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ABSTRACT

We study gradient methods for solving an optimization problem with an (L0, L1)-
smooth objective function. This problem class generalizes that of Lipschitz-
smooth problems and has gained interest recently, as it captures a broader range
of machine learning applications. We provide novel insights on the properties of
this function class and develop a general framework for analyzing optimization
methods for (L0, L1)-smooth function in a principled manner. While our con-
vergence rate estimates recover existing results for minimizing the gradient norm
for nonconvex problems, our approach allows us to significantly improve the cur-
rent state-of-the-art complexity results in the case of convex problems. We show
that both the gradient method with Polyak stepsizes and the normalized gradient
method, without any knowledge of the parameters L0 and L1, achieve the same
complexity bounds as the method with the knowledge of these constants. In ad-
dition to that, we show that a carefully chosen accelerated gradient method can
be applied to (L0, L1)-smooth functions, further improving previously known re-
sults. In all cases, the efficiency bounds we establish do not have an exponential
dependency on L0 or L1, and do not depend on the initial gradient norm.

1 INTRODUCTION

In this paper, we focus on the deterministic unconstrained optimization problem

f∗ := min
x∈Rd

f(x), (1)

where f : Rd → R is a smooth function. With the rise of deep learning, ensuring efficient con-
vergence has become increasingly critical. Traditional optimization methods, such as the gradient
descent method and its variants, often rely on assumptions like Lipschitz-smoothness to guarantee
convergence rates. However, in modern machine learning problems, these assumptions might be too
restrictive, especially when optimizing deep neural network models.

In experiments provided in (Zhang et al., 2019), it was shown that the norm of the Hessian correlates
with a norm of the gradient of a loss when training neural networks. This observation motivated the
authors to introduce a new, more realistic assumption on a function class named (L0, L1)-smooth.
The class of (L0, L1)-smooth functions includes the class of Lipschitz-smooth functions. Also, they
provided the convergence rate of the gradient method (GM) with fixed, normalized, and clipped step-
sizes for non-convex optimization and showed that normalized and clipped methods are favorable
in the new setting. In recent years, many works have studied methods for solving (L0, L1)-smooth
optimization problems. Despite this interest from the community, the existing convergence results
are suboptimal in some important cases, and the analysis of such methods is not satisfactory.

Motivated by this gap, the present work investigates properties of (L0, L1)-smooth functions and
gradient methods for optimizing these functions. The following subsection discusses existing results
for (L0, L1)-smooth optimization.

Contributions. Our contributions can be summarized as follows:

• In Section 2, we provide novel results and insights into the (L0, L1)-class by (i) providing new
examples and operations that preserve the (L0, L1)-smoothness of functions and (ii) deriving new
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properties for this function class, leading to tighter bounds on descent inequalities. In Section 3,
we propose new, intuitive step sizes that follow by directly minimizing our tighter upper bounds
on the function growth. We also discuss the relation between these stepsizes and those used in the
normalized and clipped gradient method.

• For nonconvex functions, we achieve the best-known O
(
L0F0

ϵ2 + L1F0

ϵ

)
(Theorem 3.1) complex-

ity bound for finding an ϵ-stationary point, where F0 = f(x0) − f∗ is a function residual at
the initial point. For convex problems, we significantly improve existing results by achieving the
O(L0R

2

ϵ + L1R ln F0

ϵ ) (Theorem 3.2) complexity bound, where R = ∥x0 − x∗∥ is an initial
distance to a solution.

• We also study two new methods: normalized gradient method (NGM) and gradient method with
Polyak stepsizes (PS-GM), which do not require the knowledge of the parameters L0, L1. For
both methods, we show that they enjoy the same O(L0R

2

ϵ + L2
1R

2) complexity bound without
knowing L0 and L1 (see Theorems 4.1 and 5.1 ).

• Finally, in Section 6, we present a simple procedure achieving the accelerated complexity of

O(m
√

L0R2

ϵ + L2
1R

2), where m > 0 is a number of oracle queries for solving a simple one-
dimensional problem. This procedure prescribes running the monotone version of the accelerated
gradient method Nesterov et al. (2021) from the initial point constructed after a certain number of
iterations of the (nonaccelerated) GM.

In contrast to other results in the literature, all our complexity bounds neither depend on the initial
gradient norm, nor have an exponential dependency on L1.

Related work. Following the introduction of the (L0, L1)-class by Zhang et al. (2019), subsequent
works have explored other smoothness generalizations and analyzed gradient methods under these
new assumptions. Chen et al. (2023) introduced the α-asymmetric class, relaxing the assumption on
twice differentiability and allowing a sublinear growth on the norm of a gradient. In (Li et al., 2023),
authors went further and proposed the weakest (r, l)-smooth class, which allows even quadratic
growth of the norm of the Hessian with respect to the norm of the gradient. Despite the generality
of this assumption, there are still some issues and open questions regarding the existing results even
for the basic (L0, L1)-smooth class.

In (Zhang et al., 2020), the authors analyzed the clipped GM with momentum and improved
complexity bound with respect to problem parameters L0, L1. Using the right choice of clip-
ping parameters, Koloskova et al. (2023) proved, for nonconvex and convex problems, respec-

tively, the O(L0F0

ϵ2 + L1F0

ϵ ) and O(L0R
ϵ +

√
L
ϵ L1R

2) oracle complexity bounds for obtaining
an ϵ-approximate solution, where L is a Lipschitz constant. For convex problems, Li et al.
(2023) proposed an (asymptotically) faster accelerated gradient method achieving the complexity

of O((L2
1R

2 +
L2

1F0

L0
+ 1)

√
F0+L0R2

ϵ )1. Several works have studied adaptive optimization methods
that do not require the (L0, L1) parameters to be known. Faw et al. (2023); Wang et al. (2023)
studied convergence rates for AdaGrad for stochastic nonconvex problems. Hübler et al. (2024)
proposed a gradient method with the backtracking line search and showed the O(L0F0

ϵ2 +
L2

1F
2
0

ϵ2 )
complexity bound for nonconvex problems. For convex problems, Takezawa et al. (2024) obtained

the complexity of O(L0R
ϵ +

√
L
ϵ L1R

2), where L is a Lipschitz constant, for the PS-GM, which
requires knowing the optimal function value.

One interesting paper that is highly related to our work and independently appeared online during
the finalization of our manuscript is Gorbunov et al. (2024). In this paper, the authors propose
a new formula (called “smooth clipping”) for choosing stepsizes in the GM for convex (L0, L1)-
smooth functions; up to absolute constants, this formula coincides with one of ours. Their proof
techniques differ from ours, which leads to O(L0R

2

ϵ + L2
1R

2) complexity which is slightly worse
than our O(L0R

2

ϵ +L1R ln(F0

ϵ )), especially when initial function value is reasonably bounded (see
Section 3). The authors also show that the PS-GM achieves the same result as in our work. Addi-

tionally, they provide an accelerated method with complexity O(
√

L0R2

ϵ L1R exp(L1R)) and study

1See Appendix F.
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also the strongly convex and stochastic cases as well as some adaptive methods. In contrast, our
work has a slightly different scope and offers deeper insights by providing the intuition on arriving
at the “right” stepsize formulas, an analysis for nonconvex functions, the study of normalized gradi-
ent methods, and a superior version of the accelerated scheme with significantly better complexity.
Importantly, our proof techniques are somewhat different from those in Gorbunov et al. (2024) and
are more aligned with classical optimization theory, at least in the specific cases we consider in our
paper.

2 DEFINITION AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

In this section, we state our assumptions and discuss important properties of generalized smooth
functions. We start with defining our main assumption on (L0, L1)-smooth functions.

Throughout this paper, unless specified otherwise, we use the standard inner product ⟨·, ·⟩ and the
standard Euclidean norm ∥ · ∥ for vectors, and the standard spectral norm ∥ · ∥ for matrices. We also
assume that there exists a solution for the problem (1).
Definition 2.1. A twice continuously differentiable function f : Rd → R is called (L0, L1)-smooth
(for some L0, L1 ≥ 0) if it holds that

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rd. (2)

The class of (L0, L1)-smooth function is a wide class of functions, which includes the class of
Lipschitz-smooth functions. Definition 2.1 of generalized smooth function was introduced in (Zhang
et al., 2019). For twice differentiable function, this definition is equivalent to definition of α-
symmetric functions with α = 1 provided in (Chen et al., 2023). All our further results also hold for
α-symmetric functions, however, we use the stricter assumption for clarity in presentation. Any α-
symmetric twice differentiable function is also (L0, L1)-smooth function, but with a different choice
of parameters; thus, our results also hold for α-symmetric functions. For the purpose of analysis of
the methods, we provide an alternative and more useful first-order characterization of the class of
(L0, L1)-smooth functions.
Lemma 2.2. Let f be a twice continuously differentiable function, Then, f is (L0, L1)-smooth if
and only if any of the following inequalities holds for any x, y ∈ Rd:2

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1∥∇f(x)∥)
eL1∥y−x∥ − 1

L1
, (3)

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ (L0 + L1∥∇f(x)∥)
ϕ(L1∥y − x∥)

L2
1

, (4)

where ϕ(t) := et − t− 1 (t ≥ 0).

The proof of Lemma 2.2 can be found in Appendix A. It is worth noting that inequality (3) is
stronger than that from Corollary A.4 (Zhang et al., 2020). The bound in inequality (4) is tighter than
those presented in previous works (see, for example, Lemma A.3 in (Zhang et al., 2020), Lemma 8
in (Hübler et al., 2024)). These tighter estimates allow us to construct gradient methods in the sequel.
When the function f is also convex, we have the following useful inequalities.
Lemma 2.3. Let f be a convex (L0, L1)-smooth nonlinear3 function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
, (5)

⟨∇f(x)−∇f(y), x− y⟩ ≥ L0 + L1∥∇f(y)∥
L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(y)∥

)
+
L0 + L1∥∇f(x)∥

L2
1

ϕ∗

(L1∥∇f(y)−∇f(x)∥
L0 + L1∥∇f(x)∥

)
,

(6)

where ϕ∗ is the function from Lemma A.4.

