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Abstract
Clinical subtyping, a critical component of per-
sonalized medicine, classifies patients with a par-
ticular disease into distinct subgroups based on
their unique features. However, conventional data-
driven subtyping approaches often entail a manual
characterization of the identified clusters, compli-
cating the task due to the high dimensionality and
heterogeneity of the data. In this work, we pro-
pose a novel framework for interpretable clinical
subtyping using deep metric learning. Our pro-
posed pipeline unifies prior approaches to clinical
subtyping, and introduces automatic characteri-
zation of the learned clusters in an interpretable
and clinically meaningful manner. We showcase
the effectiveness of this framework on real-world
clinical case studies, demonstrating its utility in
uncovering actionable clinical knowledge.

1. Introduction
As machine learning models reach or surpass human level
performance on many clinical predictive tasks (Liu et al.,
2019), they are being increasingly deployed in real-world
clinical settings (Sendak et al., 2020). However, in addition
to simple prediction in supervised tasks, machine learning
also has the promise to uncover and extract useful clini-
cal knowledge and clinical insights. Indeed, prior works
have used machine learning to tailor personalized treatment
plans (Coronato et al., 2020), learn complex physiologi-
cal relationships (Qian et al., 2021), and discover causal
mechanisms (Seedat et al., 2022; Hasan & Gani, 2022).

In this work, we focus on the problem of clinical subtyp-
ing, also known as clinical phenotyping (Yang et al., 2023).
In clinical subtyping, given a labelled dataset containing
patients who do and do not have some disease of interest,
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Figure 1. Pipeline for subtyping clinical conditions with DML.

the goal is to categorize those who have the disease into
distinct subgroups, based on their input features. These
subtypes can then be used to inform future treatments plans,
predict disease trajectories and risks of complications, and
ultimately gain a greater understanding of how the disease
manifests in different individuals (Banda et al., 2018).

Clinical subtypes have long been used in medicine, from
asthma (Bel, 2004), to acute kidney injury (Makris &
Spanou, 2016), to COPD (Miravitlles et al., 2013). How-
ever, the majority of existing clinical subtypes have been
manually derived by panels of experts using clinical exper-
tise, which is time-consuming and also does not yield a
quantifiable evaluation metric. Recently, many works have
derived clinical subtypes using data-driven approaches, e.g.
for sepsis (Knaus & Marks, 2019), diabetes (Banda et al.,
2017), hypertension (Sweatt et al., 2019), mental illnesses
(Benoit et al., 2020), and heart failure (Urban et al., 2022).
These approaches often involve clustering the representa-
tions learned by a supervised machine learning model (See
Steps 1-3 in Figure 1). However, these works still require a
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manual investigation to characterize the behavior of these
clusters. This characterization process can poses significant
challenges due to the high dimensionality and heterogeneity
of the data.

In this work, we propose a pipeline for interpretable clinical
subtyping using Deep Metric Learning (DML) (Kaya &
Bilge, 2019). Specifically,

• We unify approaches from prior works to propose a
pipeline for clinical subtyping. Crucially, unlike prior
work, our pipeline automatically characterizes learned
clusters to be interpretable and clinically meaningful.

• We demonstrate our pipeline on two real-world clinical
case studies: Type 2 diabetes subtyping using the All of
Us dataset (Ramirez et al., 2022), and Shock subtyping
using the MIMIC-III dataset (Johnson et al., 2016). We
find that our derived subtypes uncover clinical insights
found in previous medical studies, and may be useful
in informing downstream clinical action.

2. Related Work
2.1. Deep Metric Learning

Deep Metric Learning (DML) is a leading approach for
modeling the similarity between data. Some of the most no-
table successes have been zero-shot retrieval (Oh Song et al.,
2016a; Wu et al., 2017; Roth et al., 2020), clustering (Ge,
2018; Sohn et al., 2019), verification (Deng et al., 2019; Liu
et al., 2017), and few-shot (Snell et al., 2017), contrastive
(Khosla et al., 2020), and unsupervised representation learn-
ing (He et al., 2020; Chen et al., 2020). DML methods
have also been proposed for broad-randing machine learn-
ing tasks including multitask learning (Opitz et al., 2017;
2018; Milbich et al., 2020; Milbich et al., 2020; Xuan et al.,
2018; Kim et al., 2018), multi-modality (Roth et al., 2022),
feature mining (Roth et al., 2019; Sanakoyeu et al., 2019),
and adversarial regularization (Lin et al., 2018; Zheng et al.,
2019; Duan et al., 2018; Ko et al., 2021; Sinha et al., 2020;
Milbich et al., 2021). Our pipeline is compatible with all
recent DML approaches, though methods and tasks should
be paired appropriately when possible.

