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ABSTRACT

Text-driven 3D shape generation still faces key challenges, especially in achieving
high levels of control over the generated outputs. Paticularly, existing text-to-
shape methods ignore the explicit modeling of hierarchical structures in the text
and 3D shapes, which makes it hard for using long text descriptions with multiple
prompts to guide the coherent part-level 3D shape generation. In this work, we
introduce HierT2S, a framework that integrates a hierarchical tree representation
with a conditional diffusion model, to enhance the generation of 3D shapes with
coherent structures induced by the hierarchical and structured text representations.
The key idea is to first segment the input text into several clusters and construct a
hierarchical tree representation, with each node representing a parent entity or the
fine-level part components. Then, we process the lower-level clusters of the tree
with a relation graph module which uses self-attention mechanism to aggregate the
relationships of the clusters, and generate a new sequence containing the processed
text features. Finally, the text features are embedded into the 3D feature space and
used for learning the 3D shape generation by a conditional diffusion model, where
the sparsely implicit parsed hierarchical tree graph further enhances the structural
details of the generated 3D shapes, leading to results that are close to structure-
aware generation. We conducted comprehensive experiments on the existing text-
to-shape pairing dataset Text2Shape, and the results demonstrate that our model
significantly outperforms current state-of-the-art methods. Moreover, our method
can enable progressive part-level 3D shape manipulation and modification guided
by the partially modified text prompt.

1 INTRODUCTION

The text-to-3D shape generation field has advanced notably with the use of generative models like
diffusion models (Ho et al., 2020), enabling the creation of high-quality and detailed shapes (Chen
et al., 2024b; Chu et al., 2024; Liu et al., 2024b; Cheng et al., 2023). While text-based input provides
a flexible and intuitive way for guiding 3D shape generation, accurately producing geometries that
match the text remains challenging, especially for objects with hierarchical structures like chairs and
tables. Since both text and 3D shapes have inherent hierarchical features, we believe it is critical to
capture the relations between the hierarchical structures of those two modalities to ensure consistent
text-to-3D generation.

Human naturally use hierarchical reasoning to perceive and represent complex information about ob-
jects’ appearance, structure, and function (Baillargeon, 1996). This intuitive ability allows human to
seamlessly integrate global and local dependencies within both visual and linguistic patterns (Bie-
derman, 1987). For intelligent algorithms, however, understanding the structural connections be-
tween text and 3D shapes is a substantial challenge. For example, a detailed prompt such as “a solid
locking chair made of grey tiles with a curved back and wheeled legs” may cause issues for a sys-
tem which only utilizes global-level priors from the training data. Specifically, some high-frequent
co-occurring patterns such as “straight legs” may affect the learning and generation of “wheeled
legs” specified in the given text. This example underscores the importance of understanding and
leveraging the hierarchical structures of both text and shapes to enhance the fidelity and specificity
of generated 3D shapes. While existing works (Achlioptas et al., 2018; Xu et al., 2019) seek to learn
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“ A {square; circle; rectangle} 
table with a 

{unique; crisscross; straight} 
base design. ”

Hierarchical Tree  

Denoiser

  ��   �0
...

Text Input Conditional Diffusion Model 3D Shape Generation

Relational Text Embeddings

Figure 1: Overview of our pipeline. A Hierarchical Tree G is constructed based on the text input,
which corresponds to the structure of 3D shapes. Then, the features extracted from the lower-level
nodes of the tree are processed and used a conditional diffusion model for structure-aware generation
and modification.

cross-modal mappings directly from text-3D pairs or utilize pre-trained text-to-image models (Li
et al., 2024; Zhou et al., 2022; Zhang et al., 2023) to guide 3D modeling, these approaches still fail
to address the hierarchical structure in both 3D shapes and natural language.