2Hereinafter, for L1 = 0 and any t ≥ 0, we assume that eL1t−1
L1

≡ t, ϕ(L1t)

L2
1

≡ 1
2
t2, etc., which are the

limits of these expressions when L1 → 0;L1 > 0.
3According to Lemma 2.2, this means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd.
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Moreover, using Lemma A.4, we can simplify the lower bound in (5).
Corollary 2.4. Let f be a convex (L0, L1)-smooth nonlinear function. Then, for any x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ ∥∇f(y)−∇f(x)∥2

2(L0 + L1∥∇f(y)∥) + L1∥∇f(y)−∇f(x)∥
. (7)

Lemma 2.3 is a generalization of Theorem 2.1.5(Nesterov, 2018) to (L0, L1)-smooth functions, and
matches it when L1 = 0 (since 1

L2
1
ϕ∗(L1α) → 1

2α
2 as L1 → 0). The proof of Lemma 2.3 is

presented in Appendix A.

3 GRADIENT METHOD

Having established a few important properties of an (L0, L1)-smooth function f , we now turn our
attention to the gradient method (GM) for minimizing such a function:

xk+1 = xk − ηk∇f(xk), k ≥ 0, (8)

where x0 ∈ Rd is a starting point and ηk ≥ 0 are certain stepsizes.

We start with showing that the gradient update rule (8) and the “right” formula for the stepsize ηk
both naturally arise from the classical idea in optimization theory—choosing the next iterate xk+1 by
minimizing the global upper bound on the objective function value constructed around the current
iterate xk (see (Nesterov, 2018)). Indeed, let x ∈ Rd be the current point and let a := L0 +
L1∥∇f(x)∥ > 0. According to (4), for any y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ a

L2
1

ϕ(L1∥y − x∥).

Our goal is to minimize the right-hand of the above inequality in y. Since the last term in this bound
depends only on the norm of y − x, the optimal point y∗ = T (x) is the result of the gradient step
T (x) = x− r∗ ∇f(x)

∥∇f(x)∥ for some r∗ ≥ 0 ensuring the following progress in decreasing the function
value:

f(x)− f(T (x)) ≥ max
r≥0

{
∥∇f(x)∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥∇f(x)∥
a

)
,

where ϕ∗ is the conjugate function to ϕ (see Lemma A.4). Furthermore, r∗ is exactly the solution of
the above optimization problem, satisfying L1∥∇f(x)∥ = aϕ′(L1r

∗). Solving this equation, using
the fact that (ϕ′)−1(γ) = ϕ′∗(γ) = ln(1 + γ), we obtain r∗ = 1

L1
ϕ′∗(

L1∥∇f(x)∥
a ) = 1

L1
ln(1 +

L1∥∇f(x)∥
a ).

The above considerations lead us to the following optimal choice of stepsizes in (8):

η∗k =
1

L1∥∇f(xk)∥
ln
(
1 +

L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
, k ≥ 0, (9)

resulting in the following progress in decreasing the objective:

f(xk)− f(xk+1) ≥
L0 + L1∥∇f(xk)∥

L2
1

ϕ∗

( L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
:= ∆k. (10)

The above expression for ∆k is quite cumbersome but, in fact, it behaves as the simple fraction
∥∇f(xk)∥2

L0+L1∥∇f(xk)∥ . More precisely, from Lemma A.4(3), we see that

∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
≤ ∆k ≤ ∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
.

Thus, there is not much point in keeping the complicated expression (10) and we can safely simplify
it as follows:

f(xk)− f(xk+1) ≥
∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
. (11)

4
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Interestingly, we can also arrive at exactly the same bound (11) by using a simpler choice of step-
sizes. Specifically, replacing ln(1 + γ) with its lower bound 2γ

2+γ (which is responsible for the
inequality in Lemma A.4(3) that we used to simplify (10) into (11)), we obtain the following sim-
plified stepsizes:

ηsik =
1

L0 +
3
2L1∥∇f(xk)∥

, k ≥ 0. (12)

With this choice, the iterates of method (8) still satisfy (11) (see Lemma B.1).

Further, note that, up to absolute constants, stepsize (12) acts as 1
max{L0,L1∥∇f(xk)∥} =

min{ 1
L0
, 1
L1∥∇f(xk)∥}, which is the so-called clipping stepsize used in many previous works Zhang

et al. (2019; 2020); Koloskova et al. (2023). Thus, with the right choice of absolute constants, we
can expect the corresponding clipping stepsizes, to satisfy a similar inequality to (11). This is indeed
the case, and we can show, in particular, that the clipping stepsizes

ηclk = min
{ 1

2L0
,

1

3L1∥∇f(xk)∥

}
, k ≥ 0, (13)

do satisfy (11) although with slightly worse absolute constants (see Lemma B.1).

We have thus demonstrated in this section that clipping stepsizes (13) are simply a convenient ap-
proximation of the optimal stepsizes (9), ensuring a similar bound on the objective progress. This
observation seems to be a new insight into clipping stepsizes which has not been previously explored
in the literature.

It is not difficult to see that the three stepsizes we introduced in this section satisfy the following
relationships:

ηclk ≤ ηsik ≤ η∗k. (14)

3.1 NONCONVEX FUNCTIONS

We are now ready to present a convergence rate result for nonconvex functions.

Theorem 3.1. Let f be an (L0, L1)-smooth function, and let {xk} be iterate sequence of GM (8)
with one of the stepsize choices given by (9), (12) or (13). Then, min0≤k≤K ∥∇f(xk)∥ ≤ ϵ for any
given ϵ > 0 whenever

K + 1 ≥ 2L0F0

aϵ2
+

3L1F0

aϵ
,

where a = 1 for stepsizes (9) and (12), and a = 1
2 for stepsize (13).

The proof of Theorem 3.1 can be found in Appendix B.2. The rate in Theorem 3.1 matches, up to
absolute constants, the rate in (Koloskova et al., 2023) for clipped GM with η = 1

9 (L0+cL1) for c =
L0

L1
, or equivalently the GM with stepsize ηk = 1

18L0
min{1, L0

L1∥∇f(xk)∥}. Furthermore, our rate is

significantly better than the rate O(L0F0

ϵ2 +
L2

1F0

L0
) obtained in (Zhang et al., 2019) for the clipped

GM since L1F0

ϵ ≤ L2
0F0

2ϵ +
L2

1F0

2L0
, and the latter expression can be arbitrarily far away from the former

whenever L0 is sufficiently small and L1 is distinct from zero. In addition to that, our convergence
rate result does not depend on the gradient norm at the initial point, in contrast to Li et al. (2023)
who consider a wider class of generalized-smooth functions but whose rate (polynomially) depends
on ∥∇f(x0)∥. Also, our rate from Theorem 3.1 is better than O

(
L0F0

ϵ2 +
L2

1F
2
0

ϵ2

)
provided in (Hübler

et al., 2024) for the GM equipped with a certain backtracking line search.

3.2 CONVEX FUNCTIONS

Let us now provide the convergence rate for convex functions.

Theorem 3.2. Let {xk} be the iterates of GM (8) with one of the stepsize choices given in (9) (12)
or (13), as applied to problem (1) with an (L0, L1)-smooth convex function f . Let x∗ be an arbitrary

5
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solution to the problem and let F0 := f(x0)− f∗. Then, the sequence Rk := ∥xk − x∗∥, k ≥ 0, is
nonincreasing, and f(xK)− f∗ ≤ ϵ for any given 0 ≤ ϵ < F0 whenever

K ≥ 2

a

L0R
2

ϵ
+

3

a
L1R ln

F0

ϵ

(
≤

2 + 3
e

a

L0R
2

ϵ
+

3(1 + 1
e )

a
L2
1R

2
)
,

where R := R0, and a = 1 for stepsizes (9), (12) and a = 1
2 for stepsize (13).

The proof of Theorem 3.2 can be found in Appendix B.3. Notice, that the second estimate O(L0R
2

ϵ +

L2
1R

2) in Theorem 3.2 comes from a very pessimistic bound on F0 with the exponentially large
quantity exp(L1R)

L0R
2

2ϵ coming from Lemmas 2.2 and A.4. However, in the case when F0 is
reasonably bounded (e.g., we apply “hot-start” or f is a well-behaved function such as the logistic
one), the O(L1R ln F0

ϵ ) term from the main estimate can be much smaller than O(L2
1R

2) from the
pessimistic estimate.

In Theorem 3.2, we do not make an assumption on L-smoothness of a function, while this as-
sumption is used in (Koloskova et al., 2023). Moreover, the rate in the theorem is better than

O(L0R
2

ϵ +
√

L
ϵ L1R

2) rate provided in (Koloskova et al., 2023) for clipped GM, since it does not

have 1√
ϵ

dependency on L1 and L. Also, our result does not include the norm ∥∇f(x0)∥ of the
gradient at an initialization point in the estimate, while the rate provided in (Li et al., 2023) does
depend on ∥∇f(x0)∥ which can be large and be an order of L. Consider for example f(x) = 1

p∥x∥
p

(see Proposition A.1) for p > 2 and starting point x0 sufficiently far from the origin, in this case, the
gradient ∥∇f(x0)∥ = ∥x0∥p−1 can be arbitrary large.

4 NORMALIZED GRADIENT METHOD

To run GM from Section 3, it is necessary to know the parameters (L0, L1) in advance. In many
real-life examples, those parameters are unknown, and it might be computationally expensive to
estimate them. Furthermore, for any given function f , the pair (L0, L1) is generally not unique
(see Examples A.1 and A.2), and it is not clear in advance which pair would result in the best
possible convergence rate of our optimization method. To address this issue, in this section, we
present another version of the gradient method that does not require knowing (L0, L1). This is the
normalized gradient method (NGM):

xk+1 = xk −
βk

∥∇f(xk)∥
∇f(xk), k ≥ 0, (15)

where x0 ∈ Rd is a certain starting point, and βk are positive coefficients. The following result
describes the efficiency of the NGM.
Theorem 4.1. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth convex function f . Consider the constant coefficients βk = R̂√

K+1
, 0 ≤ k ≤ K − 1, where

R̂ > 0 is a parameter and K ≥ 1 is the total number of iterations of the method (fixed in advance).
Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{L0R̄

2

ϵ
,
4

9
L2
1R̄

2
}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥, and x∗ is an arbitrary solution of the problem.

The parameter R̂ in the formula for coefficients βk is an estimation of the initial distance R to a
solution, and the best complexity bound of K∗ := O(L0R

2

ϵ + L2
1R

2) is achieved whenever R̂ = R.
Note that, even if R̂ ̸= R, the method still converges but with a slightly worse total complexity of
K∗ρ2, where ρ = max{R

R̂
, R̂R}.

