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Abstract

Pose-free Neural Radiance Field (NeRF) aims at novel view synthesis (NVS) with-
out relying on accurate poses, exhibiting significant practical value. Image and
LiDAR point cloud are two pivotal modalities in autonomous driving scenarios.
While demonstrating impressive performance, single-modality pose-free NeRFs
often suffer from local optima due to the limited geometric information provided
by dense image textures or the sparse, textureless nature of point clouds. Although
prior methods have explored the complementary strengths of both modalities, they
have only leveraged inherently sparse point clouds for discrete, non-pixel-wise
depth supervision, and are limited to NVS of images. As a result, a Multimodal
Unified Pose-free framework remains notably absent. In light of this, we propose
MUP, a pose-free framework for LiDAR-Camera joint NVS in large-scale scenes.
This unified framework enables continuous depth supervision for image recon-
struction using LiDAR-Fields rather than discrete point clouds. By leveraging
multimodal inputs, pose optimization receives gradients from the rendering loss
of point cloud geometry and image texture, thereby alleviating the issue of local
optima commonly encountered in single-modality pose-free tasks. Moreover, to
further guide pose optimization of NeRF, we propose a multimodal geometric
optimizer that leverages geometric relations from point clouds and photometric
regularization from adjacent image frames. Besides, to alleviate the domain gap
between modalities, we propose a multimodal-specific coarse-to-fine training ap-
proach for unified, compact reconstruction. Extensive experiments on KITTI-360
and NuScenes datasets demonstrate MUP’s superiority in accomplishing geometry-
aware, modality-consistent, and pose-free 3D reconstruction.

1 Introduction

Neural Radiance Fields (NeRFs) [20] have made substantial strides in novel view synthesis (NVS) for
images and LiDAR point clouds [37, 54, 56, 12], with promising applications in autonomous driving
scenarios [49, 40, 46, 47]. Recent developments have transitioned towards a pose-free paradigm [16,
10, 25, 3], facilitating reconstruction while accurately estimating sensor poses. This approach
reduces dependence on time-consuming structure-from-motion algorithms like COLMAP [33] and on
unreliable point cloud registration methods such as ICP [2, 29, 32, 28], both of which are susceptible
to failure in wide-baseline scenarios.

However, existing pose-free NeRFs have largely concentrated on single modalities, particularly on
images. Nevertheless, due to the lack of geometric consistency, relying solely on rich texture without
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Figure 1: NVS results w/ and w/o accurate poses. Compared to continuous LiDAR-Camera Fields,
projecting LiDAR point clouds onto images as discrete depth priors fails to provide continuous,
pixel-wise supervision. Multimodal NeRFs (without MMG) leverage continuous LiDAR-Fields to
constrain geometric consistency and optimize pose, aiding both reconstruction and pose optimization.

geometry often leads to suboptimal results in large-scale scenes [19]. The assistance of Pseudo or real
point clouds [3] can help address this issue. For instance, directly propagating depth loss to optimize
geometric consistency [48] and leveraging depth for correspondence establishment and reprojection
refinement [39, 3] can both contribute to pose optimization. Nonetheless, when performing pose-
free reconstruction and projecting discrete point clouds onto images for depth supervision, only
a sparse set of pixels contains depth information, underutilizing point cloud geometry. As shown
in Fig. 1, LiDAR point clouds fail to provide pixel-wise supervision due to their inherent sparsity
and discrete sampling. Comparing Fig. 1 reveals that supervision with discrete point clouds limits
registration accuracy(c) and reconstruction quality(a), whereas continuous LiDAR-Field supervision
excels in both. Moreover, Nope-NeRF [3] employs pixel-wise depth estimation to generate pseudo
point clouds but suffers from scale ambiguity and limited accuracy. Consequently, even with point
cloud [3, 36], image-based pose-free NeRFs [16, 19, 3] remain challenging to apply in large-scale
scenes and are unable to perform point cloud NVS. Conversely, instead of utilizing point clouds as
additional discrete supervision, recent advancements [37] have demonstrated that leveraging point
clouds alone enables the reconstruction of continuous Neural LiDAR Fields. The LiDAR-based
framework [56, 37, 12] facilitates highly accurate and continuous geometric reconstructions. Among
these efforts, GeoNLF [48] extends LiDAR-Field to pose-free reconstruction task. Nonetheless, the
inherent lack of texture information in point clouds, along with the sparse sampling and indistinct
foreground-background boundaries in the range map, continues to constrain the performance.