Motivated by reasoning ability of the hierarchical structures inherent in human intelligence, we pro-
pose HierT2S, a novel framework that exploits these structures in text-to-shape generation to achieve
stronger semantic consistency and structure-awareness. Different from existing methods that typi-
cally learn direct mappings between text and 3D data, our approach captures the joint hierarchical
dependencies of these modalities. In detail, the input sequence is first parsed into a hierarchical
tree and then softly segmented into several clusters using a probabilistic graphical model based on
the attention mechanism, capturing the leaf nodes of the internal entities. Then, we train a condi-
tional diffusion model using the latent features of the clusters in the lower layers of the hierarchical
structure of the segmented new sequence, achieving structure-aware text-to-shape generation.

Our approach has been evaluated on the Text2Shape (Chen et al., 2019) dataset, demonstrating sig-
nificant improvements in generation quality while preserving the hierarchical characteristics. Fur-
thermore, benefiting from structure-awareness ability, our approach enables structure-aware text-
guided 3D shape manipulation and progressive modification. In summary, our contributions are as
follows:

• By explicitly modeling hierarchical structure in text-to-shape generation, our proposed Hi-
erT2S achieves stronger semantic consistency and structure-awareness, enabling structure-
aware manipulation and progressive modification.

• The proposed relation graph module effectively captures the hierarchical relationship be-
tween text and 3D shapes without requiring direct supervision on 3D part-level annotations,
relying solely on general text-to-3D pairs.

• Comprehensive experiments on the Text2Shape dataset demonstrate the effectiveness of
our method, with substantial improvements attained over existing approaches in generation
quality and hierarchical structure preservation.

2 RELATED WORK

2.1 TEXT-GUIDED 3D SHAPE GENERATION

Recent advances in deep learning have revolutionized text-guided 3D shape generation, leading to
various methods designed to produce 3D shapes and scenes based on text input. Early efforts pri-
marily focused on modeling joint text-shape embedding spaces. However, generating high-quality
3D shapes directly from text remains challenging, primarily due to the difficulties in aligning textual
descriptions with shapes and the scarcity of well-annotated paired datasets. The Text2Shape dataset
(Chen et al., 2019) was a pioneering effort in this area, employing a GAN-based approach for shape
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generation. Nonetheless, this method encountered limitations regarding resolution, quality, and
cross-modal consistency. To address these challenges, subsequent methods have incorporated ad-
vanced techniques. For instance, recent approaches have leveraged pre-trained models such as CLIP
(Abdelreheem et al., 2022b) and diffusion-based strategies (Abdelreheem et al., 2022a) to enhance
the fidelity, visual realism, and structural accuracy of generated shapes. Additional works, such
as (Li et al., 2023b; Cheng et al., 2022; Qian et al., 2024), utilize discrete autoencoders to capture
block-based shape priors, which are processed by transformers for autoregressive shape generation.
More recent diffusion-based methods (Zhao et al., 2024; Li et al., 2023a; Cheng et al., 2023) fur-
ther improve this framework by generating latent features that align more closely with VQ-VAE
embeddings, resulting in shapes of higher accuracy and fidelity.

Despite these advancements, most previous studies have treated shapes as unified entities, primarily
relying on text representations that focus on linguistic features (such as sentences or words). This
approach often fails to effectively convert sentences containing multiple descriptors into 3D shapes
with complex structural details due to trivial attention mechanisms. Our research promotes better
enhancement of 3D shapes by transforming text into structure-awareness.