The proof of Theorem 4.1 is based on the following two important facts (Nesterov, 2018, Section 3).
First, under the proper choice of coefficients βk, NGM ensures that the minimal value v∗K among
vk := ⟨∇f(xk),xk−x∗⟩

∥∇f(xk)∥ , 0 ≤ k ≤ K, converges to zero at the rate of R̄√
K

. These quantities vk have

6
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a geometrical meaning—each of them is exactly the distance from the point x∗ to the supporting
hyperplane to the sublevel set of f at the point xk. Second, whenever v∗K converges to zero, so does
min0≤k≤K f(xk)−f∗. Moreover, we can relate the two quantities whenever we can bound, for any
given v ≥ 0, the function residual f(x)− f∗ over the ball ∥x− x∗∥ ≤ v:
Lemma 4.2 ((Nesterov, 2018, Lemma 3.2.1)). Let f : Rd → R be a differentiable convex function.
Then, for any x, y ∈ Rd and4 vf (x; y) :=

[⟨∇f(x),x−y⟩]+
∥∇f(x)∥ , it holds that

f(x)− f(y) ≤ max
z∈Rd

{f(z)− f(y) : ∥z − y∥ ≤ vf (x; y)}. (16)

In our case—when the function f is (L0, L1)-smooth—the corresponding bound can be obtained
from Lemma 2.2. The complete proof of Theorem 4.1 can be found in Appendix C.

In Theorem 4.1, we fix the number of iterations K before running the method, which is a standard
approach for the (normalized)-(sub)gradient methods (Section 3.2 in Nesterov (2018)). However,
doing so may be undesirable in practice since it becomes difficult to continue running the method if
the time budget was suddenly increased and also prevents the method from using larger stepsizes at
the initial iterations. To overcome these drawbacks, one can use time-varying coefficients by setting
βk = R̂√

k+1
, 0 ≤ k ≤ K − 1. This results in the same worst-case theoretical complexity as in

Theorem 4.1 but with an extra logarithmic factor (see Theorem C.2). Moreover, one can completely
eliminate this extra logarithmic factor by switching to an appropriate modification of the standard
(sub)gradient method such as Dual Averaging Nesterov (2005).

For R̂ = R, the complexity of NGM is O(L0R
2

ϵ + L2
1R

2) which is generally worse than that of the
previously considered GM (see Theorem 3.2 and the corresponding discussion). However, recall
that GM requires knowing (L0, L1), and its rate depends on the particular choice of these constants.
In contrast, NGM does not require the knowledge of these parameters, and its “real” complexity is

O(1) min
L0,L1

{L2
0R̄

2

ϵ
+ L2

1R̄
2 : f is (L0, L1)-smooth

}
,

where O(1) is an absolute constant.

5 GRADIENT METHOD WITH POLYAK STEPSIZES

In the previous sections, the parameters required to run the methods were L0, L1 for GM, and the
estimation R̂ of the initial distance for a solution R for NGM. To achieve good complexity for
NGM, the estimate R̂ should be close to real R, otherwise the multiplicative factor {R

R̂
, R̂R} will

lead to an arbitrary large complexity estimate. Sometimes, parameters L0, L1 and a good estimate
R̂ are unknown, while the optimal value of the function is available. One of the examples of such
problems is over-parametrized models in machine learning where f∗ is usually 0.

In this section, we focus on the case when f∗ is known and analyze the gradient method (8) with the
Polyak stepsizes:

ηk =
f(xk)− f∗

∥∇f(xk)∥2
, k ≥ 0. (17)

Theorem 5.1. Let {xk} be the iterates of PS-GM (8), (17), as applied to problem (1) with an
(L0, L1)-smooth convex function f . Then, it holds that min0≤k≤K f(xk) − f∗ ≤ ϵ for any given
ϵ > 0 whenever

K + 1 ≥ max
{4L0R

2

ϵ
, 36L2

1R
2
}
,

where R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of the problem.

We prove the theorem by using a standard inequality for the gradient method with Polyak stepsizes
(PS-GM) for convex functions,

R2
k −R2

k+1 ≥ f2k
g2k
,

4Here [t]+ := max{t, 0} is the nonnegative part of t ∈ R.

7
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where Rk = ∥xk − x∗∥, fk = f(xk) − f∗, and gk = ∥∇f(xk)∥. We then leverage the lower
bound (7), and bound gradient norm gk by ψ−1(fk), where ψ(g) := g2

2L0+3L1g
, obtaining

R2
k −R2

k+1 ≥ f2k
[ψ−1(fk)]2

.

Summing up these relations, passing to the minimal value of fk, and rearranging the resulting
inequality, we obtain the desired bound. The complete proof of Theorem 5.1 can be found Ap-
pendix D.1.

Notice that the rate O(L0R
2

ϵ + L2
1R

2) in Theorem 5.1 is the same as the rate NGM in Theorem 4.1.

Further, our rate is better than O(L0R
2

ϵ +
√

L
ϵ L1R

2) provided in Takezawa et al. (2024), since it
does not have a dependency on ϵ with respect to L1 and L parameters. Furthermore, it is more
general since we do not assume L-smoothness of the function. Finally, it is worth mentioning that
the rate for PS-GM holds for any choice of (L0, L1). Thus, the rate holds for the best choice of
(L0, L1) pair and is the same as for the NGM.

6 ACCELERATED GRADIENT METHOD

This section focuses on developing an accelerated method for minimizing an (L0, L1)-smooth func-
tion f .

We start with the following observation. Consider a point x ∈ Rd with ∥∇f(x)∥ ≤ L0

L1
. Then, by

the definition of (L0, L1)-smoothness, ∥∇2f(x)∥ ≤ L0+L1∥∇f(x)∥ ≤ 2L0. Hence, in the region

Q :=
{
x ∈ Rd : ∥∇f(x)∥ ≤ L0

L1

}
,

the function f behaves like a standard 2L0-smooth function. Consequently, we may try to apply the
Fast Gradient Method (FGM) to minimize f expecting (after we have found an initial point inQ) the

O(
√

L0R2

ϵ ) oracle complexity for finding an ϵ-approximate solution, where R is the initial distance
to the solution. The problem with the above approach is ensuring that the iterates of FGM stay
in Q. In general, the set Q may have a complicated structure and might even be nonconvex. One
reasonable idea is to find another, better-structured region, contained in Q in which we can keep all
the iterates of the method. A good candidate for such a region is the initial feasible set

F0 := {x ∈ Rd : f(x) ≤ f(x0)}. (18)

According to Lemma 2.3, for any x ∈ F0, we can upper bound the corresponding gradient norm by
the function residual which is, in turn, bounded by the initial function residual:

ψ(∥∇f(x)∥) ≤ f(x)− f∗ ≤ f(x0)− f∗ =: F0,

where ψ(γ) := γ2

2L0+3L1γ
. Since ψ is increasing, to ensure that ∥∇f(x)∥ ≤ L0

L1
, it suffices to require

that the initial function residual is sufficiently small:

F0 ≤ ψ
(L0

L1

)
≡ L0

5L2
1

=: ∆. (19)

Thus, whenever F0 ≤ ∆, we have the inclusion F0 ⊆ Q, meaning that the function f is 2L0-
smooth over F0. Note that we can find an initial point x0 satisfying (19) by using any of our
basic (nonaccelerated) methods considered previously. For instance, running GM from Section 3
from a certain initial point xs, we can ensure (19) in O(L0R

2

∆ + L2
1R

2) = O(L2
1R

2) gradient-
oracle queries, where R = ∥xs − x∗∥ (see Theorem 3.2); furthermore, the obtained point x0 does
not go far from x∗ compared to our initial point xs, specifically, it holds that ∥x0 − x∗∥ ≤ R
(again, see Theorem 3.2). Thus, if we could guarantee that FGM, when started from x0, keeps its

iterates in the initial sublevel set F0, we would obtain the total complexity of O(
√

L0R2

ϵ + L2
1R

2),
which is better than that of the basic methods (at least in the case when ϵ is not too large).

However, for most classical versions of FGM (such as those presented in Nesterov (2018)), the

8
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Algorithm 1 AGMsDR(x0, T (·), L,K) Nesterov et al. (2021)

1: Input: Initial point x0 ∈ Rd, update rule T (·), constant L > 0, number of iterations K ≥ 1.
2: v0 = x0, A0 = 0, ζ0(x) = 1

2
∥x− x0∥2.

3: for k = 0, 1, . . . ,K − 1 do
4: yk = argminy{f(y) : y = vk + β(xk − vk), β ∈ [0, 1]}.
5: xk+1 = T (yk).
6: Find ak+1 > 0 from the equation La2

k+1 = Ak + ak+1. Set Ak+1 = Ak + ak+1.
7: vk+1 = argminx∈Rd{ζk+1(x) := ζk(x) + ak+1[f(yk) + ⟨∇f(yk), x− yk⟩]}.

return xK .

Algorithm 2 Two-Stage Acceleration Procedure

1: Input: Initial point xs ∈ Rd, constants ∆, L > 0, update rule T (·), number of iterations K.
2: Run GM with stepsize rule (9), (12) or (13) from xs to get x0 : f(x0)− f∗ ≤ ∆.
3: return xK = AGMsDR(x0, T (·), L,K).

monotonic decrease of the function value cannot be guaranteed. Nevertheless, one monotone version
of FGM does exist, namely, the Accelerated Gradient Method with Small-Dimensional Relaxation
(AGMsDR) (Nesterov et al., 2021). We present this method in Algorithm 1, in a slightly more
general form compared to the original work. Specifically, instead of computing the point xk+1 by
the standard gradient step from a point yk, we allow to use any update rule T (·) : Rd → Rd, as long
as it ensures a sufficient decrease in the function value:

f(x)− f(T (x)) ≥ 1

2L
∥∇f(x)∥2, ∀x ∈ F0. (20)

where L > 0 is a certain fixed constant. As long as there exists such a T (·) for our function class, we
can prove that the points xk and yk constructed by the method remain in F0, and f(xk) converges
at the O(LR

2

k2 ) rate (see Appendix E.1 for the proof):
Theorem 6.1. Consider problem (1) with a differentiable convex objective f . Let AGMsDR (Algo-
rithm 1) be applied to solving this problem, given an update rule T (·) satisfying, for a certain fixed
constant L > 0, the sufficient decrease property (20) over the initial sublevel set (18). Then, for all
k ≥ 0, it holds that

f(xk+1) ≤ f(yk) ≤ f(xk), f(xk)− f∗ ≤ 2LR2

k2
,

where R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of the problem.

