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Abstract
The framework of uncoupled online learning in
multiplayer games has made significant progress
in recent years. In particular, the development of
time-varying games has considerably expanded
its modeling capabilities. However, current re-
gret bounds quickly become vacuous when the
game undergoes significant variations over time,
even when these variations are easy to predict.
Intuitively, the ability of players to forecast fu-
ture payoffs should lead to tighter guarantees,
yet existing approaches fail to incorporate this
aspect. This work aims to fill this gap by intro-
ducing a novel prediction-aware framework for
time-varying games, where agents can forecast
future payoffs and adapt their strategies accord-
ingly. In this framework, payoffs depend on an
underlying state of nature that agents predict in
an online manner. To leverage these predictions,
we propose the POMWU algorithm, a contextual ex-
tension of the optimistic Multiplicative Weight
Update algorithm, for which we establish theo-
retical guarantees on social welfare and conver-
gence to equilibrium. Our results demonstrate
that, under bounded prediction errors, the pro-
posed framework achieves performance compara-
ble to the static setting. Finally, we empirically
demonstrate the effectiveness of POMWU in a traffic
routing experiment.

1. Introduction.
The framework of uncoupled online learning in multiplayer
games has sparked a lot of interest for its ability to realisti-
cally model the interactions of rational players engaged in a
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dynamic game. Since the seminal works of Foster and Vohra
(1997); Freund and Schapire (1999); Hart and Mas-Colell
(2000a), progress has been made towards obtaining fast con-
vergence rates for different equilibrium concepts, including
coarse correlated equilibrium (Syrgkanis et al., 2015; Foster
et al., 2016; Daskalakis et al., 2021; Piliouras et al., 2022;
Farina et al., 2022) correlated equilibrium (Chen and Peng,
2020; Anagnostides et al., 2022a;b; Peng and Rubinstein,
2023) and Nash equilibrium (Anagnostides et al., 2022c).
However, most of these works assume that the game remains
constant over time.

Only recent studies have begun to consider time-varying
games, in both two-player zero-sum games (Zhang et al.,
2022) and multiplayer general-sum games (Duvocelle et al.,
2018; Anagnostides et al., 2024). Following methods ini-
tially developed by the online optimization community (Chi-
ang et al., 2012; Rakhlin and Sridharan, 2013), these studies
bound the dynamic regret incurred by players with measures
of the time-variation of the underlying game. While this
approach looks satisfactory at first glance, it is not hard to
come up with simple examples for which the variation is
important–making the above mentioned bounds vacuous–
yet very simple to predict. In Example 1, we exhibit a simple
instance of time-varying game where the regret bounds de-
rived in Zhang et al. (2022) grow linearly with the horizon
T > 0. However, the dynamic underlying the payoff matri-
ces is entirely deterministic, and knowing it would result in a
constant regret. This highlights that the current time-varying
framework fails to account for any predictive capacity of the
agents. This is all the more surprising as predictive models
become ubiquitous in numerous economic sectors (Jordan
and Mitchell, 2015; Gogas and Papadimitriou, 2021; Hin-
ton and Jordan, 2024), making it likely for strategic agents
to possess a forecasting ability regarding their future pay-
offs. This work aims to fill the gap, by asking the following
question:

How does the quality of predictions made by ratio-
nal agents in time-varying games regarding their
future payoffs affects social welfare, as well as
the convergence to equilibrium ?

Contributions. We address this question with the follow-
ing contributions.
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• First, we introduce the new prediction-aware learning
framework, where players forecast future payoffs in
an online fashion and design their strategies accord-
ingly. In a nutshell, we build on the contextual set-
ting proposed by Sessa et al. (2021) by introducing
an underlying state of nature, either adversarially or
stochastically drawn, which determines the payoff of
all agents. They play a time-varying game which can
be decomposed into three stages. First, each player
forecasts the current state of nature based on their local
predictor before picking an action in the game. Then,
they observe their payoff and the actual state of nature.
Finally, they update their policy and predictor based on
these new observations. Augmenting uncoupled learn-
ing in games with contexts and predictions requires
to introduce new regret and equilibrium concepts. In
particular, we extend correlated equilibrium (Aumann,
1987) to our framework.

• Second, we propose an algorithm called POMWU—
which a contextual extension of the optimistic Mul-
tiplicative Weight Update algorithm (Daskalakis et al.,
2021)—allowing players to leverage their prediction
about the state of nature. In particular, we show that if
all players use POMWU, we match the results of Syrgka-
nis et al. (2015) established for static games, regarding
social welfare (Corollary 3), equilibrium convergence
(Corollary 2) and robustness in the adversarial setting
(Proposition 8) up to a factor that depends polynomially
on the number of prediction errors by players. Thus,
when predictions errors are bounded by a constant
(which is the case under realizability, see Daniely et al.,
2014), our bounds match the guarantees on social wel-
fare and equilibrium convergence for static games. Our
analysis builds upon a new notion of contextual Regret
bounded by Variation Utility (RVU) which bounds con-
textual regret by the sum of the length of the context-
specific sequences of feedbacks and strategies. Indeed,
a naive application of the standard RVU framework
results in looser bounds.

Additional related works. The problem tackled in this
work relates with several lines of research in game theory
and online optimization. On the one hand, the contextual
optimization literature (Donti et al., 2019; Elmachtoub and
Grigas, 2020; Bennouna et al., 2024) has considered the
problem of minimizing an objective function defined by an
unobserved random context, which the optimizer can predict
via a regression function. This idea has also been studied in
the contextual bandit framework (Lattimore and Szepesvári,
2020) with noisy contexts (Kirschner and Krause, 2019;
Yang and Ren, 2021; Nelson et al., 2022; Guo et al., 2024).
However, none of these works consider the multi-agent set-
ting, where the optimizer interacts with other agents during
the learning process. On the other hand, recent studies in

game theory have incorporated the idea of an underlying
state of nature jointly determining the payoffs of players.
While Sessa et al. (2021); Maddux and Kamgarpour (2024)
studies the contextual version of uncoupled learning in mul-
tiplayer games, Lauffer et al. (2023); Harris et al. (2024)
focuses on Stackelberg games with side information. How-
ever, these works assume that the context is revealed to
players at the beginning of each period, unlike ours where
players have to predict the context before moving. In the
end, the social learning framework might be the one that
relates the most to ours. Pioneered by the work of Banerjee
(1992); Bikhchandani et al. (1992); Smith and Sørensen
(2000), it features agents receiving private signals about a
true, unobserved state of nature. These agents are able to
learn from both their signal and the actions played by other
players, which reflect their signals Chamley (2004). Most
of the social learning literature has been devoted to ana-
lyzing the resulting collective behaviors, such as cascading
and herding phenomena (Mossel et al., 2020). While re-
cent studies have broadened the analytical toolbox of social
learning by considering for instance time-varying states of
nature (Frongillo et al., 2011; Boursier et al., 2022; Levy
et al., 2024), it mostly relies on very strong assumptions
(e.g. a binary state and binary actions, Mossel et al., 2020)
and a Bayesian modeling where all agents share a common
prior about the state of nature’s distribution. In contrast,
we believe that the uncoupled learning framework (Hart
and Mas-Colell, 2000b; 2003; Daskalakis et al., 2011) upon
which our work relies is a more general setting for studying
this question, and allows to study more natural equilibrium
concepts such as correlated equilibria (Aumann, 1987) with
stronger guarantees.

Organization. This work is organized as follows. In Sec-
tion 2, we present our model, notion of regret and main
assumptions. In Section 3, we introduce the POMWU algo-
rithm and establish the convergence of social welfare and
individual utilities. In Section 4, we empirically demon-
strate the performance of POMWU on the Sioux Falls routing
problem (LeBlanc et al., 1975).

Example 1. Consider the two-players setting in (Zhang
et al., 2022) where X ∈ Rn and Y ∈ Rm are respectively
the strategy spaces of player x and y, At ∈ [−1, 1]n×m is
their time-varying payoff matrix and Et ⊂ X × Y is the
set of Nash equilibria at time t ∈ [T ]. The two measures
of variations considered in (Zhang et al. 2022, and up to
minor modifications Anagnostides et al. 2024) are

PT = min
E1×...×ET

∑
t∈[T ]

(∥∥x⋆
t − x⋆

t−1

∥∥
1
+
∥∥y⋆t − y⋆t−1

∥∥
1

)
,

and
VT =

∑
t∈[T ]

∥At −At−1∥2∞ ,
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which are respectively the variation of Nash equilibria and
the variation of payoff matrices. Zhang et al. (2022, Theo-
rem 6) show that the dynamic regret can be bounded by

Õ(min(
√
(1 + PT )(1 + VT ) + PT , 1 +WT )) , (1)

where WT =
∑

t∈[T ]

∥∥∥At − T−1
∑

τ∈[T ] Aτ

∥∥∥
∞

= Ω(VT ).

On the other hand, if we consider for any t ∈ [T ], At =
B + (−1)tC where

B =
1

2

(
1 1
1 1

)
, C =

1

2

(
1 1
−1 −1

)
,

it is not hard to check that

Et =

{
{(1, 0), ( 12 ,

1
2 )} if t is even

{(0, 1), ( 12 ,
1
2 )} otherwise

.

This implies that PT = 2T . Likewise, one can verify
that VT = T , so the bound in (1) grows linearly with
T . At the same time, we remark that Yt = −Yt−1 with
Yt = At − At−1. This shows that (At)t∈[T ] is a determin-
istic process (more precisely, a deterministic ARIMA(1,1,0)
process (Hamilton, 2020)).

2. Model.
Notation. In what follows, we denote the ℓ-th coordi-
nate of any vector x ∈ Rd by x[ℓ] ∈ R. Likewise,
the ℓ-th row of any matrix X ∈ Rd×K is denoted by
X[ℓ] ∈ RK . For any vectors (x, y) ∈ Rd × Rd, we
write ⟨x, y⟩ = xTy the standard euclidian inner product
and x.y = (x[1] y[1], . . . , x[d] y[d])T the Hadamard product.
P(A) denotes the set of probability measures over a mea-
surable spaceA, and ∆K = {w ∈ RK : ∀ℓ ∈ [K], wj [ℓ] ⩾
0 and

∑K
ℓ=1 w

j [ℓ] = 1} the simplex of dimension K > 0.
When A = A1 × . . .×AJ is the product of J > 0 spaces,
we write A−j = A1 × . . . × Aj−1 × Aj+1 × . . .AJ for
any j ∈ [J ], so A = Aj × A−j . For any w ∈ P(A),
we write Ea∼w[a] =

∫
a dw(a) the associated expecta-

tion. When the context is clear, we rather write Ew in-
stead of Ea∼w. When w = w1 ⊗ . . . ⊗ wJ is a prod-
uct of J > 0 measures, we define for any j ∈ [J ]
w−j = w1 ⊗ . . . wj−1 ⊗ wj+1 ⊗ . . . ⊗ wJ and Ew−j the
associated expectation operator.

Setting. We consider a set of J > 0 agents denoted by
[J ]. We suppose that each agent has access to an action
set Aj = {aj1, . . . , a

j
K} with |Aj | = K. In addition, we

assume that the cost function of agent j ∈ [J ] is given for
Z ∈ Z ⊆ Rd and ϕj : A → Rd by:

cj(w, Z) = Ea∼w

[〈
ϕj(a), Z

〉]
, (2)

where w ∈P(A). Typically, we will consider w = w1 ⊗
. . . ⊗ wJ where wj ∈ ∆K is a mixed strategy played by

j ∈ [J ]. This cost function is flexible and is customary in
contextual optimization (Sadana et al., 2024) and contextual
bandit (Li et al., 2010; Lattimore and Szepesvári, 2020). (2),
ϕj represents a standard payoff function, while Z ∈ Z can
be interpreted as a state of nature that linearly influences
preferences. Note that a time-varying game can easily be
constructed by considering a sequence of states of nature
(Z1, . . . , ZT ) ∈ ZT for T > 0. We rewrite (2) in a more
compact way with the following lemma.

Lemma 1. Let j ∈ [J ], w ∈P(A) with w = wj ⊗w−j

and Φj(w−j) = (Ew−j [ϕj(ajk,a
−j)[ℓ]])ℓ,k ∈ Rd×K . We

have:
cj(w, Z) =

〈
Z,Φj(w−j)wj

〉
.

In Lemma 1, Φj(w−j) is a matrix whose column k contains
the cost of playing the pure action ajk when opponents play
their mixed-strategy w−j . This quantity appears naturally in
online learning for games (Syrgkanis et al., 2015). Note that
by Lemma 1, Φj(w−j) entirely determines cj , so having
access to this matrix is equivalent to having access to cj .
Moreover, Lemma 1 stresses that cj is conveniently linear
in wj ∈ ∆K for any j ∈ [J ].

We introduce the two following assumptions for the rest of
the analysis.

H1. For any j ∈ [J ], a ∈ A and Z ∈ Z ,
∣∣〈Z, ϕj(a)

〉∣∣ ⩽ 1.

This boundedness assumption is usual in learning in games
and more generally in online learning (Hazan et al., 2014).
In particular, H1 ensures that for any j ∈ [J ], w ∈ P(A)
and Z ∈ Z , cj(w, Z) ⩽ 1.