2.2 3D STRUCTURE-AWARE REPRESENTATION

Structure-aware representation encompasses techniques that capture and utilize hierarchical and re-
lational information within 3D shapes, facilitating more nuanced and accurate shape generation.
This approach is essential for effectively decomposing complex shapes into their constituent parts
and understanding their geometric relationships. Recent research has introduced several methods
for learning structure-aware 3D shape representations. For instance, in supervised learning, some
methods (Chen et al., 2022; Mou et al., 2024) advocate using symmetry hierarchies to represent
hierarchical shape structures . Recent progress has also been made in semantic-based shape decom-
position, with methods like those presented in (Cai et al., 2022; Yang et al., 2024b) using learned
operations to identify grammar-level shape components. In the realm of unsupervised learning, re-
cent studies such as (Ouasfi & Boukhayma, 2024; Liu et al., 2024a; Lee et al., 2024) utilize implicit
neural representations as a framework to capture complex data modalities, preserving structured
features through enhanced boundary sampling and stabilization of the optimization process. Alter-
natively, DAE-Net (Chen et al., 2024a) employs a branched autoencoder to learn a set of deformable
part templates and achieve part segmentation of shapes through affine transformations. However,
most methods focus directly on the structural aspects of 3D shapes without considering how to fur-
ther enhance 3D shape generation through the structure of text. Our approach aims to address this
gap by introducing text structure awareness in the text-to-shape generation process.

2.3 GRAPH NETWORK GUIDANCE

Graph networks are essential for modeling intricate relationships and dependencies within data. Re-
cent works (Yang et al., 2024a; Jiang et al., 2024) leverage graph priors to facilitate the transfer
of commonalities and bridge the gap between visual and linguistic domains. Other studies (Wu
et al., 2024; Huang et al., 2024) utilize scene graphs—composed of nodes and relationships—to
analyze and interpret 3D scenes. Scene graphs, generated from textual descriptions, capture ex-
pressive structural relationships among entities, enhancing the alignment between textual inputs and
graphical models through the application of graph networks. They have been successfully employed
in various tasks, including text-image matching (Huang et al., 2024), image processing (Gu et al.,
2024), and caption generation (Luo et al., 2024). Recognizing that both shapes and texts are com-
posed of structural elements, we choose to incorporate textual graphs as supplementary guidance
alongside the generation of structural parts.

3 PRELIMINARIES

3D Shape VQ-VAE. Modeling 3D shapes is challenging due to their high dimensionality. To ad-
dress this, we compress 3D shapes from ShapeNet (Chang et al., 2015) into a lower-dimensional
latent space using a 3D VQ-VAE (Van Den Oord et al., 2017). The 3D VQ-VAE consists of an
encoder Eϕ that maps 3D shapes into latent vectors, and a decoder Dτ that reconstructs the origi-
nal 3D shapes from these vectors. Specifically, for an input shape X , represented by a volumetric

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Truncated-Signed Distance Field (T-SDF) with dimensions X ∈ RD×D×D, the encoding process
is defined as: z = Eϕ(X) where z ∈ Rd×d×d represents the lower-dimensional latent space, with
d < D. The quantization step (VQ) maps z to the nearest entry in a learned codebook Z, and the de-
coder reconstructs the shape as: X ′ = Dτ (VQ(z)). The encoder, decoder, and codebook are trained
jointly to minimize the reconstruction loss, commitment loss (which encourages encoder alignment
with codebook entries), and the VQ objective to improve quantization.

Forward Process of the Latent Diffusion Model. The diffusion model operates on the lower-
dimensional latent variable z0 = Eϕ(X), where the model learns to generate samples by reversing
a noise addition process, as described in (Ho et al., 2020). In the forward process, starting with the
clean latent representation z0, Gaussian noise is incrementally added over a series of time steps to
produce a sequence of latent variables {zt}Tt=1. At each step t, the latent variable zt is obtained by
diffusing the previous state:

zt =
√
αtzt−1 +

√
1− αtϵt, (1)

where αt is the noise schedule controlling the amount of noise added at each step, and ϵt ∼ N (0, I)
represents Gaussian noise sampled from a standard normal distribution. This forward process con-
tinues until a predefined number of steps T , resulting in a latent variable zT that approximates
random Gaussian noise.

4 METHOD

4.1 OVERVIEW
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       (A) Hierarchical Tree  
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Figure 2: Method overview. HierT2S includes two phases: (A) preprocessing the text with the
Hierarchical Tree G, and (B) training the diffusion model’s reverse process using local-level features
of structural text entities preprocessed with hierarchical tree G.

