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Abstract
Large language models (LLMs) excel in under-
standing diverse real-world data and achieving
cross-domain generalization, but struggle with
row-level tabular predictions and table-level QAs.
Existing tabular LLMs serialize tables into 1D
text using language templates (e.g., feature name
is value), which lack 2D spatial relationships, or
structured formats (e.g., HTML tables), which
disrupt feature name-value associations. In this
paper, we introduce LOTO: Lights out, Tabs on,
a novel tabular LLM equipped with the axial row-
column encoder. Inspired by the “Lights Out”
game, LOTO prioritizes attention on cells sharing
the same row and column. It incorporates tun-
able 2D positional encodings to enhance structural
awareness, binned embeddings to improve numer-
ical recognition, and a fine-grained cell projector
to preserve tabular information. We develop a
comprehensive training and evaluation benchmark
for general tabular instruction fine-tuning. Exper-
imental results demonstrate that LOTO achieves
leading performance across both row-level and
table-level tasks, establishing a foundation for
general tabular LLMs.

1. Introduction
In recent years, large language models (LLMs) have uti-
lized language to bridge applications across different modal-
ities (Wang et al., 2024; Zhao et al., 2023), domains (Biswas,
2023; Kasneci et al., 2023; Zhang et al., 2023), and types
of tasks (Imani et al., 2023; Zhuang et al., 2023). They
have become essential tools in several key industries. One
promising area for LLMs is tabular learning (Borisov et al.,
2022; Sui et al., 2024b), which involves queries with table
inputs. Tabular data (van Dijk et al., 2021; Gogas & Pa-
padimitriou, 2021; Hino et al., 2018) is widespread in fields
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such as natural sciences, finance, and sustainable develop-
ment. In tables, the first row (header) represents feature
names, and its column cells contain values—paired with dis-
crete text or continuous numbers. The tabular queries hold
rich, domain-specific information, combining textual seman-
tics, numerical variations, and more (Jiang et al., 2025).

Unlike vision or language domains, the knowledge gap be-
tween different tables can be substantial. This corresponds
to the first major challenge for general tabular models: the
extreme diversity and heterogeneity inherent in tabular data
make cross-table knowledge transfer difficult. Consequently,
most tree-based (Chen & Guestrin, 2016; Prokhorenkova
et al., 2018; Ke et al., 2017) and deep models (Gorishniy
et al., 2021; Wang & Sun, 2022; Somepalli et al., 2022)
require retraining on downstream datasets. LLMs, however,
offer considerable potential for such transfer (Kim et al.,
2024). They can semantically interpret header information
and adapt to unseen queries by leveraging context or other
tables (Dong et al., 2024).

A further challenge for the general tabular LLMs lies in
simultaneously handling diverse task types: 1) Tabular pre-
diction for row-level classification and regression (Borisov
et al., 2022), which focuses on individual row; 2) Table
QA with table-level understanding (Shigarov, 2023), rea-
soning (Ye et al., 2023), and completion (Sun et al., 2016),
which involves queries about the entire table. For most
LLM-based tabular models, a common practice is to serial-
ize 2D tables into 1D text sequences, as LLMs are designed
to process sequences (Vaswani et al., 2017). This is typically
done using either unstructured formats (e.g., feature name
is value (Hegselmann et al., 2023)) or structured formats
(e.g., HTML or Markdown) (Wen et al., 2024; Yang et al.,
2024). We observe that structured serialization excels for ta-
ble QA, while unstructured one is more effective for tabular
prediction. Existing tabular LLMs often struggle to handle
both types of tasks simultaneously, primarily due to inherent
limitations in serialization encoding. Structured serializa-
tion often disrupts relationships between feature names and
values (Su et al., 2024; Fang et al., 2024). When the context
contains multiple entries, LLMs struggle to maintain the
long-range dependencies between these elements in tabular
prediction tasks. On the other hand, unstructured serializa-
tion, though simpler, leads to lengthy sequences as context
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increases, and repeating feature descriptions becomes im-
practical (Sui et al., 2024a). Worse still, LLMs face addi-
tional limitations, such as being naturally not sensitive to
numerical data (Yan et al., 2024). Thus, a general tabular
encoder with an effective alignment and training strategy is
essential to harness the LLMs for table understanding.