Regarding the challenges encountered in the aforementioned single-modality approach, Continuous
Neural LiDAR Fields can provide pixel-wise depth supervision for images and directly propagate
gradients to pose estimation, providing continuous geometric constraints. In turn, images offer
rich textures and clear boundaries, which enhance the registration accuracy of sparse point clouds.
Consequently, reconstructing both point clouds and images as continuous neural fields allows them to
effectively complement each other in pose-free scenarios. Nevertheless, prior research [38] has faced
challenges due to the significant domain gap and uncoordinated convergence problems [27, 43, 35]
between these modalities. Therefore, Alignmif [38] employs independent hash-grids for each
modality. However, in pose-free, ill-conditioned optimization, jointly optimizing the two distinct hash
grids and poses is infeasible and yields suboptimal performance compared to the single-modality
model. The large discrepancy between two feature spaces leads to inconsistent gradients when
propagated to poses, causing [38] to fail to converge.

Consequently, in pursuit of effectively integrating the two modalities for unified pose-free reconstruc-
tion, we introduce MUP—a framework that facilitates the simultaneous reconstruction of both point
clouds and images via a unified neural field. Specifically, to mitigate local minima issues in single-
modality approaches, we propagate the gradient of multi-modal rendering loss to poses with varying
emphasis at different optimization stages. Additionally, the MultiModal Geometric optimizer (MMG)
guides pose optimization by leveraging geometric relations between multiview point clouds and
incorporating point-to-image error as a regularization term. To alleviate modality conflicts [38] and
address the uncoordinated convergence problem, we introduce a multimodal-specific coarse-to-fine
training approach [16], facilitating the utilization of a singular hash grid for compact reconstruction.
Moreover, to enhance color-depth consistency, we introduce a consistency constraint by projecting
image pixels onto adjacent frames using depth derived from NeRF. Therefore, MUP is capable of
achieving geometry-aware, modality-consistent, and pose-free reconstruction in large-scale scenarios.
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We evaluate our method across diverse scenarios using the KITTI-360 [15] and NuScenes [4]
autonomous driving datasets. Comprehensive experiments demonstrate that MUP significantly
outperforms prior state-of-the-art techniques and single-modality approaches by a large margin in
both registration and NVS.

In summary, our primary contributions can be delineated as follows: (1) We propose MUP, a
unified pose-free framework that combines the advantages of two modalities for pose estimation and
multimodal NVS in large-scale scenes, efficiently leveraging a compact neural representation without
the need for accurate poses. (2) We introduce a multimodal-specific training approach, integrated
with the MMG module and consistency constraint, to facilitate modality-consistent, pose-free, and
geometry-aware reconstruction. (3) We demonstrate the effectiveness of our method quantitatively
and qualitatively through extensive experiments conducted on multiple datasets and scenes.

2 Related Work

NeRF for Single-Modality NVS. NeRF [20] and related works have achieved substantial progress in
novel view synthesis. Diverse neural representations [21, 1, 5, 6, 11], techniques [22, 23, 42, 53], and
generalization methods [7] for NeRF have been introduced to enhance its performance. Some methods
incorporate depth priors [9, 31, 52] or point clouds as auxiliary data to ensure multi-view geometric
consistency. However, relying solely on sparse depth supervision from point clouds fails to fully
exploit their potential in expressing geometry. Consequently, researchers have extended the NeRFs
to generate novel views from LiDAR [37, 12, 56, 54, 48], treating point clouds as range images.
Nevertheless, sparse point clouds are notably deficient in dense texture information. Accordingly, we
aim to leverage the complementary characteristics of both modalities, advancing a unified multimodal
NeRF framework.

Multimodal Joint Learning in NeRF. NeRF framework facilitates the integration of a wide range of
attributes into the volumetric rendering pipeline, including color [21], depth, intensity, and semantic
labels [54]. Recent advancements [3, 9, 14, 30, 41] exploit point clouds to provide depth priors but fail
to offer pixel-wise supervision. Neural sensor simulator Unisim [50] performs multimodal NVS via
implicit fusion. However, all these methods rely on accurate poses. Very recently, Alignmif [38] has
proposed using distinct hash grids for separate modality reconstruction followed by fusion. However,
its intricate structure with two hash grids fails to converge in pose-free optimization and is highly
computationally expensive. Our approach employs a more compact representation and introduces a
novel strategy to achieve pose-free, multimodal reconstruction.