2.2. Interpretable Clinical Subtyping

Machine learning is a promising direction for subtyping
clinical conditions (Baytas et al., 2017; Zhang et al., 2019;
Brendel et al., 2021; Castaldi et al., 2020; Banerjee et al.,
2021; Cascianelli et al., 2020; An et al., 2022; Su et al., 2021;
Lu et al., 2018; Sinkala et al., 2020). For example, subtypes
have been identified for Parkinson’s Disease (Brendel et al.,
2021; Faghri et al., 2018), Heart Failure (Banerjee et al.,
2021), Alzheimer’s Disease (An et al., 2022), Schizophre-
nia (Chand et al., 2020), and even SARS-CoV-2 (Zhang

et al., 2023). Across the board, there are a wide range of
techniques used to learn these subtypes and there is a long
history of success built on traditional clustering methods
(Ieva et al., 2017; Ather et al., 2011; Kao et al., 2015; Ahmad
et al., 2014; Panahiazar et al., 2015; Vellone et al., 2017).
Since DML generalizes classic clustering approaches, re-
cent methods have also begun adopting DML (Liu et al.,
2021; 2023; Qi et al., 2021; Tian et al., 2019). However,
successfully using DML for sub-typing is harder than tradi-
tional clustering, since DML clusters are in latent spaces. To
the best of our knowledge, no works have studied the need
to re-integrate interpretability into the clinical subtyping
pipeline when clustering via DML.

3. Problem Setup
We frame the clinical subtyping problem as follows. We
are given as input a dataset X ∈ Rn×d, with binary disease
labels Y ∈ {0, 1}n. The goal is to assign each patient with
a positive label ({i : Yi = 1}) to a subtype C = {1, ..., c}n,
and then to characterize these subtypes. One challenge
of automatically coming up with a characterization is the
high dimensionality of the feature space (i.e. d may be
large). To alleviate this problem, we make use of feature
groups, which are natural (or domain-defined) groupings
of features. For example, the feature group blood pressure
may contain features such as {mean systolic BP 1 year prior,
max diastolic BP 6 months prior, ...}. In the simplest case,
each feature group contains exactly one feature. Given these
feature groupings, a characterization can then be created
using the values of features in each feature grouping for each
subtype. We present one form of such a characterization in
Section 4. One important consideration is that the feature
values of a subtype should be compared both against other
subtypes, but also against the controls (i.e. patients with
a negative label). For example, for a particular feature
group, a cluster may have “high” feature values relative to
other subtypes, but “normal” feature values relative to those
without the condition.

4. Proposed Pipeline
Below, and in Figure 1, we describe our proposed pipeline
for clinical phenotyping using deep metric learning.

Step 1: Learn a DML Model. First, we learn a DML
model. We choose DML in particular over conventional
supervised learning, as DML models have been shown to
learn a better-structured representation space (Roth et al.,
2020) than Empirical Risk Minimization (ERM).

Step 2: Embed Positive Test-Set Samples. We compute
embeddings for test-set patients with the condition.
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Step 3: Cluster Embeddings. We use a clustering algo-
rithm to label each positive patient with a subtype {1, ..., c}.
Here, c is a hyperparameter that can be chosen with domain
knowledge, cross validation (Palacio-Niño & Berzal, 2019),
or extrinsic metrics (Amigó et al., 2009).

Step 4: Characterize Clusters. We characterize the pa-
tients in the learned clusters, by showing a table of dimen-
sion k × c, where k is a hyperparameter. Each cell of the
table contains a comparison of the feature values of the
cluster for the particular feature group, relative to both the
controls and other clusters.

Step 4.1: Feature Group Selection. We start by select-
ing the k feature groups that are most informative in de-
ciding the subtype. We use a mutual information based
selection criteria (Estévez et al., 2009; Vergara & Estévez,
2014). In particular, given a feature group ϕ, we compute
maxi∈ϕ I(X[:, i];C). Then, we select the k feature groups
with the largest value.