H2. The set Z is finite: Z = {z1, . . . , zm} for m > 0.

Assuming a finite context set is customary in bandit theory
(Lattimore and Szepesvári, 2020; Slivkins et al., 2019) and
game theory (Kamenica and Gentzkow, 2011; Kamenica,
2019), and is often relevant in practical settings. We believe
that the analysis to an infinite context set is possible, but
such an extension falls outside the scope of the current pa-
per, as it would require introducing fundamentally different
concepts and proof techniques, see Appendix B for further
discussion.

We assume that agents play a time-varying game,
which is determined by a sequence of states of nature
(Z1, . . . , ZT ) ∈ ZT of length T > 0. At the beginning of
each period t ∈ [T ], nature draws a state of nature Zt ∈ Z ,
which is not revealed to agents, while each player j ∈ [J ]
receives a signal Ẑj

t ∈ Z about this state. They then select a
strategy wj

t ∈ ∆K based on this signal. Finally, each agent
j get as a feedback the cost matrix Φj(w−j

t ) as well as the
actual state of nature Zt.

Remark 1. In many practical settings, the private signals
Ẑj
t ∈ Z for j ∈ [J ] and t ∈ [T ] are predictions made by
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supervised learning algorithms. In this case, at the begin-
ning of each round t ∈ [T ], each agent j ∈ [J ] observes
covariates Xj

t ∈ X and makes a prediction

Ẑj
t = gjt (X

j
t ) ,

where gjt ∈ G ⊂ {g : X → Z} is some prediction al-
gorithm based on the history of observations up to time t.
Under H2, this situation corresponds to multiclass online
learning, for which several theoretical results are avail-
able in the litterature (Daniely et al., 2014; Daniely and
Shalev-Shwartz, 2014).

To formally describe the game, we define Πj as the set of
policies πj : (∪t∈[T ]Hj

t ) × Z → ∆K for player j ∈ [J ],
whereHj

t is the set of histories at time t ∈ [T ] with elements
hj
τ = {Φj(w−j

τ ), Zt}1⩽τ⩽t. At the beginning of the game,
hj
0 = ∅. Then for any t ∈ [T ],

1. Each agent j ∈ [J ] observes a private signal Ẑj
t ∈ Z ,

and picks a mixed strategy wj
t ∈ ∆K where wj

t is the
output of a policy πj

t = πj(hj
t−1, · ) : Z → ∆K , that

is wj
t = πj

t (Ẑ
j
t ).

2. Each agent j incurs a cost ⟨Zt,Φ
j(w−j

t )wj
t ⟩, and gets

as a feedback (Zt,Φ
j(w−j

t )). They then update ht =
ht−1 ∪ {Φj(w−j

t ), Zt}.

Remark 1 (continuing from p. 3). In the case where private
signals are predictions from an online algorithm, agents
train policies κj : X → ∆K mapping covariates to strate-
gies. Indeed, for any j ∈ [J ] and t ∈ [T ]:

wj
t = πj

t (Ẑ
j
t ) = (πj

t ◦ g
j
t )(X

j
t ) = κj

t (X
j
t ) .

We consider the standard full-information feedback setting,
where each player j ∈ [J ] observes Φj(wj

t ). We believe
that extending our results to bandit feedback – i.e., when
agents only observe the reward from their realized action–
(Foster et al., 2016) is feasible, though it would require
additional technical refinements.

Regrets. We now present the two regret concepts used
in this paper to quantify the optimality of a policy πj ∈
Πj . They are essentially contextual versions of the classic
external (Zinkevich, 2003) and swap (Blum and Mansour,
2007) regrets. In what follows, T z = {t ∈ [T ] : Zt = z}
denotes the timesteps at which z ∈ Z .

First, following Sessa et al. (2021), we introduce a con-
textual external regret. For any j ∈ [J ], given a fixed
sequence of opponent strategies (w−j

t )t∈[T ], we denote by
πj
⋆ : Z → ∆K the static comparator which satisfies∑
t∈T z

cj(πj
⋆(z),w

−j
t , Zt) ⩽

∑
t∈T z

cj(w,w−j
t , Zt) , (3)

for any z ∈ Z and w ∈ P(Aj). The comparator πj
⋆ maps

each context z to the best action in hindsight on the time
steps when z was observed. Denoting wj

t = πj
t (Ẑ

j
t ) the

strategy of agent j for any t ∈ [T ], we then define the
following contextual external regret:

Rj
T =

∑
t∈[T ]

[
cj(wj

t ,w
−j
t , Zt)− cj(πj

⋆(Zt),w
−j
t , Zt)

]
.

(4)
Note that Rj

T is not fully static as the comparator is allowed
to vary from a context to another. In this sense, (4) can
be viewed as an intermediary between external regret and
dynamic regret (Hall and Willett, 2013; Besbes et al., 2015).
The existing literature on time-varying games typically fo-
cuses on dynamic regret (Duvocelle et al., 2018; Zhang
et al., 2022; Anagnostides et al., 2024), which is the most
stringent notion of regret. However, the resulting bounds
often include a path length term. This term captures the
intrinsic variation of the comparator sequence, such as PT

and VT in Example 1. In contrast, we will show that bounds
on regret (4) depend only on a prediction error term, which
vanishes if agents are able to accurately predict the states of
nature.

While external regret has been a cornerstone measure of
performance in online learning for games, swap regret has
recently aroused a lot of interest since it sets a more de-
manding learning benchmark and leads to tighter equilib-
rium concepts (Anagnostides et al., 2022b; Peng and Rubin-
stein, 2024; Dagan et al., 2024). We therefore supplement
our analysis of regret Equation (4) by a similar study of
contextual swap regret, which we introduce below. Let
Λ = {λ : ∆K → ∆K} be the set of swap deviation maps,
and define for any j ∈ [J ], λj

⋆ : ∆K×Z → ∆K the optimal
swap comparator, which satisfies for any z ∈ Z and any
λ ∈ Λ:

∑
t∈T z

cj(λj
⋆(w

j
t , z),w

−j
t , z) ⩽

∑
t∈T z

cj(λ(wj
t ),w

−j
t , z) .

Given a context z, the swap comparator λj
⋆ maps any

played strategy wj
t to an alternative strategy that would

have achieved better performance on the time steps when z
was observed. Importantly, competing against λj

⋆ is strictly
more demanding than competing against πj

⋆ from (3). While
πj
⋆ assigns a fixed optimal action to each context z, inde-

pendent of the strategies actually played, λj
⋆(w, z) adapts

to the specific strategy w used. This flexibility allows λj
⋆ to

identify better-performing alternatives conditioned on past
decisions, making it a stronger—and thus more challeng-
ing—benchmark.

With wj
t = πj

t (Ẑ
j
t ) being the strategy played by agent j at
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time t, we define the following contextual swap regret:

R
j

T =
∑
t∈[T ]

[
cj(wj

t ,w
−j , Zt)− cj(λj

⋆(w
j
t , Zt),w

−j
t , Zt)

]
.

(5)

Finally, in the non-contextual case, the Blum-Mansour re-
duction (Blum and Mansour, 2007) is a convenient proce-
dure which allows to design a no-swap regret algorithm from
any no-external regret one. A natural question is whether
a similar reduction exists in our setting, that is, whether
an algorithm minimizing (5) can be obtained from an algo-
rithm minimizing (4). We answer by the positive with the
following proposition.

Proposition 1. Assume that player j ∈ [J ] plays an al-
gorithm πj ∈ Πj achieving Rj

T ⩽ f(J, T,K,m) for some
f : N4

+ → R+. Then, one can design an algorithm πj ∈ Πj

achieving
R

j

T ⩽ Kf(J, T,K,m) .

The explicit procedure to design π̄j from πj is described in
Algorithm 2, and the proof of Proposition 1 is deferred to
Appendix G. A direct consequence of Proposition 1 is that
any algorithm with a guarantee on external regret (4) can be
converted into another algorithm with a guarantee on swap
regret (5), at the cost of an additional K factor. This will be
particularly useful to extend the analysis from external to
swap regret. Note that more recent procedures (Dagan et al.,
2024; Peng and Rubinstein, 2023) allow to deal with larger
action spaces by reducing the dependence of K, yet at the
cost of a degraded dependence on T .

Equilibrium. We consider two equilibrium concepts,
which naturally relates to the two regrets previously defined.
First, we focus on the classic contextual coarse-correlated
equilibrium (Sessa et al., 2021; Maddux and Kamgarpour,
2024), whose definition is recalled below.

Definition 1. [Sessa et al. 2021] Let ε > 0. An ε-contextual
coarse-correlated equilibrium is a joint policy ν : Z →
P(A) such that for any j ∈ [J ] and πj ∈ Πj:

T−1
∑
t∈[T ]

cj(νj(Zt),ν
−j(Zt), Zt)

⩽ T−1
∑
t∈[T ]

cj(πj(Zt),ν
−j(Zt), Zt) + ε .

Note that Definition 1 extends the classic coarse correlated
equilibrium concept (Foster and Vohra, 1998) to the case
where the underlying state of nature changes over time. A
more detailed interpretation of Definition 1 is provided in
Appendix C.

While coarse-correlated equilibrium has been extensively
studied, it is arguably weak in the sense that it only prevents

coarse deviations. On the other hand, correlated equilibrium
(Aumann, 1987) is a tighter equilibrium concept which pre-
vents swap deviations, see Appendix C for more discussion.
We introduce below an equivalent concept adapted to our
framework. In the following definition, ϱj : Aj ×Z → Aj

is any swap deviation function, which given an action and
context (aj , z) returns an alternative action ãj .
Definition 2. Let ε > 0. An ε-contextual correlated
equilibrium is a joint policy ν : Z → P(A) such that
for any j ∈ [J ] and ϱj : Aj ×Z → Aj:

T−1
∑
t∈[T ]

Ea∼ν(Zt)

[〈
ϕj(a), Zt

〉]
⩽ T−1

∑
t∈[T ]

Ea∼ν(Zt)

[〈
ϕj(ϱj(aj , Zt),a

−j), Zt

〉]
+ ε .

Definition 2 extends the classic correlated equilibrium no-
tion (Aumann, 1987) to the contextual case, by letting the
swap functions ϱj( · , z) depend on the state of nature.

In the non-contextual case, there exists a well-known and
powerful connection between external regret minimization
and coarse-correlated equilibrium. If all players use no-
external regret algorithms, their empirical average strategy
is an approximate coarse correlated equilibrium. Crucially,
we show that the same property holds in our contextual
framework. In the following proposition, nz = |T z| de-
notes the number of time state z ∈ Z occurs.
Proposition 2. Assume that for any j ∈ [J ], agent j uses
a policy πj ∈ Πj incurring an external regret Rj

T as in
(4), and denote by wj

t = πj
t (Ẑ

j
t ) for any t ∈ [T ]. Let

ν̂T : Z →P(A) be such that for any z ∈ Z ,

ν̂T (z) =

{
n−1
z

∑
t∈T z w1

t ⊗ . . .⊗ wJ
t if nz > 0 ,

(K−1, . . . ,K−1) otherwise .

Then, ν̂T is an ε-contextual coarse correlated equilibrium
with

ε = max
j∈[J]

T−1Rj
T .

The proof of Proposition 2 is deferred to Appendix G. It
is clear from this proposition that if Rj

T = o(T ) for every
j ∈ [J ], ν̂T asymptotically convergences to an exact coarse-
correlated equilibrium.

Moreover, the same connection exists for swap regret and
correlated equilibrium in the non-contextual setting. We also
retrieve this property in our contextual setting, as showed
by the following proposition.
Proposition 3. Assume that for any j ∈ [J ], agent j uses
a policy π̄j ∈ Πj incurring a swap regret R̄j

T defined as
in (5). Let ν̂T : Z → P(A) be defined as in Definition 1.
Then, ν̂T is an ε-contextual correlated equilibrium with

ε = max
j∈[J]

T−1R̄j
T .
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The proof of this result can be found in Appendix G. It
shows that if all players use algorithms incurring a sub-linear
swap regret, their empirical average strategy converges to
an exact correlated equilibrium. Both Proposition 2 and
Proposition 3 are key to our analysis, since they convert
individual regret guarantees into convergence rates to equi-
librium. Hence, bounding individual regrets is our first
objective.

Social welfare. On top of convergence to equilibrium,
we study social welfare, and in particular whether no-regret
strategies may result in a welfare close to the optimal one. In
non-contextual games, the so-called Roughgarden smooth-
ness condition (Roughgarden, 2015) is particularly conve-
nient to address this question (Syrgkanis et al., 2015). This
condition—which is satisfied by a wide class of games, in-
cluding congestion games (Roughgarden and Tardos, 2002;
Christodoulou and Koutsoupias, 2005), facility games and
second price auctions (Roughgarden, 2015)—states that
even when players deviate from the optimal strategy, the
total cost in a game doesn’t increase too much. Under this
condition, it can be shown that the average social cost con-
verges to the optimal one times the price of anarchy.

Here, we assume that our game satisfies the contextual coun-
terpart to the Roughgarden smoothness condition.

