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Abstract

Chain-of-Thought (CoT) prompting empowers001
the reasoning abilities of Large Language Mod-002
els (LLMs), eliciting them to solve complex003
reasoning tasks step-by-step. However, these004
capabilities appear only in models with billions005
of parameters, which represent a barrier to en-006
try for many users who are forced to operate007
on a smaller model scale, i.e., Small Language008
Models (SLMs). Although many companies009
are releasing LLMs of the same family with a010
reduced number of parameters, these models011
sometimes produce misleading answers and are012
unable to deliver CoT reasoning.013

In this paper, we investigate the alignment014
of reasoning abilities from larger to smaller015
Language Models. In particular, using016
Instruction-tuning-CoT approach, that is, an017
Instruction-tuning empowered towards CoT-018
Demonstrations, we analyze the impact on the019
the downstream abilities. Hence, we instruct a020
smaller Language Model using outputs gener-021
ated by more robust models belonging to the022
same family or not, and we analyze the im-023
pact and divergencies. Results obtained on024
four question-answering benchmarks show that025
SMLs can be instructed to reason via CoT-026
Demonstration produced by LLMs.027

1 Introduction028

Chain-of-Thought (CoT) prompting elicits Large029

Language Models (LLMs) to break down a reason-030

ing task towards a sequence of intermediate steps031

(Wei et al., 2022). Previous works have demon-032

strated that in LLMs with at least several billions of033

parameters, such as GPTs family (OpenAI, 2023)034

or PaLM (Chowdhery et al., 2022), CoTs enables035

the delivery of multi-step, controlled reasoning,036

achieving results across commonsense (Bubeck037

et al., 2023), symbolic and mathematical reasoning038

datasets (Gaur and Saunshi, 2023; Liu et al., 2023).039

The size of LLMs, however, poses an adoption040

barrier for numerous users. In order to facilitate041

Figure 1: In Instruction-tuning-CoT, the Students
models instruct themselves using CoT-Demonstrations,
which are Demonstrations-delivering CoT reasoning
generated by the Teachers models. We elicit a Large
Language Model to answer questions through Chain-of-
Thought reasoning mechanism. Then, we use the CoT-
Demonstrations to instruct a Small Language Model to
reason as a Large Language Model would.

accessibility, derived scaled-down models from the 042

same family but with reduced size have been intro- 043

duced, such as Llama-2-7b and -13b as the corre- 044

sponding ’Smaller Language Models (SLMs)’ as- 045

sociated with Llama-2-70b (Touvron et al., 2023), 046

both of them having less than half billion of param- 047

eters. Although these SLMs are highly functional 048

across different tasks, the CoT prompting mecha- 049

nism only proved beneficial for models at a certain 050

threshold scale (e.g., with more than 60B parame- 051

ters (Wei et al., 2023)). In fact, these SLMs produce 052

illogical answers when prompted under the CoT 053

framework. 054

In this paper, we propose a method to enable 055
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CoT reasoning over SLMs by introducing two056