NeRF with Pose Optimization. Since iNeRF [51] and subsequent works [17, 8] demonstrated that
NeRF can optimize the poses of new viewpoint images based on trained radiance fields, a series
of approaches have aimed to reduce NeRF’s reliance on highly accurate poses. NeRFmm [45]
and SCNeRF [34] extend the method to intrinsic parameter estimation. BARF [16, 10] employs
a coarse-to-fine reconstruction scheme that gradually learns positional encodings, demonstrating
notable efficacy. Additionally, several studies have expanded BARF to tackle more challenging
scenarios, such as sparse input [39], dynamic scenes [56, 18], and generalizable NeRF [7]. The
coarse-to-fine training method has been particularly inspiring for our work. However, these pioneering
efforts primarily target indoor or object-level scenes. Increasingly, pose-free methods have enhanced
robustness by incorporating priors. In particular, [3, 39] use monocular depth or correspondence priors
for constraints. Recently, [48] proposed a LiDAR-only pose-free framework. Nonetheless, the sparse
nature of point clouds, coupled with the absence of texture information, ray-drop characteristics, and
inherent noise, imposes limitations on registration accuracy. Moreover, all of the aforementioned
methods are designed for a single modality. In the context of autonomous driving, they fail to fully
exploit both the geometric information from point clouds and the texture information from images.
As a result, a unified multimodal, pose-free framework remains absent.

3 Preliminaries

Pose-free NeRF for Images and Point Clouds. NeRF represents a 3D scene implicitly by encoding
the density σ along with additional data features such as color and intensity of the scene using an
implicit neural function FΘ(x,d), where x is the 3D coordinates and d is the view direction. NeRF
pipeline is compatible with both point clouds and images. For point clouds, it converts LiDAR point
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Figure 2: Overview of our proposed MUP. MUP derives pose gradients through both implicit global
optimization from the Unified Neural LiDAR-Camera Fields and our explicit MMG-optimizer, both
of which effectively leverage complementary multimodal information. Besides, we integrate Unified
Neural LiDAR-Camera Fields with a multimodal-specific coarse-to-fine training strategy, along with
consistency constraint to achieve geometry-aware, modality-consistent and pose-free reconstruction.

clouds into a range image, then casts a ray with a direction d determined by the azimuth angle θ and
elevation angle ϕ under the polar coordinate system: d = (cos θ cosϕ, sin θ sinϕ, cosϕ)T . When
performing NVS, NeRF employs volume rendering techniques to accumulate densities and the pixel
depth value D̂ along sampled rays. Using the same approach, NeRF predicts the color C for images
or the intensity S and the ray-drop R for point clouds.

Traditional NeRF relies heavily on accurate sensor poses and reconstruction accuracy can be sig-
nificantly compromised with imprecise poses. Pose-free NeRF is introduced to solve this issue by
treating sensor poses P = {Ps|s = 0, 1...N−1} as optimizable parameters. Hence, the simultaneous
update via gradient descent of P and Θ can be achieved by minimizing L =

∑N
i=0 ∥Îi−Ii∥22 between

the rendered and ground truth image or range image Î , I:

Θ∗,P∗ = argmin
Θ,P

L(Î, P̂ | I). (1)

Problem Formulation. In large-scale autonomous driving scenarios, given time-synchronized
sequences of cameras and LiDAR data, denoted as I = {Is|s = 0, 1, . . . , N − 1} and Q =
{Qs|s = 0, 1, . . . , N − 1}, the objective of MUP is to reconstruct the scene as a continuous implicit
representation based on a unified neural field. MUP is capable of performing NVS for both modalities,
while also simultaneously recovering the vehicle poses P = {Ps|s = 0, 1, . . . , N−1}, which enables
the global alignment of both images and point clouds. The relative poses of all sensors with respect
to the vehicle are assumed to be known.

Pose Representation. Following [3], pose is modeled as a rotation R ∈ SO(3) and a translation
t ∈ R3. This formulation allows for independent updates of the translation at the origin and the
rotation around the origin. Rotation updates are computed in the Lie algebra of the special orthogonal
group in three dimensions, ϕ ∈ so(3), while translations are updated in R3. Specifically, the updates
are expressed as ϕ′ = ϕ+∆ϕ and t′ = t+∆t. Here, ϕ satisfies R =

∑∞
n=0

1
n! (ϕ

∧)n, where ϕ∧

denotes the skew-symmetric matrix representation of ϕ.

Challenges in Multimodal NeRF. Different modalities exhibit varying representations and converge
at different rates [27, 43, 35]. Specifically, point clouds often converge faster than images due to their
sparsity and direct geometric supervision. This disparity causes uncoordinated convergence, with the
model shifting focus to images once the point cloud error is sufficiently small.
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Figure 3: Modality fusion in Hash-grids and geo-MLP. We truncate the gradients of each modality
separately in hash grids and geo-MLP. The results show that feature fusion across modalities primarily
occurs in the hash grids rather than the geo-MLP.

