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Abstract

Chain-of-Thought (CoT) prompting empowers
the reasoning abilities of Large Language Mod-
els (LLMs), eliciting them to solve complex
reasoning tasks step-by-step. However, these
capabilities appear only in models with billions
of parameters, which represent a barrier to en-
try for many users who are forced to operate
on a smaller model scale, i.e., Small Language
Models (SLMs). Although many companies
are releasing LLMs of the same family with a
reduced number of parameters, these models
sometimes produce misleading answers and are
unable to deliver CoT reasoning.

In this paper, we investigate the alignment
of reasoning abilities from larger to smaller
Language Models. In particular, using
Instruction-tuning-CoT approach, that is, an
Instruction-tuning empowered towards CoT-
Demonstrations, we analyze the impact on the
the downstream abilities. Hence, we instruct a
smaller Language Model using outputs gener-
ated by more robust models belonging to the
same family or not, and we analyze the im-
pact and divergencies. Results obtained on
four question-answering benchmarks show that
SMLs can be instructed to reason via CoT-
Demonstration produced by LLMs.

1 Introduction

Chain-of-Thought (CoT) prompting elicits Large
Language Models (LLMs) to break down a reason-
ing task towards a sequence of intermediate steps
(Wei et al., 2022). Previous works have demon-
strated that in LLMs with at least several billions of
parameters, such as GPTs family (OpenAl, 2023)
or PalLM (Chowdhery et al., 2022), CoTs enables
the delivery of multi-step, controlled reasoning,
achieving results across commonsense (Bubeck
et al., 2023), symbolic and mathematical reasoning
datasets (Gaur and Saunshi, 2023; Liu et al., 2023).

The size of LLMs, however, poses an adoption
barrier for numerous users. In order to facilitate
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Figure 1: In Instruction-tuning-CoT, the Students
models instruct themselves using CoT-Demonstrations,
which are Demonstrations-delivering CoT reasoning
generated by the Teachers models. We elicit a Large
Language Model to answer questions through Chain-of-
Thought reasoning mechanism. Then, we use the CoT-
Demonstrations to instruct a Small Language Model to
reason as a Large Language Model would.

accessibility, derived scaled-down models from the
same family but with reduced size have been intro-
duced, such as Llama-2-7b and -13b as the corre-
sponding ’Smaller Language Models (SLMs)’ as-
sociated with Llama-2-70b (Touvron et al., 2023),
both of them having less than half billion of param-
eters. Although these SLMs are highly functional
across different tasks, the CoT prompting mecha-
nism only proved beneficial for models at a certain
threshold scale (e.g., with more than 60B parame-
ters (Wei et al., 2023)). In fact, these SLMs produce
illogical answers when prompted under the CoT
framework.

In this paper, we propose a method to enable

(students) Small LMs



CoT reasoning over SLMs by introducing two
novel mechanisms. The first is the concept of in-
family alignment for teacher-student Instruction-
tuning (i.e. prioritising models from the same
family instead from different families). In par-
ticular, we investigate the alignment of Chain-of-
Thought reasoning abilities through the support
of CoT-Demonstrations "taught" by LLMs teach-
ers to SLMs students (see Figure 1), contrasting
within in-family and and out-family settings. As
concerning (Magister et al., 2023; Ho et al., 2023a;
Shridhar et al., 2023) we introduce the Instruction-
tuning approach through which, respect to (Li
et al., 2023a), we instruct student models with
CoT-Demonstrations produced by in-family and
out-family teachers.

This leads to the target research questions, which
are the focus of this paper:

RQ1) How does Instruction-tuning via Demon-
strations impact the reasoning abilities of students
models?

RQ2) What is the effect of Demonstrations deliv-
ered with the Chain-of-Thought reasoning process?

RQ3) How much do Demonstrations produced
by an in-family teacher impact a student align-
ment?

To answer these questions, we select Llama-
2-7b and Llama-2-13b (Touvron et al., 2023) as
students and Llama-2-70b and GPT-3.5 as in-
family and out-family teachers. Then, we con-
duct an extensive analysis using four question-
answering benchmarks. We use Llama-2-70
and GPT-3.5 to deliver Answers at the core
of the CoT-Demonstrations (see Figure 1) used
to instruct Llama-2-7 and -13. We discern
the CoT-Demonstrations between Demonstrations-
delivering CoT and Demonstrations-misleading
CoT stems from Answers-delivering CoT (cor-
rect CoT prediction) and Misleading CoT (wrong
CoT predictions). Furthermore, to have a term of
comparison, we produce the base Demonstrations
formed the same way as the previous ones without
CoT prompting. Figure 12 shows the terminology
used in this work, and Figure 13 summarizes the
overall pipeline.

Behind a comprehensive analysis, we show that
the Instruction-tuning approach on Demonstrations
instructs students, and they outperform baseline
SLMs in all proposed benchmarks. Moreover, stu-
dents instructed with CoT-Demonstrations outper-
formed those instructed without CoT. Finally, stu-
dents instructed with Demonstrations-delivering

CoT provided by the in-family teachers outper-
formed those instructed with out-family ones and
achieved the best performances.