novel mechanisms. The first is the concept of in-057

family alignment for teacher-student Instruction-058

tuning (i.e. prioritising models from the same059

family instead from different families). In par-060

ticular, we investigate the alignment of Chain-of-061

Thought reasoning abilities through the support062

of CoT-Demonstrations "taught" by LLMs teach-063

ers to SLMs students (see Figure 1), contrasting064

within in-family and and out-family settings. As065

concerning (Magister et al., 2023; Ho et al., 2023a;066

Shridhar et al., 2023) we introduce the Instruction-067

tuning approach through which, respect to (Li068

et al., 2023a), we instruct student models with069

CoT-Demonstrations produced by in-family and070

out-family teachers.071

This leads to the target research questions, which072

are the focus of this paper:073

RQ1) How does Instruction-tuning via Demon-074

strations impact the reasoning abilities of students075

models?076

RQ2) What is the effect of Demonstrations deliv-077

ered with the Chain-of-Thought reasoning process?078

RQ3) How much do Demonstrations produced079

by an in-family teacher impact a student align-080

ment?081

To answer these questions, we select Llama-082

2-7b and Llama-2-13b (Touvron et al., 2023) as083

students and Llama-2-70b and GPT-3.5 as in-084

family and out-family teachers. Then, we con-085

duct an extensive analysis using four question-086

answering benchmarks. We use Llama-2-70087

and GPT-3.5 to deliver Answers at the core088

of the CoT-Demonstrations (see Figure 1) used089

to instruct Llama-2-7 and -13. We discern090

the CoT-Demonstrations between Demonstrations-091

delivering CoT and Demonstrations-misleading092

CoT stems from Answers-delivering CoT (cor-093

rect CoT prediction) and Misleading CoT (wrong094

CoT predictions). Furthermore, to have a term of095

comparison, we produce the base Demonstrations096

formed the same way as the previous ones without097

CoT prompting. Figure 12 shows the terminology098

used in this work, and Figure 13 summarizes the099

overall pipeline.100

Behind a comprehensive analysis, we show that101

the Instruction-tuning approach on Demonstrations102

instructs students, and they outperform baseline103

SLMs in all proposed benchmarks. Moreover, stu-104

dents instructed with CoT-Demonstrations outper-105

formed those instructed without CoT. Finally, stu-106

dents instructed with Demonstrations-delivering107

CoT provided by the in-family teachers outper- 108

formed those instructed with out-family ones and 109

achieved the best performances. 110

Our findings can be summarized as follows: 111

i) The Instruction-tuning of SLM students via 112

Demonstrations delivered by an LLM teacher out- 113

performed the baselines in terms of downstream 114

performance. The SLMs instructed via Demon- 115

strations consistently outperformed the baselines 116

defined by non-tuned SLMs on the four proposed 117

question-answering benchmarks. 118

ii) The Instruction-tuning via CoT- 119

Demonstrations aligns the reasoning abilities of 120

SLMs with the ones of LLMs. In fact, models 121

instructed through CoT-Demonstrations that 122

contain outputs generated via CoT prompting 123

outperform models trained with Demonstrations. 124

iii) Finally, in-family alignment with Instruction- 125

tuning via Demonstrations-delivering CoT formed 126

by Answers-delivering CoT outperforms out- 127

family alignment. Llama-2-7 and Llama-2-13 in- 128

structed with Answer-delivering-CoT Demonstra- 129

tions produced by Llama-2-70 outperform the stu- 130

dents instructed by teacher GPT-3.5 other SMLs as 131

well. 132

2 Method 133

In order to align the reasoning abilities of smaller 134

Language Models using further knowledge gener- 135

ated by larger Language Models, we propose two 136

steps, as shown in Figure 11. In the first part, there 137

is an annotation phase where the Large Language 138

Models (LLMs) systematically prompt generate 139

outputs (Section 2.1). These outputs will be the 140

core of Demonstrations used during the Instruction- 141

tuning phase from the smaller Language Models, 142

presented in Section 2.2. 143

2.1 Teacher Model 144

Many state-of-the-art LLMs are available that 145

differ in the number of parameters and training 146

modes. However, our research questions focuse on 147

Instruction-tuning and family-alignment of reason- 148

ing abilities. Therefore, we concentrated on robust 149

models with different versions of the same family 150

4. 151

As a robust LLMs, we selected Llama-2-70b 152

(Touvron et al., 2023), and in terms of comparison, 153

1Figure 13 shows the overall pipeline.
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GPT-3.52 (OpenAI, 2023). Meanwhile, Llama-2-154

70b because, as introduced before, there are several155

smaller versions (presented in Section 2.2) despite156

the reduced number of parameters, they obtain re-157

markable results. In particular, we use the "chat"158

version of the LLM called Llama-2-70-chat. We se-159

lected this version because, as reported by Touvron160

et al. (2023), it is optimized for dialogue use cases161

and provides better demonstrations. In the rest162

of the paper, we will call this model Llama-2-70.163

Hence, we chose an out-family model to observe164

the impact of the Llama-2-70bs abilities. We select165

GPT-3.5 because it generates high-quality data ei-166

ther with and without the CoT prompting approach,167

as shown by Fu et al. (2023).168

Although our focus is on CoT abilities, in order169

to conduct a comprehensive study, we proposed170

two different input-prompts, both in a zero-shot sce-171

nario. The first input-prompt is a classic standard172

prompt, consisting of the question and its choices173

as follows:

Choose the answer to the question only from
options A, B, C, D.
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
D) <Option4>
Answer:

174

The second input-prompt is like the first, but175

behind "Answer:" we insert "Let’s think step176

by step" as proposed by Wei et al. (2022), that is177

shown in Table 6.178

Following the annotation process performed by179

LLMs, the annotations have been used to construct180

the Demonstrations.181

2.2 Student Model182

Several SLMs have been fine-tuned either for183

instruction-following (Taori et al., 2023) or rein-184

forcement learning with human feedback (Ouyang185

et al., 2022). However, whatever the techniques,186

the smaller Language Models3 do not seem able to187

reproduce the step-by-step reasoning abilities.188

However, recent work proposes techniques of189

knowledge distillation (Li et al., 2023a), skill refine-190

ment (Huang et al., 2022), and enriched fine-tuning191

(Magister et al., 2023) to teach SLMs to produce192

2We use GPT-3.5-turbo, however in the rest of work we
will use only GPT-3.5

3We consider Smaller models with less than 60B of param-
eters based on (Wei et al., 2022).