Figure 2 presents our framework, which enhances text-to-shape generation by integrating a semantic
hierarchical structure. In the first stage (Figure 2 (A)), we introduce a Hierarchical Tree G to encode
sentences containing multiple descriptive key prompts. We first segment the sequence into several
clusters based on different parent entities, ensuring that the terms corresponding to lower-level iden-
tical components are retained within the same higher-level component. We then propose Relation
Graph Module, a method that applies the attention mechanism to the integration of attention mech-
anisms into probabilistic graphical models, where the stacked attention layers effectively capture
the relationships between entities within each cluster, subsequently performing top-down implicit
parsing of the relevant internal components of these clusters. In the second stage (Figure 2 (B)), we
integrate this tree-based hierarchical semantic structure into the conditional diffusion model. This
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integration mitigates trivial global dependencies in long text descriptions, significantly enhancing
the semantic capture of multiple prompts, especially those appearing later in the sequence. Our ap-
proach improves the capacity for 3D structural modeling, resulting in more expressive and diverse
generations.

4.2 HIERARCHICAL TREE OF A SENTENCE

We draw inspiration from the Tree-Transformer (Wang et al., 2019) and recursively parse the input
text sequence into a hierarchical tree from top to bottom. However, unlike the Tree-Transformer,
which directly computes associations for all entities, we first calculate the entity correlation proba-
bility using a matrix A ∈ Rm×m to cluster entities by calculating association probabilities, wherem
is the length of the entity sequence. This approach enables us to segment the sequence into several
clusters based on different parent entities, thereby facilitating subsequent top-down implicit parsing
of the relevant internal components of these clusters using attention layers.

Building on this hierarchical parsing strategy, we aim to ultimately align the semantic hierarchy with
the entity hierarchy of 3D shapes, where segmented clusters represent parent clusters of entities.
Figure 2 (A) contains a schematic representation of the process of dividing the fully connected
node connections into implicit segment clusters, which involves clustering the lower-level entities
that are associated with higher-level entities. For example, given a text input represented as C =
{c1, c2, . . . , cN} ∈ Rd×N , each pair of nodes ci and cj is connected by an edge weighted by the
attention coefficient ai,j , and c11 = {c21, c22} indicates that the representation of the parent cluster at
the first level, {chair}, consists of two child clusters at the second level, {seat, legs}. The subsequent
layer provides descriptive terms for each child node, ensuring that terms belonging to the same
constituent in a lower layer remain within the same constituent in higher layers.

Specifically, we use a m × m matrix A
to compute the correlation between nodes,
where Ai,j represents the weight of the clus-
tering for node indices from i to j, and
the calculation of θn is similar to the Tree-
transformer (Wang et al., 2019). By con-
trast, since we need to cluster entities, we
use a hard segmentation approach to deter-
mine whether there is a connection between
entities. This means nodes are clustered into
the same group only when θn (x′t = 1). This
matrix A effectively captures the correlation
probabilities between nodes ci and cj , en-
abling direct modeling of relationships be-
tween any pair of nodes and providing a more
flexible and explicit representation of their
interactions. The detailed procedure is out-
lined in Algorithm 1.

Algorithm 1 Segmentation Cluster Matrix A

Input: m← size of matrix A
Sequence of entitiesC = {c1, c2, . . . , cN} ∈ Rd×N

θn(x
′
n = 1|C): correlation probabilities for each

entity cn
Output: Matrix A
for i← 1 to m do

for j ← 1 to m do
if i < j then

Compute

Ai,j =

j−1∏
t=i

θt (x
′
t = 1 | C)

else
Ai,j = Aj,i

Set Ai,i = 1

return A

By evaluating the magnitude of Ai,j , we determine the marginal probability of clustering ci with
cj , allowing the input sequence to be segmented into clusters. This approach enhances the decoding
capabilities of conditional diffusion models for downstream tasks and effectively addresses the issue
of neglected critical local context.