Our findings can be summarized as follows:

i) The Instruction-tuning of SLLM students via
Demonstrations delivered by an LLM teacher out-
performed the baselines in terms of downstream
performance. The SLMs instructed via Demon-
strations consistently outperformed the baselines
defined by non-tuned SLMs on the four proposed
question-answering benchmarks.

ii) The Instruction-tuning via CoT-
Demonstrations aligns the reasoning abilities of
SLMs with the ones of LLMs. In fact, models
instructed through CoT-Demonstrations that
contain outputs generated via CoT prompting
outperform models trained with Demonstrations.

iii) Finally, in-family alignment with Instruction-
tuning via Demonstrations-delivering CoT formed
by Answers-delivering CoT outperforms out-
family alignment. Llama-2-7 and Llama-2-13 in-
structed with Answer-delivering-CoT Demonstra-
tions produced by Llama-2-70 outperform the stu-
dents instructed by teacher GPT-3.5 other SMLs as
well.

2 Method

In order to align the reasoning abilities of smaller
Language Models using further knowledge gener-
ated by larger Language Models, we propose two
steps, as shown in Figure 1'. In the first part, there
is an annotation phase where the Large Language
Models (LLMs) systematically prompt generate
outputs (Section 2.1). These outputs will be the
core of Demonstrations used during the Instruction-
tuning phase from the smaller Language Models,
presented in Section 2.2.

2.1 Teacher Model

Many state-of-the-art LLMs are available that
differ in the number of parameters and training
modes. However, our research questions focuse on
Instruction-tuning and family-alignment of reason-
ing abilities. Therefore, we concentrated on robust
models with different versions of the same family
4.

As a robust LLMs, we selected Llama-2-70b
(Touvron et al., 2023), and in terms of comparison,

"Figure 13 shows the overall pipeline.



GPT-3.5% (OpenAl, 2023). Meanwhile, Llama-2-
70b because, as introduced before, there are several
smaller versions (presented in Section 2.2) despite
the reduced number of parameters, they obtain re-
markable results. In particular, we use the "chat"
version of the LLM called Llama-2-70-chat. We se-
lected this version because, as reported by Touvron
et al. (2023), it is optimized for dialogue use cases
and provides better demonstrations. In the rest
of the paper, we will call this model Llama-2-70.
Hence, we chose an out-family model to observe
the impact of the Llama-2-70bs abilities. We select
GPT-3.5 because it generates high-quality data ei-
ther with and without the CoT prompting approach,
as shown by Fu et al. (2023).

Although our focus is on CoT abilities, in order
to conduct a comprehensive study, we proposed
two different input-prompts, both in a zero-shot sce-
nario. The first input-prompt is a classic standard
prompt, consisting of the question and its choices
as follows:

Choose the answer to the question only from
options A, B, C, D.

Question: <Question>

Choices:

A) <Optionl1>

B) <Option2>

C) <Option3>

D) <Option4>

Answer:

The second input-prompt is like the first, but
behind "Answer:" we insert "Let’s think step
by step" as proposed by Wei et al. (2022), that is
shown in Table 6.

Following the annotation process performed by
LLMs, the annotations have been used to construct
the Demonstrations.

2.2 Student Model

Several SLMs have been fine-tuned either for
instruction-following (Taori et al., 2023) or rein-
forcement learning with human feedback (Ouyang
et al., 2022). However, whatever the techniques,
the smaller Language Models® do not seem able to
reproduce the step-by-step reasoning abilities.
However, recent work proposes techniques of
knowledge distillation (Li et al., 2023a), skill refine-
ment (Huang et al., 2022), and enriched fine-tuning
(Magister et al., 2023) to teach SLMs to produce

2We use GPT-3.5-turbo, however in the rest of work we
will use only GPT-3.5

3We consider Smaller models with less than 60B of param-
eters based on (Wei et al., 2022).

Instruction
Choose the answer to the question only from
options A, B, C, D.

Input
Question:
triangle?
Choices:
A) ice

B) steam
C) water
D) salt water

Which form can be made into a

Output (that is the Answer produced by teacher model)
Answer:

A) ice: Ice is a solid form of water. In solid
form, substances can be molded or shaped into
various forms, including triangles. If you
had a block of ice, you could carve or mold
it into a triangular shape.

B) steam: Steam is the gaseous form of
water. Being a gas, it doesn’t have a fixed
shape. You can’t shape steam into a triangle
without containing it within some form of
solid boundary, and even then, the steam
itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the
shape of its container. You can pour water
into a triangular container, and while the
volume inside would be triangular, the water
itself isn’t inherently triangular.

D) salt water: This is essentially the same
as option C, but with salt dissolved in it.
Being a liquid, it takes the shape of its
container.

Given these considerations, the only
substance among the options that can be shaped
into a triangle by itself is A) Ice.