Step 4.2: Comparison to Controls. Here, we wish to
quantify whether the feature values of a particular cluster
are “normal” relative to the controls. Note that we do not
wish to measure whether the two sets of samples are drawn
from the same distribution, as a cluster feature distribution
that concentrates heavily on the mean of the control distribu-
tion is intuitively normal, but would be flagged by this test.
Instead, we use the overlapping index (Pastore & Calcagnı̀,
2019; Yitzhaki, 1994), which measures the area of overlap
between two empirical distributions. We state that the fea-
ture group value is normal (denoted with ≈) for a particular
cluster if its average overlapping index is greater than 0.5,
and is abnormal otherwise. For abnormal feature groups,
we evaluate whether the mean of the feature values is higher
than the controls, and report whether it is abnormal high (↑)
or abnormal low (↓).

Step 4.3: Comparison to Other Clusters. Finally, we
compare the feature values of each cluster against other
clusters. For feature groups containing binary features, we
report the average value of each cluster across features. For
continuous feature groups, we report the quartiles of the
percentile values averaged across feature values relative to
the marginal distribution containing all positive patients.

5. Case Studies
We demonstrate the utility of our pipeline in two real-world
clinical case studies. Here, we present a case study for
phenotyping type 2 diabetes 2-years prior to diagnosis using
longitudinal EHR data. In Appendix A, we present another
case study for phenotyping Shock in the ICU.

Table 1. Evaluation of embedding quality and downstream predic-
tion accuracy of ERM versus various DML models.

Recall@1 Recall@2 NMI F1 Lin AUROC

ERM 0.774 0.881 0.247 0.642 0.899
Triplet 0.768 0.875 0.351 0.723 0.901
N-Pair 0.779 0.883 0.368 0.728 0.909
Lifted 0.765 0.881 0.333 0.712 0.907
ProxyNCA 0.758 0.875 0.339 0.712 0.880

Figure 2. UMAP projection of test-set samples. Points in dark blue
(·) represent control group samples. Remaining points represent
diabetic patients from each learned subtype.

5.1. Type 2 Diabetes Subtyping

Data We use the All of Us dataset (Ramirez et al., 2022),
which contains longitudal EHR records for over 500,000
patients from across the US. We construct a cohort of pa-
tients with Type 2 Diabetes (T2D), as well as controls, using
the eMERGE algorithm (Wei et al., 2012). As features, we
use chemical measurements, physical measurements, con-
ditions, prescriptions, and demographics (see Table 4 for
a full list). Unlike prior work (Li et al., 2015), we seek
patients who will develop T2D in two years, so we set the
censor date to be two years prior to the diagnosis date for
diabetic patients. We flatten the time-series by computing
the mean, max, and min values of each measurement for the
6 months, 2 years, and entire history prior to the censor date.
We then train a linear model to predict case from control,
and select control patients with the highest predicted risk
of T2D to ensure a hard-enough learning task to produce
a high-quality representation space. Thus our dataset has
15,134 patients, 50% of whom will develop T2D in 2 years.

DML Models We train a variety of DML models, vary-
ing the loss type (triplet (Hoffer & Ailon, 2015), N-
pair (Sohn, 2016), Lifted (Oh Song et al., 2016b), Prox-
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Table 2. Characterization of subtypes learned. The following notation compares feature values to the control set: ↑(abnormal high),
↓(abnormal low), ≈(same as control). Numbers in square brackets denote either quartiles of percentiles relative to the marginal, or the
average incidence rate. (%) denotes the percentage of positive test samples belonging to that cluster.

C1 (9.1%) C2 (26.0%) C3 (34.8%) C4 (16.3%) C5 (13.9%)

Blood pressure ↑[31.63, 44.09, 67.33] ↑[32.31, 44.49, 64.75] ≈[26.23, 44.36, 73.16] ≈[12.20, 44.56, 82.26] ≈[12.60, 75.77, 89.04]
BMI ↓[37.48, 37.48, 69.41] ↓[37.62, 37.62, 37.62] ≈[37.48, 37.48, 70.99] ≈[37.55, 37.55, 86.13] ≈[37.55, 72.73, 89.64]

Heart rate ↓[21.56, 21.56, 58.31] ↓[21.63, 58.24, 58.24] ↑[58.44, 58.44, 58.44] ≈[21.43, 58.24, 84.73] ≈[21.03, 57.78, 91.00]
GERD ↑0.54 ↑0.28 ↑0.12 ↑0.08 ↓0.08

Neutrophils ↑[22.31, 51.17, 74.08] ↑[24.83, 54.54, 77.10] ≈[25.63, 50.47, 73.77] ↓[24.27, 43.16, 73.63] ≈[27.42, 48.46, 77.33]
Asthma ↑0.40 ↑0.16 ↑0.07 ↓0.05 ↓0.06