4.3 RELATION GRAPH MODULE

We design a specialized PGM (Murphy, 2012) incorporating a self-attention mechanism (Vaswani,
2017), referred to as the Relation Graph Module, specifically tailored for Hierarchical Tree G, fur-
ther aggregating entity relationships within segmented clusters, thereby optimizing the model’s like-
lihood. This module computes relation embeddings by leveraging the previously calculated corre-
lation probabilities between nodes, enabling the model to encode relational information more effec-
tively.
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Generally, the factorization formula for a Markov Random Field (MRF) can be expressed as follows:

P (x1, x2, . . . , xn) =
1

Z

N−1∏
n=1

ψn(xn), (2)

where ψ(·) depends on the correlation coefficient of the cosine similarity between entity cdi and cdj ,
and Z is the partition function, defined as:

Z =
∑

x1,x2,...,xn

N−1∏
n=1

ψn(xn). (3)

As illustrated in Figure 3, we em-
ploy an attention mechanism to com-
pute the correlation scores ψn for each
clique within the probabilistic graphical
model, capturing the relationships be-
tween nodes, effectively modeling both
local and global dependencies within
the graph structure. Specifically, we
process the input text C to evaluate
the relationship between an entity clus-
ters cn and its two lower-layer child
nodes {cn−1, cn+1}, which can clearly
be achieved through the attention pa-
rameterization shown in the left of Fig-
ure 3.
The process of mapping entities into
their respective key and query spaces is
as follows: Kn−1 = EK(cn−1), Qn =
EQ(cn), and Kn+1 = EK(cn+1),
where EQ and EK are the embed-
ding functions for queries and keys,
respectively. The connection values
{λn−1, λn+1} for the entity cn are for-
mulated as:

Relation Graph Module

matmul

softmax

matmul

softmax

Element-wise

Relational Text Embeddings

Denoiser

cross-att

self-att

＋

FFN

self-att

＋Q

K, V

＋

... ...

Figure 3: Left: the Relation Graph Module incorporates
the attention mechanism to compute relation embeddings
among entities. Right: relational text embeddings are in-
corporated as a condition into the denoiser of the diffu-
sion model.

λn−1
n = softmax(Kn−1 ·Qn); λn+1

n = softmax(Kn+1 ·Qn), (4)

where Q ∈ RNQ×d and K ∈ RNK×d represent the matrices of queries and keys, respectively. The
softmax function is utilized to normalize the attention scores. The potential function ψn is deter-
mined by the similarity λn−1

n and λn+1
n between the current computation node and its neighboring

nodes. We use the sigmoid function σ(·) (Rumelhart et al., 1986) to map the similarity values to
the range [0, 1] and control its sensitivity by setting the same breakpoint threshold as in the Tree-
Transformer (Wang et al., 2019), formulated as:

ψn(xn) = σ(λn−1
n ) · σ(λn+1

n ). (5)

Then we substitute Eq. (2) and Eq. (5) into Eq. (6), allowing us to compute the potential function
of the entity:

P (x1, x2, .., xn−1 | C) =
1

Z(x,C)

N−1∏
n=1

ψn (xn | C) . (6)

Finally, we use the partition clustering matrix A to update the node embeddings, thereby obtaining
the semantic structure-aware features V:

V = (A⊗ softmax

(
QWQ

(
KWK

)⊤
√
d

)
)VWV , (7)
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where ⊗ stands for the element-wise operation, d is the dimension of K, resulting in the attention
score matrix. In this way, we first reconstruct the original fully connected graph by constructing a
sparse graph with several clusters, and then use an induced tree structure to effectively alleviate the
issue of attention decay in long texts. As a result, in the task of 3D shape generation, prompts from
any position in the sentence can be captured more effectively.