Table 1: Example of CoT-Demonstration. The structure
is composed by: Instruction, Input and Output. In
this case, the last part is the Answer produced by GPT-
3.5 CoT prompted.

reasoned answers. Following this idea, we analyze
the impact of Instruction-tuning from Demonstra-
tions provided by in-family and out-family teachers.
Hence, we chose two SLMs students, Llama-2-7b,
and Llama-2-13b (Touvron et al., 2023). In both
cases, we used "chat" versions, i.e., Llama-2-7-chat
and Llama-2-13-chat (versions detailed in Table 7),
which we will refer to in the paper as Llama-2-7
and -13.

Student models are evaluated before and after the
Instruction-tuning, conducted as in Alpaca (Taori
et al., 2023). This approach concerns the tuning
of Demonstrations, which consist of an instruc-
tion which, in our case, is fixed, i.e., Choose the
answer to the question only from options
A, B, C, D., an input which is the question, and
an expected output which, in our case, are the out-
put generated by the LLMs teachers. Table 1 shows



an example of input. Additional details about the
Instruction-tuning steps are provided in Section
3.2.1.

3 Experimental Setup

In order to make the experiments comparable
with state-of-the-art models, we use four bench-
marks (introduced in Section 3.1) that are gen-
erally used to assess the abilities of Large Lan-
guage Models (LLMs). Moreover, to conduct the
Instruction-tuning phase on the Small Language
Models (SMLs), we use the approach presented in
Section 3.2. All code is available in the supplemen-
tary material, to be released if accepted.

3.1 Data

With the successful growth of the LLMs, sev-
eral question-answering benchmarks with multiple-
choice questions have been proposed to build solid
assessments of the models’ abilities. In this paper,
we selected four benchmarks that deal with topics
around reasoning:

General Commonsense Reasoning We evalu-
ate the models’ ability to perform general reason-
ing on the CommonSenseQA (Talmor et al., 2019)
(CSQA) and OpenBookQA (Mihaylov et al., 2018)
(OBQA). CommonSenseQA is one of the best-
known datasets of answers to multiple-choice ques-
tions dealing with different types of general com-
monsense knowledge. OpenBookQA is a resource
that contains questions requiring multi-step reason-
ing, common knowledge, and rich text comprehen-
sion. It is inspired by high school-level open-book
exams in physics and biology, aiming to assess
human comprehension and application of founda-
tional concepts

Physical Commonsense Reasoning We evalu-
ate the models’ ability to perform physical reason-
ing on the Interaction Question Answering (PIQA)
(Bisk et al., 2019). It is a resource consisting of a
series of everyday situations with a pair of typical
and atypical solutions.

Social Commonsense Reasoning We evaluate
the models’ ability to perform social reasoning on
the Social Interaction Question Answering (SIQA)
(Sap et al., 2019). It is a benchmark focusing on
reasoning about people’s actions and social impli-
cations. The actions in Social IQa cover various
social situations and candidates for plausible and
not plausible answers.

Splitting Details Since a test split for all bench-
marks is not always available open-source, we
adopt the following strategy: we use 4000 ex-
amples with equally distributed target classes as
training data and the validation versions found on
huggingface as test data. We performed this split
because we needed to observe the impact of the
responses provided by the teacher models on dif-
ferent benchmarks. The same is true for validation
since we need open-source and reproducible data to
conduct a detailed evaluation of the student models.
In Table 10, we report the quantitative information,
global, and splitting ratios, and in Table 9, we show
one example for each benchmark. The data are
fully accessible and open-source, as described in
Table 11.

3.2 Teaching to Reason

We selected Llama-2-70 and GPT-3.5 as the teach-
ers (introduced in Section 2.1). Consequently, the
LLMs are prompted in the one-shot scenarios, as
shown in Table 5 and Table 6.

We selected Llama-2-7 and Llama-2-13 (Tou-
vron et al., 2023) as student models (as described
in Section 2.2). Therefore, the students models
are Instruction-tuned, as proposed in (Taori et al.,
2023). Hence, the SLMs are instructed on the
Demonstrations that contain the answers generated
by the teachers, as explained in Section 2.2. Table
1 shows a CoT-Demonstration that is Demonstra-
tion that contains the Instruction, the Input, and,
as Output, the Answer-delivering CoT that is an
output generated by GPT-3.5 CoT-prompted.

3.2.1 Models Setup

We conduct Instruction-tuning phase using QLoRA
proposed by Dettmers et al. (2023). This approach
allows instruction-tuning (and, more generally, fine-
tuning) to be conducted while reducing memory
usage. In particular, Dettmers et al. (2023) propose
several techniques for tuning models with many
parameters on GPUs with limited resources while
preserving 16-bit tuning performance.