Body weight ≈[38.95, 38.95, 76.89] ≈[38.89, 38.89, 71.36] ≈[38.89, 38.89, 70.29] ≈[38.89, 38.89, 76.65] ≈[11.92, 66.69, 81.61]
Hypertension ↑0.39 ↑0.21 ↑0.11 ↑0.06 ↓0.05

Creatinine ≈[30.51, 57.44, 61.42] ≈[31.78, 57.51, 79.24] ≈[25.97, 57.31, 74.83] ≈[21.97, 57.18, 57.18] ≈[21.31, 57.31, 75.15]
Smoking ↑0.22 ↑0.16 ↑0.08 ↓0.05 ↓0.06

yNCA (Kim et al., 2020)), the latent dimension, and other
optimization and model architecture hyperparameters. We
select the model with the highest validation downstream
AUROC. In Table 1, we find that DML methods outperform
ERM, both in representation quality, and downstream clas-
sification. We select the best performing N-Pair model for
further analyses.

Phenotypes We utilize our proposed pipeline to derive
phenotypes, using K-means with c = 5 (informed by prior
work (Landi et al., 2020)), and k = 10. In Figure 2, we
learn a UMAP embedding (McInnes et al., 2018) on the
diabetic patients, and project all samples from the test-set.
In Table 2, we show the subtype characterization from our
pipeline. First, we find that Clusters 1 and 2 consist of
patients that one would typically consider to be pre-diabetic
– high blood pressure, with cardiovascular diseases (Einarson
et al., 2018), GERD (Sun et al., 2015), and asthma (Torres
et al., 2021), all of which have been associated with T2D in
prior work.

Next, we find that Clusters 4 and 5 consists of patients that
appear to be most healthy, and control groups also embed
most similarly to these clusters. These patients also exhibit
greater heterogeneity in blood pressure, BMI, and heart rate.
Effective identification of patients belonging to this cluster
may result in taregeted intereventions to prevent T2D onset
(Satterfield et al., 2003; Kriska, 2003).

Finally, we find that the clusters we have characterized ex-
hibit some similarities to those presented in prior work. For
example, our Cluster 3 most similarly resembles Subgroup
1 identified in Landi et al. (2020), and our Cluster 1 most
similarly resembles Subgroup 3 identified in Li et al. (2015).
However, we emphasize that our pipeline allows for the
characterization of subtypes to be automated.

Downstream Complications One utility of clinical sub-
types is to stratify risk for downstream complications. In
Figure 3, we plot the incidence rate of various complica-

tions, after each patient’s T2D diagnosis. We find that, as
expected, Cluster 1 has the highest risk of all complica-
tions relative to other clusters, especially disorders of the
nervous system. We also find that Cluster 5, though rela-
tively healthy, has a relatively high risk of chronic kidney
disease. Knowledge of these potential complications can
yield targeted treatments and interventions.

6. Discussion
Our results confirm that DML is a powerful approach to
clinical subtyping. Leveraging the flexibility of DML repre-
sentations enables more realistic subtypes by allowing us to
learn from more types of data. For example, future works
may improve multi-modal or temporal subtyping, for which
traditional clustering methods are ill-suited. The lack of
inherent interpretability in most DML setups, however, tem-
pers their use. Our work pushes in this direction by clearly
highlighting the need to characterize DML-identified clus-
ters, and we showcase our approach to solving this problem.
By comparing feature statistics across DML-clustered data,
we indeed find that our approach can discover and interpret
subtypes in Type 2 Diabetes. We are currently collaborating
with clinicians to verify these subtypes.

Future Work There are several areas of future work. First,
in the T2D case study, we found that our original control
group was too “easy”, and increased the task difficulty by
subsetting to hard control samples. Better understanding
of how negative samples influence learned representations
and subtypes would allow us to integrate control group cus-
tomization as a “Step 0” of our pipeline, and this has been an
area of study in core contrastive learning literature (Zhang
& Stratos, 2021; Kalantidis et al., 2020). Second, we would
like to evaluate the quality of our subtypes using extrinsic
metrics. For example, intuitively, subtypes are more use-
ful if they exhibit different downstream complications and
reactions to treatments. These metrics could then inform
hyperparameter selection in Steps 1-3.
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A. Case Study: Shock Phenotyping in MIMIC-III
Data We use the MIMIC-III database (Johnson et al., 2016), which consists of ICU records for adult patients admitted to
critical care units of the Beth Israel Deaconess Medical Center in Boston between 2001 and 2012. Specifically, we use the
phenotyping cohort created by Harutyunyan et al. (2019), and choose Shock as the illness of interest. The cohort consists of
30,558 patients, 2,204 of which had shock. We bin the labs and vitals provided in the dataset into 1 hour bins (up to 48
hours), and train DML models using GRU (Dey & Salem, 2017) as the backbone.