Instruction
Choose the answer to the question only from
options A, B, C, D.

Input
Question: Which form can be made into a
triangle?
Choices:
A) ice
B) steam
C) water
D) salt water

Output (that is the Answer produced by teacher model)
Answer:
A) ice: Ice is a solid form of water. In solid
form, substances can be molded or shaped into
various forms, including triangles. If you
had a block of ice, you could carve or mold
it into a triangular shape.
B) steam: Steam is the gaseous form of
water. Being a gas, it doesn’t have a fixed
shape. You can’t shape steam into a triangle
without containing it within some form of
solid boundary, and even then, the steam
itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the
shape of its container. You can pour water
into a triangular container, and while the
volume inside would be triangular, the water
itself isn’t inherently triangular.
D) salt water: This is essentially the same
as option C, but with salt dissolved in it.
Being a liquid, it takes the shape of its
container.
Given these considerations, the only
substance among the options that can be shaped
into a triangle by itself is A) Ice.

Table 1: Example of CoT-Demonstration. The structure
is composed by: Instruction, Input and Output. In
this case, the last part is the Answer produced by GPT-
3.5 CoT prompted.

reasoned answers. Following this idea, we analyze 193

the impact of Instruction-tuning from Demonstra- 194

tions provided by in-family and out-family teachers. 195

Hence, we chose two SLMs students, Llama-2-7b, 196

and Llama-2-13b (Touvron et al., 2023). In both 197

cases, we used "chat" versions, i.e., Llama-2-7-chat 198

and Llama-2-13-chat (versions detailed in Table 7), 199

which we will refer to in the paper as Llama-2-7 200

and -13. 201

Student models are evaluated before and after the 202

Instruction-tuning, conducted as in Alpaca (Taori 203

et al., 2023). This approach concerns the tuning 204

of Demonstrations, which consist of an instruc- 205

tion which, in our case, is fixed, i.e., Choose the 206

answer to the question only from options 207

A, B, C, D., an input which is the question, and 208

an expected output which, in our case, are the out- 209

put generated by the LLMs teachers. Table 1 shows 210
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an example of input. Additional details about the211

