϕ(L1∥h∥)
}
= max

r≥0

{
∥s∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥s∥
a

)
.

[Proof of (6)] Summing up (5) with the same inequality but x and y interchanged, we obtain (6).

[Proof of (7)] By using a lower bound ϕ∗(γ) ≥ γ2

2+γ in (5) and denoting a = ∥∇f(x) − ∇f(y)∥
and g = ∥∇f(y)∥, we obtain

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1g

L2
1

L2
1a

2

(L0 + L1g)2
L0 + L1g

2(L0 + L1g) + a

= f(x) + ⟨∇f(x), y − x⟩+ a2

2(L0 + L1g) + a
.

A.3 EXAMPLES AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

Let us present a few simple examples of (L0, L1)-smooth functions.
Example A.1. The function f(x) = 1

p∥x∥
p, where p > 2, is (L0, L1)-smooth with arbitrary L1 > 0

and L0 = (p−2
L1

)p−2.
Example A.2. The function f(x) = ln(1 + ex) is (L0, L1)-smooth with arbitrary L1 ∈ [0, 1] and
L0 = 1

4 (1− L1)
2.

The preceding examples also show that the choice of L0, L1 parameters is generally not unique.
While we cannot guarantee that the class is closed under all standard operations, such as the sum-
mation, affine substitution of the argument, we can still show that some operations do preserve
(L0, L1)-smoothness under certain additional assumptions.
Proposition A.3. Let f : Rd → R be a twice continuously differentiable (L0, L1)-smooth function.
Then, the following statements hold:

1. Let g : Rd → R be an L-smooth and M -Lipschitz twice continuously differentiable function.
Then, the sum f + g is (L′

0, L
′
1)-smooth with L′

0 = L0 +ML1 + L and L′
1 = L1.

2. Let fi : Rdi → R be an (L0,i, L1,i)-smooth function for each i = 1, . . . , n. Then, the function
h : Rd1 × . . .×Rdn → R given by h(x) =

∑n
i=1 fi(xi), where x = (x1, . . . , xn), is (L0, L1)-

smooth with L0 = max1≤i≤n L0,i and L1 = max1≤i≤n L1,i.

3. If f is univariate (d = 1) and h(x) = f(⟨a, x⟩ + b), x ∈ Rd, where a ∈ Rd, b ∈ R, then h is
(L′

0, L
′
1)-smooth with parameters L′

0 = ∥a∥2L0 and L′
1 = ∥a∥L1.

4. Let additionally ∇2f(x) ≻ 0 for all x ∈ Rd and f be 1-coercive6. Then, f is (L0, L1)-smooth
iff its conjugate f∗ (which is, under our assumptions, defined on the entire space and also twice
continuously differentiable) satisfies ∇2f∗(s) ⪰ 1

L0+L1∥s∥I for all s ∈ Rd, where I is the
identity matrix.

One simple example of the additive term g satisfying the assumptions in the first item of Propo-
sition A.3 is an affine function (for which L = 0); another interesting example is the soft-max
function g(x) = µ ln(

∑m
i=1 e

[⟨ai,x⟩+bi]/µ), where ai ∈ Rd, bi ∈ R, µ > 0. Based on the second
statement of Proposition A.3 and Example A.1, the function f(x) = 1

p∥x∥
p
p ≡ 1

p

∑d
i=1 |xi|p with

p > 2 is (L0, L1)-smooth with arbitrary L1 > 0 and L0 = (p−2
L1

)p−2. Using the third statement,
we can generalize Example A.2 and conclude that f(x) = ln(1 + e⟨a,x⟩) is also (L0, L1)-smooth
with arbitrary L1 ∈ [0, ∥a∥] and L0 = 1

4 (∥a∥ − L1)
2. Also, we can use the last statement of the

proposition to show that f(x) = L0

L2
1
ϕ(L1∥x∥) ≡ L0

L2
1
(eL1∥x∥−L1∥x∥−1) is (L0, L1)-smooth since

the Hessian of its conjugate f∗(s) = L0

L2
1
ϕ∗(

L1∥s∥
L0

) ≡ L0

L2
1
[(1+ L1∥s∥

L0
) ln(1+ L1∥s∥

L0
)− L1∥s∥

L0
] has the

6This means that f(x)
∥x∥ → +∞ as ∥x∥ → ∞.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

form ∇2f∗(s) =
1

L0+L1∥s∥I . In particular, we can construct an (L0, L1)-smooth function by taking
any convex function h∗, adding to it ϕ∗ and taking the conjugate (this corresponds to the infimal
convolution of h with ϕ).

A.4 PROOF OF EXAMPLE A.1

Proof. Differentiating, we obtain, for any x ∈ Rd,

∇f(x) = ∥x∥p−2x, ∇2f(x) = ∥x∥p−2

(
I + (p− 2)

xx⊤

∥x∥2

)
,

where I is the identity matrix. Hence, for any L1 > 0, the minimal value of L0 satisfying the
inequality from Definition 2.1 is given by

L0 = max
x∈Rd

{
∥∇2f(x)∥ − L1∥∇f(x)∥

}
= max
x∈Rd

{
(p− 1)∥x∥p−2 − L1∥x∥p−1

}
= max

τ≥0

{
(p− 1)τ

p−2
p−1 − L1τ

}
.

The solution of the latter problem is τ∗ = (p−2
L1

)p−1. Substituting this value, we obtain

L0 = (p− 1)
(p− 2

L1

)p−2

− L1

(p− 2

L1

)p−1

=
(p− 2

L1

)p−2

.

A.5 PROOF OF EXAMPLE A.2

Proof. Differentiating, we obtain, for any x ∈ R,

f ′(x) =
ex

1 + ex
∈ (0, 1), f ′′(x) =

ex

(1 + ex)2
= f ′(x)(1− f ′(x)).