We follow the training approach proposed in Al-
paca (Taori et al., 2023). Our models are trained
for one epoch and set the learning rate as 0.00002
with 0.001 weight decay. We use the cosine learn-
ing rate scheduler with a warmup ratio of 0.03.
We conducted our experiments on a workstation
equipped with two Nvidia RTX A6000 with 48GB
of VRAM.
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines) and behind
on Demonstrations (i.e., Instruction-tuned) and CoT-Demonstrations (i.e., Instruction-tuned-CoT). In addition,
Instruction-tuning phases only on Demonstrations-delivering CoT and Demonstrations Truthful, specifically,
demonstrations with Answers-delivering CoT and Answer Truthful (correct predictions), provided by teachers

models without Misleading ones.

3.3 Evaluation

The most commonly used evaluation methods for
question-answering tasks are language-model prob-
ing, in which the option with the highest probability
is chosen (Brown et al., 2020), and multiple-choice
probing, in which the models are asked to answer.
The evaluation in the first case is performed with
a function taking the maximum value and in the
second case with a string matching. The second
method is widely used in recent evaluations be-
cause it applies to models such as GPT-x (GPT-3.5
and GPT-4) (OpenAl, 2023) where probability val-
ues cannot be accessed.

In our experiments, we chose the latter to have a
comparable and scalable pipeline. Therefore, we
performed a string matching between the generated
outputs and the target choice.

4 Results & Discussion

Language Models that were unable to reason can be
elicited to do it through the knowledge of teacher
models. These conclusions can be observed in Fig-
ure 2, where there are the downstream accuracies
without the Instruction-tuning phase (see the Base-
line) and the Instruction-tuning phase on Demon-

strations. In fact, as discussed in Section 4.1, Small
Language Models (SLMs) CoT prompted obtained
weak results. In contrast, models that are instructed
via Chain-of-Thought (CoT) Demonstrations, i.e.,
Demonstrations produced by CoT-prompted Large
Language Models (LLMs), outperform other mod-
els (see the Instruction-tuned-CoT in Figure 2).

However, although CoT-Demonstrations pro-
duced better students, the complete alignments
between students and teachers are realized via
Demonstrations-delivering CoT, as discussed in
Section 4.2. In particular, the "Demonstrations-
delivering CoT" and "Demonstrations Truthful"
bars in Figure 2 show that student models instructed
via Demonstrations-delivering CoT outperformed
students instructed via CoT-Demonstrations, which
contained Demonstrations Misleading CoT.

Finally, students instructed with Demonstrations-
delivering CoT produced by in-family teachers
always outperformed students instructed with
Demonstrations-delivering CoT produced by out-
family teachers. In Figure 2, it is possible to
observe the phenomenon of family-alignment be-
tween Llama-2-70 and Llama-2-7 and -13 in more
detail in Section 4.2.
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4.1 CoT-abilities of Small Language Models

Chain-of-Thought (CoT) prompts are not always
delivering downstream performance improvements.
In fact, SLMs, i.e., with fewer parameters, have not
outperformed when prompted with the CoT mech-
anism. In particular, we evaluated performance on
four question-answering benchmarks, described in
Section 3.1, using two versions of Llama-2-chat
(7b-13Db billion) in a zero-shot scenario. Proposing
a classical prompt (which we call "Baseline") and
a CoT prompt (Table 5 and Table 6), we obtained
the performances in Table 2.

The results confirm what Wei et al. (2022) have
claimed about the limitations of the emergent CoT
prompting abilities that are not observable in SLMs.
Moreover, using CoT prompting leads to model
confusion with subsequent degradation of down-
stream results. It is possible to observe these phe-
nomena in OpenBookQA (OBQA) and Common-
SenseQA (CSQA) (down arrows in Table 2). In par-
ticular, there is a marked deterioration in Llama-2-7
(see {}), which has half the parameters of Llama-2-
13 (see |).

However, the same behaviour was not observed
for Physical- and Social-Interaction Question An-
swering (PIQA) and (SIQA). In fact, not consid-
ering the nature of benchmarks, unlike the oth-
ers, they are always question-answering multiple-
choice-questions but have fewer possible choices,
as shown in Table 10. In this regard, we hypoth-
esize that the most controllable scenarios, where

chain reasoning is limited to fewer options, are
reasonable by SLMs elicited with CoT prompts.

Benchmarks Llama-2-7 Llama-2-13
Baseline CoT | Baseline CoT
OBQA 55.3 49.5) 57.6 55.2)
CSQA 59.2 50.6) 64.3 60.8)
SIQA 47.5 45.3 493 47.6
PIQA 63.5 63.8 69.5 71.2

Table 2: Accuracies of Llama-2-7 and Llama-2-13, both
without further tuning, on testing data with the standard
prompt (Baseline) (see Table 5) and CoT prompt (CoT)
(see Table 6).

4.2 The Instruction-tuning Impact

Instruction-tuning led by Large Language Mod-
els (teachers models), able to reason, conduct the
Smaller Language Models (students models) to do
the same. This can be seen in the experiments in
Figure 2. The student models behind Instruction-
tuning on Demonstrations produced by teacher
models outperformed the baselines in the four pro-
posed benchmarks. Moreover, the students models
instructed with CoT-Demonstrations, defined as
Instruction-tuned-CoT in Figure 2, achieve the best
results in terms of accuracy.