To address this, we propose a novel paradigm that integrates
a tabular encoder with axial row-column attention (Ho et al.,
2019) to make LLMs recognize tabular inputs more clearly.
Furthermore, we develop a comprehensive training and eval-
uation benchmark for general tabular instruction fine-tuning,
capable of simultaneously addressing both row-level predic-
tion and table-level QA tasks. The tabular encoder builds
on structured serialization with: 1) Tunable 2D positional
encodings using structure-adaptive prompts for better spa-
tial awareness; 2) Tree-based auxiliary models to construct
binned embeddings for robust numerical recognition; 3)
Fine-grained cell encoder that integrates feature names,
positional, magnitude, and other information; 4) Axial row-
column attention that captures global information from
each cell, which is then concatenated with existing serializa-
tion for improved semantic and structural embeddings.

In a tabular encoder, we focus more on rows (same sample)
and columns (same header/attribute), which aligns with the
“Lights out” game, where controlling the lights in rows and
columns turns off the entire panel. We named our method
LOTO: Lights out, Tabs on. “Tabs on” signifies the LLM’s
understanding of the table by aligning tabular embeddings
to its input space, followed by general tabular instruction
fine-tuning to adapt the model for diverse downstream tasks.
To support this, we design a tabular instruction data engine
that gathers data from over 100 datasets, with tasks like
table description, understanding, reasoning, and comple-
tion, with tabular classification and regression. We employ
both template-based and task-intent-driven data generation
with the auto engine. We also integrate parts of the TableL-
LaMA (Zhang et al., 2024) dataset, resulting in a total of
81k training samples. LOTO is evaluated on benchmarks for
tabular prediction, table QA, and completion across diverse
domains, including science, finance, commerce, health, and
so on. It achieves leading performance across all task types,
establishing a robust foundation for general tabular LLMs.
Our main contributions are:

• LOTO architecture. A large-scale tabular LLM with
axial row-column attention.

• General tabular instruction tuning. A data engine and
framework for alignment and fine-tuning.

• Comprehensive tabular instruction benchmarks. In-
and out-of-domain evaluation from authoritative datasets
for table QA, tabular prediction, and completion tasks.

2. Preliminary
2.1. Notations

Basic Data Components: Tables consist of feature names
(defining column semantics) and values (discrete text or
continuous numbers). We represent feature names as a
header theader ∈ Rd and values as x ∈ Rn×d, forming a
table with n data rows and d columns.

Tabular Task Types: 1) Tabular Prediction: Aims to predict
target feature(s) y (via classification/regression) for individ-
ual data rows. A single sample’s input includes theader and a
data row xi ∈ Rd. 2) Table QA: Involves queries about the
entire table’s content, such as reasoning, filling, summariza-
tion, or identifying structural relationships. Input comprises
theader and the full table data x.

Tables, being inherently 2D, suffer from substantial embed-
ding shifts due to diverse values and heterogeneous feature
names. LLMs, benefiting from vast training, offer signif-
icant potential for cross-domain generalization. Option-
ally, relevant context xcontext can further aid LLM decision-
making. Subsequent sections will review research on table
inputs to language models and tabular LLM advancements,
experimentally exploring the rationale for a customized tab-
ular encoder to bridge LLMs and tabular learning.

3. LOTO: Omni-Task Tabular LLMs
3.1. Architecture

Motivation: Our objective is to improve the table recog-
nition capabilities by leveraging a table encoder to align
new data characteristics, such as enhancing sensitivity to 2D
structures, row-column interactions, numerical data types,
and so on. In the LOTO framework, tabular inputs are pro-
cessed by the encoder and then aligned with textual parts
(e.g., contexts, instructions) within the embedding space,
supported by pre-training and instruction fine-tuning.

Tabular Encoder with tunable tokens, local aggregators,
and global axial row-column attention:

• Dynamic structural tokens for spatial understanding:
We introduce 2 tunable tokens for each cell to encode row
and column. These token embeddings are initialized by:

t[POS] = avg (emb (“Row {i}”)) , avg (emb (“Column {j}”)) .
(1)

• Relative magnitude tokenization for numerical values:
Similar to prior works (Yan et al., 2024), we use a tunable
binning token divided into 128 quantiles, i.e.,

t[MAG] =

{
C4.5leaf_index(x

num), if many-shot annotations
Uniformindex(x

num), if online few-shot context
.