4 Methodology

As shown in Fig. 2, our framework is divided into two main modules: a Unified neural fields that
implicitly refines neural network and poses, and the Multimodal Geometric Optimizer (MMG) that
explicitly optimizes poses. Both modules leverage geometric and texture information for registration
and are executed alternately. In the following sections, we first present our LiDAR-Camera Fields
in Section 4.1, integrating unified neural fields with a multimodal-specific coarse-to-fine training
strategy for reconstruction and global implicit pose optimization. Then, we introduce our MMG
module in Section 4.2, which provides explicit geometric guidance to avoid local optima. Finally, we
present the proposed consistency constraint and the overall optimization pipeline in Section 4.3.

4.1 Unified Neural LiDAR-Camera Fields

To address the issue of unbalanced convergence speeds mentioned in Section 3, we design a Unified
Neural LiDAR-Camera representation. Firstly, we introduce the Unified Neural Fields and identify
that modality fusion occurs within the hash grids. Based on this observation, we propose a multimodal
training method for optimizing the hash grid, which also stabilizes pose optimization and mitigates
modality conflicts. Finally, a comprehensive analysis and discussion are provided.

Unified Neural Fields. Initially, we adopt i-NGP [21] as the base framework, leveraging multi-
resolution hash grids to encapsulate the features, while a geometry-MLP (geo-MLP) is utilized to
derive the density. In MUP, both the hash grids and the geo-MLP are shared across the modalities. For
the image modality, we use a lightweight MLP to refine the geo-MLP output, helping reduce modality
conflicts. To explore how modality features are fused, we independently truncate the gradients of
reconstruction loss LCamera and LLiDAR to hash grids and geo-MLP. For hash grids, results indicate
that truncating one modality prevents the Multimodal NeRF from learning the corresponding features.
As shown in the upper images of Fig. 3, when the image gradient is truncated, novel views lose
texture and resemble a colored point cloud projection, whereas truncating the point cloud gradient
results in inaccurate geometry, resembling image-based pseudo point clouds. The same experiment
on geo-MLP reveals slight performance degradation, suggesting feature fusion primarily occurs in
the hash grids. Thus, effectively controlling hash grid learning across modalities is crucial.

Multimodal-specific Coarse-to-fine Training. To this end, we draw inspiration from the coarse-to-
fine (C2F) strategy, which is widely used in pose-free NeRFs [48, 16, 10]. We extend this approach to
a multimodal pose-free NeRF by adopting modality-specific C2F strategies, which helps to balance
the influence of each modality on the hash grid. Specifically, we progressively activate shared hash
grids from low to high resolution, employing distinct activation speeds and initiation points for each
modality, as described in Eq. (2).

γ′LiDAR
L = wL(αLiDAR)γ

LiDAR
L , γ′Camera

L = wL(αCamera)γ
Camera
L , (2)

where γ′
L denotes the encoding of the L-th layer hash-grid, wL is the coarse-to-fine mask, and it

can be any monotonic increasing function with a domain of [L− 1, L] and a range of [0, 1], such as
wL(α) = clip(α−L+ 1, 0, 1) or wL(α) = (1− cos (clip(α− L+ 1, 0, 1)π))/2 in most pose-free
methods [16, 48, 10]. α ∈ [0, L] is a controllable parameter proportional to the optimization progress.
Notably, α varies across modalities. For images, all low-resolution hash grids are initially activated,
with higher-resolution grids progressively activated. For the point cloud, a similar coarse-to-fine
approach is used but with slower activation starting from low-resolution grids. In our experiment, the
αLiDAR is adjusted between 6-16, while the αCamera is adjusted between 12-16.
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Figure 4: Consistency constraint. We project rendered images onto other frames by depth obtained
from NeRF to compute the photometric error. It’s particularly effective for textureless regions.

Implicit Pose Optimization. In the Unified NeRF training, gradients are also propagated to pose
from reconstruction loss. However, in early optimization, geometric inaccuracies hinder texture-based
pose refinement. In later stages, sparse point clouds limit registration accuracy, while images offer
denser cues for alignment. Consequently, we adopt point cloud-based loss at the early stages and
later employ image-based photometric loss to refine the poses. This is implemented by adjusting the
learning rates of pose parameters across different modalities, as depicted in Eq. (3).