Instruction-tuning steps are provided in Section212

3.2.1.213

3 Experimental Setup214

In order to make the experiments comparable215

with state-of-the-art models, we use four bench-216

marks (introduced in Section 3.1) that are gen-217

erally used to assess the abilities of Large Lan-218

guage Models (LLMs). Moreover, to conduct the219

Instruction-tuning phase on the Small Language220

Models (SMLs), we use the approach presented in221

Section 3.2. All code is available in the supplemen-222

tary material, to be released if accepted.223

3.1 Data224

With the successful growth of the LLMs, sev-225

eral question-answering benchmarks with multiple-226

choice questions have been proposed to build solid227

assessments of the models’ abilities. In this paper,228

we selected four benchmarks that deal with topics229

around reasoning:230

General Commonsense Reasoning We evalu-231

ate the models’ ability to perform general reason-232

ing on the CommonSenseQA (Talmor et al., 2019)233

(CSQA) and OpenBookQA (Mihaylov et al., 2018)234

(OBQA). CommonSenseQA is one of the best-235

known datasets of answers to multiple-choice ques-236

tions dealing with different types of general com-237

monsense knowledge. OpenBookQA is a resource238

that contains questions requiring multi-step reason-239

ing, common knowledge, and rich text comprehen-240

sion. It is inspired by high school-level open-book241

exams in physics and biology, aiming to assess242

human comprehension and application of founda-243

tional concepts244

Physical Commonsense Reasoning We evalu-245

ate the models’ ability to perform physical reason-246

ing on the Interaction Question Answering (PIQA)247

(Bisk et al., 2019). It is a resource consisting of a248

series of everyday situations with a pair of typical249

and atypical solutions.250

Social Commonsense Reasoning We evaluate251

the models’ ability to perform social reasoning on252

the Social Interaction Question Answering (SIQA)253

(Sap et al., 2019). It is a benchmark focusing on254

reasoning about people’s actions and social impli-255

cations. The actions in Social IQa cover various256

social situations and candidates for plausible and257

not plausible answers.258

Splitting Details Since a test split for all bench- 259

marks is not always available open-source, we 260

adopt the following strategy: we use 4000 ex- 261

amples with equally distributed target classes as 262

training data and the validation versions found on 263

huggingface as test data. We performed this split 264

because we needed to observe the impact of the 265

responses provided by the teacher models on dif- 266

ferent benchmarks. The same is true for validation 267

since we need open-source and reproducible data to 268

conduct a detailed evaluation of the student models. 269

In Table 10, we report the quantitative information, 270

global, and splitting ratios, and in Table 9, we show 271

one example for each benchmark. The data are 272

fully accessible and open-source, as described in 273

Table 11. 274

3.2 Teaching to Reason 275

We selected Llama-2-70 and GPT-3.5 as the teach- 276

ers (introduced in Section 2.1). Consequently, the 277

LLMs are prompted in the one-shot scenarios, as 278

shown in Table 5 and Table 6. 279

We selected Llama-2-7 and Llama-2-13 (Tou- 280

vron et al., 2023) as student models (as described 281

in Section 2.2). Therefore, the students models 282

are Instruction-tuned, as proposed in (Taori et al., 283

2023). Hence, the SLMs are instructed on the 284

Demonstrations that contain the answers generated 285

by the teachers, as explained in Section 2.2. Table 286

1 shows a CoT-Demonstration that is Demonstra- 287

tion that contains the Instruction, the Input, and, 288

as Output, the Answer-delivering CoT that is an 289

output generated by GPT-3.5 CoT-prompted. 290

3.2.1 Models Setup 291

We conduct Instruction-tuning phase using QLoRA 292

proposed by Dettmers et al. (2023). This approach 293

allows instruction-tuning (and, more generally, fine- 294

tuning) to be conducted while reducing memory 295

usage. In particular, Dettmers et al. (2023) propose 296

several techniques for tuning models with many 297

parameters on GPUs with limited resources while 298

preserving 16-bit tuning performance. 299

We follow the training approach proposed in Al- 300

paca (Taori et al., 2023). Our models are trained 301

for one epoch and set the learning rate as 0.00002 302

with 0.001 weight decay. We use the cosine learn- 303

ing rate scheduler with a warmup ratio of 0.03. 304

We conducted our experiments on a workstation 305

equipped with two Nvidia RTX A6000 with 48GB 306

of VRAM. 307
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines) and behind
on Demonstrations (i.e., Instruction-tuned) and CoT-Demonstrations (i.e., Instruction-tuned-CoT). In addition,
Instruction-tuning phases only on Demonstrations-delivering CoT and Demonstrations Truthful, specifically,
demonstrations with Answers-delivering CoT and Answer Truthful (correct predictions), provided by teachers
models without Misleading ones.

3.3 Evaluation308

The most commonly used evaluation methods for309

question-answering tasks are language-model prob-310

ing, in which the option with the highest probability311

is chosen (Brown et al., 2020), and multiple-choice312

probing, in which the models are asked to answer.313

The evaluation in the first case is performed with314

a function taking the maximum value and in the315

second case with a string matching. The second316

method is widely used in recent evaluations be-317

cause it applies to models such as GPT-x (GPT-3.5318

and GPT-4) (OpenAI, 2023) where probability val-319

ues cannot be accessed.320

In our experiments, we chose the latter to have a321

comparable and scalable pipeline. Therefore, we322

performed a string matching between the generated323

outputs and the target choice.324

4 Results & Discussion325

Language Models that were unable to reason can be326

elicited to do it through the knowledge of teacher327

models. These conclusions can be observed in Fig-328

ure 2, where there are the downstream accuracies329

without the Instruction-tuning phase (see the Base-330

line) and the Instruction-tuning phase on Demon-331

strations. In fact, as discussed in Section 4.1, Small 332

Language Models (SLMs) CoT prompted obtained 333

weak results. In contrast, models that are instructed 334

via Chain-of-Thought (CoT) Demonstrations, i.e., 335

Demonstrations produced by CoT-prompted Large 336

Language Models (LLMs), outperform other mod- 337

els (see the Instruction-tuned-CoT in Figure 2). 338

However, although CoT-Demonstrations pro- 339

duced better students, the complete alignments 340

between students and teachers are realized via 341

Demonstrations-delivering CoT, as discussed in 342

Section 4.2. In particular, the "Demonstrations- 343

delivering CoT" and "Demonstrations Truthful" 344

bars in Figure 2 show that student models instructed 345

via Demonstrations-delivering CoT outperformed 346

students instructed via CoT-Demonstrations, which 347

contained Demonstrations Misleading CoT. 348

Finally, students instructed with Demonstrations- 349

delivering CoT produced by in-family teachers 350

always outperformed students instructed with 351

Demonstrations-delivering CoT produced by out- 352

family teachers. In Figure 2, it is possible to 353

observe the phenomenon of family-alignment be- 354

tween Llama-2-70 and Llama-2-7 and -13 in more 355

detail in Section 4.2. 356
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Figure 3: Acciracies (%) on the test set of benchmarks. The Instruction-tuning performed on different splits (see
Appendix A for major details) of Demonstrations and CoT-Demonstrations (correct and not correct predictions),
Demonstrations Truthful, and Demonstrations-delivering CoT (correct predictions).