Thus, for any L1 ∈ [0, 1], the minimal value of L0 satisfying the inequality from Definition 2.1 is

L0 = max
x∈R

{|f ′′(x)| − L1|f ′(x)|} = max
τ∈(0,1)

{τ(1− τ)− L1τ}

= max
τ∈(0,1)

{(1− L1)τ − τ2} =
1

4
(1− L1)

2.

A.6 PROOF OF PROPOSITION A.3

Proof. [Claim 1] Since, g and ∇g are M and L Lipschitz continuous, ∥∇g(x)∥ ≤ M and
∥∇2g(x)∥ ≤ L for all x ∈ R. Let F = f + g, then, for any x ∈ Rd, we can estimate

∥∇2F (x)∥ ≤ ∥∇2f(x)∥+ ∥∇2g(x)∥ ≤ L0 + L+ L1∥∇f(x)∥
≤ L0 + L+ L1∥∇g(x)∥+ L1∥∇F (x)∥
≤ (L0 + L1M + L) + L1∥∇F (x)∥.

[Claim 2] Notice, that the gradient of f is ∇f(x) = (∇f1(x1)⊤, . . . ,∇fn(xn)⊤)⊤ and the Hessian
of f is ∇2f(x) is a block-diagonal matrix, with ∇2fi(xi) blocks. Thus,

∥∇2f(x)∥ = max
1≤i≤n

∥∇2fi(xi)∥ ≤ max
1≤i≤n

{L0,i + L1,i∥∇fi(xi)∥}

≤ max
1≤i≤n

{L0,i + L1,i∥∇f(x)∥} ≤ max
1≤i≤n

L0,i + (max
1≤i≤n

L1,i)∥∇f(x)∥.

[Claim 3] Observe that the gradient of a function is ∇f(x) = g′(⟨a, x⟩ + b)a, and the Hessian is
∇2f(x) = g′′(⟨a, x⟩+ b)aa⊤. Hence,

∥∇2f(x)∥ = |g′′(⟨a, x⟩+ b)|∥a∥2 ≤ (L0 + L1|g′(⟨a, x⟩+ b)|)∥a∥2

= L0∥a∥2 + ∥a∥L1∥∇f(x)∥.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[Claim 4] Under our assumptions, s = ∇f(x) is a one-to-one transformation from Rd to Rd (whose
inverse transformation is x = ∇f∗(s)); moreover, the Hessians at such a pair of points are inverse
to each other: ∇2f∗(s) = [∇2f(x)]−1 (see, e.g., Corollaries 4.1.4 and 4.2.10 in Hiriart-Urruty &
Lemaréchal (1993), as well as Example 11.9 from Rockafellar & Wets (2009)). Thus, for any pair of
points x, s ∈ Rd such that s = ∇f(x), our assumption ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ which, due
to the convexity of f , can be equivalently rewritten as ∇2f(x) ⪯ (L0+L1∥∇f(x)∥)I , is equivalent
to

∇2f∗(s) ≡ [∇2f(x)]−1 ⪰ 1

L0 + L1∥∇f(x)∥
I ≡ 1

L0 + L1∥s∥
I.

This proves the claim since the transformation s = ∇f(x) is one-to-one.

A.7 PROOF OF LEMMA A.4

In our analysis, we often use certain properties of the function ϕ and its conjugate7 ϕ∗, which we
summarize in the following lemma (see Appendix A.7 for the proof).
Lemma A.4. The following statements for the function ϕ(t) = et − t− 1 hold true:

1. ϕ(t) ≤ t2

2(1− t
3)

for all t ∈ [0, 3) and ϕ(t) ≤ t2

2 e
t for all t ≥ 0.

2. ϕ∗(γ) := maxt≥0{γt− ϕ(t)} = (1 + γ) ln(1 + γ)− γ for any γ ≥ 0.

3. γ2

2+γ ≤ ϕ∗(γ) ≤ γ2

2 for all γ ≥ 0.

Proof. [Claim 1] Indeed, for any t ∈ [0, 3), we have

ϕ(t) = et − t− 1 =

∞∑
i=2

ti

i!
=

∞∑
i=0

t2+i

(2 + i)!
=
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

3i
=

t2

2(1− t
3)
.

Similarly, for any t ≥ 0,

ϕ(t) =
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

i!
=
t2

2
et.

[Claim 2] By the definition, for any γ ≥ 0, we have
ϕ∗(γ) = max

t≥0
{γt− ϕ(t)} = max

t≥0
{(1 + γ)t− et}+ 1.

Differentiating, we see that the solution of this optimization problem is t∗ = ln(1 + γ). Hence,
ϕ∗(γ) = (1 + γ) ln(1 + γ)− (1 + γ) + 1 = (1 + γ) ln(1 + γ)− γ.

[Claim 3] We first show that, for any γ ≥ 0,

ln(1 + γ) ≥ 2γ

2 + γ
.

Since both functions coincide at γ = 0, it suffices to verify the corresponding inequality for the
derivatives:

1

1 + γ
≥ 4

(2 + γ)2
≡ 4

4 + 4γ + γ2
≡ 1

1 + γ + γ2

4

.

But this is obviously true. Applying the derived inequality, we get, for any γ ≥ 0,

ϕ∗(γ) ≡ (1 + γ) ln(1 + γ)− γ ≥ 2γ(1 + γ)

2 + γ
− γ =

γ[2(1 + γ)− (2 + γ)]

2 + γ
=

γ2

2 + γ
,

which proves the first part of the claim.

For the second part, we note that ϕ∗(γ) and γ2

2 coincide at γ = 0. Hence, it suffices to check the
corresponding inequality for the derivatives, i.e., to verify that, for all γ ≥ 0,

ϕ′∗(γ) ≡ ln(1 + γ) ≤ γ.