(2)
For many-shot labeled tables, a decision tree maps numer-
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ScoreLLM NameTypeTask ID

0.68GPT-4oQ & AT001

0.82Qwen2.5-MathMathT003

0.75DeepSeek CoderCode Gen.T002

0.69Qwen3Q & AT004

0.51Llama-3.1Summ.T005

Instruction:
Predict output quality (H/M/L) for LLM-T007 with LLM Name is Qwen2.5-Math, Domain is Algebra ?

Structural Tokens

0.89

Initialize with pooling embedding

of “Row {i}” or “Column {j}”.

Magnitude Tokens
Bucket the num. value into 128 bins

with decision trees.

Serialization Tokens

Score
is

0.89
H
igh

Row
2

Col
4

Concatenate “feature is value”

Cell Aggregator

Axial Row-Column
Attention

LLM

3. Concat with values

1. Get one [AGGR] emb.

2. Apply on [AGGR] embs.

Figure 1: Architecture of Our Model. LOTO efficiently aligns embeddings from the tabular encoder to the LLM. The
tabular encoder effectively extracts critical features, capturing various numerical types and complex structures. After tabular
instruction tuning, LOTO seamlessly integrates context embeddings with the current instruction for enhanced performance.

ical column inputs to annotations, with leaf nodes defining
magnitude partitions. For online context tables, numerical
ranges are uniformly discretized.

• Local aggregator for multi-functional information of
cell: Elements associated with each cell include structural
token t[POS], magnitude token t[MAG], values, and their
corresponding feature names. We employ compact self-
attention layers and a reserved t[AGGR] token to distill
representations and reduce redundancy. We have:

h[AGGR]
i = h0, : ∈ Rd ,

where h = Attn
([
t[AGGR]; t[POS]i ; t[MAG]i ; tname

i ; xi

])
.
(3)

• Axial attention for row-column relationship aware-
ness: We introduce axial attention to globally encode the
above aggregated embeddings h[AGGR]. These are then
concatenated with the basic 2D values to align with the
LLM input embeddings, i.e.,

haxial = Attn
({

h[AGGR]i, :

}n

i=1

)
+Attn

({
h[AGGR]:, j

}d

j=1

)⊤

,

(4)

In summary, the tabular encoder represents key information
in [AGGR] tokens while aligning with structural values,
contexts, and instructions. The final tabular embedding, to
be aligned with other text inputs, can be formalized as:

htab =
(
hheader
1 , . . . , ‘\n’ ;

[
haxial
11 , x11

]
︸ ︷︷ ︸

one cell

,
[
haxial
12 , x12

]
,

. . . , ‘\n’ ; . . . ,
[
haxial
nd , xnd

]
, ‘\n’ ;

)
,

(5)

where hheader
j represents the embeddings of the feature

names, and hinstruct corresponds to the task instruction,
which is detailed in the next section. Our framework work-
flow is illustrated in Figure 1.

3.2. In-context Tabular Instructions

An in-context learning approach is introduced for rapid adap-
tation using zero- or few-shot examples to connect diverse
tabular tasks and leverage flexible language organization.
This method categorizes tabular tasks into two components:
1) a tabular context (table content, potentially with few-
shot annotations) and 2) a task instruction augmented with
relevant tabular query information. The tabular context is
randomly sampled from training data or via similarity-based
methods like k-NN (Peterson, 2009). Task instructions are
then composed with a tabular query to create task-oriented
prompts (e.g., “What does this table describe?”), providing
sufficient context for unseen tasks.

3.3. Cross-Table Language Autoregression

During LOTO’s cold start, a gap exists between language
and tabular embeddings, hindering LLMs’ interpretation
of table structures and relationships. To bridge this, we
introduce tailored training tasks and strategies focusing on
instruction following and table context understanding:

• Language-supervised: Make LLMs recognize tabular
embeddings by generating full-table descriptions using a
“feature is value” format.

• Autoregression on cells: Train sequential and reverse
autoregressive tasks by predicting the next cell’s “feature
is value” description.

• Query-context relation: Guide LLM in identifying con-
text relevance to queries through interactive tasks mimick-
ing SQL operations. This includes verification, matching,
and other context-wide calculations.

• Domain-oriented understanding: Equip LOTO with
deeper understanding by training it to transfer knowledge
and predict beyond existing information.