4.1 CoT-abilities of Small Language Models357

Chain-of-Thought (CoT) prompts are not always358

delivering downstream performance improvements.359

In fact, SLMs, i.e., with fewer parameters, have not360

outperformed when prompted with the CoT mech-361

anism. In particular, we evaluated performance on362

four question-answering benchmarks, described in363

Section 3.1, using two versions of Llama-2-chat364

(7b-13b billion) in a zero-shot scenario. Proposing365

a classical prompt (which we call "Baseline") and366

a CoT prompt (Table 5 and Table 6), we obtained367

the performances in Table 2.368

The results confirm what Wei et al. (2022) have369

claimed about the limitations of the emergent CoT370

prompting abilities that are not observable in SLMs.371

Moreover, using CoT prompting leads to model372

confusion with subsequent degradation of down-373

stream results. It is possible to observe these phe-374

nomena in OpenBookQA (OBQA) and Common-375

SenseQA (CSQA) (down arrows in Table 2). In par-376

ticular, there is a marked deterioration in Llama-2-7377

(see ⇓), which has half the parameters of Llama-2-378

13 (see ↓).379

However, the same behaviour was not observed380

for Physical- and Social-Interaction Question An-381

swering (PIQA) and (SIQA). In fact, not consid-382

ering the nature of benchmarks, unlike the oth-383

ers, they are always question-answering multiple-384

choice-questions but have fewer possible choices,385

as shown in Table 10. In this regard, we hypoth-386

esize that the most controllable scenarios, where387

chain reasoning is limited to fewer options, are 388

reasonable by SLMs elicited with CoT prompts. 389

Benchmarks Llama-2-7 Llama-2-13
Baseline CoT Baseline CoT

OBQA 55.3 49.5⇓ 57.6 55.2↓
CSQA 59.2 50.6⇓ 64.3 60.8↓
SIQA 47.5 45.3 49.3 47.6
PIQA 63.5 63.8 69.5 71.2

Table 2: Accuracies of Llama-2-7 and Llama-2-13, both
without further tuning, on testing data with the standard
prompt (Baseline) (see Table 5) and CoT prompt (CoT)
(see Table 6).

4.2 The Instruction-tuning Impact 390

Instruction-tuning led by Large Language Mod- 391

els (teachers models), able to reason, conduct the 392

Smaller Language Models (students models) to do 393

the same. This can be seen in the experiments in 394

Figure 2. The student models behind Instruction- 395

tuning on Demonstrations produced by teacher 396

models outperformed the baselines in the four pro- 397

posed benchmarks. Moreover, the students models 398

instructed with CoT-Demonstrations, defined as 399

Instruction-tuned-CoT in Figure 2, achieve the best 400

results in terms of accuracy. 401

While performances are conspicuous improve- 402

ments overall, they have sensible variations. The 403

teacher models have different characteristics, as 404

shown in Figure 4. GPT-3.5 is trained on 175B 405

of parameters and Llama-2-70 by analog name on 406

70B of parameters. They consequently achieve dif- 407

ferent performances in the proposed benchmarks. 408
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Figure 4: Performances of Llama-2-7 and Mistral-7 Instruction-tuned using the same setup proposed in the previous
experiments.