Pn+1 = Pn − (1− w)lrGLiDAR − w · lrGCamera, (3)

where G is the gradient of the corresponding modality, Pn denotes the pose at the n-th iteration, w is
a control variable increasing progressively during the training process, lr denotes the learning rate.

Discussion. The C2F strategy is widely used in pose-free NeRFs [48, 16, 10]. During ill-conditioned
optimization, minor perturbations in pose can lead to significant deviations in NeRF, potentially
driving it towards a local minimum. The C2F strategy alleviates this issue by blocking partial gradient
propagation, thereby mitigating the impact of such perturbations. The Jacobian of γ′

L thus becomes:

∂γ′
L(θ,x;α)

∂θ
= wL(α)

∂γL(θ,x)

∂θ
,
∂γ′

L(θ,x;α)

∂x
= wL(α)

∂γL(θ,x)

∂x
(4)

where θ denotes the parameters of the hash grids, and the point x is associated with the pose. When
wL(α) = 0, the contribution to the gradient from the L-th (and higher) resolution component is
nullified. As shown in Eq. (4), the optimization of both hash-grid and pose follows a coarse-to-fine
strategy. In the early stages of optimization, only the gradients from the coarse resolution of the hash
grids contribute to pose optimization, while the finer resolutions further refine the pose.

Furthermore, our method utilizes a single shared hash grid and unified hash features across modalities.
We adjusts the α for each modality, ensuring consistent convergence speeds and balanced loss
across modalities. Moreover, the varying α values guide high-resolution hash grids to capture fine
image textures, while the LiDAR field refines geometry and primarily supervises low-frequency
geometric structures, mitigating cross-modal conflicts. In summary, our method ensures synchronous
convergence and stable optimization, while also mitigating modality conflicts, by employing a distinct,
compact, and efficient hash grid structure.

4.2 Multimodal Geometric Optimizer

Our MMG module leverages Image-enhanced Chamfer Distance combined with point-to-image
regularization. Unlike implicit optimization through NeRF, MMG explicitly optimizes poses by
leveraging both geometry and textures.

Explicit Pose Optimization. The closest-point correspondences between two partially overlapping
point clouds establish the most direct geometric relationship, which can be leveraged effectively
for registration like ICP [2]. Chamfer Distance (CD) is a well-established loss derived from point
correspondences and can be computed as Eq. (5):

CD(P,Q) =
∑
pi∈P

wi min
qi∈Q

∥TPpi −TQqi∥22 +
∑
qi∈Q

wi min
pi∈P

∥ TQqi −TPpi∥22 , (5)

where q, p in point cloud Q,P are homogeneous coordinates. TP ,TQ represent the transformation
matrix to the world coordinate system. Additionally, we define wi to represent the weight of each
correspondence. Our MMG module directly computes the inter-frame CD and propagates the gradient
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Table 1: Quantitative comparison of NVS in pose-free setting. We conduct experiments under the
pose-free setup. The estimated trajectory is aligned with the ground truth using Sim(3) for image-
based methods. PF : Pose-Free, RR: Reconstruction after Registration, I: Image-synthesizable,
PI: Image and Point cloud-synthesizable.

Methods Type LiDAR Metrics Image Metrics Pose Metrics
CD↓ F-score↑ MAEI↓ PSNR↑ SSIM↑ LPIPS↓ RPEt (cm)↓ RPEr(deg) ↓ ATE(m)↓

Experiments on KITTI-360 [15]

Colored-ICP [24, 38] RR./ PI 0.492 0.787 0.149 20.92 0.698 0.459 25.383 0.899 1.624
Nope-NeRF [3, 57] PF ./ I - - - 19.82 0.337 0.592 83.223 14.412 0.653

BA-Alignmif [38, 10] PF ./ PI 0.641 0.722 0.116 19.12 0.641 0.439 36.179 0.498 0.410
MUP(Ours) PF ./ PI 0.079 0.942 0.096 23.46 0.759 0.287 1.471 0.025 0.187

Experiments on NuScenes [4]

Colored-ICP [24, 38] RR./ PI 0.930 0.599 0.047 19.21 0.438 0.644 14.380 0.599 1.170
Nope-NeRF [3, 57] PF ./ I - - - 18.01 0.341 0.670 129.899 12.399 0.718

BA-Alignmif [38, 10] PF ./ PI 1.695 0.603 0.044 18.73 0.621 0.619 182.391 0.377 4.266
MUP(Ours) PF ./ PI 0.810 0.656 0.042 20.83 0.699 0.585 4.058 0.101 0.176