But this follows from the concavity of the logarithm.
7The conjugate function is defined in the standard way: ϕ∗(γ) := maxt≥0{γt− ϕ(t)}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B MISSING PROOFS IN SECTION 3

B.1 ONE-STEP PROGRESS

Lemma B.1. Let f : Rd → R be an (L0, L1)-smooth function, let x ∈ Rd, and let T (x) =
x− η∇f(x), where η is given by one of the following formulas:

(1) η∗ =
1

L1∥∇f(x)∥
ln
(
1 +

L1∥∇f(x)∥
L0 + L1∥∇f(x)∥

)
, (2) ηsi =

1

L0 +
3
2L1∥∇f(x)∥

,

(3) ηcl = min
{ 1

2L0
,

1

3L1∥∇f(x)∥

}
.

Then,

f(x)− f(T (x)) ≥ a∥∇f(x)∥2

2L0 + 3L1∥∇f(x)∥
,

where a = 1 in cases (1) and (2), and a = 1
2 in case (3).

Proof. [Case (1)] The proof of this case was already presented in Section 3.

For the other two cases, we start by applying Lemma 2.2 to get

∆ := f(x)− f(T (x)) ≥ ⟨∇f(x), x− T (x)⟩ − L0 + L1∥∇f(x)∥
L2
1

ϕ(L1∥T (x)− x∥)

= η∗g
2 − L0 + L1g

L2
1

ϕ(η∗L1g),

where g := ∥∇f(x)∥ and ϕ(t) = et − t− 1.

[Case (2)] Estimating ϕ(t) ≤ 3t2

6−2t ≤ t2

2−t (Lemma A.4) and substituting the definition of ηsi, we
can continue as follows:

∆ ≥ ηsig
2 − L0 + L1g

L2
1

η2siL
2
1g

2

2− ηsiL1g
=

(
1− (L0 + L1g)ηsi

2− ηsiL1g

)
ηsig

2

=

(
1− L0 + L1g

(L0 +
3
2L1g)(2− L1g

L0+
3
2L1g

)

)
g2

L0 +
3
2L1g

=
g2

2L0 + 3L1g
.

[Case (3)] Observe that

1

2L0 + 3L1g
≤ ηcl ≡

1

max{2L0, 3L1g}
≤ 1

L0 +
3
2L1g

.

Combining these bounds with ϕ(t) ≤ 3t2

6−2t (Lemma A.4 (1)), we get

∆ ≥ ηclg
2 − L0 + L1g

L2
1

3L2
1η

2
clg

2

6− 2ηclL1g
=

(
1− 3ηcl(L0 + L1g)

6− 2ηclL1g

)
ηclg

2

≥
(
1− 3(L0 + L1g)

(L0 +
3
2L1g)(6− 2L1g

L0+
3
2L1g

)

)
g2

2L0 + 3L1g

=

(
1− 3(L0 + L1g)

6L0 + 7L1g

)
g2

2L0 + 3L1g
≥ 1

2

g2

2L0 + 3L1g
.

B.2 PROOF OF THEOREM 3.1

Proof. According to Lemma B.1, for any k ≥ 0, we have

f(xk)− f(xk+1) ≥
a∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where a is an absolute constant defined in the statement depending on the stepsize choice. Denote
fk = f(xk)− f∗ (≥ 0) and gk = ∥∇f(xk)∥. In this notation, the above inequality reads

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
.

Summing up these inequalities for all 0 ≤ k ≤ K and denoting g∗K = min0≤k≤K gk, we get

F0 ≥ f0 − fK ≥ a

K∑
k=0

ψ(gk) ≥ a(K + 1)ψ(g∗K),

where the final inequality holds since ψ is an increasing function. Denoting the corresponding
inverse function by ψ−1, we come to the conclusion that

g∗K ≤ ψ−1
(F0

a(K + 1)

)
≤ ϵ

whenever
F0

a(K + 1)
≤ ψ(ϵ),

or, equivalently,

K + 1 ≥ F0

aψ(ϵ)
≡ 2L0F0

aϵ2
+

3L1F0

aϵ
.

B.3 PROOF OF THEOREM 3.2

First, we prove that the distance to the solution is nonincreasing.

Lemma B.2. Under the conditions of Theorem 3.2, we have Rk+1 ≤ Rk for any k ≥ 0.

Proof. Let k ≥ 0 be arbitrary and denote βk = ⟨∇f(xk), xk−x∗⟩ and gk = ∥∇f(xk)∥. According
to the update rule of the method, we have

R2
k+1 = R2

k − 2ηkβk + η2kg
2
k.

Therefore, to prove that Rk+1 ≤ Rk, we need to show that

ηkg
2
k ≤ 2βk.

Applying bound (7) twice, we see that

βk ≡ [f(xk)− f∗] + [f∗ − f(xk)− ⟨∇f(xk), x∗ − xk⟩]

≥ g2k
2L0 + 3L1gk

+
g2k

2L0 + L1gk
≥ g2k
L0 + L1gk

,

where the final inequality follows from the fact that 1
a + 1

b ≥ 4
a+b (convexity of t 7→ 1

t). Thus, we
need to check if

ηk ≤ 2

L0 + L1gk
. (22)

Furthermore, it suffices to check this inequality only for the largest among the three stepsizes we
consider. According to (14), this is stepsize (9). Applying ln(1 + γ) ≤ γ (which holds for any
γ ≥ 0), we see that

η∗k ≡ 1

L1gk
ln
(
1 +

L1gk
L0 + L1gk

)
≤ 1

L0 + L1gk
,

so (22) is indeed satisfied.