For our class of (L0, L1)-smooth functions, we can choose T (·) as the gradient step T (x) = x −
ηx∇f(x) with any of the stepsize rules (9), (12), or (13) (with xk replaced by x). Then, according to
Lemma B.1 and the fact that, under our assumption (19), for any x ∈ F0, it holds that ∥∇f(x)∥ ≤
L0

L1
, we obtain

f(x)− f(T (x)) ≥ a∥∇f(x)∥2

2L0 + 3L1∥∇f(x)∥
≥ a

5L0
∥∇f(x)∥2,

where a = 1 for stepsize rules (9), (12), and a = 1
2 for stepsize rule (13). Thus, such a T (·) indeed

satisfies (20) with

L =
5

2a
L0. (21)

We are now ready to formally define our two-stage acceleration procedure, see Algorithm 2. Our
main result can be summarized as follows (see Appendix E.2 for a formal proof):
Theorem 6.2. Consider problem (1) with an (L0, L1)-smooth convex function f . Let xK be the
output of Algorithm 2 as applied to solving this problem with ∆ given by (19), T (·) being the
gradient update T (x) = x− ηx∇f(x) with any of the stepsize rules (9), (12), or (13), and L given
by (21), where a = 1 for stepsize rules (9), (12) and a = 1

2 for stepsize rule (13). Then, to ensure
that f(xK)− f∗ ≤ ϵ for a given 0 < ϵ<∆ and an appropriately chosen K, the algorithm requires
at most the following number of first-order oracle queries:

(m+ 1)

⌈√
5L0R2

aϵ

⌉
+

⌈
13 + 18

e

a
L2
1R

2

⌉
.

9
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where R := ∥xs − x∗∥, x∗ is an arbitrary solution of the problem, and m ≥ 1 is the number of
oracle queries needed to compute yk at each iteration of AGMsDR (Algorithm 1).

Observe that, at every step, AGMsDR requires solving a certain one-dimensional subproblem to
find yk, which we assume can be done in at most m oracle queries. For many practical problems,
this subproblem can usually be solved quite efficiently, so the extra factor m in the complexity es-
timate from Theorem 6.2 is typically insignificant. Nevertheless, from the theoretical point of view,
understanding how to to completely remove the one-dimensional search (as in the standard FGM for
Lipschitz-smooth functions) is still an important question which we leave for future research.

Let us now compare the obtained complexity with that of other existing accelerated methods. In Li

et al. (2023), the authors showed O((L2
1R

2 +
L2

1F0

L0
+ 1)

√
F0+L0R2

ϵ ) complexity for Nesterov Ac-
celerated Gradient (NAG) method, which is significantly worse than ours. Even when F0 satis-

fies (19), NAG complexity simplifies to O((L2
1R

2 + 1)
√

L0R2

ϵ ); while our bound have summa-
tion instead of a product of two terms which is significantly better. In (Gorbunov et al., 2024),
the complexity estimate for a normalized variant of Similar Triangles Method Max (STM-Max)

is O(1) exp(O(1)L1R)
√

L0R2

ϵ which is also worse than our rate provided in Theorem 6.2 and is
worse than the complexity of NAG when (19) holds. Both STM and NAG do not guarantee the
monotonic decrease of the value function; both methods can escape the initial sublevel set F0, and
consequently, the gradient norm might increase during optimization. While our Algorithm 2 guar-
antees that after the first stage, the gradient norm becomes smaller than L0

L1
and all the iterates of

the second stage maintain this property and stay in the sublevel set F0 by construction. However,
Algorithm 2 requires additional knowledge of f∗ to stop the first stage of the procedure.

7 CONCLUSION

This work investigates gradient methods for (L0, L1)-smooth optimization problems. We have pro-
vided new insights into this function class and presented examples along with the operations preserv-
ing the (L0, L1)-smoothness. Moreover, we have provided new properties of the function class that
have rendered tighter bounds on the descent inequalities. Based on these tighter bounds, we derived
new stepsizes for the gradient method and connected them with normalized and clipped stepsizes.
For such stepsizes, we have shown the best-known O(L0F0

ϵ2 + L1F0

ϵ ) complexity for finding an ϵ-
stationary point in non-convex problems. For convex problems, we have significantly improved the
existing results and obtained the O(L0R

2

ϵ + L1R ln F0

ϵ ) complexity for the gradient method with
our stepsizes. We have also analyzed the gradient method with Polyak stepsizes and a normalized
gradient method that achieve O(L0R

2

ϵ +L2
1R

2) complexity bound, which is significantly better than
previously known complexity bounds. Both of these methods are useful because they automatically
adjust to the best possible pair of possible parameters (L0, L1). Finally, we have proposed a new
procedure by combining our results on the gradient method with the AGMsDR method, and showed

fast O(m
√

L0R2

ϵ + L2
1R

2) complexity bound which does not have the dependency on the initial
gradient norm and does not have an exponential dependency on L1, in contrast to previous works.
Whether it is possible to eliminate the line search for determining yk in AGMsDR method is an
interesting open question for further research. Another interesting question is how to improve the
L2
1R

2 complexity of the first phase.
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A MISSING PROOFS IN SECTION 2

A.1 PROOF OF LEMMA 2.2

Proof. [(2) =⇒ (3)] Let x, y ∈ Rd be arbitrary and let h := y − x ̸= 0 (otherwise the claim is
trivial). Then, for any t ∈ [0, 1], using (2), we can estimate

∥∇f(x+th)−∇f(x)∥ ≤ ∥h∥
∫ t

0

∥∇2f(x+τh)∥dτ ≤ ∥h∥
∫ t

0

(L0+L1∥∇f(x+τh)∥)dτ =: ν(t).

Our goal is to upper bound ν(1). We may assume that L1 > 0 since otherwise ν(1) = L0∥h∥ and
the proof is finished. Differentiating, we obtain, for any t ∈ [0, 1],

ν′(t) = L0∥h∥+ L1∥h∥∥∇f(x+ th)∥ ≤ (L0 + L1∥∇f(x)∥)∥h∥+ L1∥h∥ν(t),

where the final bound is due to the triangle inequality and the previous display. Hence, for any
t ∈ [0, 1], we have

d

dt
ln
[
(L0 + L1∥∇f(x)∥+ ϵ)∥h∥+ L1∥h∥ν(t)

]
≤ L1∥h∥,

where ϵ > 0 is arbitrary5. Integrating this inequality in t ∈ [0, 1] and noting that ν(0) = 0, we get

ln
L0 + L1∥∇f(x)∥+ ϵ+ L1ν(1)

L0 + L1∥∇f(x)∥+ ϵ
≤ L1∥h∥,

or, equivalently,

ν(1) ≤ (L0 + L1∥∇f(x)∥+ ϵ)
eL1∥h∥ − 1

L1
.

Passing now to the limit as ϵ→ 0, we obtain (3).

[(3) =⇒ (4)] Let x, y ∈ Rd be arbitrary points and let h := y−x. Then, using (3), we can estimate

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤
∫ 1

0

|⟨∇f(x+ th)−∇f(x), h⟩|dt

≤ (L0 + L1∥∇f(x)∥)∥h∥
∫ 1

0

eL1∥h∥t − 1

L1
dt = (L0 + L1∥∇f(x)∥)

eL1∥h∥ − L1∥h∥ − 1

L2
1

,

which is exactly (4).

[(4) =⇒ (2)] Let us fix an arbitrary point x ∈ Rd and an arbitrary unit vector h ∈ Rd. Then, for
any t > 0, it follows from (4) that

|f(x+ th)− f(x)− t⟨∇f(x), h⟩| ≤ (L0 + L1∥∇f(x)∥)
eL1t − L1t− 1

L2
1

.

Dividing both sides by t2 and passing to the limit as t→ 0, we get

|⟨∇2f(x)h, h⟩| ≤ L0 + L1∥∇f(x)∥.

This proves (2) since the unit vector h was allowed to be arbitrary.

A.2 PROOF OF LEMMA 2.3

Proof. [Proof of (5)] Let x, y ∈ Rd be arbitrary points and let us assume w.l.o.g. that L1 > 0. In
view of the convexity of f and (4), for any h ∈ Rd, we can write the following two inequalities:

0 ≤ f(y + h)− f(x)− ⟨∇f(x), y + h− x⟩

≤ βf (x, y) + ⟨∇f(y)−∇f(x), h⟩+ L0 + L1∥∇f(y)∥
L2
1

ϕ(L1∥h∥),

5This additional term is needed to handle the possibility of L0 + L1∥∇f(x)∥ being zero.
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where βf (x, y) := f(y) − f(x) − ⟨∇f(x), y − x⟩. Denoting a := L0 + L1∥∇f(y)∥ > 0 and
s := ∇f(y)−∇f(x), we therefore obtain

βf (x, y) ≥ max
h∈Rd

{
⟨s, h⟩ − a

L2
1

ϕ(L1∥h∥)
}
= max

r≥0

{
∥s∥r − a

L2
1

ϕ(L1r)
}
=

a

L2
1

ϕ∗

(L1∥s∥
a

)
.

[Proof of (6)] Summing up (5) with the same inequality but x and y interchanged, we obtain (6).

[Proof of (7)] By using a lower bound ϕ∗(γ) ≥ γ2

2+γ in (5) and denoting a = ∥∇f(x) − ∇f(y)∥
and g = ∥∇f(y)∥, we obtain

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1g

L2
1

L2
1a

2

(L0 + L1g)2
L0 + L1g

2(L0 + L1g) + a

= f(x) + ⟨∇f(x), y − x⟩+ a2

2(L0 + L1g) + a
.

A.3 EXAMPLES AND PROPERTIES OF (L0, L1)-SMOOTH FUNCTIONS

Let us present a few simple examples of (L0, L1)-smooth functions.
Example A.1. The function f(x) = 1

p∥x∥
p, where p > 2, is (L0, L1)-smooth with arbitrary L1 > 0

and L0 = (p−2
L1

)p−2.
Example A.2. The function f(x) = ln(1 + ex) is (L0, L1)-smooth with arbitrary L1 ∈ [0, 1] and
L0 = 1

4 (1− L1)
2.