Figure 5: Qualitative comparison of NVS. We compared MUP with pose-free and registration-first
methods. Nope-NeRF and Colored-ICP-assisted fail due to the large-scale scene. BA-Alignmif
struggles to converge. All baselines fail entirely on certain sequences.

to the poses, guiding the optimization of the poses during the ill-conditioned optimization. However,
CD overlooks the partial overlap of point clouds, merely minimizing CD does not necessarily improve
pose accuracy. Leveraging the multimodal input, we exploit images to alleviate the impact of non-
overlapping regions. Specifically, we project point clouds onto time-synchronized images to derive
color information. During the calculation of CD, we re-weight the relevant correspondences by
incorporating photometric information.

wi =

{
1 ∥C⟨F(pi)⟩ − C⟨F(qi)⟩∥1 ≤ m

0 ∥C⟨F(pi)⟩ − C⟨F(qi)⟩∥1 > m,
(6)

where the C⟨·⟩ denotes the color obtained by sampling from the image. F(x) denotes the projection
function that maps a 3D point x onto a 2D image. Additionally, following [48], we further construct
a multi-frame graph (S, E), where vertex S represents a frame of point cloud along with the time-
synchronized image, each edge E represents the CD. Finally, the Image-enhanced CD is computed as
LICD =

∑
(i,j)∈E CD(i,j).

Point-to-Image Regularization. As shown in Fig. 2 (top right), we project point clouds onto images
from adjacent frames to establish pixel correspondences. Based on these correspondences, we
introduce a point-to-image error using photometric loss, which serves as a regularization term.

LPoint2Image =
∑
ij

∥Ci⟨Fi(Pi)⟩ − Cj⟨Fj(TjT
−1
i Pi)⟩∥22, (7)

where P denotes the point cloud. Finally, the overall optimization loss for MMG is defined as:

LMMG = LIRCD + LPoint2Image. (8)
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4.3 Overall Optimization Pipeline

Consistency Constraint. Due to the differing Fields of View (FoV) between LiDAR and cameras,
plain LiDAR-Fields provide incomplete and limited depth supervision. Therefore, we further in-
troduce a geometric consistency constraint, which leverages reprojection error to constrain regions
outside the LiDAR’s FoV. Specifically, we extract dense point clouds from rendered depth maps z
and project them onto adjacent frame images to compute photometric errors. It is effective for large
textureless regions, enforcing geometric-color consistency, and is calculated as Eq. (9):

Lcons =
∑
(i,j)

∥Ci⟨p⟩)− Cj⟨Fj(TjT
−1
i F−1(z, p))⟩∥22, (9)

where F−1(z, p) denotes the back-projection, mapping a pixel p to a 3D point using depth z.

Optimization. To optimize MUP, the total reconstruction loss is formulated as a weighted sum of
intensity loss LS , ray-drop loss LR, LiDAR range image loss LD, photometric loss Lrgb from the
image and consistency loss Lcons:

LD(r) =
∑
r∈R

∥∥D̂(r)−D(r)
∥∥
1
,Lrgb(r) =

∑
r∈R

∥∥Î(r)− I(r)
∥∥2

2 (10)

LS(r) =
∑
r∈R

∥∥Ŝ(r)− S(r)
∥∥2

2
,LR(r) =

∑
r∈R

∥∥R̂(r)−R(r)
∥∥2

2 (11)

L = λαLD + λβLrgb + λγLS + ληLR + λrLcons (12)

5 Experiment

5.1 Experimental Setup

Datasets and Experimental Settings. We conducted experiments on two public autonomous driving
datasets: NuScenes [4] and KITTI-360 [15] dataset, each with five representative time-synchronized
LiDAR point cloud and image sequences. For the NuScenes dataset, it includes six cameras and
a LiDAR sensor, with keyframes that are typically used, which are time-synchronized based on
timestamps. Following [48] we selected 33 consecutive frames from keyframes as a single scene.
KITTI-360 has three cameras and a LiDAR, where each frame’s point cloud and image are time-
aligned. Following [37, 56, 38], we use the standard KITTI-360 dataset, all images and point clouds
are time-synchronized. For both datasets, only the front-facing single camera was utilized. Following
[48, 16], we perturbed poses of car with additive noise corresponding to a standard deviation of
20 deg in rotation and 3m in translation. The relative poses of all sensors with respect to the vehicle
are assumed to be provided.