H3. There exist δ > 0 and µ > 0 such that for any a ∈ A,
a⋆ ∈ A and z ∈ Z ,∑
j∈[J]

〈
z, ϕj(a

j
⋆,a−j)

〉
⩽
∑
j∈[J]

[δ⟨z, ϕj(a⋆)⟩+ µ⟨z, ϕj(a)⟩] .

It is well known that under H3, γ = δ(1− µ)−1 is an upper
bound on the price of anarchy (Roughgarden, 2015). In
what follows,

Ct(wt) =
∑
j∈[J]

cj(wt, Zt) ,

denotes the social cost at time t ∈ [T ] and

C⋆ = min
ρ:Z→A

T−1
∑
t∈[T ]

∑
j∈[J]

cj(ρ(Zt), Zt) ,

the optimal average social cost in pure strategy. The follow-
ing proposition shows that under H3, the distance between
the average social cost and the optimal one is bounded by
the sum of external contextual regrets.

Proposition 4. Assume H3. Then with γ = δ(1− µ)−1,

1

T

∑
t∈[T ]

Ct(wt) ⩽ γC⋆ +
1

(1− µ)T

∑
j∈[J]

Rj
T .

The proof of Proposition 4 can be found in Appendix G.
In particular, when

∑
j∈[J] R

j
T = o(T ), the average social

cost is guaranteed to converge to a fraction of the optimal
one. Therefore, bounding

∑
j∈[J] R

j
T will be our second

objective.

3. Prediction-aware learning.
Algorithm. In the non-contextual case, the optimistic Mul-
tiplicative Weight Update (OMWU) algorithm has proven par-
ticularly effective for controlling individual and social re-
grets in uncoupled multiplayer games. We propose below
the predictive-OMWU algorithm, abbreviated POMWU, which is
an extension of OMWU to our framework. Broadly speaking,
POMWU maintains one OMWU instance per context. At the
beginning of each round, agents predict the context and use
the corresponding OMWU to play. Once the actual state of
nature has been revealed, they update the algorithm based
on the cost feedback for future rounds. The pseudo-code of
POMWU is displayed in Algorithm 1.

Algorithm 1 Optimistic MWU with predicted contexts
(POMWU) for agent j ∈ [J ].

1: Initialize ρz1 = . . . = ρzm = (K−1, . . . ,K−1) and
Ψz1 = . . . = Ψzm = 0d×K .

2: for each t ∈ [T ] do
3: Predict Ẑj

t ∈ Z , set M j
t = ΨẐj

t
and gjt = ρẐj

t
.

4: Play wj
t ∈ ∆K where for each ℓ ∈ {1, . . . ,K},

wj
t [ℓ] =

gjt [ℓ] exp(−ηM
j
t [ℓ]Ẑ

j
t )∑

k∈[K] g
j
t [k] exp(−ηM

j
t [k]Ẑ

j
t )

5: Observe Zt ∈ Rd and Φj(w−j
t ).

6: Update ΨZt
← Φj(w−j

t )
7: Update ρZt

← ρZt
. exp(−ηΦj(w−j

t )TZt) .
8: end for

RVU analysis. The Regret bounded by Variation in Util-
ity (RVU) bound (Syrgkanis et al., 2015) is an effective
method for deriving guarantees regarding individual regrets
in multiplayer games. Intuitively, this approach ties play-
ers’ utilities to the variation in observed utilities and played
strategies. The RVU ensures that players’ regrets remain
low when they efficiently adapt their strategy to counter the
variation in payoffs. In the following key lemma, we estab-
lish a contextual RVU bound adapted to our framework. In
what follows, we write T z = {tz1, . . . , tznz

} for any z ∈ Z ,
and Lj

T =
∑

t∈[T ] 1{Ẑ
j
t ̸= Zt} the total number of mis-

predictions made by agent j ∈ [J ] throughout of the game.

Proposition 5. Assume H1 and H2 . Any j ∈ [J ] applying
Algorithm 1 with learning rate η > 0 has an external regret

6
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bounded as follows:

Rj
T ⩽

(5 + ln(K))Lj
T +m ln(K)

η

+ η

∑
z∈Z

∑
i⩽nz

∥∥∥∥(Φj(w−j
tzi

)− Φj(w−j
tzi−1

)
)T

z

∥∥∥∥2
∞

+ 4Lj
T


− 1

16η

∑
z∈Z

∑
i⩽nz

∥∥∥wj
tzi
− wj

tzi−1

∥∥∥2
1
.

Contrary to the classic RVU approach (Syrgkanis et al.,
2015), the bound in Proposition 5 depends on the lengths
of the context-specific paths Φj(w−j

tz1
), . . . ,Φj(w−j

tznz
) and

wj
tz1
, . . . , wj

tznz
. The need for this new contextual RVU stems

from the fact that players may mispredict states of nature at
different periods, preventing the naive use of a classic RVU,
see Appendix G for more details. Note that in its current
form, Proposition 5 holds for any arbitrary sequence of
strategies by other agents, and does not provide an explicit
bound for individual regrets.

Remark 1 (continuing from p. 3). It is possible to quantify
Lj
T under H2 when agents use an online algorithm for

predicting (Zt)t∈[T ]. Indeed, this boils down to multiclass
online classification problem, for which bounds on Lj

T have
been established by Daniely et al. (2014). Assume that G has
a finite Littlestone dimension dimL (G) < ∞ (Littlestone,
1988). In the realizable case, that is when for every j ∈ [J ],
there exists g⋆j ∈ G such that Zt = g⋆j (X

j
t ) for any t ∈ [T ],

there exists an online algorithm gjt : X → Z such that
Lj
T =

∑
t∈[T ] 1{g

j
t (X

j
t ) ̸= Zt} satisfies:

Lj
t ⩽ dimL (G) . (6)

In the agnostic case, denoting L⋆j
T =

mingj∈G
∑T

t=1 1{gj(X
j
t ) ̸= Zt}, there exists an al-

gorithm such that

Lj
T ⩽ L⋆j

T +

√
1

2
dimL (G)T ln(Tm) . (7)

The algorithms leading to (6) and (7), namely Algorithm 3
and Algorithm 4, are both recalled in Appendix D.

Equilibrium. Equipped with Proposition 5, we first fo-
cus on convergence to equilibrium. As discussed in Sec-
tion 2, this only requires bounding individual regrets. The
following proposition, which follows from Proposition 5,
establishes this bound.

Proposition 6. Define LT = maxj∈[J] L
j
T and assume H1

and H2. If all agents use Algorithm 1 with a learning rate

η > 0, then for any j ∈ [J ]:

Rj
T ⩽

(5 + ln(K))LT +m ln(K)

η

+ η
[
(J − 1)2(9Tη2 + 4LT ) + 4LT

]
.

In particular if T = Ω(J2LT ), setting η⋆ =
Θ(J−1/2T−1/4[ln(K)(LT +m)]1/4) leads to:

Rj
T = O( [ln(K)(LT +m)]3/4T 1/4J1/2 ) .

In the realizable case of Remark 1 where LT = OT (1), we
recover the result Rj

T = O(T 1/4J1/2) from Syrgkanis et al.
(2015). We also observe that setting the learning rate to η⋆

requires agents to know L
j

T . This is reasonable if they use
the same hypothesis class, since uniform bounds on LT are
known (see e.g., Remark 1).
Remark 1 (continuing from p. 3). Recently, collaborative
and federated learning has emerged as a topic of prime
importance in Machine learning (Blum et al., 2017; Kairouz
et al., 2021). One may wonder whether agents sharing a
common model, so Ẑj

t = Ẑt ∈ Z for any j ∈ [J ], may im-
prove Proposition 6. Indeed, even though agents play uncou-
pled strategies, policies πj

t (Ẑt) are implicitly coordinated
as they rely on a same signal. We show in Proposition 9 in
Appendix G that in this case, we can drop the assumption
T = Ω(J2LT ) and still recover the guarantee of Proposi-
tion 6 by a direct improvement of the proof. Studying the
impacts of collaborative learning in games more broadly is
an interesting topic for future research.

It is now possible to obtain an explicit convergence rate to
coarse-correlated equilibrium by combining Proposition 2
with Proposition 6.
Corollary 1. Assume H1, H2 and T = Ω(J2LT ). If all
agents use Algorithm 1 with η⋆ > 0 as defined in Propo-
sition 6, then ν̂T (as defined as in Proposition 2) is an
ε-coarse correlated equilibrium, with

ε = O( [ln(K)(LT +m)]3/4T−3/4J1/2 ) .

In addition, it is possible to obtain a convergence rate for the
more demanding contextual correlated equilibrium concept
defined in Definition 2. As a matter of fact, the reduction
described in Algorithm 2 allows to transform POMWU, which
enjoys the guarantee on Rj

T presented in Proposition 6, into
an algorithm π̄j with a guarantee on R

j

T —see Proposition 1.
Then, applying Proposition 3 leads to the following corol-
lary.
Corollary 2. Assume H1, H2 and T = Ω(J2LT ). If all
agents use Algorithm 1 in conjonction with Algorithm 2
and η⋆ > 0 as in Proposition 6, then ν̂T is an ε̄-correlated
equilibrium, with

ε̄ = O( [K ln(K)(LT +m)]3/4T−3/4J1/2 ) .

7
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Social welfare. We now turn our attention to social wel-
fare when agents use POMWU. As discussed in Section 2, this
requires bounding the sum of regrets. A first, naive approach
would be to sum the bound of individual regrets obtained in
Proposition 6. However, we show below that another choice
of η leads to a much better guarantee.

Proposition 7. Let LT =
∑

j∈[J] L
j
T , and assume H1,

H2. If all agents use Algorithm 1 with a learning rate
η = (4(J − 1))−1, then∑
j∈[J]

Rj
T ⩽ 4J [(5 + ln(K))LT +mJ ln(K)] +

LT

J − 1

= O(J ln(K)(LT +mJ)) .

Note that in the setting of Remark 1 under the realizable
assumption, LT = OT (1) and hence we recover the classic
result

∑
j∈[J] R

j
T = OT (1) of Syrgkanis et al. (2015) in

the static setting.

The bound in Proposition 7 can immediately be converted
into a convergence rate of social cost to a fraction of the
optimal one via Proposition 4.

Corollary 3. Assume H1, H2 and H3. If Assume all agents
use Algorithm 1 with η = (4(J − 1))−1, then

1

T

∑
t∈[T ]

Ct(wt) ⩽ γC⋆ +O(J ln(K)T−1(LT +mJ)) .

Robustness. Finally, we turn our attention to the adver-
sarial regime where not all agents use POMWU. Specifically,
we ask whether the regret of POMWU remains low against
any arbitrary sequence of cost feedback. This robustness
property is a common desiderata in the literature (Syrgkanis
et al., 2015; Foster et al., 2016).

Proposition 8. Assume H1 and H2. If player j ∈ [J ] uses Al-
gorithm 1 with η = Θ([ln(K)(Lj

T +m)]1/2(Lj
T +T )−1/2),

then for any sequence (w−j
1 , . . . ,w−j

T ) ∈P(A−j)T :

Rj
T = O

(√
ln(K)(Lj

T +m)(Lj
T + T )

)
.

Here again, in the setting of Remark 1 under realizability,
Lj
T = OT (1) and therefore we recover the guarantee Rj

T =

O(
√
T ).

4. Experiments.
Setting. We illustrate the performances of POMWU on the
Sioux Falls routing problem from LeBlanc et al. (1975)
with the parameters from Sessa et al. (2019). We consider
a network of cities connected by roads. In each city, there
is one agent willing to send a given quantity of goods to

each other city. Agents want to minimize their travel time,
which is determined by both congestion on the network,
and external factors such as weather and road condition.
Formally, we consider a graph (V, E) with J = |V|(|V|−1)
agents, each of whom wants to send qj > 0 units from
nj ∈ V to mj ∈ V . For any j ∈ [J ], we let Aj be the set
of K > 0 shortest paths connecting nj to mj , that is any
aj ∈ Aj can be written as aj = (ij1, . . . , i

j
R) with ij1 = nj ,

ijR = mj , and (ir, ir+1) ∈ E for any r ∈ {1, . . . , R − 1}.
For any profile of actions a = (a1, . . . , aJ) ∈ A and pair
of nodes (p, ℓ) ∈ E , we denote by

ϕj
p,ℓ(a) =

{∑
i∈[J] 1{(p, ℓ) ∈ ai}q4i if (p, ℓ) ∈ aj

0 otherwise ,

the total congestion1 faced by j ∈ [J ] on (p, ℓ), and
ϕj(a) = (ϕj

p,ℓ(a))p,ℓ ∈ R|V|×|V| the corresponding ma-
trix. Agents are allowed to randomize over routes, so they
play wj ∈ ∆K . To each pair (p, ℓ) ∈ V × V , we also as-
sociate a cost coefficient zp,ℓ > 0 related to road condition
or weather, and we denote by Z = (zp,ℓ)p,ℓ ∈ R|V|×|V|

the corresponding matrix. Then for any w ∈ P(A) and
Z ∈ R|V|×|V|, the cost for any j ∈ [J ] is given by:

cj(w, Z) = Ew

[〈
Z, ϕj(a)

〉
F

]
,

where ⟨A,B⟩F = Tr(ATB) =
∑

i,j Ai,jBi,j is the Frobe-
nius inner product. cj captures the expected travel time of
player j ∈ [J ] when they pick routes according to wj ∈ ∆K

and other agents according to w−j ∈P(A−j) under con-
text Z ∈ Z . Additional experimental details can be found
in Appendix A.