The preceding examples also show that the choice of L0, L1 parameters is generally not unique.
While we cannot guarantee that the class is closed under all standard operations, such as the sum-
mation, affine substitution of the argument, we can still show that some operations do preserve
(L0, L1)-smoothness under certain additional assumptions.
Proposition A.3. Let f : Rd → R be a twice continuously differentiable (L0, L1)-smooth function.
Then, the following statements hold:

1. Let g : Rd → R be an L-smooth and M -Lipschitz twice continuously differentiable function.
Then, the sum f + g is (L′

0, L
′
1)-smooth with L′

0 = L0 +ML1 + L and L′
1 = L1.

2. Let fi : Rdi → R be an (L0,i, L1,i)-smooth function for each i = 1, . . . , n. Then, the function
h : Rd1 × . . .×Rdn → R given by h(x) =

∑n
i=1 fi(xi), where x = (x1, . . . , xn), is (L0, L1)-

smooth with L0 = max1≤i≤n L0,i and L1 = max1≤i≤n L1,i.

3. If f is univariate (d = 1) and h(x) = f(⟨a, x⟩ + b), x ∈ Rd, where a ∈ Rd, b ∈ R, then h is
(L′

0, L
′
1)-smooth with parameters L′

0 = ∥a∥2L0 and L′
1 = ∥a∥L1.

4. Let additionally ∇2f(x) ≻ 0 for all x ∈ Rd and f be 1-coercive6. Then, f is (L0, L1)-smooth
iff its conjugate f∗ (which is, under our assumptions, defined on the entire space and also twice
continuously differentiable) satisfies ∇2f∗(s) ⪰ 1

L0+L1∥s∥I for all s ∈ Rd, where I is the
identity matrix.

One simple example of the additive term g satisfying the assumptions in the first item of Propo-
sition A.3 is an affine function (for which L = 0); another interesting example is the soft-max
function g(x) = µ ln(

∑m
i=1 e

[⟨ai,x⟩+bi]/µ), where ai ∈ Rd, bi ∈ R, µ > 0. Based on the second
statement of Proposition A.3 and Example A.1, the function f(x) = 1

p∥x∥
p
p ≡ 1

p

∑d
i=1 |xi|p with

p > 2 is (L0, L1)-smooth with arbitrary L1 > 0 and L0 = (p−2
L1

)p−2. Using the third statement,
we can generalize Example A.2 and conclude that f(x) = ln(1 + e⟨a,x⟩) is also (L0, L1)-smooth
with arbitrary L1 ∈ [0, ∥a∥] and L0 = 1

4 (∥a∥ − L1)
2. Also, we can use the last statement of the

proposition to show that f(x) = L0

L2
1
ϕ(L1∥x∥) ≡ L0

L2
1
(eL1∥x∥−L1∥x∥−1) is (L0, L1)-smooth since

the Hessian of its conjugate f∗(s) = L0

L2
1
ϕ∗(

L1∥s∥
L0

) ≡ L0

L2
1
[(1+ L1∥s∥

L0
) ln(1+ L1∥s∥

L0
)− L1∥s∥

L0
] has the

6This means that f(x)
∥x∥ → +∞ as ∥x∥ → ∞.
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form ∇2f∗(s) =
1

L0+L1∥s∥I . In particular, we can construct an (L0, L1)-smooth function by taking
any convex function h∗, adding to it ϕ∗ and taking the conjugate (this corresponds to the infimal
convolution of h with ϕ).

A.4 PROOF OF EXAMPLE A.1

Proof. Differentiating, we obtain, for any x ∈ Rd,

∇f(x) = ∥x∥p−2x, ∇2f(x) = ∥x∥p−2

(
I + (p− 2)

xx⊤

∥x∥2

)
,

where I is the identity matrix. Hence, for any L1 > 0, the minimal value of L0 satisfying the
inequality from Definition 2.1 is given by

L0 = max
x∈Rd

{
∥∇2f(x)∥ − L1∥∇f(x)∥

}
= max
x∈Rd

{
(p− 1)∥x∥p−2 − L1∥x∥p−1

}
= max

τ≥0

{
(p− 1)τ

p−2
p−1 − L1τ

}
.

The solution of the latter problem is τ∗ = (p−2
L1

)p−1. Substituting this value, we obtain

L0 = (p− 1)
(p− 2

L1

)p−2

− L1

(p− 2

L1

)p−1

=
(p− 2

L1

)p−2

.

A.5 PROOF OF EXAMPLE A.2

Proof. Differentiating, we obtain, for any x ∈ R,

f ′(x) =
ex

1 + ex
∈ (0, 1), f ′′(x) =

ex

(1 + ex)2
= f ′(x)(1− f ′(x)).

Thus, for any L1 ∈ [0, 1], the minimal value of L0 satisfying the inequality from Definition 2.1 is

L0 = max
x∈R

{|f ′′(x)| − L1|f ′(x)|} = max
τ∈(0,1)

{τ(1− τ)− L1τ}

= max
τ∈(0,1)

{(1− L1)τ − τ2} =
1

4
(1− L1)

2.

A.6 PROOF OF PROPOSITION A.3

Proof. [Claim 1] Since, g and ∇g are M and L Lipschitz continuous, ∥∇g(x)∥ ≤ M and
∥∇2g(x)∥ ≤ L for all x ∈ R. Let F = f + g, then, for any x ∈ Rd, we can estimate

∥∇2F (x)∥ ≤ ∥∇2f(x)∥+ ∥∇2g(x)∥ ≤ L0 + L+ L1∥∇f(x)∥
≤ L0 + L+ L1∥∇g(x)∥+ L1∥∇F (x)∥
≤ (L0 + L1M + L) + L1∥∇F (x)∥.

[Claim 2] Notice, that the gradient of f is ∇f(x) = (∇f1(x1)⊤, . . . ,∇fn(xn)⊤)⊤ and the Hessian
of f is ∇2f(x) is a block-diagonal matrix, with ∇2fi(xi) blocks. Thus,

∥∇2f(x)∥ = max
1≤i≤n

∥∇2fi(xi)∥ ≤ max
1≤i≤n

{L0,i + L1,i∥∇fi(xi)∥}

≤ max
1≤i≤n

{L0,i + L1,i∥∇f(x)∥} ≤ max
1≤i≤n

L0,i + ( max
1≤i≤n

L1,i)∥∇f(x)∥.

[Claim 3] Observe that the gradient of a function is ∇f(x) = g′(⟨a, x⟩ + b)a, and the Hessian is
∇2f(x) = g′′(⟨a, x⟩+ b)aa⊤. Hence,

∥∇2f(x)∥ = |g′′(⟨a, x⟩+ b)|∥a∥2 ≤ (L0 + L1|g′(⟨a, x⟩+ b)|)∥a∥2

= L0∥a∥2 + ∥a∥L1∥∇f(x)∥.
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[Claim 4] Under our assumptions, s = ∇f(x) is a one-to-one transformation from Rd to Rd (whose
inverse transformation is x = ∇f∗(s)); moreover, the Hessians at such a pair of points are inverse
to each other: ∇2f∗(s) = [∇2f(x)]−1 (see, e.g., Corollaries 4.1.4 and 4.2.10 in Hiriart-Urruty &
Lemaréchal (1993), as well as Example 11.9 from Rockafellar & Wets (2009)). Thus, for any pair of
points x, s ∈ Rd such that s = ∇f(x), our assumption ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ which, due
to the convexity of f , can be equivalently rewritten as ∇2f(x) ⪯ (L0+L1∥∇f(x)∥)I , is equivalent
to

∇2f∗(s) ≡ [∇2f(x)]−1 ⪰ 1

L0 + L1∥∇f(x)∥
I ≡ 1

L0 + L1∥s∥
I.

This proves the claim since the transformation s = ∇f(x) is one-to-one.

A.7 PROOF OF LEMMA A.4

In our analysis, we often use certain properties of the function ϕ and its conjugate7 ϕ∗, which we
summarize in the following lemma (see Appendix A.7 for the proof).
Lemma A.4. The following statements for the function ϕ(t) = et − t− 1 hold true:

1. ϕ(t) ≤ t2

2(1− t
3 )

for all t ∈ [0, 3) and ϕ(t) ≤ t2

2 e
t for all t ≥ 0.

2. ϕ∗(γ) := maxt≥0{γt− ϕ(t)} = (1 + γ) ln(1 + γ)− γ for any γ ≥ 0.

3. γ2

2+γ ≤ ϕ∗(γ) ≤ γ2

2 for all γ ≥ 0.

Proof. [Claim 1] Indeed, for any t ∈ [0, 3), we have

ϕ(t) = et − t− 1 =

∞∑
i=2

ti

i!
=

∞∑
i=0

t2+i

(2 + i)!
=
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

3i
=

t2

2(1− t
3 )
.

Similarly, for any t ≥ 0,

ϕ(t) =
t2

2

∞∑
i=0

ti∏2+i
j=3 j

≤ t2

2

∞∑
i=0

ti

i!
=
t2

2
et.

[Claim 2] By the definition, for any γ ≥ 0, we have
ϕ∗(γ) = max

t≥0
{γt− ϕ(t)} = max

t≥0
{(1 + γ)t− et}+ 1.

Differentiating, we see that the solution of this optimization problem is t∗ = ln(1 + γ). Hence,
ϕ∗(γ) = (1 + γ) ln(1 + γ)− (1 + γ) + 1 = (1 + γ) ln(1 + γ)− γ.

[Claim 3] We first show that, for any γ ≥ 0,

ln(1 + γ) ≥ 2γ

2 + γ
.

Since both functions coincide at γ = 0, it suffices to verify the corresponding inequality for the
derivatives:

1

1 + γ
≥ 4

(2 + γ)2
≡ 4

4 + 4γ + γ2
≡ 1

1 + γ + γ2

4

.

But this is obviously true. Applying the derived inequality, we get, for any γ ≥ 0,

ϕ∗(γ) ≡ (1 + γ) ln(1 + γ)− γ ≥ 2γ(1 + γ)

2 + γ
− γ =

γ[2(1 + γ)− (2 + γ)]

2 + γ
=

γ2

2 + γ
,

which proves the first part of the claim.

For the second part, we note that ϕ∗(γ) and γ2

2 coincide at γ = 0. Hence, it suffices to check the
corresponding inequality for the derivatives, i.e., to verify that, for all γ ≥ 0,

ϕ′∗(γ) ≡ ln(1 + γ) ≤ γ.