Phenotypes We run our pipeline using c = 3 and k = 8. We present the learned phenotypes in Table 3.

Table 3. Characterization of subtypes learned. The following notation compares feature values to the control set: ↑(abnormal high),
↓(abnormal low), ≈(same as control). Numbers in square brackets denote either quartiles of percentiles relative to the marginal. (%)
denotes the percentage of positive test samples belonging to that cluster.

C1 (44.1%) C2 (28.4%) C3 (27.4%)

Oxygen saturation ↓[13.98, 32.23, 54.50] ↓[24.64, 52.61, 74.88] ↓[36.61, 67.06, 86.97]
Mean blood pressure ↓[16.82, 34.12, 59.48] ≈[25.59, 45.50, 67.77] ≈[45.85, 70.38, 88.27]

Glucose ↑[45.26, 63.27, 79.38] ≈[22.27, 44.08, 72.99] ≈[22.39, 40.88, 62.68]
Respiratory rate ↑[33.53, 63.27, 82.82] ≈[23.22, 44.08, 68.25] ≈[25.00, 50.71, 75.95]

Systolic blood pressure ↓[20.14, 38.15, 55.92] ↓[21.33, 49.76, 72.04] ≈[39.10, 68.96, 86.85]
Diastolic blood pressure ≈[21.45, 38.15, 59.24] ≈[21.80, 47.87, 70.62] ≈[49.05, 69.43, 86.14]

Heart rate ≈[30.09, 48.58, 77.73] ≈[20.85, 45.97, 72.04] ≈[32.46, 53.32, 75.95]
Glascow coma scale total ↓[21.09, 52.13, 80.09] ↓[24.64, 52.61, 80.09] ↓[31.87, 49.53, 80.09]

B. Additional Results: All of Us

Figure 3. Incidence rate of various complications for each cluster after each patient’s T2D diagnosis date. We find that C1 (previously
identified as the most serious cluster) is at highest risk of complications, especially disorders of the nervous system.
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Table 4. List of feature used in the All of Us model.
Feature Source Feature Groups

Conditions Acquired hypothyroidism, Actinic keratosis, Acute pharyngitis, Acute upper respiratory
infection, Alcohol dependence, Allergic rhinitis, Allergic rhinitis due to pollen, Anemia,
Anxiety disorder, Asthma, Atherosclerosis of coronary artery without angina pectoris, Atrial
fibrillation, Benign essential hypertension, Bipolar disorder, Cardiac arrhythmia, Carpal
tunnel syndrome, Chronic kidney disease stage 3, Chronic obstructive lung disease, Compli-
cation due to diabetes mellitus, Congestive heart failure, Coronary atherosclerosis, Depressive
disorder, Diabetes mellitus without complication, Disorder of bone, Disorder of muscle,
Dysphagia, End-stage renal disease, Eruption, Essential hypertension, Gastroesophageal
reflux disease, Gastroesophageal reflux disease without esophagitis, Generalized anxiety
disorder, Human immunodeficiency virus infection, Hyperglycemia due to type 2 diabetes
mellitus, Hyperlipidemia, Hypothyroidism, Inflammatory dermatosis, Insomnia, Iron de-
ficiency anemia, Kidney stone, Lumbago with sciatica, Major depression, single episode,
Migraine, Mixed hyperlipidemia, Moderate recurrent major depression, Morbid obesity,
Multiple sclerosis, Myopia, Nausea and vomiting, Nicotine dependence, Nuclear senile
cataract, Obesity, Obstructive sleep apnea syndrome, Osteoarthritis, Osteoarthritis of knee,
Osteoporosis, Paroxysmal atrial fibrillation, Posttraumatic stress disorder, Presbyopia, Pri-
mary malignant neoplasm of female breast, Primary malignant neoplasm of prostate, Pure
hypercholesterolemia, Recurrent major depression, Rheumatoid arthritis, Senile hyperkerato-
sis, Sleep apnea, Spinal stenosis of lumbar region, Systemic lupus erythematosus, Tobacco
dependence syndrome, Type 2 diabetes mellitus, Type 2 diabetes mellitus without complica-
tion, Uncomplicated asthma, Urinary tract infectious disease, Vitamin B deficiency, Vitamin
D deficiency