Supervised learning. In our experiment, there are m > 0
random contexts denoted Z = {z1, . . . , zm}. For any z ∈
Z , there exists β⋆

z ∈ Rb such that

P(Z = z|X0) = ζ(β⋆
z , X

0) =
exp(β⋆

zX
0)∑

z′∈Z exp(β⋆
z′X0)

,

where X0 ∈ Rb is a vector of covariates (which can be
thought of as a meteorogical or a traffic forecast) drawn from
a standard Normal multivariate distribution. At each round
t ∈ [T ], agents observe X0

t ∈ Rb and predict with a logistic
regression Ẑt ∈ Z , that is Ẑt = argmaxz∈Z ζ(β̂z, X

0
t ).

They then update β̂z1 , . . . , β̂zm in an online fashion with a
stochastic gradient descent. More details can be found in
Appendix A.

1In Sessa et al. (2019), the congestion is of form ϕ̃p,ℓ(a) =
(
∑

k∈[J] 1{(p, ℓ) ∈ ak}qk)4. We only keep the term q4k in this
sum so ϕk,q is linear in a ∈ A, which is necessary to compute
expectations given the size of action space |A| = m|V|(|V|−1).
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Figure 1: Average repartition of agents on the network for each context under a 10−3-coarse correlated equilibrium.

Figure 2: Average regret over agents for
POMWU and OMWU.

Figure 3: Average prediction error from
the online logistic regression.

Figure 4: Proportion of average regret
incurred under mispredicted contexts.

Game. There are T > 0 rounds. At each t ∈ [T ], A pair
(X0

t , Zt) is drawn, each agent j ∈ [J ] observe X0
t , predict

Ẑj
t , and play wj

t ∈ ∆K according to Algorithm 1. They then
receive Zt and (Ew−j

t
[ϕj(ajt,k,a

−j
t )])k∈[K] as a feedback,

which they use to update POMWU and their logistic regression.
The parameters used in our experiment are summarized in
Appendix A.

Results. Figure 2 displays the the regret averaged over
players2 for a naive OMWU algorithm which ignores states of
nature, and POMWU. The effectiveness of POMWU in adapting
to time-varying payoffs is clear, especially when compared
to the classic OMWU, whose contextual regret grows linearly
due to its inability to account for states of nature. Inter-
estingly, Figure 4 shows that rounds where contexts are
mispredicted contributes to a large and growing share of
regret over time for POMWU. This illustrates the convergence
of the algorithm on each context. The fact that average
prediction error of the online logistic regression (Figure 3)
decreases at a slow rate thus explains most of the regret
trend of POMWU in late rounds. Finally, Figure 1 depicts the
average proportion of agents occupying each edge of the
network in different contexts under the empirical policy ν̂
defined in Proposition 2. By Proposition 2, this is a depic-
tion of a 10−3-approximate coarse correlated equilibrium
of the game.

2Shaded areas correspond to standard error computed over
multiple runs.

5. Conclusion
The recent extension of uncoupled learning to time-varying
games marks a significant progress, as it enables the mod-
eling of non-stationary payoff environments. However, ex-
isting literature overlooks the fact that they may be able
to forecast future variations of the game. In this work, we
introduce prediction-aware learning, a framework in which
agents can leverage predictions about future payoffs to in-
form their strategies. Specifically, we propose the POMWU
algorithm, inspired by the classic OMWU approach, which
incorporates the predicted state of nature into the optimism
step. We provide explicit guarantees on both individual re-
grets and social welfare, and demonstrate the effectiveness
of POMWU in a simulated contextual game.

We believe that these findings provide a strong foundation
for incorporating predictive capabilities into dynamic game-
theoretic settings, with significant implications for strategic
decision-making in economic and industrial applications.
There are several avenues for future work to improve and
expand upon this framework. First, it would be valuable to
weaken the feedback provided to players—for instance, by
restricting it to bandit feedback—and analyze the impact
on theoretical guarantees. Second, extending the model
to accommodate an infinite number of contexts presents a
challenging but important direction. Finally, exploring how
collaborative inference influences the game dynamics and
designing algorithms that account for this interplay remains
an essential question from a game-theoretic perspective.

9



Prediction-aware Learning in Multi-agent Systems

Impact Statement
This paper presents work whose goal is to advance the under-
standing of multi-agent systems. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

Acknowledgment
Funded by the European Union (ERC, Ocean, 101071601).
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the
European Union or the European Research Council Execu-
tive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

References
Ioannis Anagnostides, Constantinos Daskalakis, Gabriele

Farina, Maxwell Fishelson, Noah Golowich, and Tuo-
mas Sandholm. Near-optimal no-regret learning for
correlated equilibria in multi-player general-sum games.
In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 736–749,
2022a.

Ioannis Anagnostides, Gabriele Farina, Christian Kroer,
Chung-Wei Lee, Haipeng Luo, and Tuomas Sandholm.
Uncoupled learning dynamics with o (log t) swap regret
in multiplayer games. Advances in Neural Information
Processing Systems, 35:3292–3304, 2022b.

Ioannis Anagnostides, Gabriele Farina, Ioannis Panageas,
and Tuomas Sandholm. Optimistic mirror descent either
converges to nash or to strong coarse correlated equilibria
in bimatrix games, 2022c. URL https://arxiv.org/
abs/2203.12074.

Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina,
and Tuomas Sandholm. On the convergence of no-regret
learning dynamics in time-varying games. Advances in
Neural Information Processing Systems, 36, 2024.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

Robert J Aumann. Correlated equilibrium as an expression
of bayesian rationality. Econometrica: Journal of the
Econometric Society, pages 1–18, 1987.

Abhijit V Banerjee. A simple model of herd behavior. The
quarterly journal of economics, 107(3):797–817, 1992.

Omar Bennouna, Jiawei Zhang, Saurabh Amin, and Asuman
Ozdaglar. Addressing misspecification in contextual opti-

mization, 2024. URL https://arxiv.org/abs/2409.
10479.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-
stationary stochastic optimization. Operations research,
63(5):1227–1244, 2015.

Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A
theory of fads, fashion, custom, and cultural change as
informational cascades. Journal of political Economy,
100(5):992–1026, 1992.

Avrim Blum and Yishay Mansour. From external to inter-
nal regret. Journal of Machine Learning Research, 8(6),
2007.

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and
Mingda Qiao. Collaborative pac learning. Advances
in Neural Information Processing Systems, 30, 2017.

Etienne Boursier, Vianney Perchet, and Marco Scarsini.
Social learning in non-stationary environments. In San-
joy Dasgupta and Nika Haghtalab, editors, Proceedings
of The 33rd International Conference on Algorithmic
Learning Theory, volume 167 of Proceedings of
Machine Learning Research, pages 128–129. PMLR, 29
Mar–01 Apr 2022. URL https://proceedings.mlr.
press/v167/boursier22a.html.

Christophe Chamley. Rational herds: Economic models of
social learning. Cambridge University Press, 2004.

Xi Chen and Binghui Peng. Hedging in games: Faster
convergence of external and swap regrets. Advances
in Neural Information Processing Systems, 33:18990–
18999, 2020.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad
Mahdavi, Chi-Jen Lu, Rong Jin, and Shenghuo Zhu. On-
line optimization with gradual variations. In Conference
on Learning Theory, pages 6–1. JMLR Workshop and
Conference Proceedings, 2012.

George Christodoulou and Elias Koutsoupias. The price of
anarchy of finite congestion games. In Proceedings of
the thirty-seventh annual ACM symposium on Theory of
computing, pages 67–73, 2005.

Yuval Dagan, Constantinos Daskalakis, Maxwell Fishel-
son, and Noah Golowich. From external to swap re-
gret 2.0: An efficient reduction for large action spaces.
In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, pages 1216–1222, 2024.

Amit Daniely and Shai Shalev-Shwartz. Optimal learn-
ers for multiclass problems. In Conference on Learning
Theory, pages 287–316. PMLR, 2014.

10

https://arxiv.org/abs/2203.12074
https://arxiv.org/abs/2203.12074
https://arxiv.org/abs/2409.10479
https://arxiv.org/abs/2409.10479
https://proceedings.mlr.press/v167/boursier22a.html
https://proceedings.mlr.press/v167/boursier22a.html


Prediction-aware Learning in Multi-agent Systems

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai
Shalev-Shwartz. Multiclass learnability and the erm
principle, 2014. URL https://arxiv.org/abs/1308.
2893.

Constantinos Daskalakis, Alan Deckelbaum, and Anthony
Kim. Near-optimal no-regret algorithms for zero-sum
games. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages
235–254. SIAM, 2011.

Constantinos Daskalakis, Maxwell Fishelson, and Noah
Golowich. Near-optimal no-regret learning in general
games. Advances in Neural Information Processing
Systems, 34:27604–27616, 2021.

Priya L. Donti, Brandon Amos, and J. Zico Kolter. Task-
based end-to-end model learning in stochastic opti-
mization, 2019. URL https://arxiv.org/abs/1703.
04529.

Benoit Duvocelle, Panayotis Mertikopoulos, Mathias
Staudigl, and Dries Vermeulen. Learning in time-varying
games. arXiv preprint arXiv:1809.03066, page 17, 2018.

Adam N. Elmachtoub and Paul Grigas. Smart "predict,
then optimize", 2020. URL https://arxiv.org/abs/
1710.08005.

Gabriele Farina, Christian Kroer, Chung-Wei Lee, and
Haipeng Luo. Clairvoyant regret minimization: Equiv-
alence with nemirovski’s conceptual prox method and
extension to general convex games. arXiv preprint
arXiv:2208.14891, 2022.

Dean P Foster and Rakesh V Vohra. Calibrated learning and
correlated equilibrium. Games and Economic Behavior,
21(1-2):40–55, 1997.

Dean P Foster and Rakesh V Vohra. Asymptotic calibration.
Biometrika, 85(2):379–390, 1998.

Dylan J Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Srid-
haran, and Eva Tardos. Learning in games: Robustness
of fast convergence. Advances in Neural Information
Processing Systems, 29, 2016.

Yoav Freund and Robert E Schapire. Adaptive game play-
ing using multiplicative weights. Games and Economic
Behavior, 29(1-2):79–103, 1999.

Rafael M. Frongillo, Grant Schoenebeck, and Omer Tamuz.
Social learning in a changing world. In Ning Chen,
Edith Elkind, and Elias Koutsoupias, editors, Internet
and Network Economics, pages 146–157, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-
25510-6.

Periklis Gogas and Theophilos Papadimitriou. Ma-
chine Learning in Economics and Finance.
Computational Economics, 57(1):1–4, January
2021. doi: 10.1007/s10614-021-10094-. URL
https://ideas.repec.org/a/kap/compec/
v57y2021i1d10.1007_s10614-021-10094-w.html.

Yongyi Guo, Ziping Xu, and Susan Murphy. On-
line learning in bandits with predicted context. In
International Conference on Artificial Intelligence and
Statistics, pages 2215–2223. PMLR, 2024.

Eric Hall and Rebecca Willett. Dynamical models and
tracking regret in online convex programming. In
International Conference on Machine Learning, pages
579–587. PMLR, 2013.

James D Hamilton. Time series analysis. Princeton univer-
sity press, 2020.

Keegan Harris, Zhiwei Steven Wu, and Maria-Florina Bal-
can. Regret minimization in stackelberg games with side
information. arXiv preprint arXiv:2402.08576, 2024.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive pro-
cedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000a.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive pro-
cedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000b.

Sergiu Hart and Andreu Mas-Colell. Uncoupled dynamics
do not lead to nash equilibrium. American Economic
Review, 93(5):1830–1836, 2003.

Elad Hazan and Nimrod Megiddo. Online learning with
prior knowledge. In Learning Theory: 20th Annual
Conference on Learning Theory, COLT 2007, San Diego,
CA, USA; June 13-15, 2007. Proceedings 20, pages 499–
513. Springer, 2007.

Elad Hazan, Tomer Koren, and Kfir Y. Levy. Logistic regres-
sion: Tight bounds for stochastic and online optimization,
2014. URL https://arxiv.org/abs/1405.3843.

Geoffrey Hinton and Michael I. Jordan. Advancing health-
care, e-commerce, and computational analysis with ai- ap-
plications in diagnostics, market insights, and efficiency.
AlgoVista: Journal of AI and Computer Science, 3(2),
Nov. 2024. URL https://algovista.org/index.
php/AVJCS/article/view/28.

Michael Jordan and T.M. Mitchell. Machine learning:
Trends, perspectives, and prospects. Science (New York,
N.Y.), 349:255–60, 07 2015. doi: 10.1126/science.
aaa8415.