We propose to pre-train the Hierarchical Tree G by reconstructing the original node attributes. The
goal is to let the node embeddings effectively capture and preserve the original attribute information,
thereby enhancing the Relation Graph Module’s ability to learn node features and improving its
sensitivity to the original attributes. Specifically, we utilize the pre-trained prompt features from
BERT (Devlin, 2018), denoted as EC , as semantic anchors to capture the raw node information,
where yi = EC(ci). For the relational text embedding Vi, which captures the graph’s structural
information, we represent it using a multi-layer perceptron (MLP) as ŷi = MLP(Vi), and compare
it with the raw attributes of node yi. The loss function for reconstructing the original node attributes
is defined as follows:

Lrec =
1

|C|
∑
ci∈C

∥yi − ŷi∥2 . (8)

4.4 TRAINING

We train the entire network jointly in an end-to-end fashion to achieve high-quality 3D shape gener-
ation. Specifically, we have used a 3D-UNet based conditional diffusion model(Çiçek et al., 2016).
Starting from random Gaussian noise ZT at time step T , the denoiser, utilizing and integrating struc-
tural relational text embeddings through a cross-attention mechanism, transforms the latent feature
zt at time step t to zt−1. The training objective for the denoising process at each time step t is to
minimize:

LCDM = Ex,ε∼N (0,1),t ∥ϵ− ϵθ (zt, t, vi)∥
2
. (9)

The complete training loss for the entire framework is a weighted sum of the reconstruction loss for
the Hierarchical Tree G and the loss for the conditional diffusion model, with the weights to be λ1
and λ2 respectively:

L = λ1Lrec + λ2LCDM . (10)

By jointly training the hierarchical tree and the diffusion model, the structurally aware text descrip-
tions significantly enhance the denoising capability of the 3D U-Net. It enables the generated 3D
shapes to achieve a higher degree of alignment with the input multi-prompt descriptions and also
allow the model to achieve part-level high-fidelity 3D shape generation.

5 EXPERIMENTS

This section introduces our experimental design and implementation, followed by a comprehensive
analysis of the results from various aspects.

Settings. To evaluate the performance of our method, we conducted a series of experiments on the
paired text-to-shape dataset Text2Shape. First, we trained a 3D VQ-VAE on all the 3D shapes in the
Text2Shape dataset (Chen et al., 2019), using the ShapeNet dataset (Chang et al., 2015). The 3D
VQ-VAE compresses the T-SDF into compact latent featuresZ. This process involves converting the
T-SDF into a mesh, followed by sampling 2048 points from each mesh. The dimensions of the latent
features Z ∈ R16×16×16×3. Then, we train a text graph node with the Hierarchical Tree G. The
number of channels for the text encoder is dh = 512, and for inner layer features in the feed-forward
network it is 2048. The Adam optimizer is used. The learning rate is initialized to 1 × 10−5 and
decays by 0.8 every 5 epochs, with 20,000 epoch. Next, we employ the 3D VQ-VAE decoder and
trained a conditional diffusion model using the provided pretrain relational text embeddings. Our
work utilizes the Adam optimizer to train the DDPM sampler for 200 steps with an initial learning

7
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rate of 1× 10−4. During the shape modification phase, we fine-tune the model for 500 epochs using
the same learning rate.

Evaluation Metrics. (1) CLIP-S: Following 3DQD (Li et al., 2023a), we use CLIP-S, which com-
putes the maximum cosine similarity between N = 9 generated shapes and their text prompts. Each
shape is rendered into 20 2D images from different views. During testing, we use a pre-trained CLIP
model as the text encoder; (2) Intersection over Union (IoU): it measures overlap between generated
and ground truth shapes; (3) Total Mutual Difference (TMD): it sums up pairwise differences among
N = 10 generated shapes; (4) Earth Mover Distance (EMD): it measures the cost to transform one
distribution into another.