Table 3 shows the performances in the zero-shot409

scenario (CoT prompting and not) on the data used410

to conduct the Instruction-tuning phase and on the411

same test set used to evaluate the proposed models.412

Although the performances on the "training set"413

are different (see the CoT performances of GPT-414

3.5 and the same for Llama-2-70 in Table 3), this415

bias does not affect the models instructed on over-416

all Demonstrations (correct and incorrect). The417

Llama-2-7 and -13 that have GPT-3.5 as teacher418

outperform the Llama-2-7 and -13 that have Llama-419

2-70 as teacher only on OpenBookQA; see OBQA420

in Figure 2. As far as CommonSenseQA and421

PIQA are concerned, there is a balancing that is422

not present in SIQA, where the students of Llama-423

2-70 outperform the others. Therefore, to study424

the influence of the quality of Demonstrations, we425

conducted detailed analyses in Section 4.3.426

4.3 Demonstrations-delivering CoT vs427

Misleading CoT428

Demonstrations without Misleading ones yield429

better students. In addition, the Demonstrations-430

delivering CoT led to a family-alignment of stu-431

dents’ reasoning abilities (Llama-2-7 and -13)432

with teacher Llama-2-70. In Figure 2, the433

models instructed on Demonstrations Truthful434

and Demonstrations-delivering CoT outperformed435

those instructed on overall Demonstrations and436

overall CoT-Demonstrations. In particular, the437

Demonstrations-delivering CoT produced by the438

in-family teacher outperforms those produced by439

the out-family teacher. As specified in Figure440

12, with the terms "Demonstrations Truthful" and441

"Demonstrations-delivering CoT", we indicate all442

correct answers produced by the teacher models.443

Hence, in detail, we reproduced the experimen-444

tal setup proposed in Section 3.2.1. However,445

unlike previous experiments for Demonstrations446

and CoT-Demonstrations, we performed Instuction-447

tuning only for Demonstrations-delivering CoT and448

Demonstrations Truthful. From the results, these 449

second ones better impact the students models. Fur- 450

thermore, the subset of Demonstrations used is 451

smaller than the number of total Demonstrations be- 452

cause Misleading instances were discerned. Thus, 453

the students models used fewer instances to per- 454

form the tuning. 455

However, Instruction-tuned students seem to per- 456

form better on fewer but distilled Demonstrations. 457

Even more, the Demonstrations-delivering CoT en- 458

abled the family-alignment of reasoning abilities. 459

Therefore, in order to observe the true impact of 460

these Demonstrations versus Demonstrations with 461

equal amounts of training instances in Section 4.4, 462

we perform a deep study using different sets. 463

4.4 The Role of Demonstrations-delivering 464

CoT 465

Instruction-tuning via Demonstrations-delivering 466

CoT still aligns students’ reasoning abilities with 467

those of family teachers, even as instruction de- 468

creases. In fact, from Figure 3, we can ob- 469

serve that the performances obtained by students 470

instructed with Demonstrations Truthful (shown 471

with bars) and Demonstrations-delivering CoT 472

(shown with lines) outperform students instructed 473

with overall Demonstrations. Moreover, the 474

Demonstrations-delivering CoT consistently out- 475

performs the Demonstrations Truthful. (tech- 476

nical details about splitting in Appendix A) In 477

conclusion, as also stated in Section 4.3, the 478

Demonstrations-delivering CoT of teacher Llama- 479

2-70 are more productive as all students outper- 480

formed the students of teacher GPT-3.5. As they 481

increase, students instructed via in-family teachers 482

increasingly outperform other students. 483

Finally, to validate our hypothesis of family- 484

alignment, we introduced Mistral-7b (Jiang et al., 485

2023), a new SLMs that, with 7 billion parame- 486

ters, outperforms the Llama-2-13 version on sev- 487

eral benchmarks as shown by Jiang et al. (2023). 488
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In particular, we reproduced the experiments in-489