But this follows from the concavity of the logarithm.
7The conjugate function is defined in the standard way: ϕ∗(γ) := maxt≥0{γt− ϕ(t)}.
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B MISSING PROOFS IN SECTION 3

B.1 ONE-STEP PROGRESS

Lemma B.1. Let f : Rd → R be an (L0, L1)-smooth function, let x ∈ Rd, and let T (x) =
x− η∇f(x), where η is given by one of the following formulas:

(1) η∗ =
1

L1∥∇f(x)∥
ln
(
1 +

L1∥∇f(x)∥
L0 + L1∥∇f(x)∥

)
, (2) ηsi =

1

L0 +
3
2L1∥∇f(x)∥

,

(3) ηcl = min
{ 1

2L0
,

1

3L1∥∇f(x)∥

}
.

Then,

f(x)− f(T (x)) ≥ a∥∇f(x)∥2

2L0 + 3L1∥∇f(x)∥
,

where a = 1 in cases (1) and (2), and a = 1
2 in case (3).

Proof. [Case (1)] The proof of this case was already presented in Section 3.

For the other two cases, we start by applying Lemma 2.2 to get

∆ := f(x)− f(T (x)) ≥ ⟨∇f(x), x− T (x)⟩ − L0 + L1∥∇f(x)∥
L2
1

ϕ(L1∥T (x)− x∥)

= η∗g
2 − L0 + L1g

L2
1

ϕ(η∗L1g),

where g := ∥∇f(x)∥ and ϕ(t) = et − t− 1.

[Case (2)] Estimating ϕ(t) ≤ 3t2

6−2t ≤ t2

2−t (Lemma A.4) and substituting the definition of ηsi, we
can continue as follows:

∆ ≥ ηsig
2 − L0 + L1g

L2
1

η2siL
2
1g

2

2− ηsiL1g
=

(
1− (L0 + L1g)ηsi

2− ηsiL1g

)
ηsig

2

=

(
1− L0 + L1g

(L0 +
3
2L1g)(2− L1g

L0+
3
2L1g

)

)
g2

L0 +
3
2L1g

=
g2

2L0 + 3L1g
.

[Case (3)] Observe that

1

2L0 + 3L1g
≤ ηcl ≡

1

max{2L0, 3L1g}
≤ 1

L0 +
3
2L1g

.

Combining these bounds with ϕ(t) ≤ 3t2

6−2t (Lemma A.4 (1)), we get

∆ ≥ ηclg
2 − L0 + L1g

L2
1

3L2
1η

2
clg

2

6− 2ηclL1g
=

(
1− 3ηcl(L0 + L1g)

6− 2ηclL1g

)
ηclg

2

≥
(
1− 3(L0 + L1g)

(L0 +
3
2L1g)(6− 2L1g

L0+
3
2L1g

)

)
g2

2L0 + 3L1g

=

(
1− 3(L0 + L1g)

6L0 + 7L1g

)
g2

2L0 + 3L1g
≥ 1

2

g2

2L0 + 3L1g
.

B.2 PROOF OF THEOREM 3.1

Proof. According to Lemma B.1, for any k ≥ 0, we have

f(xk)− f(xk+1) ≥
a∥∇f(xk)∥2

2L0 + 3L1∥∇f(xk)∥
,
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where a is an absolute constant defined in the statement depending on the stepsize choice. Denote
fk = f(xk)− f∗ (≥ 0) and gk = ∥∇f(xk)∥. In this notation, the above inequality reads

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
.

Summing up these inequalities for all 0 ≤ k ≤ K and denoting g∗K = min0≤k≤K gk, we get

F0 ≥ f0 − fK ≥ a

K∑
k=0

ψ(gk) ≥ a(K + 1)ψ(g∗K),

where the final inequality holds since ψ is an increasing function. Denoting the corresponding
inverse function by ψ−1, we come to the conclusion that

g∗K ≤ ψ−1
( F0

a(K + 1)

)
≤ ϵ

whenever
F0

a(K + 1)
≤ ψ(ϵ),

or, equivalently,

K + 1 ≥ F0

aψ(ϵ)
≡ 2L0F0

aϵ2
+

3L1F0

aϵ
.

B.3 PROOF OF THEOREM 3.2

First, we prove that the distance to the solution is nonincreasing.

Lemma B.2. Under the conditions of Theorem 3.2, we have Rk+1 ≤ Rk for any k ≥ 0.

Proof. Let k ≥ 0 be arbitrary and denote βk = ⟨∇f(xk), xk−x∗⟩ and gk = ∥∇f(xk)∥. According
to the update rule of the method, we have

R2
k+1 = R2

k − 2ηkβk + η2kg
2
k.

Therefore, to prove that Rk+1 ≤ Rk, we need to show that

ηkg
2
k ≤ 2βk.

Applying bound (7) twice, we see that

βk ≡ [f(xk)− f∗] + [f∗ − f(xk)− ⟨∇f(xk), x∗ − xk⟩]

≥ g2k
2L0 + 3L1gk

+
g2k

2L0 + L1gk
≥ g2k
L0 + L1gk

,

where the final inequality follows from the fact that 1
a + 1

b ≥ 4
a+b (convexity of t 7→ 1

t ). Thus, we
need to check if

ηk ≤ 2

L0 + L1gk
. (22)

Furthermore, it suffices to check this inequality only for the largest among the three stepsizes we
consider. According to (14), this is stepsize (9). Applying ln(1 + γ) ≤ γ (which holds for any
γ ≥ 0), we see that

η∗k ≡ 1

L1gk
ln
(
1 +

L1gk
L0 + L1gk

)
≤ 1

L0 + L1gk
,

so (22) is indeed satisfied.

Now we can prove the theorem.
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Proof of Theorem 3.2. Let k ≥ 0 be arbitrary and denote fk := f(xk) − f∗ and gk := ∥∇f(xk)∥.
According to Lemma B.1, we have

fk − fk+1 ≥ aψ(gk), ψ(γ) :=
γ2

2L0 + 3L1γ
,

where a is an absolute constant defined in the statement depending on the stepsize choice. Further,
according to Lemma B.2, the distances Rk := ∥xk − x∗∥ are nonincreasing. In particular, Rk ≤
R0 ≡ R. Hence, in view of the convexity of f , we can estimate

fk ≤ ⟨∇f(xk), xk − x∗⟩ ≤ gkRk ≤ gkR.

Combining the above two displays and using the fact that the function ψ is increasing, we obtain

fk − fk+1 ≥ aψ
(fk
R

)
.

Consequently,

a ≤ fk − fk+1

ψ( fkR )
≤

∫ fk

fk+1

dt

ψ( tR )
=

∫ fk

fk+1

(2L0R
2

t2
+

3L1R

t

)
dt

= 2L0R
2
( 1

fk+1
− 1

fk

)
+ 3L1R ln

fk
fk+1

.

Summing up these inequalities for all 0 ≤ k ≤ K − 1 and dropping the negative 1
f0

term, we get

aK ≤ 2L0R
2

fK
+ 3L1R ln

f0
fK

.

Hence, fK ≤ ϵ whenever

K ≥ 2L0R
2

aϵ
+

3

a
L1R ln

f0
ϵ

=: K(ϵ).

To upper bound K(ϵ), we first estimate f0 using Lemmas 2.2 and A.4:

f0 ≤ L0

L2
1

ϕ(L1R) ≤
L0R

2

2
eL1R.

This gives us

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3L1R

(
L1R+ ln

L0R
2

ϵ

)
=

2L0R
2

ϵ
+ 3L2

1R
2 + 6L1R ln

(√
L0R2

ϵ

)
.

Estimating ln t ≤ t
e (holding for any t > 0) and applying the AM-GM inequality, we get

aK(ϵ) ≤ 2L0R
2

ϵ
+ 3L2

1R
2 +

6

e

√
L0R2

ϵ
· L2

1R
2 ≤

(2 + 3
e )L0R

2

ϵ
+

(
3 +

3

e

)
L2
1R

2.

C MISSING PROOFS IN SECTION 4

C.1 GENERAL RESULT

Lemma C.1. Let {xk} be the iterates of NGM (15) with arbitrary coefficients βk > 0, as applied
to problem (1) with an (L0, L1)-smooth convex function f . Then, min0≤k≤K f(xk) − f∗ ≤ ϵ for
any given K ≥ 0 and ϵ > 0 whenever

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
,

where R := ∥x0 − x∗∥ is the distance from the initial point to a solution x∗ of the problem.
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Proof. According to (15), for any k ≥ 0, we have
∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

= ∥xk − x∗∥2 − 2βkvk + β2
k,

where vk := ⟨∇f(xk),xk−x∗⟩
∥∇f(xk)∥ (≥ 0). Summing up these relations over k = 0, . . . ,K and rearranging

the terms, we obtain

2

K∑
k=0

βkvk ≤ R2 +

K∑
k=0

β2
k.

Denoting v∗K = min0≤k≤K vk, we get

v∗K ≤
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

=: δK . (23)

Let f∗K := min0≤k≤K f(xk). Then, by Lemma 4.2,
f∗K − f∗ ≤ max

z
{f(z)− f∗ : ∥z − x∗∥ ≤ v∗K}.

Applying Lemma 2.2 and the fact that ϕ(t) ≤ 3t2

6−2t for any t ∈ [0, 3) (Lemma A.4), we obtain

f∗K − f∗ ≤ L0

L2
1

ϕ(L1v
∗
K) ≤ 3L0(v

∗
K)2

6− 2L1v∗K
whenever L1v

∗
k < 3. To achieve the desired accuracy ϵ, it thus suffices to ensure that the following

two inequalities are satisfied:
2L1v

∗
K ≤ 3, L0(v

∗
K)2 ≤ ϵ.

This is equivalent to

v∗K ≤ min
{ 3

2L1
,

√
ϵ

L0

}
=: δ(ϵ),

and follows from δk ≤ δ(ϵ) in view of (23).

C.2 PROOF OF THEOREM 4.1

Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

In our case,

δK =
R2 + R̂2

2R̂
√
K + 1

=
R̄√
K + 1

.

Therefore, δK ≤ δ(ϵ) iff

K + 1 ≥ R̄2

δ2(ϵ)
≡ max

{4

9
L2
1R̄

2,
L0R̄

2

ϵ

}
.