11

https://arxiv.org/abs/1308.2893
https://arxiv.org/abs/1308.2893
https://arxiv.org/abs/1703.04529
https://arxiv.org/abs/1703.04529
https://arxiv.org/abs/1710.08005
https://arxiv.org/abs/1710.08005
https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-021-10094-w.html
https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-021-10094-w.html
https://arxiv.org/abs/1405.3843
https://algovista.org/index.php/AVJCS/article/view/28
https://algovista.org/index.php/AVJCS/article/view/28


Prediction-aware Learning in Multi-agent Systems

Peter Kairouz, H Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in fed-
erated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

Emir Kamenica. Bayesian persuasion and information
design. Annual Review of Economics, 11(1):249–272,
2019.

Emir Kamenica and Matthew Gentzkow. Bayesian persua-
sion. American Economic Review, 101(6):2590–2615,
2011.

Johannes Kirschner and Andreas Krause. Stochastic bandits
with context distributions, 2019. URL https://arxiv.
org/abs/1906.02685.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Cambridge University Press, 2020.

Niklas Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Yagiz
Savas, and Ufuk Topcu. No-regret learning in dynamic
stackelberg games. IEEE Transactions on Automatic
Control, 2023.

Larry J LeBlanc, Edward K Morlok, and William P Pier-
skalla. An efficient approach to solving the road network
equilibrium traffic assignment problem. Transportation
research, 9(5):309–318, 1975.
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A. Experiment.
Additional information about the setting of the experiment. The graph used to model the Sioux Falls road network
from LeBlanc et al. (1975) has |N | = 24 nodes and |E| = 76 edges. The network topology, the cost coefficients zp,ℓ > 0
as well as the quantities qj > 0 to be sent are downloaded from https://github.com/sessap/contextualgames/
tree/main/SiouxFallsNet. In the experiment, we consider m = 5 states of nature. Each state of nature i ∈ [m] is
generated by adding a noise εip,ℓ > 0 drawn from an exponential distribution with scale parameter λ = 10−2 to each
edge (p, ℓ) ∈ E . For each player j ∈ [J ], we let Aj be the K = 5 shortest paths connecting nj ∈ N to mj ∈ N . While
there are |N |(|N | − 1) = 552 agents in total on the network, we exclude agents for whom the lengths of the longest path
exceeds the length of the shortest path by more than 2. This is because the optimal action tends to trivially be the shortest
path irrespective of the state of nature for these agents. With this choice, we are left with J = 91 agents having actions
generating rewards of the same order of magnitude. The simulation is run over T = 2.104 timesteps. The displayed regrets
for predMWU and OMWU are averaged over agents.

Online supervised learning in the experiment. As explained in the main text, for any t ∈ [T ],

P(Zt = z|X0
t ) = ζ(β⋆

z , X
0) =

exp(β⋆
zX

0)∑
z′∈Z exp(β⋆

z′X0)
,

where X0 ∈ Rb with b = 10. In the experiment, for any t ∈ [T ], X0
t ∼ N (m, 5Ib) with m ∈ [1, 4]b. All agents receive the

same covariates from sack of simplicity. For any z ∈ Z , β⋆
z ∈ Rb is drawn before the simulation according to a Normal

distribution N (0, 5Ib).

B. Discussion of H2.
In this appendix, we briefly outline two possible approaches to carry our analysis without H2. More precisely, we assume in
this section that Z ⊂ a compact context set.

1. One first natural strategy involves discretizing Z using an ε-net and projecting each incoming context z ∈ Z to
its nearest neighbor on the net. Under suitable smoothness conditions on the loss or reward functions, this could
enable a reduction to the finite context case. However, this method typically results in regret bounds with exponential
dependence on the dimension d, which can severely limit its applicability in high-dimensional settings (see, e.g.,
Theorem 4 in Hazan and Megiddo (2007)).

2. Alternatively, one could seek to work directly with the continuous context space. However, without placing restrictions
on the policy class, it is possible to construct problem instances where both external and swap regrets grow linearly in
the number of rounds. This highlights the necessity of controlling model complexity, for example by (i) restricting
to a finite policy class (as in Auer et al. (2002)), or (ii) assuming linear structure in the policies (cf. LinUCB-style
approaches), possibly combined with complexity measures such as sequential Rademacher complexities (Rakhlin
et al., 2015). Each of these directions would require introducing new assumptions, proof techniques, and analytical
frameworks, and therefore warrants a dedicated study.

C. Discussion on Definition 1 and Definition 2.
In this section, we provide further interpretation about the equilibrium concepts defined in Definition 1 and Definition 2.
First, of all, recall that ε-contextual coarse correlated equilibrium is defined as follows:

Definition 1. [Sessa et al. 2021] Let ε > 0. An ε-contextual coarse-correlated equilibrium is a joint policy ν : Z →P(A)
such that for any j ∈ [J ] and πj ∈ Πj:

T−1
∑
t∈[T ]

cj(νj(Zt),ν
−j(Zt), Zt)

⩽ T−1
∑
t∈[T ]

cj(πj(Zt),ν
−j(Zt), Zt) + ε .
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For any z ∈ Z , the distribution ν(z) can be interpreted as a correlation device that generates and recommends pure actions
to agents. We say that ν(z) is an equilibrium in the sense of Definition 1 if no player can decrease their expected cost by
ignoring the recommendations from ν before they have even been drawn on average over time. Note that contrary to the
classic coarse correlated equilibrium (Foster and Vohra, 1998), ν : z ∈ Z 7→ ν(z) ∈ P(A) is a policy that maps contexts to
distributions over joint actions.

Second, a ε-correlated equilibrium is defined as follows.

Definition 2. Let ε > 0. An ε-contextual correlated equilibrium is a joint policy ν : Z →P(A) such that for any j ∈ [J ]
and ϱj : Aj ×Z → Aj:

T−1
∑
t∈[T ]

Ea∼ν(Zt)

[〈
ϕj(a), Zt

〉]
⩽ T−1

∑
t∈[T ]

Ea∼ν(Zt)

[〈
ϕj(ϱj(aj , Zt),a

−j), Zt

〉]
+ ε .

Just as before, ν can be regarded as a correlation device. It is an equilibrium in the sense of Definition 2 if no player can
decrease their expected cost by deviating from their recommended action after it has been drawn, on average over time.
From this point of view, being a correlated equilibrium is more demanding than a coarse correlated equilibrium. Note that
Definition 2 extends the classic correlated equilibrium notion (Aumann, 1987) to the contextual case, by letting the swap
functions ϱj( · , z) depend on the state of nature.

D. Useful algorithms.

Algorithm 2 Contextual Blum-Mansour algorithm.

1: Input: a no-external regret policy πj ∈ Πj .
2: Initialize hj

k,0 = ∅ for any k ∈ {1, . . . ,K} .
3: for each t ∈ {1, . . . , T}: do
4: Predict Ẑj

t ∈ Z .
5: For every k ∈ {1, . . . ,K}, get pjk,t = πj(hj

k,t−1, Ẑ
j
t ), and define P j

t = (pj1,t | . . . | p
j
K,t) ∈ RK×K .

6: Play wj
t ∈ ∆K such that

P j
t w

j
t = wj

t .

7: Observe Zt ∈ Z and Φj(w−j
t ) ∈ Rd×K ,

8: Update hj
k,t = hj

k,t−1 ∪ {w
j
t [k]Φ

j(w−j
t ), Zt} for ay k ∈ {1, . . . ,K} .

9: end for

Algorithm 3 Standard Optimal Algorithm (SOA) from Daniely et al. (2014).

1: Input: An hypothesis class G ⊂ {g : X → Z} with Littlestone dimension dimL (G) <∞.
2: Initialize V0 = G.
3: for each t ∈ {1, . . . , T}: do
4: Receive Xt ∈ X and define V

(z)
t = {g ∈ Vt−1 : g(Xt) = z} for any z ∈ Z .

5: Predict Ẑt ∈ argmaxz∈Z dimL (V
(z)
t ) .

6: Receive Zt ∈ Z and update Vt ← V
(Zt)
t .

7: end for

E. Notations
For the proofs, we use the following notations and shorthands.

• For any z ∈ Z , T z = {t ∈ [T ] : Zt = z} = {tz1, . . . , tznz
} where nz = |T z| .
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Algorithm 4 Learning with Expert Advice (LEA) from Daniely et al. (2014).

1: Input: An hypothesis class G ⊂ {g : X → Y} with Littlestone dimension dimL (G) < ∞, N > 0 experts using
Algorithm 3 with N ⩽ (mT )dimL (G).

2: Set η =
√
8 ln(N)/T .

3: for each t ∈ {1, . . . , T}: do
4: Observe Xt ∈ X , receive expert advices (f1

t (Xt), . . . , f
N
t (Xt)) ∈ ZN .

5: Predict Ẑt = f i
t (Xt) with probability proportional to exp(−η

∑
τ<t 1{f i

τ (Xτ ) ̸= Zτ}).
6: Receive Zt ∈ Z and send it to all experts as a feedback.
7: end for

Algorithm 5 Optimistic Mirror Descent with predicted context.

1: Initialize Ψz1 = . . . = Ψzm = 0d×K and ρz1 = . . . = ρzm = argminw̃∈∆K
R(w̃).

2: for each t ∈ [T ] do
3: Observe Ẑj

t ∈ Z , set M̃ j
t = ΨẐj

t
and g̃jt = ρẐj

t
.

4: Play w̃j
t = argminw̃∈∆K

η
〈
M̃ jT

t Ẑj
t , w̃

〉
+DR(w̃, g̃jt ) ,

5: Observe Zt ∈ Rd and Φj(w−j
t ) ∈ Rd×K .

6: Compute ρ̃t = argming∈∆K

〈
Φj(w−j

t )TZt, g
〉
+DR(g, g̃jt ) ,

7: Update ΨZt
← Φj(w−j

t ) and ρZt
← ρ̃t.

8: end for

Algorithm 6 Optimistic FTRL with predicted context.

1: Initialize w0 = argminw∈∆K
R(w) and Ψz1 = . . . = Ψzm = 0d×K .

2: for each t ∈ [T ] do
3: Observe Ẑj

t ∈ Z and set M̃ j
t = ΨẐj

t
.

4: Play wj
t = argminw∈∆K

〈∑t−1
τ=1 1{Zτ = Zj

t }Φj(w−j
τ )TZτ + M̃ jT

t Zj
t , w

〉
+ DR(w)

η ,

5: Observe Zt ∈ Rd and Φj(w−j
t ), update ΨZt ← Φj(w−j

t ) .
6: end for

• For any j ∈ [J ], z ∈ Z and i ∈ {1, . . . , nz}:

Φj(w−j
tzi

) = Φj
z,i wj

tzi
= wj

z,i

M j
tzi

= M j
z,i gjtzi

= gjz,i
ρ̃jtzi

= ρ̃jz,i Ẑj
tzi

= Ẑj
z,i .

F. Technical lemmas.
Lemma 1. Let j ∈ [J ], w ∈P(A) with w = wj ⊗w−j and Φj(w−j) = (Ew−j [ϕj(ajk,a

−j)[ℓ]])ℓ,k ∈ Rd×K . We have:

cj(w, Z) =
〈
Z,Φj(w−j)wj

〉
.

Proof. Let j ∈ [J ], Z ∈ Z and w ∈P(A) with w = wj ⊗w−j . By Fubini theorem,

cj(w, Z) = Ewj

[
Ew−j

[〈
Z, ϕj(aj ,a−j)

〉]]
=

K∑
k=1

wj [k]Ew−j

[〈
Z, ϕj(a

j
k,a

−j)
〉]

=

〈
Z,

K∑
k=1

wj [k]Ew−j

[
ϕj(a

j
k,a

−j)
]〉

=
〈
Z,Φj(w−j)wj

〉
.
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Lemma 2. Let j ∈ [J ]. For given sequences (Z1, . . . , ZT ) ∈ ZT , (Ẑj
1 , . . . , Ẑ

j
T ) ∈ ZT and (w−j

1 , . . . , . . . ,w−j
T ) ∈

P(A−j)T , Algorithm 1 and Algorithm 5 withR : w 7→
∑

k∈[K] w[k] lnw[k]− w[k] produce the same iterates: w̃j
t = wj

t

for any t ∈ [T ].