troduced in Section 4.3 using the different kinds490

of Demonstrations presented in the previous sec-491

tion. In Figure 4, it can be seen that Llama-2-492

7 instructed on different types of Demonstrations493

delivered by Llama-2-70 almost consistently out-494

performs Mistral-7b. These results confirm that495

Demonstrations derived from in-family teachers496

have a more significant impact on student models497

than the others.498

5 Related Work499

5.1 Chain-of-Thought Prompting500

Large Language Models (LLMs) with billions of501

parameters demonstrate in-context learning and502

few-shot learning abilities (Brown et al., 2020; Wei503

et al., 2022; Min et al., 2022) to guide LLMs to gen-504

erate desired task responses, marking the advent of505

the prompting era.506

These new approaches have surpassed the age of507

the intermediate steps in algorithmic or structured508

reasoning Roy and Roth (2015); Ling et al. (2017).509

Nevertheless, early works challenged the efficacy510

of few-shot techniques for empowering the prompt-511

ing phase and downstream performances. In par-512

ticular, Wang et al. (2022) refined the original idea513

of Chain-of-Thought (CoT) (Wang et al., 2022) by514

considering various reasoning paths, while Wang515

et al. (2023) explored different prompts. Although516

prompt engineering appears to be the right way517

to improve performance, many works have used518

self-generated CoTs to self-improve reasoning abil-519

ity (Zelikman et al., 2022; Huang et al., 2022;520

Golovneva et al., 2022).521

5.2 Learning from Explanation522

Current methods for conditioning models on task523

instructions and provided explanations for individ-524

ual data points replace the ancient intermediate525

structures (Hase and Bansal, 2022) that used ratio-526

nales (Zhang et al., 2016), targets (Talmor et al.,527

2020) or inputs (Narang et al., 2020) to learn the528

models. Reasoning via the CoT builds upon prior529

efforts wherein explanations are viewed as interme-530

diary constructs produced during inference (Rajani531

et al., 2019).532

Our research stems from the studies of Li et al.533

(2023b); Magister et al. (2023); Shridhar et al.534

(2023); Ho et al. (2023a). In particular, we adopt535

the idea of an LLM teacher and a second LLM,536

sometimes smaller, that assumes a student’s posi-537

tion (Magister et al., 2023). Learning uses teacher- 538

generated explanations, demonstrating prompt CoT 539

downstream (Li et al., 2023b; Ho et al., 2023a). Li 540

et al. (2023b) claims that massive demonstrations 541

significantly improve performance over the single- 542

sample approach Shridhar et al. (2023). 543

5.3 Large Language Models as a Teacher 544

Several papers have been published simultane- 545

ously, including those by Magister et al. (2023); 546

Huang et al. (2022), and Ho et al. (2023b) that 547

prove the effect of fine-tuning to transfer the abil- 548

ity to produce Chain-of-Thought (CoT) reasoning 549

from larger to smaller models. Using further fine- 550

tuning, Huang et al. (2022) and Ho et al. (2023b) 551

exploit the known CoT abilities of GPTs (Ope- 552

nAI, 2023) while Magister et al. (2023) introduces 553

PaLM (Chowdhery et al., 2022) as a teacher. Table 554

8 resumes these contributions. 555

Our work goes beyond in the following ways: 556

1) We propose a method for aligning CoT abilities 557

via Instruction-tuning through Demonstrations pro- 558

duced by answers generated by GPT-3.5 and Llama- 559

2-70. 2) We investigate which teacher model deliv- 560

ers the most appropriate demonstrations for a stu- 561

dent model. In particular, we study the alignment 562

performance between in-family and out-family 563

models on four question-answering benchmarks. 564

3) Hence, we offer an analysis identifying crucial 565

factors aligning reasoning abilities between teach- 566

ers and students. 567

6 Conclusion 568

In this paper, we analyzed the alignment of rea- 569

soning abilities between teachers models, Large 570

Language Models (LLMs), and students models, 571

Small Language Models (SLMs). In particular, we 572

propose the Instruction-tuning-CoT, an instruction 573

tuning via Chain-of-Thought (CoT) demonstrations 574

based on explanations delivered by LLMs CoT 575

prompted. Specifically, we align a set of SLMs 576

using the explanations provided by LLMs that be- 577

long to the same family, in-family or out-family. 578

Our results showed the impact of the Instruction- 579

tuning-CoT method both with out-family teachers 580

and particularly with in-family teachers. These 581

results highlight our approach’s feasibility in har- 582

nessing the multi-step reasoning abilities of LLMs 583

for smaller models designed to pave the way for 584

more efficient and scalable applications. 585
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Limitations586

In this paper, we analyzed the impact of Answers587

delivered by Large Language Models using them as588

Demonstrations to reinforce the skills of Small Lan-589

guage Models. Although we proposed an extensive590

study there are several limitations:591

• only English-language both in Chain-of-592

Thought (CoT) methods and tasks evaluation593

is considered. Although estimating these ef-594

fects in other languages is interesting, our595

work only focused on experiments in English.596

In future works, we intend to take care of this597

aspect.598

• analysis of benchmarks relating to common599

sense knowledge of social and physical inter-600

actions. However, we would like to extend our601

analyses using more extensive and compre-602

hensive benchmarks such as GSM8K (Cobbe603

et al., 2021) and MMLU (Hendrycks et al.,604

2021) in future developments.605

• dependence on Large Language Models,606

which are closed-source products or not, but607

sometimes the training sets are unknown. Al-608

though the characteristics of the corpora are609

reported in the system reports, these are only610

processable by some researchers. Conse-611

quently, it is not easy to analyze the differ-612

ences in pre-training data between models,613

but observing the outputs in natural language614

is possible.615

In conclusion, learning from and with Demonstra-616

tions carries some specific risks associated with617

automation. Although a model may generalize its618

predictions using a seemingly consistent series of619

natural language steps, even if the prediction is620

ultimately correct, there is no guarantee that the621

predicted output comes from a process represented622

by the generalization. A user might have overconfi-623

dence in the model based on the CoT. We observed624

many cases where the CoT examined promising,625

but ultimately, the models had misleading effects.626

Ethical Statement627

Although this research enhances the reasoning abil-628

ities of smaller Language Models, they still need629

to be sufficiently robust for sensitive contexts such630

as education. The primary ethical concerns arise631

from the text generation process; both the "teacher"632

and "student" models might produce misleading 633

answers. The content is largely influenced by the 634

input data, which, in our case, are standard bench- 635

marking tasks peer-reviewed within the NLP do- 636

main. We intend to release our code; however, like 637

many generative models, ours can be exposed to 638

hallucinations. 639
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A Experimental Details