Metrics. We evaluate our method for pose estimation and NVS. For pose estimation, we follow [3],
employing standard odometry metrics: Absolute Trajectory Error (ATE) and Relative Pose Error
(RPE), with rotational (RPEr) and translational (RPEt) components. Following [37, 56] for point
cloud NVS, we adopt CD to assess 3D geometric errors and the F-score with a 5 cm threshold. We
also compute mean absolute error (MAE) for intensity in projected range images. Besides, we follow
the approach in [3, 38], employing PSNR, LPIPS [55], and SSIM [44] for image NVS.

Implementation Details. All experiments were conducted on a single NVIDIA GeForce RTX 3090
GPU. 768 points were uniformly sampled along each ray for two modalities. MUP optimization
was implemented in PyTorch [26] using the Adam optimizer [13]. The learning rates were set as
follows: 1× 10−2, decaying to 1× 10−4 for NeRF; 1× 10−3, decaying to 1× 10−5 for translation;
and 5× 10−3, decaying to 5× 10−5 for rotation. The weighting coefficients for each loss term are
defined as: λα = λβ = 1000, λγ = 10, λη = 2.5, λr = 150. Besides, all sequences are
trained for 60K iterations in the pose-free setting and 30K iterations when ground truth poses are
available. Additionally, after every m1 epoch of Unified NeRF training, we proceed with m2 epochs
of pure geometric optimization, where the ratio m2/m1 decreases from 10 to 1. Both α values are
tuned so that the coarse-to-fine strategy is applied during the training progress between 0 and 0.3. In
the training process, w increases from 0 to 1.
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Methods(Pose - free) LiDAR Image Pose Metrics
CD↓ F-score↑ PSNR↑ RPEt ↓ RPEr ↓ ATE↓

w/o MMG 0.592 0.731 19.27 26.201 0.433 0.805
w/o P2IR 0.083 0.936 23.35 1.533 0.041 0.205
w/o Image 0.089 0.937 - 1.668 0.062 0.224

w/o MSC2F 0.113 0.932 22.06 1.542 0.058 0.256
MUP(Ours) 0.079 0.942 23.46 1.471 0.025 0.187

Methods(GT - pose) LiDAR Metrics Image Metrics
CD↓ F-score↑ MAEI↓ PSNR↑ SSIM↑ LPIPS↓

w/o Cons 0.092 0.931 0.096 23.66 0.793 0.227
w/o MSC2F 0.113 0.923 0.102 23.24 0.798 0.230
MUP(Ours) 0.080 0.945 0.089 24.29 0.812 0.211

Table 2: Ablation studies on the MMG module
and image modality under the pose-free set-
ting(top). MMG module plays a pivotal role
in pose optimization. Ablations of MSC2F
and consistency constraint under GT-pose set-
ting(bottom).P2IR: Point2Image Regulariza-
tion. MSC2F: Training Strategy.

Methods
LiDAR Metrics Image Metrics

CD ↓ F-score ↑ MAEI ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Experiments on KITTI - 360 [15] , i-NGP: i-NGP w/ point cloud.

i-NGP [21] - - - 23.12 0.791 0.223
L-NeRF [37] 0.083 0.942 0.097 - - -
i-NGP [21] - - - 23.23 0.794 0.220
MUP(Ours) 0.080 0.945 0.089 24.29 0.812 0.211

Experiments on NuScenes [4] , i-NGP: i-NGP w/ point cloud.

i-NGP [21] - - - 20.78 0.667 0.530
L-NeRF [37] 0.815 0.673 0.041 - - -
i-NGP [21] - - - 20.92 0.682 0.564
MUP(Ours) 0.798 0.678 0.038 21.53 0.704 0.545

Table 3: Quantitative comparison on NVS
with GT-poses. We conducted experiments un-
der GT-poses to demonstrate the effectiveness of
our method in modal fusion.

Figure 6: Ablation in pose-free setting. The
first row illustrates registration results w/ and w/o
the MMG, while the second row compares depth
maps w/o and w/o the image modality.

Figure 7: Qualitative NVS results with GT-
poses. MUP outperforms single-modal meth-
ods i-NGP w/ and w/o point clouds and LiDAR-
NeRF. Our method achieves significantly better
depth estimation and NVS quality.

5.2 Comparison and Ablation in Pose-free Setting

Baselines. In pose-free settings, all baselines utilize multimodal inputs. Methods are divided into
two distinct categories: one where registration is performed prior to reconstruction, and another
where pose-free reconstruction simultaneously estimates the poses. Following prior pose-free NVS
studies [16, 19, 48, 3, 10, 45], reconstruction is typically performed on short sequences without
real-time constraints. Consequently, incremental SLAM systems are not directly comparable, and
directly frame-to-frame registration is adopted instead [48].