Proof. Observe that the Bregman divergence DR(w, v) = R(w) − R(v) − ⟨∇R(v), w − v⟩ generated by R : w 7→∑
k∈[K] w[k] lnw[k]− w[k] is for any w, v ∈ ∆K :

DR(w, v) = KL(w, v) ,

where KL denotes the the Kullback-Leibler divergence. Therefore, in this proof we write KL instead of DR. Algorithm 1
produces an iterate wj

t ∈ ∆K such that for any ℓ ∈ [K]:

wj
t [ℓ] =

exp
[
−η
(
M j

t [ℓ]Ẑ
j
t +

∑t−1
τ=1 1{Zτ = Ẑj

t }Φj(w−j
τ )[ℓ]Ẑj

t

)]
∑

k∈[K] exp
[
−η
(
M j

t [k]Ẑ
j
t +

∑t−1
τ=1 1{Zτ = Ẑj

t }Φj(w−j
τ )[k]Ẑj

t

)] . (8)

We will show that the iterate of Algorithm 5, w̃j
t = argminw∈∆K

η
〈
M̃ jT

t Ẑj
t , w

〉
+KL(w, g̃jt ) is equal to (8). To this end,

we define
Pj
t = {τ ∈ {1, . . . , t− 1} : Zτ = Ẑj

t } ,
and we write Pj

t = {τ1, . . . , τNj
t
} where N j

t =
∑

τ<t 1{Zτ = Ẑj
t }. We prove with a recursion that for any r ∈

{1, . . . , N j
t }, we have for any ℓ ∈ [K]:

g̃jτr [ℓ] =
exp
[
−η
∑r−1

i=1 Φj(w−j
τi )[ℓ]Ẑj

t

]
∑

k∈[K] g̃
j
τi [k] exp

[
−η
∑r−1

i=1 Φj(w−j
τi )[k]

]
Ẑj
t

, (9)

For r = 1, by definition of Algorithm 5, g̃jτ1 = argming∈∆K
R(g) = m−11m where 1m = (1, . . . , 1)T, so (9) is true by

the convention
∑

i∈∅ ki = 0. Suppose now that (9) holds true for some r ∈ {1, . . . , N j
t − 1}. By definition,

g̃jτr+1
= argmin

w∈∆K

η
〈
Φj(w−j

τr )TẐj
τr , g

〉
+KL(w, g̃jτr ) .

Equivalently, it is the solution to

min
g∈Rm

max
λ∈R
L(g, λ) with L(g, λ) = η

〈
Φj(w−j

τr )TẐj
τr , g

〉
+KL(g, g̃jτr ) + λ(

∑
ℓ∈[K]

g[ℓ]− 1) .

In particular ∇L(g̃jτr+1
, λ) = 0, that is for any ℓ ∈ [K]:

ηΦj(w−j
τr )[ℓ]Ẑj

τr + ln(g̃jτr+1
[ℓ])− ln(g̃jτr [ℓ]) + λ = 0 so g̃jτr+1

[ℓ] = g̃jτr [ℓ] exp
(
−ηΦj(w−j

τr )[ℓ]Ẑj
τr − λ

)
. (10)

Using the fact that
∑

k∈[K] g̃
j
τr+1

[k] = 1, we obtain from (10) exp(λ) =
∑

k∈[K] g̃
j
τr [k] exp(−ηΦ

j(w−j
τr )[k]Ẑj

τr ), so:

g̃jτr+1
[ℓ] =

g̃jτr [ℓ] exp(−ηΦ
j(w−j

τr )[ℓ]Ẑj
τr )∑

k∈[K] g̃
j
τr [k] exp(−ηΦj(w−j

τr )[k]Ẑj
τr )

(11)

and using the recursion assumption establishes the result. Finally, observe that

w̃j
t = argmin

w∈∆K

η
〈
M̃ j

t Ẑ
j
t , w

〉
+KL(w, g̃jt ) ,

By the same lines of computation as previously, we obtain that for any ℓ ∈ [K]:

w̃j
t [ℓ] =

g̃jt exp
[
−ηM̃ j

t [ℓ]Ẑ
j
t

]
∑

k∈[K] g̃
j
t exp

[
−ηM̃ j

t [k]Ẑ
j
t

] ,
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Finally, by definition of Algorithm 5, g̃jt ∝ g̃j
Nj

t

exp(−ηΦj(w−j
τ
N

j
t

)), hence by (9):

w̃j
t =

exp
[
−η
(∑Nj

t
i=1 Φ

j(w−j
τi )[ℓ] + M̃ j

t [ℓ]
)
Ẑj
t

]
∑

k∈[K] g̃
j
τi [k] exp

[
−η
(∑Nj

t
i=1 Φ

j(w−j
τi )[k] + M̃ j

t [k]
)
Ẑj
t

] ,

Observing that M̃ j
t = M j

t by definition for any t ∈ [T ], we obtain the desired result.

Lemma 3. For given sequences (Z1, . . . , ZT ) ∈ ZT , (Ẑj
1 , . . . , Ẑ

j
T ) ∈ ZT and (w−j

1 , . . . , . . . ,w−j
T ) ∈ P(A−j), Algo-

rithm 1 and Algorithm 6 produce the same iterates.

Proof. The proof proceeds as the one of Lemma 2: writing the first order condition of step 4 in Algorithm 6 leads to the
expression (8) of the iterate of Algorithm 1.

G. Proofs.
Proposition 1. Assume that player j ∈ [J ] plays an algorithm πj ∈ Πj achieving Rj

T ⩽ f(J, T,K,m) for some
f : N4

+ → R+. Then, one can design an algorithm πj ∈ Πj achieving

R
j

T ⩽ Kf(J, T,K,m) .

Proof. Let j ∈ [J ]. Assume that there exists πj ∈ Πj and f : N4 → R+ such that the regret Rj
T ∈ R of πj satisfies:

Rj
T ⩽ f(J, T,K,m) . (12)

We consider the policy πj
T ∈ Πj described in Algorithm 2. In this proof, we define for any k ∈ {1, . . . ,K}:

rjk =
∑
t∈[T ]

〈
wj

t [k]Φ
j(w−j

t )TZt, p
j
t,k

〉
− min

πk:Z→∆K

∑
t∈[T ]

〈
wj

t [k]Φ
j(w−j

t )TZt, πk(Zt)
〉
,

the regret incurred by πj when fed with the histories hj
k,1, . . . , h

j
k,T ∈ Hj . The swap-regret of πj reads:

R
j

T =
∑
t∈[T ]

〈
Φj(w−j

t ), wj
t − λj

⋆(w
j
t , Zt)

〉

Note by linearity of cj in wj ∈ ∆K (Lemma 1), defining Λj
⋆ : z ∈ Z 7→ (λj

⋆(a
j
1, z) | . . . |λ

j
⋆(a

j
K , z)) ∈ {0, 1}K×K allows

to rewrite λj
⋆(w

j
t , Zt) = Λj

⋆(Zt)w
j
t , hence:

=
∑
t∈[T ]

〈
Φj(w−j

t )TZt, P
j
t w

j
t

〉
−
〈
Φj(w−j

t )TZt,Λ
j
⋆(Zt)w

j
t

〉
(because wj

t = P j
t w

j
t )

=
∑
t∈[T ]

 ∑
k∈[K]

〈
wj

t [k] Φ
j(w−j

t )TZt, p
j
k,t

〉
−
∑

k∈[K]

〈
wj

t [k] Φ
j(w−j

t )TZt, λ
j
⋆(a

j
k, Zt)

〉
⩽
∑

k∈[K]

rjk,T ⩽ Kf(J, T,K,m) .

Proposition 4. Assume H3. Then with γ = δ(1− µ)−1,

1

T

∑
t∈[T ]

Ct(wt) ⩽ γC⋆ +
1

(1− µ)T

∑
j∈[J]

Rj
T .
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Proof. Let ρ : Z → A be an optimal pure strategy policy, which satisfies
∑

t∈[T ] Ct(ρ(Zt)) = C⋆. For any j ∈ [J ] and

z ∈ Z , we denote by δj⋆(Zt) the distribution which puts a mass 1 on the optimal action ρ(Zt)[j] for agent j ∈ [J ]. For any
(w1, . . . ,wT ) ∈P(A)T , we have

T∑
t=1

Ct(wt) =

J∑
j=1

T∑
t=1

〈
Zt,Φ

j(w−j
t )wj

t

〉
⩽

J∑
j=1

Rj
T +

J∑
j=1

T∑
t=1

〈
Zt,Φ

j(w−j
t )δj⋆(Zt)

〉

=

J∑
j=1

Rj
T +

J∑
j=1

T∑
t=1

〈
Zt,Ew−j

t

[
ϕj(ρ

j
⋆(Zt)[j],a

−j)
]〉

⩽
J∑

j=1

Rj
T + δTC⋆ + µ

T∑
t=1

Ct(wt) ,

where we used the (δ, µ)-smoothness assumption in the last line. Re-arranging the terms allows to conclude.

Proposition 2. Assume that for any j ∈ [J ], agent j uses a policy πj ∈ Πj incurring an external regret Rj
T as in (4), and

denote by wj
t = πj

t (Ẑ
j
t ) for any t ∈ [T ]. Let ν̂T : Z →P(A) be such that for any z ∈ Z ,

ν̂T (z) =

{
n−1
z

∑
t∈T z w1

t ⊗ . . .⊗ wJ
t if nz > 0 ,

(K−1, . . . ,K−1) otherwise .

Then, ν̂T is an ε-contextual coarse correlated equilibrium with

ε = max
j∈[J]

T−1Rj
T .

Proof. Let j ∈ [J ] and πj ∈ Πj . By definition, for any z ∈ Z such that nz > 0,

T−1
∑
t∈[T ]

Eν̂T (Zt)

[
ϕj(a)

]
= T−1

∑
z∈Z

∑
t∈T z

n−1
z

∑
t∈T z

Ewt

[
ϕj(a)

]
= T−1

∑
t∈[T ]

Ewt

[
ϕj(a)

]
.

This observation and Lemma 1 lead to:

T−1
∑
t∈[T ]

(
cj(ν̂(Zt), Zt)− cj(πj(Zt), ν̂

−j(Zt), Zt)
)

= T−1
∑
t∈[T ]

Eν̂T (Zt)

[〈
Zt, ϕ

j(at)
〉]
− T−1

∑
t∈[T ]

Eπj(Zt)⊗ν̂T
−j(Zt)

[〈
Zt, ϕ

j(ajt ,a
−j
t )
〉]

= T−1
∑
t∈[T ]

Ewt

[〈
Zt, ϕ

j(at)
〉]
− T−1

∑
t∈[T ]

Eπj(Zt)⊗w−j
t

[〈
Zt, ϕ

j(ajt ,a
−j
t )
〉]

= T−1
∑
t∈[T ]

〈
Zt,Φ

j(w−j
t )wj

t

〉
− T−1

∑
t∈[T ]

〈
Zt,Φ

j(w−j
t )πj(Zt)

〉
⩽ T−1

∑
t∈[T ]

〈
Zt,Φ

j(w−j
t )wj

t

〉
− T−1

∑
t∈[T ]

〈
Zt,Φ

j(w−j
t )πj

⋆(Zt)
〉

= T−1Rj
T .

Proposition 3. Assume that for any j ∈ [J ], agent j uses a policy π̄j ∈ Πj incurring a swap regret R̄j
T defined as in (5).

Let ν̂T : Z →P(A) be defined as in Definition 1. Then, ν̂T is an ε-contextual correlated equilibrium with

ε = max
j∈[J]

T−1R̄j
T .
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Proof. Let j ∈ [J ] and ϱj : A×Z → A. We have:

T−1
∑
t∈[T ]

Eν̂(Zt)

[〈
Zt, ϕ

j(a)
〉
−
〈
Zt, ϕ

j(ϱj(aj , Zt),a
−j)
〉]

= T−1
∑
z∈Z

∑
t∈T z

Ewt

[〈
z, ϕj(a)− ϕj(ϱj(aj , z),a−j)

〉]
And denoting Φ̃j

z(w
j
t ) = (Ew−j

t
[ϕj(ϱj(ajℓ , z),a

−j)[r]])rℓ ∈ Rd×K for any t ∈ T z , by Lemma 1:

= T−1
∑
z∈Z

∑
t∈T z

zT

(
Φj(w−j

t )− Φ̃j
z(w

−j
t )
)
wj

t

For any z ∈ Z , define the matrix Bj
z ∈ {0, 1}K×K with coefficients (Bj

z)k,ℓ = 1{ϱj(ajk, z) = ajℓ}. Observe that
Φ̃j

z(w
−j
t ) = Φj(w−j

t )Bj
z , so:

= T−1
∑
z∈Z

∑
t∈T z

(
zTΦj(w−j

t )wj
t − zTΦj(w−j

t )Bj
zw

j
t

)
Denoting w̃j

t = Bj
zw

j
t ∈ ∆K :

= T−1
∑
z∈Z

(∑
t∈T z

zTΦj(w−j
t )wj

t −
∑
t∈T z

zTΦj(w−j
t )w̃j

t

)

⩽ T−1
∑
z∈Z

(∑
t∈T z

zTΦj(w−j
t )wj

t −
∑
t∈T z

zTΦj(w−j
t )λj

⋆(w
j
t , z)

)
= T−1R

j

T .

Proposition 5. Assume H1 and H2 . Any j ∈ [J ] applying Algorithm 1 with learning rate η > 0 has an external regret
bounded as follows:

Rj
T ⩽

(5 + ln(K))Lj
T +m ln(K)

η

+ η

∑
z∈Z

∑
i⩽nz

∥∥∥∥(Φj(w−j
tzi

)− Φj(w−j
tzi−1

)
)T

z

∥∥∥∥2
∞

+ 4Lj
T


− 1

16η

∑
z∈Z

∑
i⩽nz

∥∥∥wj
tzi
− wj

tzi−1

∥∥∥2
1
.

Proof. By Lemma 2, it is equivalent to show the result holds when players use Algorithm 5 with R : w 7→∑
ℓ∈[K] wℓ ln(wℓ) − wℓ. We assume that this is the case for the rest of the proof. To lighten notation, we drop the

tilde on g̃, M̃ and w̃ as compared to the pseudo-code Algorithm 5.