C.3 ANALYSIS FOR TIME-VARYING STEP SIZE

Theorem C.2. Let {xk} be the iterates of NGM (15), as applied to problem (1) with an (L0, L1)-
smooth nonlinear8 convex function f . Consider decreasing coefficients βk = R̂√

k+1
, k ≥ 0, where

R̂ > 0 is a parameter. Then, min0≤k≤K f(xk)− f∗ ≤ ϵ for any given ϵ > 0 whenever

K + 1 ≥ max
{
4NR̄(ϵ),

( e

e− 1

)2

NR̂(ϵ)[ln(4NR̂(ϵ))]
2
+

}
,

where R̄ := 1
2 (
R2

R̂
+ R̂), R := ∥x0 − x∗∥ (x∗ is an arbitrary solution of the problem), and

ND(ϵ) := max
{4

9
L2
1D

2,
L0D

2

ϵ

}
.

8This means that L0 + L1∥∇f(x)∥ > 0 for any x ∈ Rd, see Lemma 2.2.
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Proof. According to Lemma C.1, we need to ensure that

δK :=
R2 +

∑K
k=0 β

2
k

2
∑K
k=0 βk

≤ δ(ϵ) := min

{
3

2L1
,

√
ϵ

L0

}
.

For our choice of βk, we obtain, by standard results (e.g., Lemma 2.6.3 in Rodomanov (2022)), that

K∑
k=0

β2
k = R̂2

K+1∑
k=1

1

k
≤ R̂2[1 + ln(K + 1)],

K∑
k=0

βk = R̂

K+1∑
k=1

1√
k
≥ R̂

√
K + 1.

Hence,

δK ≤ R2 + R̂2[1 + ln(K + 1)]

2R̂
√
K + 1

=
R̄√
K + 1

+
R̂ ln(K + 1)

2
√
K + 1

.

To ensure that δK ≤ δ(ϵ), it suffices to ensure that the following two inequalities are satisfied:

R̄√
K + 1

≤ δ(ϵ)

2
,

R̂ ln(K + 1)√
K + 1

≤ δ(ϵ).

The first inequality is equivalent toK+1 ≥ 4R̄2

δ2 . To get the second one, it suffices to take, according
to Lemma C.3 (with p = 1

2 and δ′ = δ(ϵ)

R̂
),

K + 1 ≥
(

e

e− 1

2R̂

δ(ϵ)

[
ln

2R̂

δ(ϵ)

]
+

)2

≡
( e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+
.

Putting these two inequalities together and substituting our formula for δ(ϵ), we come to the require-
ment that

K + 1 ≥ max

{
4R̄2

δ2(ϵ)
,
( e

e− 1

)2 R̂2

δ2(ϵ)

[
ln

4R̂2

δ2(ϵ)

]2
+

}
= max

{
4NR̄(ϵ),

( e

e− 1

)2

NR̂(ϵ)[ln(4NR̂(ϵ))]
2
+

}
,

where

ND(ϵ) :=
D2

δ2(ϵ)
= max

{4

9
L2
1D

2,
L0D

2

ϵ

}
.

Lemma C.3. For any real p, δ > 0, we have the following implication9:

t ≥
(

e

e− 1

[ln 1
pδ ]+

pδ

) 1
p

=⇒ ln t

tp
≤ δ.

Proof. W.l.o.g., we can assume that p = 1, and our goal is to prove the implication

t ≥ e

e− 1

[ln 1
δ ]+

δ
=: t(δ) =⇒ ϕ(t) :=

ln t

t
≤ δ.

The general case then follows by the change of variables t = (t′)p and δ = pδ′.

Further, we can assume that δ ≤ 1
e since otherwise ϕ(t) ≤ 1

e ≤ δ for any t ≥ 0 (since the maximum
of ϕ is achieved at t∗ = e). Under this additional assumption, [ln 1

δ ]+ = ln 1
δ .

Let us now assume that t ≥ t(δ) (≥ e2

e−1 ≥ e since δ ≤ 1
e ). Since the function ϕ is decreasing on

the interval [e,+∞), we have

ϕ(t) ≤ ϕ(t(δ)) =
ln t(δ)

t(δ)
=

ln t(δ)
e
e−1 ln

1
δ

δ.

9For t = 0, we define by continuity ln t
tp

≡ −∞.
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To finish the proof, it remains to show that the final fraction in the above display is ≤ 1, or, equiva-
lently, that

t(δ) ≡ e

e− 1

ln 1
δ

δ
≤

(1
δ

) e
e−1

.

Rearranging and denoting u := ( 1δ )
1

e−1 , we see that the above inequality is equivalent to

ϕ(u) ≡ lnu

u
≤ 1

e
.

But this is indeed true since ϕ attains its maximum value at u = e.

D MISSING PROOFS IN SECTION 5

D.1 PROOF OF THEOREM 5.1

Proof. Let x∗ be an arbitrary solution. By the method’s update rule and convexity of f(·), we get,
for all k ≥ 0,

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk⟨∇f(xk), xk − x∗⟩+ η2k∥∇f(xk)∥2

≤ ∥xk − x∗∥2 − (f(xk)− f∗)2

∥∇f(xk)∥2
.

Denote Rk = ∥xk − x∗∥, gk = ∥∇f(xk)∥ and fk = f(xk) − f∗. According to Lemma 2.3, for
each k ≥ 0, it holds that

fk ≥ ψ(gk), where ψ(g) :=
g2

2L0 + 3L1g
, g ≥ 0.

Observe that the function ψ is increasing, so its inverse ψ−1 is well-defined and is increasing as
well. In terms of this function, gk ≤ ψ−1(fk) and hence

R2
k −R2

k+1 ≥ f2k
g2k

≥
( fk
ψ−1(fk)

)2

.

Summing up these inequalities over 0 ≤ k ≤ K and rearranging, we get
K∑
k=0

( fk
ψ−1(fk)

)2

≤ R2
0 −R2

K+1 ≤ R2
0 ≡ R2.

Note that ψ
−1(t)
t is increasing in t (as the composition of increasing in γ function ψ(γ)

γ ≡ γ
2L0+3L1γ

with increasing in t function γ = ψ−1(t)). Thus, by taking a minimum over the terms on the
left-hand side of the above display and denoting f∗K := min0≤k≤K fk, we get

(K + 1)
( f∗K
ψ−1(f∗K)

)2

≤ R2.

Rearranging, we obtain

ψ−1(f∗K) ≥
√
K + 1f∗K
R

,

or, equivalently,

f∗K ≥ ψ
(√K + 1f∗K

R

)
≡ (K + 1)(f∗K)2

R2
(
2L0 + 3L1

√
K+1f∗

K

R

) =
(f∗K)2

2L0R2

K+1 + 3L1R√
K+1

f∗K
.

Hence,

f∗K ≤ 2L0R
2

(K + 1)(1− 3L1R
√
K + 1)

,

whenever 3L1R
√
K + 1 < 1. Thus, to achieve desired accuracy ϵ > 0, the number K of iterations

should satisfy the following conditions:

3L1R
√
K + 1 ≤ 1

2
,

4L0R
2

K + 1
≤ ϵ.

Thus, the final iteration complexity is K + 1 ≥ max{ 4L0R
2

ϵ , 36L2
1R

2}.
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E MISSING PROOFS IN SECTION 6

The proof of Theorem 6.1 is similar to the original proof Theorem 1 in Nesterov et al. (2021), but
instead of smoothness of f we use more general property provided in the statement of Theorem 6.1.

E.1 PROOF OF THEOREM 6.1

Proof. Let us prove by induction that, for any k ≥ 0, we have
Akf(xk) ≤ ζ∗k := ζk(vk). (24)

This trivially holds for k = 0 since A0 = 0 and ζ∗0 = 0. Now assume that (24) is satisfied for some
k ≥ 0 and let us prove that it is also satisfied for the next index k′ = k + 1. We start by noting that

ζ∗k+1 = ζk+1(vk+1) = ζk(vk+1) + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ ζ∗k +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩]

≥ Akf(xk) +
1

2
∥vk+1 − vk∥2 + ak+1[f(yk) + ⟨∇f(yk), vk+1 − yk⟩], (25)

where the first inequality holds due to the strong convexity of ζk, and the second one is due to the
induction hypothesis. Further, note that, by construction, yk ∈ [vk, xk]. Considering separately any
of the three possible situations, yk = vk, yk = xk and yk ∈ (vk, xk), we see that, in all cases,

⟨∇f(yk), vk − yk⟩ ≥ 0.

Then, by adding and subtracting ⟨∇f(yk), vk⟩ in (25) and using the estimate in the preceding in-
equality, as well as f(yk) ≤ f(xk) (which holds by construction), we obtain

ζ∗k+1 ≥ Akf(xk) + ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk) +
1

2
∥vk+1 − vk∥2 + ak+1⟨∇f(yk), vk+1 − vk⟩

≥ Ak+1f(yk)−
a2k+1

2
∥∇f(yk)∥2 = Ak+1

[
f(yk)−

1

2L
∥∇f(yk)∥2

]
,

where the final identity is due to fact that, by the definition of ak+1,
La2k+1 = Ak+1. (26)

By the induction hypothesis and by construction, yk stays in the sublevel set F0, since f(yk) ≤
f(xk) ≤ f(x0). Then, by the definition of xk+1 and (20), it holds that f(xk+1) ≤ f(yk) −
1
2L∥∇f(yk)∥

2 (≤ f(yk)). This proves that ζ∗k+1 ≥ Ak+1f(xk+1) completing the induction.

Let k ≥ 1 be arbitrary. By the convexity of f and the definition of Ak, we have

ζ∗k ≤ ζk(x
∗) =

1

2
R2 +

k−1∑
i=0

ai+1[f(yi) + ⟨∇f(yi), x∗ − yi⟩] ≤
1

2
R2 +Akf

∗.

where R = ∥x0 − x∗∥. Combining this with (24), we conclude that

f(xk)− f∗ ≤ LR2

2Ak
. (27)

It remains to estimate the rate of growth of the coefficientsAk. From (26) and the definition ofAk+1,
it follows, for any k ≥ 0, that√

Ak+1

L
= ak+1 = Ak+1 −Ak = (

√
Ak+1 +

√
Ak)(

√
Ak+1 −

√
Ak)

≤ 2
√
Ak+1(

√
Ak+1 −

√
Ak).

Dividing both sides of this inequality by
√
Ak+1 and summing up the result, we see that, for any

k ≥ 1, it holds that

Ak ≥ k2

4L
.