Now we can prove the theorem.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Theorem 3.2. Let k ≥ 0 be arbitrary and denote fk := f(xk) − f∗ and gk := ∥∇f(xk)∥.
According to Lemma B.1, we have

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
,

where a is an absolute constant defined in the statement depending on the stepsize choice. Further,
according to Lemma B.2, the distances Rk := ∥xk − x∗∥ are nonincreasing. In particular, Rk ≤
R0 ≡ R. Hence, in view of the convexity of f , we can estimate

fk ≤ ⟨∇f(xk), xk − x∗⟩ ≤ gkRk ≤ gkR.

Combining the above two displays and using the fact that the function ψ is increasing, we obtain

fk − fk+1 ≥ aψ
(fk
R

)
.

Consequently,

a ≤ fk − fk+1

ψ(fkR)
≤

∫ fk

fk+1

dt

ψ(tR)
=

∫ fk

fk+1

(2L0R
2

t2
+

3L1R

t

)
dt

= 2L0R
2
(1

fk+1
− 1

fk

)
+ 3L1R ln

fk
fk+1

.

Summing up these inequalities for all 0 ≤ k ≤ K − 1 and dropping the negative 1
f0

term, we get

aK ≤ 2L0R
2

fK
+ 3L1R ln

f0
fK

.

Hence, fK ≤ ϵ whenever

K ≥ 2L0R
2

aϵ
+

3

a
L1R ln

f0
ϵ

=: K(ϵ).

To upper bound K(ϵ), we first estimate f0 using Lemmas 2.2 and A.4:

f0 ≤ L0

L2
1

ϕ(L1R) ≤
L0R

2

2
eL1R.

This gives us

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3L1R

(
L1R+ ln

L0R
2

ϵ

)
=

2L0R
2

ϵ
+ 3L2

1R
2 + 6L1R ln

(√
L0R2

ϵ

)
.

Estimating ln t ≤ t
e (holding for any t > 0) and applying the AM-GM inequality, we get

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3L2

1R
2 +

6

e

√
L0R2

ϵ
· L2

1R
2 ≤

(2 + 3
e)L0R

2

ϵ
+

(
3 +

3

e

)
L2
1R

2.

C MISSING PROOFS IN SECTION 4

C.1 GENERAL RESULT

Lemma C.1. Let {xk} be the iterates of NGM (15) with arbitrary coefficients βk > 0, as applied
to problem (1) with an (L0, L1)-smooth convex function f . Then, min0≤k≤K f(xk) − f∗ ≤ ϵ for
any given K ≥ 0 and ϵ > 0 whenever

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
,

where R := ∥x0 − x∗∥ is the distance from the initial point to a solution x∗ of the problem.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. According to (15), for any k ≥ 0, we have
∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

= ∥xk − x∗∥2 − 2βkvk + β2
k,

where vk := ⟨∇f(xk),xk−x∗⟩
∥∇f(xk)∥ (≥ 0). Summing up these relations over k = 0, . . . ,K and rearranging

the terms, we obtain

2

K∑
k=0

βkvk ≤ R2 +

K∑
k=0

β2
k.

Denoting v∗K = min0≤k≤K vk, we get

v∗K ≤
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

=: δK . (23)

Let f∗K := min0≤k≤K f(xk). Then, by Lemma 4.2,
f∗K − f∗ ≤ max

z
{f(z)− f∗ : ∥z − x∗∥ ≤ v∗K}.

Applying Lemma 2.2 and the fact that ϕ(t) ≤ 3t2

6−2t for any t ∈ [0, 3) (Lemma A.4), we obtain

f∗K − f∗ ≤ L0

L2
1

ϕ(L1v
∗
K) ≤ 3L0(v

∗
K)2

6− 2L1v∗K
whenever L1v

∗
k < 3. To achieve the desired accuracy ϵ, it thus suffices to ensure that the following

two inequalities are satisfied:
2L1v

∗
K ≤ 3, L0(v

∗
K)2 ≤ ϵ.

This is equivalent to

v∗K ≤ min
{ 3

2L1
,

√
ϵ

L0

}
=: δ(ϵ),

and follows from δk ≤ δ(ϵ) in view of (23).

C.2 PROOF OF THEOREM 4.1

Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

In our case,

δK =
R2 + R̂2

2R̂
√
K + 1

=
R̄√
K + 1

.

Therefore, δK ≤ δ(ϵ) iff

K + 1 ≥ R̄2

δ2(ϵ)
≡ max

{4

9
L2
1R̄

2,
L0R̄

2

ϵ

}
.

C.3 ANALYSIS FOR TIME-VARYING STEP SIZE

Theorem C.2. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth nonlinear8 convex function f . Consider decreasing coefficients βk = R̂√

k+1
, k ≥ 0, where

R̂ > 0 is a parameter. Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{
4NR̄(ϵ),

(e

e− 1

)2

NR̂(ϵ)[ln(4NR̂(ϵ))]
2
+

}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥ (x∗ is an arbitrary solution of the problem), and

ND(ϵ) := max
{4

9
L2
1D

2,
L0D

2

ϵ

}
.

8This means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd, see Lemma 2.2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

For our choice of βk, we obtain, by standard results (e.g., Lemma 2.6.3 in Rodomanov (2022)), that

K∑
k=0

β2
k = R̂2

K+1∑
k=1

1

k
≤ R̂2[1 + ln(K + 1)],

K∑
k=0

βk = R̂

K+1∑
k=1

1√
k
≥ R̂

√
K + 1.

Hence,

δK ≤ R2 + R̂2[1 + ln(K + 1)]

2R̂
√
K + 1

=
R̄√
K + 1

+
R̂ ln(K + 1)

2
√
K + 1

.