5.1 TEXT-GUIDED 3D SHAPE GENERATION

We have compared with recent state-of-the-art approaches for text-guided 3D shape generation,
including AutoSDF (Mittal et al., 2022), Shape-IMLE (Liu et al., 2022), SDFusion (Cheng et al.,
2023), and 3DQD (Li et al., 2023a). While some of these methods can generate 3D shapes using
various conditioning inputs, our evaluation focuses exclusively on the text-to-3D representation task,
where text prompts serve as the sole conditioning input.

As shown in Figure 4, the existing methods face significant challenges in generating 3D shapes
with high fidelity and structured details. For instance, with the text prompt “crisscross legs”, both
AutoSDF and Shape-IMLE struggle to generate precise structural details, while SDFusion has dif-
ficulty maintaining adherence to shape specifications. Additionally, some keywords placed at the
end of a sentence (e.g., “back and head support”) fail to fully capture the semantic information dur-
ing the generation process. In contrast, our approach clearly demonstrates superior performance in
generating high-quality 3D shapes with well-defined and coherent structural details.

For quantitative evaluation, we adopt IoU, CLIP-S, TMD and EMD to evaluate the generative quality
and diversity of shape, respectively. As illustrated in Table 1, our model consistently surpasses
existing methods across all metrics. These results indicate that our method effectively learns and
utilizes structural text features.

Black table rectangle in 
shapeand crisscrosslegs 
are attached.

A rectangle glasstable 
with a unique base 
design.

A large blue office chair. 
The office chair has a 
back and head support.

A square shaped chair 
with long legs and it is 
made out of wood.

AutoSDF

Shape-IMLE

SDFusion

Ours

Wooden chair, with four 
legs and black support 
with many vertical bars.

a two tier teak-wood 
coffee attached with 
bar legs

Text Input

Method

Figure 4: Visualization of the results of our method compared to AutoSDF, Shape-IMLE, and SD-
Fusion. Our method generates satisfactory shapes that accurately align with multiple keywords
(highlighted in red) from the input text description.

5.2 ENHANCED STRUCTURE-AWARE 3D SHAPE MODIFICATION

Existing approaches to text-guided 3D shape modification often fall short in achieving precise struc-
tural alignment. For example, when given a prompt “incline legs”, these methods either struggle to
produce effective, high-quality, and diverse shape modifications or generate ambiguous associations
between the specified entity and its structural components (e.g., the adjacent seat). Our goal is to
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Table 1: Quantitative generation results on random 1000 samples of Text2shape dataset.

Method IoU↑ CLIP-S↑ TMD↑ EMD↓
AutoSDF (Mittal et al., 2022) 5.77 31.65 0.341 0.2659
Shape-IMLE (Liu et al., 2022) 12.21 31.42 0.672 0.2071
SDFusion (Cheng et al., 2023) 12.78 31.78 0.837 0.1792
3DQD (Li et al., 2023a) 13.65 32.11 0.896 0.1767
Ours 13.87 32.65 0.910 0.1472

modify the input shape X ′ to accurately reflect the text prompt T ′, while preserving the integrity of
unrelated regions. Our method, HierT2S, addresses this challenge by explicitly defining the text’s
structural elements early in the process. This enables localized and accurate shape modifications in
line with the provided text prompt T ′.

As illustrated in Figure 5, our method
mainly follows the approach in (Couairon
et al., 2022) to identify the region marked
as [MASK] Ω and modify. We enhance
the input noise MT with two additional
channels: one represents the [MASK] re-
gion Ω, and the other depicts the shape X̃
without the masked area. The additional
channels are initialized with zero weights,
while other model parameters are set us-
ing pre-trained weights. We proceed with
fine-tuning the model for t steps to adapt
the masked region and generate the shape
X̂ that adheres to the prompt T ′.

cr
o
ss

-
at

t

K
VQ

cr
o
ss

-
at

t

Hierarchical Tree  
a chair with bent 

legs

noise

MASK
��−1

��

K
VQ

t steps

Figure 5: Pipeline for structure-aware 3D shape mod-
ification: After fine-tuning, our model performs lo-
calized modifications and generates coherent, text-
aligned shapes.