Substituting this estimate into (27), we obtain the claim.
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E.2 PROOF OF THEOREM 6.2

Proof. Based on the second estimate in Theorem 3.2, GM with stepsizes (9), (9), or (13) finds a
point x0, such that f(x0)− f∗ ≤ ∆ with ∆ defined by (19) in the following number of iterations /
oracle queries (note that one iteration needs precisely one gradient computation):

N0 :=

⌈
2 + 3

e

a

L0R
2

L0

5L2
1

+
3(1 + 1

e )

a
L2
1R

2

⌉
=

⌈
13 + 18

e

a
L2
1R

2

⌉
,

where R := ∥xs − x∗∥, and a is an absolute constant from the statement depending on the stepsize
rule. Moreover, for the obtained point x0, it holds that R0 := ∥x0 − x∗∥ ≤ R.

Further, as discussed in the paragraph after Theorem 6.1, for the specific value of ∆ we have chosen,
our update rule T (·) satisfies the sufficient decrease property (20) with L given by (21). Hence, by
Theorem 6.1, after k ≥ 1 iterations of AGMsDR, we have

f(xk)− f∗ ≤ 2LR2
0

k2
=

5L0R
2
0

ak2
≤ 5L0R

2

ak2
.

To obtain f(xk)− f∗ ≤ ϵ, it therefore suffices to perform the following number of iterations:

K(ϵ) :=

⌈√
5L0R2

aϵ

⌉
.

Each iteration of AGMsDR requires one computation of the gradient plus at most m oracle queries
for the line search. Hence, the oracle complexity of AGMsDR is at most

N(ϵ) := (m+ 1)K(ϵ).

Summing up N0 and N(ϵ), we obtained the claimed complexity.

F COMPLEXITY OF NAG

Unfortunately, the NAG algorithm presented in Li et al. (2023) is not scale-invariant and its complex-
ity reported in (Li et al., 2023, Theorem 4.4) is not written explicitly. To streamline the comparison
of the complexity bound for NAG with those for other methods for minimizing an (L0, L1)-smooth
function, we provide a simple fix making the algorithm scale-invariant and also rewrite the result of
(Li et al., 2023, Theorem 4.4) (assuming it is true) in an explicit form.
Theorem F.1. Consider problem (1) with an (L0, L1)-smooth convex function f assuming L0 > 0.
Let NAG Li et al. (2023) be applied to solving the rescaled version of this problem:

f̃∗ := min
x∈Rd

{
f̃(x) :=

1

L0
f(x)

}
,

starting from a certain point x0 ∈ Rd. Then, for an appropriate choice of parameters, NAG finds
a point x̄ ∈ Rd such that f(x̄) − f∗ ≤ ϵ for a given ϵ > 0 after at most the following number of
iterations / gradient-oracle queries:

16
(
128L2

1R
2 +

128L2
1F0

L0
+ 1

)√F0 + L0R2

ϵ
,

where F0 := f(x0)− f∗, R := ∥x0 − x∗∥ and x∗ is an arbitrary solution of our problem.

Proof. By construction, f̃ is an (L̃0, L̃1)-smooth with L̃0 = 1 and L̃1 = L1. In the terminology of
Li et al. (2023), this means that f̃ is ℓ-smooth w.r.t. the function

ℓ(G) := L̃0 + L̃1G ≡ 1 + L1G.

Theorem 4.4 from Li et al. (2023) then tells us that the sequence of the iterates {xt} constructed by
NAG satisfies

f̃(xt)− f̃∗ ≤ 4(F̃0 +R2)

ηt2 + 4
, (28)
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where F̃0 := f̃(x0)− f̃∗, R := ∥x0 − x∗∥, and η > 0 is the stepsize parameter required to satisfy

η ≤ min
{ 1

16[ℓ(2G)]2
,

1

2ℓ(2G)

}
≡ 1

16[ℓ(2G)]2
≡ 1

16(1 + 2L1G)2
, (29)

where G is an arbitrary constant such that

G ≥ max
{
8

√
ℓ(2G)(F̃0 +R2), g̃0

}
≡ max

{
8

√
(1 + 2L1G)(F̃0 +R2), g̃0

}
. (30)

where g̃0 := ∥∇f̃(x0)∥. In terms of our original function f , the guarantee (28) reads

ft := f(xt)− f∗ ≤ 4(F0 + L0R
2)

ηt2 + 4
.

To achieve the fastest possible convergence, we select the largest possible stepsize η which is, ac-
cording to (29),

η =
1

16(1 + 2L1G)2
.

Substituting this formula into the previous display and dropping the (useless for improving the con-
vergence rate) constant 4 from the denominator, we obtain

ft ≤
64(1 + 2L1G)

2(F0 + L0R
2)

t2
≤ ϵ

whenever

t ≥ 8(1 + 2L1G)

√
F0 + L0R2

ϵ
=: t(ϵ). (31)

The obtained t(ϵ) is exactly the iteration complexity of the algorithm for obtaining an ϵ-approximate
solution for the original problem, and is also its gradient oracle complexity since the method makes
precisely one gradient-oracle query at each iteration.

It remains to choose the smallest possible parameter G satisfying (30). We start with rewriting this
inequality in terms of the original function:

G ≥ max
{
8

√
(1 + 2L1G)

(F0

L0
+R2

)
,
g0
L0

}
≡ max

{√
(1 + 2L1G)∆,

g0
L0

}
where g0 := ∥∇f(x0)∥ and ∆ := 64(F0

L0
+ R2). This inequality is equivalent to the system of two

inequalities:

G2 ≥ (1 + 2L1G)∆, G ≥ g0
L0
.

Rearranging, we see that the first inequality is equivalent to

G ≥
√

∆+ L2
1∆

2 + L1∆ =: G∗

Further, it turns out thatG∗ ≥ g0
L0

. Indeed, according to (7), we have F0 ≥ g20
2L0+3L1g0

, meaning that

g0 ≤
√
2L0F0 +

9
4L

2
1F

2
0 + 3

2L1F0 ≤
√
2L0F0 + 3L1F0; on the other hand, estimating ∆ ≥ 64F0

L0
,

we see that L0(
√
∆+L1∆) ≥ 8

√
L0F0+64L1F0. Thus, the smallest possible value ofG satisfying

the original requirement (30) is in fact G = G∗.

Choosing now G = G∗ and substituting the definition of ∆, we obtain

1 + 2L1G =
G2

∗
∆

≤ 2(∆ + L2
1∆

2) + 2L2
1∆

2

∆
= 2(1 + 2L2

1∆) = 2
(
1 +

128L2
1F0

L0
+ 128L2

1R
2
)
.

Substituting this bound into (31), we obtain the claimed bound on t(ϵ).
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(a) p = 4
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(b) p = 6
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(c) p = 8

Figure 1: Comparison of gradient methods for f(x) = 1
p
∥x∥p. R̂

R
-NGD stands for Normalized Gradient

Method, where R̂ is an estimation of the true initial distance to a solution R. η∗-GD, ηsi-GD, ηcl-GD stand
for gradient method with stepsizes (9), (12) and (13) respectively, PS GD stands for Polyak stepsizes gradient
method, and AccGD stands for two-stage accelerated procedure (Algorithm 2).

G NUMERICAL RESULTS

In Fig. 1, we compare the performance of the analyzed methods for solving optimization problem (1)
with a function f(x) = 1

p∥x∥
p. To generate a starting point we We fix L1 = 1 and choose L0 =

(p−2
L1

)p−2 according to Example A.1. For GM, we choose stepsizes according to (9), (12) and (13).

For NGM, we use time-varying coefficients βk = R̂
k+1 with different values of R̂ ∈ { 1

2R, 2R, 10R},
which allows us to study the robustness of this method to our initial guess of the unknown initial
distance to the solution. Note that, for this particular problem, the choice of R̂ = R is rather special
and allows the method to find the exact solution after one iteration, so we are not considering it. We
observe that, NGM and PS-GM outperform GM with stepsizes from (9), (12) and (13). This can be
explained by the fact that the complexity of GM depends on the particular choice of (L0, L1), while
complexity of NGM and PS-GM involves the optimal parameters L0, L1 as discussed in Section 4.
Moreover, closer initial distance estimation R̂ to a true value R leads to a faster convergence of
NGM to a solution.

In Fig. 2, we present an experiment studying the performance of the GM with the stepsize rule (9)
based on the choice of (L0, L1). For each choice of L1 ∈ {1, 2, 4, 8, 16} we set L0 = (p−2

L1
)p−2,

according to Example A.1. As expected from the theory (see the corresponding discussion at the
end of Section 4), the choice of (L0, L1) pair is crucial in practice for the performance of GM and
depends on a target accuracy ϵ.

In Fig. 3, we conduct an experiment on the performance of accelerated methods and consider the
GM 9, the proposed two-stage procedure from Section 6 with TL(x) being the gradient update with
stepsizes (9) and L = 3L0, and two variants of normalized Similar Triangles Methods (STM, and
STM-Max) from Gorbunov et al. (2024). STM uses normalization by the norm of the gradient at the
current point in a gradient step, while STM-Max normalizes by the largest norm of the gradient over
the optimization trajectory. It is worth noticing that only STM-Max has theoretical convergence
guarantees. We set p = 6, L1 = 1, L0 = (p−2

L1
)p−2 (see Example A.1) and vary the initial

distance to the solution R = ∥x0 − x∗∥. We observe that for a large initial distance to the solution,
our proposed procedure outperforms STM-max. This fact supports our theoretical founding and
reasoning on accelerated methods provided in Section 6. We also notice that the second variant
STM outperforms all considered methods in terms of the best iterate convergence. However, there is
no theoretical analysis for it. Additionally, we compare the performance of Algorithm 2, STM and
STM-Max with good starting point x0, such that f(x0)− f∗ ≤ L0

5L2
1

. In Fig. 4, we plot the function

values residual for different values of p ∈ {4.0, 6.0, 8.0}. Since f(x0) − f∗ ≤ L0

5L2
1

, Algorithm 2
will run only the second stage, which is AGMsDR. We observe that for smaller values of p = 4.0,
all three accelerated methods are comparable, while for larger values of p ∈ {6.0, 8.0} STM and
STM-Max outperform Algorithm 2.
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Figure 2: Convergence of the gradient method on the same function but with different choices of (L0, L1).
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Figure 3: Comparison of two-stage procedure (Algorithm 2) denoted by AccGD with Similar Triangles Method
(SMT) and Similar Triangles Method Max (STM-max) for f(x) = 1

6
∥x∥6, with different initial distance R.
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Figure 4: Comparison of two-stage procedure (Algorithm 2) denoted by AccGD with Similar Triangles Method
(SMT) and Similar Triangles Method Max (STM-max) for f(x) = 1

p
∥x∥p, with different values p and a good

starting point.
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