While performances are conspicuous improve-
ments overall, they have sensible variations. The
teacher models have different characteristics, as
shown in Figure 4. GPT-3.5 is trained on 175B
of parameters and Llama-2-70 by analog name on
70B of parameters. They consequently achieve dif-
ferent performances in the proposed benchmarks.
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experiments.

Table 3 shows the performances in the zero-shot
scenario (CoT prompting and not) on the data used
to conduct the Instruction-tuning phase and on the
same test set used to evaluate the proposed models.
Although the performances on the "training set"
are different (see the CoT performances of GPT-
3.5 and the same for Llama-2-70 in Table 3), this
bias does not affect the models instructed on over-
all Demonstrations (correct and incorrect). The
Llama-2-7 and -13 that have GPT-3.5 as teacher
outperform the Llama-2-7 and -13 that have Llama-
2-70 as teacher only on OpenBookQA; see OBQA
in Figure 2. As far as CommonSenseQA and
PIQA are concerned, there is a balancing that is
not present in SIQA, where the students of Llama-
2-70 outperform the others. Therefore, to study
the influence of the quality of Demonstrations, we
conducted detailed analyses in Section 4.3.

4.3 Demonstrations-delivering CoT vs
Misleading CoT

Demonstrations without Misleading ones yield
better students. In addition, the Demonstrations-
delivering CoT led to a family-alignment of stu-
dents’ reasoning abilities (Llama-2-7 and -13)
with teacher Llama-2-70. In Figure 2, the
models instructed on Demonstrations Truthful
and Demonstrations-delivering CoT outperformed
those instructed on overall Demonstrations and
overall CoT-Demonstrations. In particular, the
Demonstrations-delivering CoT produced by the
in-family teacher outperforms those produced by
the out-family teacher. As specified in Figure
12, with the terms "Demonstrations Truthful” and
"Demonstrations-delivering CoT", we indicate all
correct answers produced by the teacher models.
Hence, in detail, we reproduced the experimen-
tal setup proposed in Section 3.2.1. However,
unlike previous experiments for Demonstrations
and CoT-Demonstrations, we performed Instuction-
tuning only for Demonstrations-delivering CoT and

Demonstrations Truthful. From the results, these
second ones better impact the students models. Fur-
thermore, the subset of Demonstrations used is
smaller than the number of total Demonstrations be-
cause Misleading instances were discerned. Thus,
the students models used fewer instances to per-
form the tuning.

However, Instruction-tuned students seem to per-
form better on fewer but distilled Demonstrations.
Even more, the Demonstrations-delivering CoT en-
abled the family-alignment of reasoning abilities.
Therefore, in order to observe the true impact of
these Demonstrations versus Demonstrations with
equal amounts of training instances in Section 4.4,
we perform a deep study using different sets.

4.4 The Role of Demonstrations-delivering
CoT

Instruction-tuning via Demonstrations-delivering
CoT still aligns students’ reasoning abilities with
those of family teachers, even as instruction de-
creases. In fact, from Figure 3, we can ob-
serve that the performances obtained by students
instructed with Demonstrations Truthful (shown
with bars) and Demonstrations-delivering CoT
(shown with lines) outperform students instructed
with overall Demonstrations. = Moreover, the
Demonstrations-delivering CoT consistently out-
performs the Demonstrations Truthful. (tech-
nical details about splitting in Appendix A) In
conclusion, as also stated in Section 4.3, the
Demonstrations-delivering CoT of teacher Llama-
2-70 are more productive as all students outper-
formed the students of teacher GPT-3.5. As they
increase, students instructed via in-family teachers
increasingly outperform other students.

Finally, to validate our hypothesis of family-
alignment, we introduced Mistral-7b (Jiang et al.,
2023), a new SLMs that, with 7 billion parame-
ters, outperforms the Llama-2-13 version on sev-
eral benchmarks as shown by Jiang et al. (2023).



In particular, we reproduced the experiments in-
troduced in Section 4.3 using the different kinds
of Demonstrations presented in the previous sec-
tion. In Figure 4, it can be seen that Llama-2-
7 instructed on different types of Demonstrations
delivered by Llama-2-70 almost consistently out-
performs Mistral-7b. These results confirm that
Demonstrations derived from in-family teachers
have a more significant impact on student models
than the others.

5 Related Work

5.1 Chain-of-Thought Prompting

Large Language Models (LLMs) with billions of
parameters demonstrate in-context learning and
few-shot learning abilities (Brown et al., 2020; Wei
etal., 2022; Min et al., 2022) to guide LLMs to gen-
erate desired task responses, marking the advent of
the prompting era.