In Figure 6, we demonstrate how the alignment capability of text descriptions enables precise and
convenient shape manipulation. As shown in the figure, compared with 3DQD (Li et al., 2023a),
HierT2S can effectively remove or add a specific part (such as the armrest of a chair) following the
text instructions. We can easily modify part-level structures, such as transforming the straight legs
of a chair into curved or angled ones, changing a single-layer table into a two-layer one, or even
converting a square tabletop into a round one. Besides, as shown in Figure 7, our model allows for
incremental modifications, while the impact on other unaffected regions remains minimal.

Sampled 
shape

Text 
prompt Ours

Sampled 
shape

Text 
prompt Ours

A chair with 
armrests

A chair without 
armrests

A chair with 
bent legs

A chair with 
incline legs

A table with 
thin legs

A table with 
thick legs

A table with a 
round top

A table with 
double layers

3DQD 3DQD

Figure 6: Qualitative results of text-guided shape manipulation compared with 3DQD. Given a
known shape, our approach is able to manipulate the given shape into the target shape with prompt.
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A rounded seat straight legs long back

A round tabletop with straight 
legs.

A round tabletopA rectangle tabletop 

A rectangle seat chair with 
incline legs and short back.

incline legs

Figure 7: By incrementally adding prompts, our model enables high-quality modifications with
minimal impact on unrelated regions.

5.3 ABLATION STUDY

We conducted ablation studies on the Text2Shape dataset to demonstrate the effectiveness of several
key components of our method (Table 2). The variants tested were as follows: (1) w/o Hierarchical
Structure: A sequential BERT-based text encoder was used, which does not incorporate hierarchical
structural features; (2) w/o Segmentation Cluster Matrix (SCM): Semantic features were directly
integrated into the diffusion latent space via cross-attention in the Relation Graph Module, without
employing SCM; (3) w/o Cross-Attention: Instead of using cross-attention, we concatenated the
text features to the diffusion latent variables; (4) Full Model: Our complete method, including the
hierarchical structure and all proposed components.

As shown in Figure 8, we visualize the results
of each module in the process of semantic-
guided 3D shape generation. It shows that the
hierarchical relationship pretraining from text
and learning embeddings contribute to generat-
ing detailed 3D parts from text, thus enhancing
the performance of subsequent steps.

Model IoU↑ CLIP-S↑ TMD↑ EMD↓
w/o Hierarchical Structure 11.68 31.92 0.891 0.1785
w/o Segmentation Cluster Matrix 13.04 32.03 0.924 0.1527
w/o Cross-Attention 11.24 30.75 0.847 0.1801
Full Model 13.87 32.65 0.910 0.1472

Table 2: Quantitative results of the ablation
study for different model configurations.

w
/o H

ierarchical 
Structure

w
/o C

ross-
Attention

Full M
odel

a chair with hollow 
back

a table with two tier 
tabletop

a chair with crisscross 
legs 

w
/o Segm

entation 
C

luster M
atrix 

Figure 8: The visualized results of ablation in three
circumstances.

6 CONCLUSION

We presented HierT2S, a novel framework for text-to-shape generation and modification that ex-
ploits hierarchical structures inspired by human reasoning. The key contribution of this work is the
use of a graph structure to impose a hierarchy on text, corresponding to the structure of 3D shapes
and embedding relational features into a conditional diffusion model for structure-aware generation.
Specifically, we employ the Hierarchical Tree to segment text into clusters and capture the relational
embeddings of entities, which are then utilized in the conditional diffusion model to generate high-
quality 3D shapes through joint training. Our approach surpasses existing methods in its ability to
create structure-aware 3D shapes and facilitate precise, step-by-step shape manipulation using text.
Extensive experiments demonstrate that our method improves generation quality and preserves the
hierarchical characteristics of the shapes.
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