For the first category, the registration method Colored-ICP [24] integrates both point clouds and
images. We utilize it for registration and subsequently apply Alignmif [38] for multimodal recon-
struction. Notably, For the second category, Nope-NeRF takes images input and leverages DPT [57]
to construct pseudo point clouds. Moreover, we reformulate the Alignmif method in a pose-free
framework, allowing gradient propagation to the poses for optimization. For all pose-free methods,
we adopt the strategy from [45, 48] to obtain the poses of test views for rendering.

Comparison in NVS and Pose Estimation. The quantitative and qualitative results are presented in
Table 1 and Fig. 5. Our method outperforms all approaches in both modalities. Previous pose-free
methods Nope-NeRF [3] primarily targeted small-scale scenarios, and only can perform images NVS.
Consequently, when applied to autonomous driving environments, Nope-NeRF underperforms due to
the lack of scale and the imprecision in depth estimation. Alignmif [38] cannot be effectively used in
ill-conditioned optimization. Its complex structure with multiple independent hash grids prevents
efficient registration and reconstruction. As for the registration-first approach, Colored-ICP [24]
exhibits limited accuracy in large-scale outdoor scenes. Our method achieves the highest pose
estimation accuracy.

Ablation Study in pose-free setting. All ablation studies are conducted on KITTI-360 [15]. We
firstly exclude the images and perform reconstruction using only the LiDAR point clouds. Table 2
underscores the critical role of multimodal fusion in enhancing accuracy. Besides, as shown in Fig. 6,
the incorporation of images mitigates the limited LiDAR field of view, thereby enabling the acquisition
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of depth maps (or point clouds) with a broader FoV. It also introduces complementary information
beyond LiDAR’s perspective, enhancing registration accuracy. We also conduct ablation studies on
MMG module. The results indicate that relying solely on NeRF’s implicit pose optimization fails
to achieve accurate pose estimates and leads to convergence at local optima. Besides, we conduct
ablation studies on image enhancement in MMG and the modality-specific C2F training strategy
(MSC2F). All modules demonstrate effectiveness in pose-free experiments.

5.3 Ablation Study with Ground Truth Poses

In the pose-free setting, the precision of the estimated poses and the efficacy of our MMG module
are pivotal to performance. Therefore, we exclude the MMG and conduct ablation experiments
with GT pose to further demonstrate the advantages of our Unified NeRF with the multimodal-
specific coarse-to-fine training strategy (MSC2F) and the consistency constraint in multimodal fusion.
Additionally, to further demonstrate the effectiveness of our multimodal approach, We conduct
comparative experiments with the single-modality LiDAR-NeRF [37] and i-NGP [21], where i-NGP
is tested both with and without utilizing discrete LiDAR point clouds as depth supervision.

Ablation of MSC2F and Consistency Loss. Table 2 presents the ablation results on MSC2F and
consistency constraint under the GT-Pose setting to verify the effectiveness of our method. By using
a reprojection operation to link geometry and color, our method effectively ensures geometry-color
coherence, resulting in improved reconstruction quality in both the image and point cloud NVS.

Comparision with Single-modality Methods. The quantitative and qualitative results are presented
in Table 3 and Fig. 7. Our MSC2F fusion approach, along with the color-depth consistency constraint,
effectively integrates features from both modalities. Thus, compared to single-modality methods and
i-NGP [21] that with and without point clouds for depth supervision, we achieve high-quality NVS
and the best results across both modalities.

6 Limitation

MUP demonstrates strong performance in pose-free multimodal NVS and pose estimation under
challenging large-scale scenes. However, it is primarily designed for sensor data within a sequence
and relies on temporal correlations between frames. Additionally, it is not designed to handle dynamic
scenes, which is a non-negligible limitation in autonomous driving scenarios.

7 Conclusion

We revisit the limitations of single-modality pose-free methods in large-scale scenes. Subsequently,
we propose a novel framework for Multimodal Unified Pose-free LiDAR-Camera NVS. Benefiting
from the unified neural representation with MSC2F training strategy, the color-depth consistency con-
straint, the MMG module, and most importantly, the integration of different modalities and our pose
optimization approach, we achieve geometry-aware, modality-consistent, pose-free reconstruction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper does discuss the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This paper provide open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specify all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper report appropriate information about the statistical significance of
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provide sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conducted in the paper conform, in evrery respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: While essential for autonomous driving, reconstruction and closed-loop simula-
tion raise privacy and employment concerns, highlighting the need to balance technological
progress with societal responsibility.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned creators or original owners of assets and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper introduces new assets well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve research related to LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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