Let j ∈ [J ]. We denote by ℓjT (z) =
∑

t∈T z 1{Ẑj
t ̸= z} the number of mispredictions of player j on the context z ∈ Z . We

will prove the following inequality for any z ∈ Z:

∑
t∈T z

〈
Φj(w−j

t )Tz, wj
t − πj

⋆(z)
〉
⩽

(5 + ln(K))ℓjT (z) + ln(K)

η
+ η

(
nz∑
i=1

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4ℓjT (z)

)

− 1

8η

nz∑
i=1

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1
. (13)
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Let z ∈ Z . For any t ∈ T z , the instantaneous regret decomposes as:〈
Φj(w−j

t )Tz, wj
t − πj

⋆(z)
〉
=
〈
(Φj(w−j

t )−M j
t )

Tz, wj
t − ρ̃t

〉
︸ ︷︷ ︸

(a)

+
〈
M jT

t z, wj
t − ρ̃t

〉
︸ ︷︷ ︸

(b)

+
〈
Φj(w−j

t )Tz, ρ̃t − πj
⋆(z)

〉
︸ ︷︷ ︸

(c)

,

(14)
where ρ̃t = argming∈∆K

〈
Φj(w−j

t )Tz, g
〉
+ DR(g, gjt ) (see Algorithm 5). We bound each of these three terms. First,

because ∥ · ∥1 and ∥ · ∥∞ are dual,

(a) ⩽
∥∥∥(Φj(w−j

t )−M j
t )

Tz
∥∥∥
∞

∥∥∥wj
t − ρ̃t

∥∥∥
1
. (15)

For the second and third term, we use the following classic lemma, whose proof relies on the definition of the Bregman
divergence and the first order condition.

Lemma 4 (Rakhlin and Sridharan (2013)). let b ∈ Rm and c ∈ Rm, and define a⋆ = argmina∈Rm⟨a, c⟩+DR(a, b). Then
for any d ∈ Rm,

⟨c, a⋆ − d⟩ ⩽ DR(d, b)−DR(d, a⋆)−DR(a⋆, b)

Since wj
t = argminw∈∆K

η
〈
M jT

t Ẑj
t , w

〉
+DR(w, gjt ), applying Lemma 4 to (b) gives

(b) ⩽
1

η

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
+

1

η

(
DR(ρ̃t, g

j
t )−DR(ρ̃t, w

j
t )−DR(wj

t , g
j
t )
)
,

Observe that withR(p) =
∑

ℓ∈[K] pℓ ln pℓ − pℓ, we have DR(p, q) = KL(p, q). Hence by Pinsker’s inequality,

⩽
1

η

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
+

1

η

(
DR(ρ̃t, g

j
t )−

1

2

(∥∥∥ρ̃t − wj
t

∥∥∥2
1
+
∥∥∥wj

t − gjt

∥∥∥2
1
)

))
. (16)

Likewise, ρ̃t = argming∈∆K

〈
Φ

(j)T
t Zt, g

〉
+DR(g, gjt ) so by Lemma 4:

(c) ⩽
1

η

(
DR(πj

⋆(z), g
j
t )−DR(πj

⋆(z), ρ̃t)−DR(ρ̃t, g
j
t )
)
, (17)

Plugging (15), (16), (17) in (14) and summing over T z yields∑
t∈T z

〈
Φj(w−j

t )Tz, wj
t − πj

⋆(z)
〉
⩽
∑
t∈T z

∥∥∥(Φj(w−j
t )−M j

t )
Tz
∥∥∥
∞

∥∥∥wj
t − ρ̃t

∥∥∥
1
− 1

2η

∑
t∈T z

(∥∥∥wj
t − ρ̃t

∥∥∥2
1
+
∥∥∥wj

t − gjt

∥∥∥2
1

)
+

1

η

∑
t∈T z

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
+

1

η

∑
t∈T z

(DR(πj
⋆(z), g

j
t )−DR(πj

⋆(z), ρ̃t))

Now, since ∥a∥∞∥b∥1 ⩽ µ
2 ∥a∥

2
∞ + 1

2µ∥b∥
2
1 for any µ > 0,

⩽
µ

2

∑
t∈T z

∥∥∥(Φj(w−j
t )−M j

t )
Tz
∥∥∥2
∞
−
(

1

2η
− 1

2µ

) ∑
t∈T z

∥∥∥wj
t − ρ̃t

∥∥∥2
1
− 1

2η

∑
t∈T z

∥∥∥wj
t − gjt

∥∥∥2
1

+
1

η

∑
t∈T z

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
+

1

η

∑
t∈T z

DR(πj
⋆(z), g

j
t )−DR(πj

⋆(z), ρ̃t) (18)

Setting µ = 2η and noticing that −1/2η < −1/4η leads to

⩽ η
∑
t∈T z

∥∥∥(Φj(w−j
t )−M j

t )
Tz
∥∥∥2
∞

(i)

− 1

4η

∑
t∈T z

(∥∥∥wj
t − ρ̃t

∥∥∥2
1
+
∥∥∥wj

t − gjt

∥∥∥2
1

)
(ii)

+
1

η

∑
t∈T z

DR(πj
⋆(z), g

j
t )−DR(πj

⋆(z), ρ̃t)

(iii)

+
1

η

∑
t∈T z

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
(iv)

. (19)
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We now bound each sum. First for term (i), writing T z = {tz1, . . . , tznz
} (and using the shorthands defined in Appendix E):

∑
t∈T z

∥∥∥∥(Φj(w−j
t )−M j

t

)T

z

∥∥∥∥2
∞

=

nz∑
i=1

∥∥∥∥(Φj
z,i −M j

z,i

)T

z

∥∥∥∥2
∞

,

By definition of Algorithm 5 for any i ∈ {1, . . . , nz} we have M j
z,i = Φj

z,i−1 if Ẑj
z,i = z, so:

=

nz∑
i=1

1{Ẑj
z,i = z}

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+

nz∑
i=1

1{Ẑj
z,i ̸= z}

∥∥∥∥(Φj
z,i −M j

z,i

)T

z

∥∥∥∥2
∞

By H1:

⩽
nz∑
i=1

1{Ẑj
z,i = z}

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4

nz∑
i=1

1{Ẑj
z,i ̸= z}

⩽
nz∑
i=1

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4ℓjT (z) . (20)

For the term (ii), observe that for any i ∈ {1, . . . , nz},∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1
⩽ 4
∥∥∥wj

z,i − gjz,i

∥∥∥2
1
+ 4
∥∥∥gjz,i − ρ̃jz,i−1

∥∥∥2
1
+ 4
∥∥∥wj

z,i−1 − ρ̃jz,i−1

∥∥∥2
1
. (21)

We then have:∑
t∈T z

(∥∥∥wj
t − ρ̃t

∥∥∥2
1
+
∥∥∥wj

t − gjt

∥∥∥2
1

)
=

nz∑
i=1

(∥∥∥wj
z,i − ρ̃z,i

∥∥∥2
1
+
∥∥∥wj

z,i − gjz,i

∥∥∥2
1

)

=

nz∑
i=1

(∥∥∥wj
z,i−1 − ρ̃z,i−1

∥∥∥2
1
+
∥∥∥wj

z,i−1 − gjz,i−1

∥∥∥2
1

)
+

(∥∥wj
z,nz
− ρ̃z,nz

∥∥2
1
−
∥∥∥wj

z,0 − ρ̃z,0

∥∥∥2
1

)
︸ ︷︷ ︸

⩾0

⩾
nz∑
i=1

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1
−
∥∥∥gjz,i − ρ̃jz,i−1

∥∥∥2
1

(by (21))

Moreover, by definition of Algorithm 5, gjz,i = ρ̃jz,i−1 whenever Ẑj
z,i = z, so:

⩾
1

4

nz∑
i=1

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1
−

nz∑
i=1

1{Ẑj
z,i ̸= z}

∥∥∥gjz,i − ρ̃jz,i−1

∥∥∥2
1

⩾
1

4

nz∑
i=1

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1
− 4ℓjT (z) (22)

Regarding the term (iii), we can use the same reasoning by writing for any i ∈ {1, . . . , nz}:

DR(πj
⋆(z), g

j
z,i)−DR(πj

⋆(z), ρ̃
j
z,i) = DR(πj

⋆(z), g
j
z,i)−DR(πj

⋆(z), ρ̃
j
z,i−1)

+DR(πj
⋆(z), ρ̃

j
z,i−1)−DR(πj

⋆(z), ρ̃z,i) ,

Since gjz,i = ρ̃jz,i−1 if Ẑj
z,i = z, summing over T z gives:

nz∑
i=1

DR(πj
⋆(z), g

j
z,i)−DR(πj

⋆(z), ρ̃
j
z,i) =

nz∑
i=1

1{Ẑj
z,i ̸= z}

(
DR(πj

⋆(z), g
j
z,i)−DR(πj

⋆(z), ρ̃
j
z,i−1)

)
+

nz∑
i=1

DR(πj
⋆(z), ρ̃

j
z,i−1)−DR(πj

⋆(z), ρ̃z,i) ,
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Observing that 0 ⩽ DR(p, q) ⩽ ln(K) for any (p, q) ∈ ∆2
K and that the second sum is telescoping:

nz∑
i=1

DR(πj
⋆(z), g

j
z,i)−DR(πj

⋆(z), ρ̃
j
z,i) ⩽ (ℓjT (z) + 1) ln(K) . (23)

Finally for the term (iv), observe that for any t ∈ T z we have by H1:〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
⩽ 41{Ẑj

t ̸= z} so
∑
t∈T z

〈
M jT

t (z − Ẑj
t ), w

j
t − ρ̃t

〉
⩽ 4ℓjt (z) . (24)

Then, plugging (20), (22), (23) and (24) in (19) establishes Equation (13), and summing (13) over Z gives the desired
result.

Proposition 7. Let LT =
∑

j∈[J] L
j
T , and assume H1, H2. If all agents use Algorithm 1 with a learning rate η =

(4(J − 1))−1, then ∑
j∈[J]

Rj
T ⩽ 4J [(5 + ln(K))LT +mJ ln(K)] +

LT

J − 1

= O(J ln(K)(LT +mJ)) .

Proof. Our proof follows from Syrgkanis et al. (2015) with our new RVU bound. Let (t, t′) ∈ [T ]2 and j ∈ [J ]. Observe
that: ∥∥∥∥(Φj(w−j

t )− Φj(w−j
t′ )
)T

z

∥∥∥∥
∞

= max
ℓ∈[K]

∣∣∣Ew−j
t

[〈
ϕj(aℓ,a

−j
t ), z

〉]
− Ew−j

t′

[〈
ϕj(aℓ,a

−j
t′ ), z

〉]∣∣∣
And since ⟨ϕj(a), z⟩ ⩽ 1 for any a ∈ A by H1, with TV denoting the total variation:

⩽ TV(w−j
t ,w−j

t′ ) = TV

⊗
k ̸=j

wk
t ,
⊗
k ̸=j

wk
t′


⩽
∑
k ̸=j

TV(wk
t , w

k
t′) =

∑
k ̸=j

∥∥wk
t − wk

t′

∥∥
1
.

Squaring the previous inequality and applying Cauchy-Schwarz leads to∥∥∥∥(Φj(w−j
t )− Φj(w−j

t′ )
)T

z

∥∥∥∥2
∞

⩽

∑
k ̸=j

∥∥wk
t − wk

t′

∥∥
1

2

⩽ (J − 1)
∑
k ̸=j

∥∥wk
t − wk

t′

∥∥2
1
, (25)

This implies:∑
j∈[J]

∥∥∥∥(Φj(w−j
t )− Φj(w−j

t′ )
)T

z

∥∥∥∥2
∞

⩽ (J − 1)
∑
j∈[J]

∑
k ̸=j

∥∥wk
t − wk

t′

∥∥2
1
= (J − 1)2

∑
j∈[J]

∥∥∥wj
t − wj

t′

∥∥∥2
1
. (26)

On the other hand, summing the RVU bounds featured in Proposition 5 over players gives:

∑
j∈[J]

Rj
T ⩽

(5 + ln(K))LT +mJ ln(K)

η
+ η

∑
z∈Z

∑
i∈[nz ]

∑
j∈[J]

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4LT


− 1

16η

∑
z∈Z

∑
i∈[nz ]

∑
j∈[J]

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1

Plugging (26) for any z ∈ Z , t = tzi and t′ = tzi−1 for i ∈ {1, . . . , nz} gives:

⩽
(5 + ln(K))LT +mJ ln(K)

η
+ 4ηLT +

(
η(J − 1)2 − 1

16η

)∑
z∈Z

∑
i∈[nz ]

∑
j∈[J]

∥∥∥wj
z,i − wj

z,i−1

∥∥∥2
1

Then, picking η = (4(J − 1))−1 yields the desired result.
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Lemma 5. If player j ∈ [J ] uses Algorithm 1 with a learning rate η > 0, for any i ∈ {1, . . . , nz}:∥∥∥wj
z,i − wj

z,i−1

∥∥∥
1
⩽ 3η1{Ẑj

t = z}+ 2(1− 1{Ẑj
t = z}) .