To ensure that δK ≤ δ(ϵ), it suffices to ensure that the following two inequalities are satisfied:

R̄√
K + 1

≤ δ(ϵ)

2
,

R̂ ln(K + 1)√
K + 1

≤ δ(ϵ).

The first inequality is equivalent toK+1 ≥ 4R̄2

δ2 . To get the second one, it suffices to take, according
to Lemma C.3 (with p = 1

2 and δ′ = δ(ϵ)

R̂
),

K + 1 ≥
(

e

e− 1

2R̂

δ(ϵ)

[
ln

2R̂

δ(ϵ)

]
+

)2

≡
(e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+
.

Putting these two inequalities together and substituting our formula for δ(ϵ), we come to the require-
ment that

K + 1 ≥ max

{
4R̄2

δ2(ϵ)
,
(e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+

}
= max

{
4NR̄(ϵ),

(e

e− 1

)2

NR̂(ϵ)[ln(4NR̂(ϵ))]
2
+

}
,

where

ND(ϵ) :=
D2

δ2(ϵ)
= max

{4

9
L2
1D

2,
L0D

2

ϵ

}
.

Lemma C.3. For any real p, δ > 0, we have the following implication9:

t ≥
(

e

e− 1

[ln 1
pδ]+

pδ

) 1
p

=⇒ ln t

tp
≤ δ.

Proof. W.l.o.g., we can assume that p = 1, and our goal is to prove the implication

t ≥ e

e− 1

[ln 1
δ]+

δ
=: t(δ) =⇒ ϕ(t) :=

ln t

t
≤ δ.

The general case then follows by the change of variables t = (t′)p and δ = pδ′.

Further, we can assume that δ ≤ 1
e since otherwise ϕ(t) ≤ 1

e ≤ δ for any t ≥ 0 (since the maximum
of ϕ is achieved at t∗ = e). Under this additional assumption, [ln 1

δ]+ = ln 1
δ .

Let us now assume that t ≥ t(δ) (≥ e2

e−1 ≥ e since δ ≤ 1
e). Since the function ϕ is decreasing on

the interval [e,+∞), we have

ϕ(t) ≤ ϕ(t(δ)) =
ln t(δ)

t(δ)
=

ln t(δ)
e
e−1 ln

1
δ

δ.

9For t = 0, we define by continuity ln t
tp

≡ −∞.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To finish the proof, it remains to show that the final fraction in the above display is ≤ 1, or, equiva-
lently, that

t(δ) ≡ e

e− 1

ln 1
δ

δ
≤

(1
δ

) e
e−1

.

Rearranging and denoting u := (1δ)
1

e−1 , we see that the above inequality is equivalent to

ϕ(u) ≡ lnu

u
≤ 1

e
.

But this is indeed true since ϕ attains its maximum value at u = e.

D MISSING PROOFS IN SECTION 5

D.1 PROOF OF THEOREM 5.1

Proof. Let x∗ be an arbitrary solution. By the method’s update rule and convexity of f(·), we get,
for all k ≥ 0,

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

≤ ∥xk − x∗∥2 − (f(xk)− f∗)2

∥∇f(xk)∥2
.

Denote Rk = ∥xk − x∗∥, gk = ∥∇f(xk)∥ and fk = f(xk) − f∗. According to Lemma 2.3, for
each k ≥ 0, it holds that

fk ≥ ψ(gk), where ψ(g) :=
g2

2L0 + 3L1g
, g ≥ 0.

Observe that the function ψ is increasing, so its inverse ψ−1 is well-defined and is increasing as
well. In terms of this function, gk ≤ ψ−1(fk) and hence

R2
k −R2

k+1 ≥ f2k
g2k

≥
(fk
ψ−1(fk)

)2

.

Summing up these inequalities over 0 ≤ k ≤ K and rearranging, we get
K∑
k=0

(fk
ψ−1(fk)

)2

≤ R2
0 −R2

K+1 ≤ R2
0 ≡ R2.

Note that ψ
−1(t)
t is increasing in t (as the composition of increasing in γ function ψ(γ)

γ ≡ γ
2L0+3L1γ

with increasing in t function γ = ψ−1(t)). Thus, by taking a minimum over the terms on the
left-hand side of the above display and denoting f∗K := min0≤k≤K fk, we get

(K + 1)
(f∗K
ψ−1(f∗K)

)2

≤ R2.

Rearranging, we obtain

ψ−1(f∗K) ≥
√
K + 1f∗K
R

,

or, equivalently,

f∗K ≥ ψ
(√K + 1f∗K

R

)
≡ (K + 1)(f∗K)2

R2
(
2L0 + 3L1

√
K+1f∗

K

R

) =
(f∗K)2

2L0R2

K+1 + 3L1R√
K+1

f∗K
.

Hence,

f∗K ≤ 2L0R
2

(K + 1)(1− 3L1R
√
K + 1)

,

whenever 3L1R
√
K + 1 < 1. Thus, to achieve desired accuracy ϵ > 0, the number K of iterations

should satisfy the following conditions:

3L1R
√
K + 1 ≤ 1

2
,

4L0R
2

K + 1
≤ ϵ.

Thus, the final iteration complexity is K + 1 ≥ max{ 4L0R
2

ϵ , 36L2
1R

2}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E MISSING PROOFS IN SECTION 6

The proof of Theorem 6.1 is similar to the original proof Theorem 1 in Nesterov et al. (2021), but
instead of smoothness of f we use more general property provided in the statement of Theorem 6.1.