These new approaches have surpassed the age of
the intermediate steps in algorithmic or structured
reasoning Roy and Roth (2015); Ling et al. (2017).
Nevertheless, early works challenged the efficacy
of few-shot techniques for empowering the prompt-
ing phase and downstream performances. In par-
ticular, Wang et al. (2022) refined the original idea
of Chain-of-Thought (CoT) (Wang et al., 2022) by
considering various reasoning paths, while Wang
et al. (2023) explored different prompts. Although
prompt engineering appears to be the right way
to improve performance, many works have used
self-generated CoTs to self-improve reasoning abil-
ity (Zelikman et al., 2022; Huang et al., 2022;
Golovneva et al., 2022).

5.2 Learning from Explanation

Current methods for conditioning models on task
instructions and provided explanations for individ-
ual data points replace the ancient intermediate
structures (Hase and Bansal, 2022) that used ratio-
nales (Zhang et al., 2016), targets (Talmor et al.,
2020) or inputs (Narang et al., 2020) to learn the
models. Reasoning via the CoT builds upon prior
efforts wherein explanations are viewed as interme-
diary constructs produced during inference (Rajani
etal., 2019).

Our research stems from the studies of Li et al.
(2023b); Magister et al. (2023); Shridhar et al.
(2023); Ho et al. (2023a). In particular, we adopt
the idea of an LLM teacher and a second LLM,
sometimes smaller, that assumes a student’s posi-

tion (Magister et al., 2023). Learning uses teacher-
generated explanations, demonstrating prompt CoT
downstream (Li et al., 2023b; Ho et al., 2023a). Li
et al. (2023b) claims that massive demonstrations
significantly improve performance over the single-
sample approach Shridhar et al. (2023).

5.3 Large Language Models as a Teacher

Several papers have been published simultane-
ously, including those by Magister et al. (2023);
Huang et al. (2022), and Ho et al. (2023b) that
prove the effect of fine-tuning to transfer the abil-
ity to produce Chain-of-Thought (CoT) reasoning
from larger to smaller models. Using further fine-
tuning, Huang et al. (2022) and Ho et al. (2023b)
exploit the known CoT abilities of GPTs (Ope-
nAl, 2023) while Magister et al. (2023) introduces
PaLLM (Chowdhery et al., 2022) as a teacher. Table
8 resumes these contributions.

Our work goes beyond in the following ways:
1) We propose a method for aligning CoT abilities
via Instruction-tuning through Demonstrations pro-
duced by answers generated by GPT-3.5 and Llama-
2-70. 2) We investigate which teacher model deliv-
ers the most appropriate demonstrations for a stu-
dent model. In particular, we study the alignment
performance between in-family and out-family
models on four question-answering benchmarks.
3) Hence, we offer an analysis identifying crucial
factors aligning reasoning abilities between teach-
ers and students.

6 Conclusion

In this paper, we analyzed the alignment of rea-
soning abilities between teachers models, Large
Language Models (LLMs), and students models,
Small Language Models (SLMs). In particular, we
propose the Instruction-tuning-CoT, an instruction
tuning via Chain-of-Thought (CoT) demonstrations
based on explanations delivered by LLMs CoT
prompted. Specifically, we align a set of SLMs
using the explanations provided by LLMs that be-
long to the same family, in-family or out-family.
Our results showed the impact of the Instruction-
tuning-CoT method both with out-family teachers
and particularly with in-family teachers. These
results highlight our approach’s feasibility in har-
nessing the multi-step reasoning abilities of LLMs
for smaller models designed to pave the way for
more efficient and scalable applications.



Limitations

In this paper, we analyzed the impact of Answers
delivered by Large Language Models using them as
Demonstrations to reinforce the skills of Small Lan-
guage Models. Although we proposed an extensive
study there are several limitations:

* only English-language both in Chain-of-
Thought (CoT) methods and tasks evaluation
is considered. Although estimating these ef-
fects in other languages is interesting, our
work only focused on experiments in English.
In future works, we intend to take care of this
aspect.

* analysis of benchmarks relating to common
sense knowledge of social and physical inter-
actions. However, we would like to extend our
analyses using more extensive and compre-
hensive benchmarks such as GSM8K (Cobbe
et al., 2021) and MMLU (Hendrycks et al.,
2021) in future developments.

e dependence on Large Language Models,
which are closed-source products or not, but
sometimes the training sets are unknown. Al-
though the characteristics of the corpora are
reported in the system reports, these are only
processable by some researchers. Conse-
quently, it is not easy to analyze the differ-
ences in pre-training data between models,
but observing the outputs in natural language
is possible.

In conclusion, learning from and with Demonstra-
tions carries some specific risks associated with
automation. Although a model may generalize its
predictions using a seemingly consistent series of
natural language steps, even if the prediction is
ultimately correct, there is no guarantee that the
predicted output comes from a process represented
by the generalization. A user might have overconfi-
dence in the model based on the CoT. We observed
many cases where the CoT examined promising,
but ultimately, the models had misleading effects.