Proof. Let j ∈ [J ] and i ∈ {1, . . . , nz}. By Lemma 3, it is sufficient to prove that the claim holds true for Algorithm 6.
First if Ẑj

z,i ̸= z, ∥wj
z,i − wj

z,i−1∥1 ⩽ 2. Second, assume that Ẑj
z,i = z. We define for any i′ ∈ {1, . . . , nz} fi′ : w 7→〈

w,
∑i′−1

r=1 ΦjT
z,rz +M jT

z,i′z
〉
+ η−1R(w) and gi′ : w 7→

〈
w,
∑i′

r=1 Φ
jT
z,rz

〉
+ η−1R(w). Observe that for any w ∈ ∆K ,

fi(w)− gi(w) =
〈
w, (M j

z,i − Φj
z,i)

Tz
〉

and fi(w)− gi−1(w) =
〈
w,M jT

z,iz
〉
. (27)

We also define vi−1 = argminv∈∆K
gi−1(v). We have:∥∥∥wj

z,i − wj
z,i−1

∥∥∥
1
⩽
∥∥∥wj

z,i − vi−1

∥∥∥
1
+
∥∥∥vi−1 − wj

z,i−1

∥∥∥
1
. (28)

One the one hand, by η−1-strong convexity of fi with respect to ∥ · ∥1, we have

1

2η

∥∥∥wj
z,i − vi−1

∥∥∥
1
⩽ fi(vi−1)− fi(w

j
z,i) +

〈
∇fi(wj

z,i), w
j
z,i − vi−1

〉
And since wj

z,i = argminw∈∆K
fi(w) by definition in Algorithm 6, the first order condition gives:

1

2η

∥∥∥wj
z,i − vi−1

∥∥∥
1
⩽ fi(vi−1)− fi(w

j
z,i) (29)

Since vi−1 = argminv∈∆K
gi−1(v), we obtain by the same reasoning,

1

2η

∥∥∥wj
z,i − vi−1

∥∥∥
1
⩽ gi−1(w

j
z,i)− gi−1(vi−1) . (30)

Summing (29) with (30) and applying remark (27) leads to:∥∥∥wj
z,i − vi−1

∥∥∥2
1
⩽ η

〈
vi−1 − wj

z,i,M
jT
z,iz
〉
⩽ η

∥∥∥wj
z,i − vi−1

∥∥∥
1

∥∥∥M jT
z,iz
∥∥∥
∞

Dividing on both sides by ∥wj
z,i − vi−1∥1 gives:∥∥∥wj
z,i − vi−1

∥∥∥
1
⩽ η

∥∥∥M jT
z,iz
∥∥∥
∞

⩽ η . (31)

Similarly, it is easy to check that

1

2η

∥∥∥vi−1 − wj
z,i−1

∥∥∥2
1
⩽ fi−1(vi−1)− fi−1(w

j
z,i−1) and

1

2η

∥∥∥wj
z,i−1 − vi−1

∥∥∥2
1
⩽ gi−1(w

j
z,i−1)− gi−1(vi−1) .

So once again summing these two inequalities and making use of remark (27) leads to∥∥∥wj
z,i−1 − vi−1

∥∥∥2
1
⩽ η

〈
vi−1 − wj

z,i−1, (M
j
z,i − Φj

z,i)
Tz
〉
⩽ η

∥∥∥wj
z,i−1 − vi−1

∥∥∥
1

∥∥∥(M j
z,i − Φj

z,i)
Tz
∥∥∥
∞

,

Dividing both sides by
∥∥∥wj

z,i−1 − vi−1

∥∥∥
1

gives:

∥∥∥wj
z,i−1 − vi−1

∥∥∥
1
⩽ η

∥∥∥(M j
z,i − Φj

z,i)
Tz
∥∥∥
∞

⩽ 2η . (32)

Finally, plugging (31) and (32) in (28) yields the result.
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Proposition 6. Define LT = maxj∈[J] L
j
T and assume H1 and H2. If all agents use Algorithm 1 with a learning rate η > 0,

then for any j ∈ [J ]:

Rj
T ⩽

(5 + ln(K))LT +m ln(K)

η

+ η
[
(J − 1)2(9Tη2 + 4LT ) + 4LT

]
.

In particular if T = Ω(J2LT ), setting η⋆ = Θ(J−1/2T−1/4[ln(K)(LT +m)]1/4) leads to:

Rj
T = O( [ln(K)(LT +m)]3/4T 1/4J1/2 ) .

Proof. Let j ∈ [J ]. By Proposition 5 we know that

Rj
T ⩽

(5 + ln(K))Lj
T +m ln(K)

η
+ η

∑
z∈Z

∑
i∈[nz ]

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4Lj
T

 . (33)

Moreover, we proved in (25) that for any z ∈ Z and i ∈ {1, . . . , nz}, ∥(Φj
z,i − Φj

z,i−1)
Tz∥2∞ ⩽ (J − 1)

∑
k ̸=j∥wk

z,i −
wk

z,i−1∥21, so summing over contexts and timesteps gives:

∑
z∈Z

∑
i∈[nz ]

∥∥∥(Φj
z,i − Φj

z,i−1)
Tz
∥∥∥2
∞

⩽ (J − 1)
∑
z∈Z

∑
i∈[nz ]

∑
k ̸=j

∥∥wk
z,i − wk

z,i−1

∥∥2
1


Applying Lemma 5 yields:

⩽ (J − 1)
∑
z∈Z

∑
i∈[nz ]

∑
k ̸=j

(
3η1{Ẑk

z,i = z}+ 21{Ẑk
z,i ̸= z}

)2

= (J − 1)
∑
z∈Z

∑
k ̸=j

 ∑
i∈[nz ]

9η21{Ẑk
z,i = z}+ 41{Ẑk

z,i ̸= z}


⩽ (J − 1)

∑
k ̸=j

(∑
z∈Z

9nzη
2 + 4ℓkT (z)

)

Therefore, ∑
z∈Z

∑
i∈[nz ]

∥∥∥(Φj
z,i − Φj

z,i−1)
Tz
∥∥∥2
∞

⩽ (J − 1)
∑
k ̸=j

(9Tη2 + 4Lk
T ) ⩽ (J − 1)2(9Tη2 + 4LT ) . (34)

Plugging (34) into (33) establishes the first part of the proposition. For the second part of the proposition, define for any
η > 0:

h(η) =
(5 + ln(K))LT +m ln(K)

η
+ η
[
(J − 1)2(9Tη2 + 4LT ) + 4LT

]
=

a

η
+ bη3 + cη with


a = (5 + ln(K))LT +m ln(K)

b = 9(J − 1)2T

c = 4[(J − 1)2 + 1]LT .

.

We are looking for a minimizer of h to make the bound tight. Since h is continuous and limη→0 h(η) = limη→∞ h(η) =
+∞, it admits a minimum on (0,∞), which is also unique by strict convexity. By the first order condition, h is minimized
for

η⋆ =

√√
12ab+ c2 − c

6b
.
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We now determine the order of magnitude of η⋆. On the one hand, by sub-additivity of x 7→
√
x:

η⋆ ⩽ (12ab)1/4(6b)−1/2 = O((ab)1/4b−1/2) . (35)

On the other hand, observe that by assumption T = Ω(J2LT ), so ab = Ω(c2). Consequently, for T > 0 large enough there
exists γ > 0 such that 12ab ⩾ γc2 and it follows that

√
c2 + 12ab− c =

∫ c2+12ab

c2

dt

2
√
t
⩾

12ab

2
√
c2 + 12ab

⩾
12ab

2
√
1 + γ−1

√
12ab

⩾

√
12ab

2
√

1 + γ−1
,

so we deduce that for T > 0 large enough,

η⋆ ⩾

√ √
12ab

12
√
1 + γ−1b

that is η⋆ = Ω((ab)1/4b−1/2) .

Therefore, η⋆ = Θ((ab)1/4b−1/2). Plugging this value in h finally gives:

h(η⋆) = Θ(b1/4a3/4 + a1/4cb−1/4) = O(b1/4a3/4) ,

because c = O(a1/2b1/2) by assumption. Replacing a and b with their actual values yields the claimed bound.

Proposition 8. Assume H1 and H2. If player j ∈ [J ] uses Algorithm 1 with η = Θ([ln(K)(Lj
T +m)]1/2(Lj

T + T )−1/2),
then for any sequence (w−j

1 , . . . ,w−j
T ) ∈P(A−j)T :

Rj
T = O

(√
ln(K)(Lj

T +m)(Lj
T + T )

)
.

Proof. Let j ∈ [J ] and (w−j
1 , . . . ,w−j

T ) ∈ P(A−j)T be any sequence of competitor strategies. We have for any
(t, t′) ∈ [T ]2 and z ∈ Z:∥∥∥∥(Φj(w−j

t )− Φj(w−j
t′ )
)T

z

∥∥∥∥2
∞

⩽ 2
∥∥∥Φj(w−j

t )Tz
∥∥∥2
∞

+ 2
∥∥∥Φj(w−j

t′ )Tz
∥∥∥2
∞

⩽ 2

(
max
k∈[d]

〈
Ew−j

t

[
ϕj(ajℓ ,a

−j)
]
, z
〉)2

+ 2

(
max
k∈[d]

〈
Ew−j

t′

[
ϕj(ajℓ ,a

−j)
]
, z
〉)2

= 2

(
max
k∈[d]

Ew−j
t

[〈
ϕj(ajℓ ,a

−j), z
〉])2

+ 2

(
max
k∈[d]

Ew−j

t′

[〈
ϕj(ajℓ ,a

−j), z
〉])2

⩽ 4 ,

where we have used H1 in the last line. Therefore by Proposition 5, we have:

Rj
T ⩽

(5 + ln(K))Lj
T +m ln(K)

η
+ 4η(T + Lj

T ) = O

(
ln(K)(Lj

T +m)

η
+ η(Lj

T + T )

)
.

Then, setting η = Θ([ln(K)(Lj
T +m)]1/2(Lj

T + T )−1/2) leads to

Rj
T = O([ln(K)(Lj

T +m)]j1/2(Lj
T + T )1/2) .

Proposition 9. Suppose that for any t ∈ [T ], there exists Ẑt ∈ Z such that Ẑj
t = Ẑt for any j ∈ [J ], and

let LT =
∑

t∈[T ] 1{Ẑt ̸= Zt}. Assume H1 and H2. If all agents use Algorithm 1 with a learning rate η⋆ =

Θ(J−1/2T−1/4[ln(K)(LT +m)]1/4), then:

Rj
T = O( [ln(K)(LT +m)]3/4T 1/4J1/2 ) .
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Proof. In this proof, we write for any z ∈ Z and i ∈ {1, . . . , nz}, Ẑtzi
= Ẑz,i. By Proposition 5 we know that

Rj
T ⩽

(5 + ln(K))LT +m ln(K)

η
+ η

(∑
z∈Z

nz∑
i=1

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 4LT

)
. (36)

For any z ∈ Z , we define ℓT (z) =
∑

t∈T z 1{Ẑt ̸= z} and C z = {i ∈ {1, . . . , nz} : Ẑz,i = z and Ẑz,i−1 = z}. We have:

∑
z∈Z

nz∑
i=1

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

=
∑
z∈Z

(∑
i∈C z

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+
∑
i/∈C z

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

)

Note that T z \ C z = {i ∈ {1, . . . , nz} : Ẑz,i ̸= z or Ẑz,i−1 ̸= z} so |T z \ C z| ⩽ 2ℓT (z). Together with the fact that
∥(Φj

z,i − Φj
z,i−1)

Tz∥ ⩽ 4 for any j ∈ [J ] and i ∈ T z \ C z , this implies:

⩽
∑
z∈Z

(∑
i∈C z

∥∥∥∥(Φj
z,i − Φj

z,i−1

)T

z

∥∥∥∥2
∞

+ 8ℓT (z)

)

We proved in (25) that for any z ∈ Z and i ∈ {1, . . . , nz}, ∥(Φj
z,i − Φj

z,i−1)
Tz∥2∞ ⩽ (J − 1)

∑
k ̸=j∥wk

z,i − wk
z,i−1∥21, so

⩽
∑
z∈Z

(J − 1)
∑
t∈C z

∑
k ̸=j

∥∥wk
z,i − wk

z,i−1

∥∥2
1
+ 8ℓT (z)


And by Lemma 5:

⩽
∑
z∈Z

(
9(J − 1)2|C z|η2 + 8ℓT (z)

)
⩽ 9(J − 1)2Tη2 + 8LT .

Plugging this bound in (36) yields:

Rj
T ⩽ h̃(η) =

ã

η
+ b̃η3 + c̃η with


ã = (5 + ln(K))LT +m ln(K)

b̃ = 9(J − 1)2T

c̃ = 12LT .

We observe that c̃ ∝ J−2c, where c > 0 is defined in the proof of Proposition 6. In particular, since LT ⩽ T , we have
ãb̃ = Ω(c̃2), hence we do not need it as an assumption. The rest of the proof follows exactly as in Proposition 6.
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