E.1 PROOF OF THEOREM 6.1

Proof. Let us prove by induction that, for any k ≥ 0, we have
Akf(xk) ≤ ζ∗k := ζk(vk). (24)

This trivially holds for k = 0 since A0 = 0 and ζ∗0 = 0. Now assume that (24) is satisfied for some
k ≥ 0 and let us prove that it is also satisfied for the next index k′ = k + 1. We start by noting that

ζ∗k+1 = ζk+1(vk+1) = ζk(vk+1) + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ ζ∗k +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ Akf(xk) +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩], (25)

where the first inequality holds due to the strong convexity of ζk, and the second one is due to the
induction hypothesis. Further, note that, by construction, yk ∈ [vk, xk]. Considering separately any
of the three possible situations, yk = vk, yk = xk and yk ∈ (vk, xk), we see that, in all cases,

⟨∇f(yk), vk − yk⟩ ≥ 0.

Then, by adding and subtracting ⟨∇f(yk), vk⟩ in (25) and using the estimate in the preceding in-
equality, as well as f(yk) ≤ f(xk) (which holds by construction), we obtain

ζ∗k+1 ≥ Akf(xk) + ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk)−
a2k+1

2
∥∇f(yk)∥2 = Ak+1

[
f(yk)−

1

2L
∥∇f(yk)∥2

]
,

where the final identity is due to fact that, by the definition of ak+1,
La2k+1 = Ak+1. (26)

By the induction hypothesis and by construction, yk stays in the sublevel set F0, since f(yk) ≤
f(xk) ≤ f(x0). Then, by the definition of xk+1 and (20), it holds that f(xk+1) ≤ f(yk) −
1
2L∥∇f(yk)∥

2 (≤ f(yk)). This proves that ζ∗k+1 ≥ Ak+1f(xk+1) completing the induction.

Let k ≥ 1 be arbitrary. By the convexity of f and the definition of Ak, we have

ζ∗k ≤ ζk(x
∗) =

1

2
R2 +

k−1∑
i=0

ai+1[f(yi) + ⟨∇f(yi), x∗ − yi⟩] ≤
1

2
R2 +Akf

∗.

where R = ∥x0 − x∗∥. Combining this with (24), we conclude that

f(xk)− f∗ ≤ LR2

2Ak
. (27)

It remains to estimate the rate of growth of the coefficientsAk. From (26) and the definition ofAk+1,
it follows, for any k ≥ 0, that√

Ak+1

L
= ak+1 = Ak+1 −Ak = (

√
Ak+1 +

√
Ak)(

√
Ak+1 −

√
Ak)

≤ 2
√
Ak+1(

√
Ak+1 −

√
Ak).

Dividing both sides of this inequality by
√
Ak+1 and summing up the result, we see that, for any

k ≥ 1, it holds that

Ak ≥ k2

4L
.

Substituting this estimate into (27), we obtain the claim.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.2 PROOF OF THEOREM 6.2

Proof. Based on the second estimate in Theorem 3.2, GM with stepsizes (9), (9), or (13) finds a
point x0, such that f(x0)− f∗ ≤ ∆ with ∆ defined by (19) in the following number of iterations /
oracle queries (note that one iteration needs precisely one gradient computation):

N0 :=

⌈
2 + 3

e

a

L0R
2

L0

5L2
1

+
3(1 + 1

e)

a
L2
1R

2

⌉
=

⌈
13 + 18

e

a
L2
1R

2

⌉
,

where R := ∥xs − x∗∥, and a is an absolute constant from the statement depending on the stepsize
rule. Moreover, for the obtained point x0, it holds that R0 := ∥x0 − x∗∥ ≤ R.

Further, as discussed in the paragraph after Theorem 6.1, for the specific value of ∆ we have chosen,
our update rule T (·) satisfies the sufficient decrease property (20) with L given by (21). Hence, by
Theorem 6.1, after k ≥ 1 iterations of AGMsDR, we have

f(xk)− f∗ ≤ 2LR2
0

k2
=

5L0R
2
0

ak2
≤ 5L0R

2

ak2
.

To obtain f(xk)− f∗ ≤ ϵ, it therefore suffices to perform the following number of iterations:

K(ϵ) :=

⌈√
5L0R2

aϵ

⌉
.

Each iteration of AGMsDR requires one computation of the gradient plus at most m oracle queries
for the line search. Hence, the oracle complexity of AGMsDR is at most

N(ϵ) := (m+ 1)K(ϵ).

Summing up N0 and N(ϵ), we obtained the claimed complexity.

F COMPLEXITY OF NAG

Unfortunately, the NAG algorithm presented in Li et al. (2023) is not scale-invariant and its complex-
ity reported in (Li et al., 2023, Theorem 4.4) is not written explicitly. To streamline the comparison
of the complexity bound for NAG with those for other methods for minimizing an (L0, L1)-smooth
function, we provide a simple fix making the algorithm scale-invariant and also rewrite the result of
(Li et al., 2023, Theorem 4.4) (assuming it is true) in an explicit form.
Theorem F.1. Consider problem (1) with an (L0, L1)-smooth convex function f assuming L0 > 0.
Let NAG Li et al. (2023) be applied to solving the rescaled version of this problem:

f̃∗ := min
x∈Rd

{
f̃(x) :=

1

L0
f(x)

}
,

starting from a certain point x0 ∈ Rd. Then, for an appropriate choice of parameters, NAG finds
a point x̄ ∈ Rd such that f(x̄) − f∗ ≤ ϵ for a given ϵ > 0 after at most the following number of
iterations / gradient-oracle queries:

16
(
128L2

1R
2 +

128L2
1F0

L0
+ 1

)√F0 + L0R2

ϵ
,

where F0 := f(x0)− f∗, R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of our problem.

Proof. By construction, f̃ is an (L̃0, L̃1)-smooth with L̃0 = 1 and L̃1 = L1. In the terminology of
Li et al. (2023), this means that f̃ is ℓ-smooth w.r.t. the function

ℓ(G) := L̃0 + L̃1G ≡ 1 + L1G.