Ethical Statement

Although this research enhances the reasoning abil-
ities of smaller Language Models, they still need
to be sufficiently robust for sensitive contexts such
as education. The primary ethical concerns arise
from the text generation process; both the "teacher"

and "student" models might produce misleading
answers. The content is largely influenced by the
input data, which, in our case, are standard bench-
marking tasks peer-reviewed within the NLP do-
main. We intend to release our code; however, like
many generative models, ours can be exposed to
hallucinations.

References

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv, abs/2110.14168.


http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng,
and Tushar Khot. 2023. Chain-of-thought hub: A
continuous effort to measure large language models’
reasoning performance.

Vedant Gaur and Nikunj Saunshi. 2023. Reasoning in
large language models through symbolic math word
problems. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 5889-5903,
Toronto, Canada. Association for Computational Lin-
guistics.

Olga Golovneva, Pan Wei, Khadige Abboud, Charith
Peris, Lizhen Tan, and Haiyang Yu. 2022. Task-
driven augmented data evaluation. In Proceedings of
the 2nd Workshop on Natural Language Generation,
Evaluation, and Metrics (GEM), pages 18-25, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Peter Hase and Mohit Bansal. 2022. When can mod-
els learn from explanations? a formal framework
for understanding the roles of explanation data. In
Proceedings of the First Workshop on Learning with
Natural Language Supervision, pages 29-39, Dublin,
Ireland. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023a.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852-14882, Toronto, Canada.
Association for Computational Linguistics.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023b.
Large language models are reasoning teachers.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang
Ren, Kai-Wei Chang, and Yejin Choi. 2023a. Sym-
bolic chain-of-thought distillation: Small models can
also “think” step-by-step. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2665—
2679, Toronto, Canada. Association for Computa-
tional Linguistics.

10

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315-5333, Toronto,
Canada. Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167, Vancouver,
Canada. Association for Computational Linguistics.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023. Evaluating the logical
reasoning ability of chatgpt and gpt-4.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 1773-1781, Toronto, Canada. Associ-
ation for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048-11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Sharan Narang, Colin Raffel, Katherine Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
Wit5?! training text-to-text models to explain their
predictions.

OpenAl. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932-4942, Florence, Italy. Association for
Computational Linguistics.


http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306
http://arxiv.org/abs/2305.17306
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2022.gem-1.2
https://doi.org/10.18653/v1/2022.gem-1.2
https://doi.org/10.18653/v1/2022.gem-1.2
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2023.acl-long.830
http://arxiv.org/abs/2212.10071
http://arxiv.org/abs/2210.11610
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
https://doi.org/10.18653/v1/2023.acl-short.151
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
http://arxiv.org/abs/2004.14546
http://arxiv.org/abs/2004.14546
http://arxiv.org/abs/2004.14546
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743-1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 4463—
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7059-7073, Toronto, Canada. Association for
Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41494158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically reason
over implicit knowledge.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas

11

Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. 2022. Rationale-
augmented ensembles in language models.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning.

Ye Zhang, lain Marshall, and Byron C. Wallace. 2016.
Rationale-augmented convolutional neural networks
for text classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 795-804, Austin, Texas.
Association for Computational Linguistics.


https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
http://arxiv.org/abs/2006.06609
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2207.00747
http://arxiv.org/abs/2207.00747
http://arxiv.org/abs/2207.00747
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
https://doi.org/10.18653/v1/D16-1076
https://doi.org/10.18653/v1/D16-1076
https://doi.org/10.18653/v1/D16-1076

A Experimental Details

In order to observe the impact of the demonstra-
tions (CoT, non-CoT, truthful or Misleading), we
produced a series of experiments by systematically
decreasing the Instruction-tuning data. In particu-
lar, from the total number of demonstrations, we
chose three sub-sets with 75%, 50%, and 25%.
In detail, the Instruction phases on the number
of equal Demonstrations are performed by taking
about 3000 examples in splitting 100%, 2250 in
splitting 50%, 1500 in splitting 50%, and 750 in
splitting 25%. We chose the value 3000 because
it is the smallest number of CoT-Gold Demonstra-
tions available. For the total Demonstrations, we se-
lected random samples; instead, for the CoT-Gold
and Gold, we selected all the Demonstrations avail-
able.

B Accuracy of LLMs on different
Benchhmark

Benchmarks Llama-2-70 GPT-3.5

| Baseline CoT | Baseline CoT
Training | |
OBQA 64.6 65.4 66.2 74.6
CSQA 70.8 73.4 79.3 84.8
SIQA 65.4 67.5 67.6 70.3
PIQA 82.3 85.6 80.5 84.3
Testing | |
OBQA 62.8 64.8 66.7 73.8
CSQA 72.4 74.3 80.2 83.7
SIQA 64.2 66.9 66.9 71.3
PIQA 80.6 84.8 81.6 85.7

Table 3: Accuracy (%) of Llama-2-70 and GPT-3.5
(teachers) on training and testing data with CoT prompt
(CoT) and with the standard prompt (Baseline).