In order to observe the impact of the demonstra-
tions (CoT, non-CoT, truthful or Misleading), we
produced a series of experiments by systematically
decreasing the Instruction-tuning data. In particu-
lar, from the total number of demonstrations, we
chose three sub-sets with 75%, 50%, and 25%.
In detail, the Instruction phases on the number
of equal Demonstrations are performed by taking
about 3000 examples in splitting 100%, 2250 in
splitting 50%, 1500 in splitting 50%, and 750 in
splitting 25%. We chose the value 3000 because
it is the smallest number of CoT-Gold Demonstra-
tions available. For the total Demonstrations, we se-
lected random samples; instead, for the CoT-Gold
and Gold, we selected all the Demonstrations avail-
able.

B Accuracy of LLMs on different
Benchhmark

Benchmarks Llama-2-70 GPT-3.5
Baseline CoT Baseline CoT

Training

OBQA 64.6 65.4 66.2 74.6
CSQA 70.8 73.4 79.3 84.8
SIQA 65.4 67.5 67.6 70.3
PIQA 82.3 85.6 80.5 84.3

Testing

OBQA 62.8 64.8 66.7 73.8
CSQA 72.4 74.3 80.2 83.7
SIQA 64.2 66.9 66.9 71.3
PIQA 80.6 84.8 81.6 85.7

Table 3: Accuracy (%) of Llama-2-70 and GPT-3.5
(teachers) on training and testing data with CoT prompt
(CoT) and with the standard prompt (Baseline).

C Model Sizes

Table 4: Number of parameters of proposed Language
Models, B is for Billions and T is for Trillions
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D Prompting Approaches

Zero-Shot

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?
A) Shark
B) Turtle
C) Giraffe
D) Spider
Answer:

Table 5: Example of Zero-Shot prompting.

Zero-Shot Chain-of-Thought

Choose the answer to the question only from options A, B, C, D.
Question: Which animal gives birth to live young?
A) Shark
B) Turtle
C) Giraffe
D) Spider
Answer: Let’s think step by step

Table 6: Example of Zero-Shot Chain-of-Thought prompting.

E Models
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/Llama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7-instruct mistralai/Mistral-7B-Instruct-v0.1

Table 7: List and specific versions of the models proposed in this work, which can be found on huggingface.co.
For each model we used all the default configurations proposed in the repositories.

Work Method Teachers Students
(Magister et al., 2023) Fine-tuning PaLM T5-small, -medium

GPT-3.5 T5-large, -xxl
(Li et al., 2023a) Fine-tuning GPT-3 175B OPT-1.3b

(Shridhar et al., 2023) Fine-tuning GPT-3 175B GPT-2

(Ho et al., 2023a) Fine-tuning InstructGPT GPT-3
(text-davinci-002) (ada,babbage,curie)

Ours Instruction-tuning Llama-2-70b Llama-2-7b, -13b
GPT-3.5 (turbo) Mistral-7b

Table 8: Summary of methods, teacher and student models of previous work.
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F Description of proposed Benchmark
Dataset Example
Open Book Question Answering When birds migrate south for the winter, they do it because
(OBQA) (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.

C) it is important to their happiness. D) they decide to each.
Common Sense Question Answering Aside from water and nourishment what does your dog need?
(CSQA) (Talmor et al., 2019) A) bone. B) charm. C) petted.

D) lots of attention. E) walked.
Physical Interaction Question Answering How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
(PIQA) (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.

B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.
Social Interaction Question Answering Taylor gave help to a friend who was having trouble keeping up with their bills.
(SIQA) (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher

paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.

Table 9: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA

classes 4 5 2 3

Training
# examples for 1000 800 2000 1330
each class

Test
# examples for 125∗ 235∗ 924∗ 640∗

each class (± 8) (± 11) (± 18) (± 19)

Table 10: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal.

Name Repository
CSQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_qa
OBQA (Mihaylov et al., 2018) huggingface.co/datasets/openbookqa
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa
SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qa

Table 11: In this table, we list the versions of the benchmark proposed in this work, which can be found on
huggingface.co.
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G Conceptual Map of Names

Table 12: Different types of Demonstrations used in our work. The Demonstrations are composed by: Instruction,
Input and Output (see Table 1). Based on the target of the output, there are different types of Demonstrations.

H Overall Pipeline

Table 13: Our Experimental Pipeline with a descriptions of data splitting, tables, and results generated.
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