Theorem 4.4 from Li et al. (2023) then tells us that the sequence of the iterates {xt} constructed by
NAG satisfies

f̃(xt)− f̃∗ ≤ 4(F̃0 +R2)

ηt2 + 4
, (28)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where F̃0 := f̃(x0)− f̃∗, R := ∥x0 − x∗∥, and η > 0 is the stepsize parameter required to satisfy

η ≤ min
{ 1

16[ℓ(2G)]2
,

1

2ℓ(2G)

}
≡ 1

16[ℓ(2G)]2
≡ 1

16(1 + 2L1G)2
, (29)

where G is an arbitrary constant such that

G ≥ max
{
8

√
ℓ(2G)(F̃0 +R2), g̃0

}
≡ max

{
8

√
(1 + 2L1G)(F̃0 +R2), g̃0

}
. (30)

where g̃0 := ∥∇f̃(x0)∥. In terms of our original function f , the guarantee (28) reads

ft := f(xt)− f∗ ≤ 4(F0 + L0R
2)

ηt2 + 4
.

To achieve the fastest possible convergence, we select the largest possible stepsize η which is, ac-
cording to (29),

η =
1

16(1 + 2L1G)2
.

Substituting this formula into the previous display and dropping the (useless for improving the con-
vergence rate) constant 4 from the denominator, we obtain

ft ≤
64(1 + 2L1G)

2(F0 + L0R
2)

t2
≤ ϵ

whenever

t ≥ 8(1 + 2L1G)

√
F0 + L0R2

ϵ
=: t(ϵ). (31)

The obtained t(ϵ) is exactly the iteration complexity of the algorithm for obtaining an ϵ-approximate
solution for the original problem, and is also its gradient oracle complexity since the method makes
precisely one gradient-oracle query at each iteration.

It remains to choose the smallest possible parameter G satisfying (30). We start with rewriting this
inequality in terms of the original function:

G ≥ max
{
8

√
(1 + 2L1G)

(F0

L0
+R2

)
,
g0
L0

}
≡ max

{√
(1 + 2L1G)∆,

g0
L0

}
where g0 := ∥∇f(x0)∥ and ∆ := 64(F0

L0
+ R2). This inequality is equivalent to the system of two

inequalities:

G2 ≥ (1 + 2L1G)∆, G ≥ g0
L0
.

Rearranging, we see that the first inequality is equivalent to

G ≥
√

∆+ L2
1∆

2 + L1∆ =: G∗

Further, it turns out thatG∗ ≥ g0
L0

. Indeed, according to (7), we have F0 ≥ g20
2L0+3L1g0

, meaning that

g0 ≤
√
2L0F0 +

9
4L

2
1F

2
0 + 3

2L1F0 ≤
√
2L0F0 + 3L1F0; on the other hand, estimating ∆ ≥ 64F0

L0
,

we see that L0(
√
∆+L1∆) ≥ 8

√
L0F0+64L1F0. Thus, the smallest possible value ofG satisfying

the original requirement (30) is in fact G = G∗.

Choosing now G = G∗ and substituting the definition of ∆, we obtain

1 + 2L1G =
G2

∗
∆

≤ 2(∆ + L2
1∆

2) + 2L2
1∆

2

∆
= 2(1 + 2L2

1∆) = 2
(
1 +

128L2
1F0

L0
+ 128L2

1R
2
)
.

Substituting this bound into (31), we obtain the claimed bound on t(ϵ).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Number of iterations

10 15

10 12

10 9

10 6

10 3

100

103

f(x
* k
)

f*

Convergence

* -GD
si-GD
cl-GD

2-NGD
0.1-NGD
0.5-NGD
10-NGD
PS GD
AccGD

(a) p = 4

0 100 200 300 400 500
Number of iterations

10 15

10 12

10 9

10 6

10 3

100

103

106

f(x
* k
)

f*

Convergence

* -GD
si-GD
cl-GD

2-NGD
0.1-NGD
0.5-NGD
10-NGD
PS GD
AccGD

(b) p = 6

0 100 200 300 400 500
Number of iterations

10 15

10 12

10 9

10 6

10 3

100

103

106

109

f(x
* k
)

f*

Convergence

* -GD
si-GD
cl-GD

2-NGD
0.1-NGD
0.5-NGD
10-NGD
PS GD
AccGD

(c) p = 8

Figure 1: Comparison of gradient methods for f(x) = 1
p
∥x∥p. R̂

R
-NGD stands for Normalized Gradient

Method, where R̂ is an estimation of the true initial distance to a solution R. η∗-GD, ηsi-GD, ηcl-GD stand
for gradient method with stepsizes (9), (12) and (13) respectively, PS GD stands for Polyak stepsizes gradient
method, and AccGD stands for two-stage accelerated procedure (Algorithm 2).

G NUMERICAL RESULTS

In Fig. 1, we compare the performance of the analyzed methods for solving optimization problem (1)
with a function f(x) = 1

p∥x∥
p. To generate a starting point we We fix L1 = 1 and choose L0 =

(p−2
L1

)p−2 according to Example A.1. For GM, we choose stepsizes according to (9), (12) and (13).

For NGM, we use time-varying coefficients βk = R̂
k+1 with different values of R̂ ∈ { 1

2R, 2R, 10R},
which allows us to study the robustness of this method to our initial guess of the unknown initial
distance to the solution. Note that, for this particular problem, the choice of R̂ = R is rather special
and allows the method to find the exact solution after one iteration, so we are not considering it. We
observe that, NGM and PS-GM outperform GM with stepsizes from (9), (12) and (13). This can be
explained by the fact that the complexity of GM depends on the particular choice of (L0, L1), while
complexity of NGM and PS-GM involves the optimal parameters L0, L1 as discussed in Section 4.
Moreover, closer initial distance estimation R̂ to a true value R leads to a faster convergence of
NGM to a solution.