C Model Sizes

Model Sizes
177

175B

# Parameters (Billions)

13B
78

Uama-2-7 Uama-2-13 Uama-2-70 GPT-3.5 GPT-4

Table 4: Number of parameters of proposed Language
Models, B is for Billions and T is for Trillions
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D Prompting Approaches

Zero-Shot

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?

A) Shark

B) Turtle

C) Giraffe

D) Spider

Answer:

Table 5: Example of Zero-Shot prompting.

Zero-Shot Chain-of-Thought

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?

A) Shark

B) Turtle

C) Giraffe

D) Spider

Answer: Let’s think step by step

Table 6: Example of Zero-Shot Chain-of-Thought prompting.

E Models
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/LLlama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7-instruct | mistralai/Mistral-7B-Instruct-v0.1

Table 7: List and specific versions of the models proposed in this work, which can be found on huggingface. co.
For each model we used all the default configurations proposed in the repositories.

Work \ Method Teachers \ Students
(Magister et al., 2023) Fine-tuning PalLM T5-small, -medium
GPT-3.5 T5-large, -xx1

(Lietal., 2023a) Fine-tuning GPT-3 175B OPT-1.3b

(Shridhar et al., 2023) Fine-tuning GPT-3 175B GPT-2

(Ho et al., 2023a) Fine-tuning InstructGPT GPT-3
(text-davinci-002) | (ada,babbage,curie)

Ours Instruction-tuning Llama-2-70b Llama-2-7b, -13b

GPT-3.5 (turbo) Mistral-7b

Table 8: Summary of methods, teacher and student models of previous work.
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huggingface.co

F Description of proposed Benchmark

Dataset

l

Example

Open Book Question Answering
(OBQA) (Mihaylov et al., 2018)

When birds migrate south for the winter, they do it because
A) they are genetically called to. B) their children ask them to.
C) it is important to their happiness. D) they decide to each.

Common Sense Question Answering
(CSQA) (Talmor et al., 2019)

Aside from water and nourishment what does your dog need?
A) bone. B) charm. C) petted.
D) lots of attention. E) walked.

Physical Interaction Question Answering
(PIQA) (Bisk et al., 2019)

How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
tape to the glass jar and then press the toilet paper onto the tape.
B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.

Social Interaction Question Answering
(SIQA) (Sap et al., 2019)

Taylor gave help to a friend who was having trouble keeping up with their bills.
What will their friend want to do next? A) Help the friend find a higher
paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.

Table 9: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA
classes 4 5 2 3
Training
# examples for 1000 800 2000 1330
each class
Test
# examples for ~ 125* 235" 924~ 640"
each class (£8) (£11) (18 (£19

Table 10: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal.

Name | Repository

CSQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_ga
OBQA (Mihaylov et al., 2018) | huggingface.co/datasets/openbookqga
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa

SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_ga

Table 11: In this table, we list the versions of the benchmark proposed in this work, which can be found on

huggingface.co.
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huggingface.co/datasets/commonsense_qa
huggingface.co/datasets/openbookqa
huggingface.co/datasets/piqa
huggingface.co/datasets/social_i_qa

G Conceptual Map of Names

P

CoT-Demonstrations -

-
P

Demonstrations -

Demonstrations delivering CoT
(as output: Answer-delivering coT)(©)

Misleading CoT
(as output: Answer-misleading COT)()

Demonstrations Truthful
(as output: Answer Trthful) @

Misleading
(as output: Answer Misleading) ®)

Table 12: Different types of Demonstrations used in our work. The Demonstrations are composed by: Instruction,
Input and Output (see Table 1). Based on the target of the output, there are different types of Demonstrations.

H Overall Pipeline

pPerformances of training

and

test sets in
Table 3

Types of Answers
and Demonstrations

in Table 5

question-answering

— = (=2 =
Benckmarks
4

Training
Sets

annotation phase

Ex. prompt in
Table 6 and 5

Answers-delivering coT
Answers-misleading CoT

Answers Truthful
Answers Misleading

|

N Demonstrations eading
V/_tnstruction Instructior
1 [ choose the r to the question Choose  thi er to the question

only from options A, B, i| only from options A, B,
i
put Input | Input
i
sti n> tion> i [ question: <question>

1| choices
1A
H B)
i
i

output output | output output

i . Sorare] i N R

Answers-misleading CoT Answers-delivering coT | Answers truthful Answers misleading
i
A

Demonstrations JL CoT-Demonstrations
T T

Test Sets

small Language Models

Llama-2-7b
Llama-2-13b

Mistral-7b

pPerformances CoT prompted
Table2

Instructed Small Language Models (Students)

",E‘{@l!?f}f’ﬁ”,”@,”,,,”,,,,,,,,JL ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, iL ,,,,,,,,,,,,,,,, Jé -

[Demonstration—delivering coT J [COT Demonstration]

performances in
Figure2 and Figure4

Table 13: Our Experimental Pipeline with a descriptions of data splitting, tables, and results generated.
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