3
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Table 1: Performance Comparisons of LOTO and the baseline models across different tabular classification, regression,
and table QA tasks. We present the results of various machine learning models, deep models, and other tabular LLMs. The
evaluation datasets span domains like Science, Finance, Commerce, Health, and Others. The best is highlighted in bold,
while the second-best is underlined. LOTO achieves leading performance across various domains and shot scenarios.

Dataset
Model XGBoost CatBoost FTT TP-BERTa TabPFN LOTO (Ours)

2-shot 8-shot 2-shot 8-shot 2-shot 8-shot 2-shot 8-shot 2-shot 8-shot 0-shot 2-shot 8-shot

Science IRI .50 .68 .77 .62 .65 .60 .55 .55 .65 .52 .46 .52 .61
CUS .50 .47 .57 .53 .47 .50 .52 .45 .58 .55 .54 .50 .55

Finance DEF .50 .50 .55 .53 .60 .55 .63 .43 .65 .50 .56 .55 .61
MOB .25 .37 .38 .47 .35 .42 .25 .27 .35 .50 .32 .38 .52

Health
CDC .50 .45 .65 .52 .68 .57 .65 .54 .75 .65 .65 .61 .68
MAT .33 .43 .37 .43 .46 .44 .50 .44 .41 .54 .52 .72 .78
OBE .14 .24 .41 .38 .43 .24 .21 .19 .21 .21 .34 .30 .46

Others
GOL .50 .68 .72 .65 .82 .85 .47 .70 .67 .73 .63 .70 .74
PRE .33 .52 .39 .50 .44 .48 .46 .33 .52 .50 .50 .50 .51
BAS .50 .50 .50 .47 .45 .70 .57 .55 .47 .48 .45 .54 .66

Dataset
Model XGBoost CatBoost FTT TP-BERTa LOTO (Ours)

2-shot 8-shot 2-shot 8-shot 2-shot 8-shot 2-shot 8-shot 0-shot 2-shot 8-shot

Science AIR .088 .092 .097 .089 .083 .107 .075 .104 .078 .075 .071
DIA .276 .186 .309 .240 .352 .144 .291 .220 .128 .102 .095

Finance GAR .218 .182 .179 .160 .216 .199 .195 .193 .225 .223 .225

Health NHA .258 .239 .240 .203 .209 .255 .214 .213 .237 .229 .225

Others CPM .194 .172 .175 .130 .188 .173 .199 .188 .198 .151 .143
ALC .757 .532 .528 .515 .551 .497 .704 .532 .640 .539 .506

Mean .299 .234 .255 .223 .266 .229 .280 .241 .251 .220 .211

Dataset
Model Qwen3 TableLLM TableLlama TableGPT2 LOTO (Ours)

0.6B 1.7B 7B 7B 7B 0.6B 1.7B 8B

Relation Extract. 28.9 26.2 3.8 92.0 83.4 80.2 80.6 83.5
HiTab 20.8 21.7 0.0 64.7 70.3 62.4 63.4 68.1
FetaQA 15.5 16.1 8.7 39.1 29.0 25.0 25.3 28.9

FEVEROUS (OoD.) 63.4 63.9 46.9 73.8 78.1 70.7 73.5 74.8

Completion 55.9 58.1 37.2 40.0 39.6 63.6 64.1 66.9

4. Experiments & Conclusion
Basic architecture & training data. LOTO is built on
a Qwen3 backbone (0.6B-8B), utilizing a 2-layer self-
attention for local aggregation and axial attention for global
feature extraction, paired with a non-reasoning generative
prompt. LOTO is trained on a comprehensive dataset of
∼81k samples, comprising tabular alignment instructions,
instruction fine-tuning samples for prediction and under-
standing, and additional data from TableLlama.

Performance Analysis. LOTO consistently demonstrates
strong overall performance, excelling in zero-shot transfer
and competitive few-shot learning across diverse datasets,

often outperforming established baselines like TabPFN.

Discussion. LOTO introduces a novel LLM paradigm for
tabular learning, employing a specialized tabular encoder
with axial row-column attention, 2D positional encodings,
and binned numerical embeddings to address data hetero-
geneity and diverse task demands. Developed using an
81k-sample instruction tuning framework and comprehen-
sive evaluation benchmarks, LOTO achieves leading perfor-
mance across various tabular tasks, including row-level pre-
diction and table-level QA. A current limitation is its design
for complete, rectangular tables, requiring pre-processing
for irregular data, though it lays a robust foundation for
future general tabular LLMs.
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