In Fig. 2, we present an experiment studying the performance of the GM with the stepsize rule (9)
based on the choice of (L0, L1). For each choice of L1 ∈ {1, 2, 4, 8, 16} we set L0 = (p−2

L1
)p−2,

according to Example A.1. As expected from the theory (see the corresponding discussion at the
end of Section 4), the choice of (L0, L1) pair is crucial in practice for the performance of GM and
depends on a target accuracy ϵ.

In Fig. 3, we conduct an experiment on the performance of accelerated methods and consider the
GM 9, the proposed two-stage procedure from Section 6 with TL(x) being the gradient update with
stepsizes (9) and L = 3L0, and two variants of normalized Similar Triangles Methods (STM, and
STM-Max) from Gorbunov et al. (2024). STM uses normalization by the norm of the gradient at the
current point in a gradient step, while STM-Max normalizes by the largest norm of the gradient over
the optimization trajectory. It is worth noticing that only STM-Max has theoretical convergence
guarantees. We set p = 6, L1 = 1, L0 = (p−2

L1
)p−2 (see Example A.1) and vary the initial

distance to the solution R = ∥x0 − x∗∥. We observe that for a large initial distance to the solution,
our proposed procedure outperforms STM-max. This fact supports our theoretical founding and
reasoning on accelerated methods provided in Section 6. We also notice that the second variant
STM outperforms all considered methods in terms of the best iterate convergence. However, there is
no theoretical analysis for it. Additionally, we compare the performance of Algorithm 2, STM and
STM-Max with good starting point x0, such that f(x0)− f∗ ≤ L0

5L2
1

. In Fig. 4, we plot the function

values residual for different values of p ∈ {4.0, 6.0, 8.0}. Since f(x0) − f∗ ≤ L0

5L2
1

, Algorithm 2
will run only the second stage, which is AGMsDR. We observe that for smaller values of p = 4.0,
all three accelerated methods are comparable, while for larger values of p ∈ {6.0, 8.0} STM and
STM-Max outperform Algorithm 2.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Number of iterations

10 9

10 7

10 5

10 3

10 1

101

f(x
k)

f*

Convergence
L1 = 1.0
L1 = 2.0
L1 = 4.0
L1 = 8.0
L1 = 16.0

(a) p = 4

0 100 200 300 400 500
Number of iterations

10 8

10 6

10 4

10 2

100

102

104

f(x
k)

f*

Convergence
L1 = 1.0
L1 = 2.0
L1 = 4.0
L1 = 8.0
L1 = 16.0

(b) p = 6

0 100 200 300 400 500
Number of iterations

10 8

10 6

10 4

10 2

100

102

104

f(x
k)

f*

Convergence
L1 = 1.0
L1 = 2.0
L1 = 4.0
L1 = 8.0
L1 = 16.0

(c) p = 8

Figure 2: Convergence of the gradient method on the same function but with different choices of (L0, L1).

0 1000 2000 3000 4000 5000
Number of iterations

10 15

10 12

10 9

10 6

10 3

100

103

f(x
k)

f*

Convergence
* -GD

AccGD
STM
STM-max

(a) R = 10

0 1000 2000 3000 4000 5000
Number of iterations

10 15

10 12

10 9

10 6

10 3

100

103

106

f(x
k)

f*

Convergence
* -GD

AccGD
STM
STM-max

(b) R = 100

0 1000 2000 3000 4000 5000
Number of iterations

10 15

10 11

10 7

10 3

101

105

109

1013

f(x
k)

f*

Convergence
* -GD

AccGD
STM
STM-max

(c) R = 1000

Figure 3: Comparison of two-stage procedure (Algorithm 2) denoted by AccGD with Similar Triangles Method
(SMT) and Similar Triangles Method Max (STM-max) for f(x) = 1

6
∥x∥6, with different initial distance R.

0 1000 2000 3000 4000 5000
Number of iterations

10 12

10 10

10 8

10 6

10 4

10 2

f(x
k)

f*

Convergence
* -GD

AccGD
STM
STM-max

(a) p = 4

0 1000 2000 3000 4000 5000
Number of iterations

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
k)

f*

Convergence
* -GD

AccGD
STM
STM-max

(b) p = 6

0 1000 2000 3000 4000 5000
Number of iterations

10 7

10 5

10 3

10 1

101

f(x
k)

f*

Convergence

* -GD
AccGD
STM
STM-max

(c) p = 8

Figure 4: Comparison of two-stage procedure (Algorithm 2) denoted by AccGD with Similar Triangles Method
(SMT) and Similar Triangles Method Max (STM-max) for f(x) = 1

p
∥x∥p, with different values p and a good

starting point.

26

	Introduction
	Definition and Properties of (L0, L1)-Smooth Functions
	Gradient Method
	Nonconvex Functions
	Convex Functions

	Normalized Gradient Method
	Gradient Method with Polyak Stepsizes
	Accelerated Gradient Method
	Conclusion
	Missing Proofs in Section 2
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Examples and Properties of (L0, L1)-smooth functions
	Proof of Example A.1
	Proof of Example A.2
	Proof of Proposition A.3
	Proof of Lemma A.4

	Missing Proofs in Section 3
	One-Step Progress
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Missing Proofs in Section 4
	General Result
	Proof of Theorem 4.1
	Analysis for Time-Varying Step Size

	Missing Proofs in Section 5
	Proof of Theorem 5.1

	Missing Proofs in Section 6
	Proof of Theorem 6.1
	Proof of Theorem 6.2

	Complexity of NAG
	Numerical Results