Physical Measurements Body height, Body mass index (BMI) [Ratio], Body weight, Diastolic blood pressure, Heart
rate, Systolic blood pressure

Chemical Measurements Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma, Aspartate amino-
transferase [Enzymatic activity/volume] in Serum or Plasma, Calcium [Mass/volume] in
Serum or Plasma, Carbon dioxide, total [Moles/volume] in Serum or Plasma, Chloride
[Moles/volume] in Serum or Plasma, Creatinine [Mass/volume] in Serum or Plasma, Ery-
throcyte distribution width [Ratio] by Automated count, Glucose [Mass/volume] in Serum or
Plasma, Hemoglobin [Mass/volume] in Blood, Leukocytes [#/volume] in Blood by Auto-
mated count, MCH [Entitic mass] by Automated count, MCHC [Mass/volume] by Automated
count, Neutrophils [#/volume] in Blood by Automated count, Sodium [Moles/volume] in
Serum or Plasma, Urea nitrogen [Mass/volume] in Serum or Plasma

Drugs 1 ML hydromorphone hydrochloride 1 MG/ML Injection, 10 ML sodium chloride 9 MG/ML
Prefilled Syringe, 1000 ML sodium chloride 9 MG/ML Injection, 2 ML fentanyl 0.05
MG/ML Injection, 2 ML ondansetron 2 MG/ML Injection, NDA020503 200 ACTUAT al-
buterol 0.09 MG/ACTUAT Metered Dose Inhaler, NDA021457 200 ACTUAT albuterol 0.09
MG/ACTUAT Metered Dose Inhaler, acetaminophen, acetaminophen 325 MG / hydrocodone
bitartrate 5 MG Oral Tablet, acetaminophen 325 MG / oxycodone hydrochloride 5 MG Oral
Tablet, acetaminophen 325 MG Oral Tablet, acetaminophen 500 MG Oral Tablet, albuterol,
amlodipine, amlodipine 10 MG Oral Tablet, amlodipine 5 MG Oral Tablet, amoxicillin,
ascorbic acid, aspirin, aspirin 81 MG Delayed Release Oral Tablet, atorvastatin, atorvastatin
20 MG Oral Tablet, atorvastatin 40 MG Oral Tablet, bupropion, calcium carbonate, calcium
chloride 0.0014 MEQ/ML / potassium chloride 0.004 MEQ/ML / sodium chloride 0.103
MEQ/ML / sodium lactate 0.028 MEQ/ML Injectable Solution, cholecalciferol, cyclobenza-
prine, cyclobenzaprine hydrochloride 10 MG Oral Tablet, diphenhydramine hydrochloride
50 MG/ML Injectable Solution, docusate, docusate sodium 100 MG Oral Capsule, fentanyl,
fentanyl 0.05 MG/ML Injection, fluticasone, fluticasone propionate 0.05 MG/ACTUAT
Metered Dose Nasal Spray, furosemide, gabapentin, gabapentin 300 MG Oral Capsule,
heparin, heparin sodium, porcine 5000 UNT/ML Injectable Solution, hydrochlorothiazide,
hydrochlorothiazide 25 MG Oral Tablet, hydromorphone, ibuprofen, ibuprofen 600 MG Oral
Tablet, levothyroxine, lidocaine, lidocaine hydrochloride 10 MG/ML Injectable Solution,
lisinopril, lisinopril 10 MG Oral Tablet, loratadine 10 MG Oral Tablet, lorazepam, meto-
prolol, midazolam, midazolam 1 MG/ML Injectable Solution, omeprazole, omeprazole 20
MG Delayed Release Oral Capsule, ondansetron, ondansetron 2 MG/ML Injectable Solution,
oxycodone, oxycodone hydrochloride 5 MG Oral Tablet, pantoprazole, pantoprazole 40 MG
Delayed Release Oral Tablet, polyethylene glycol 3350 17000 MG Powder for Oral Solution,
potassium chloride, prednisone, ranitidine, sertraline, simvastatin, sodium chloride, sodium
chloride 9 MG/ML Injectable Solution, sodium chloride 9 MG/ML Injection, tamsulosin
hydrochloride 0.4 MG Oral Capsule, tramadol hydrochloride 50 MG Oral Tablet

Demographics Age, Gender
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