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Abstract

We study the problem of differentially private (DP) mechanisms for representing
sets of size k from a large universe. Our first construction creates (ϵ, δ)-DP
representations with error probability of 1/(eϵ + 1) using space at most 1.05kϵ ·
log(e) bits where the time to construct a representation is O(k log(1/δ)) while
decoding time is O(log(1/δ)). We also present a second algorithm for pure ϵ-DP
representations with the same error using space at most kϵ·log(e) bits, but requiring
large decoding times. Our algorithms match our lower bounds on privacy-utility
trade-offs (including constants but ignoring δ factors) and we also present a new
space lower bound matching our constructions up to small constant factors. To
obtain our results, we design a new approach embedding sets into random linear
systems deviating from most prior approaches that inject noise into non-private
solutions.

1 Introduction

Consider the problem of releasing a set S of elements from a potentially very large universe U
in a differentially privately manner. The goal is to construct a differentially private representation
of S, denoted by Ŝ. The representation Ŝ can be used to try and determine whether an element
u ∈ U belongs to the original input set S. Ŝ may err in two ways. For any u ∈ S, Ŝ may report a
false negative stating that u is not in S. Also, for u /∈ S, Ŝ may report a false negative claiming u
appears in S. Ideally, we should minimize the error probability for maximal utility while obtaining
strong privacy for S. This problem is useful for applications where users wish to privately disclose
information such as sets of bookmarked websites, visited IP addresses, installed mobile apps, etc.
One particularly important application is training machine learning models using the above examples
as feature vectors while maintaining user privacy. As some concrete examples, good solutions to
our problem could enable privately training models for web traffic forecasting using user’s visited
webpages [26], app install predictions with user’s installed apps sets [5] and detecting shared IP
addresses from user’s visited IP addresses [17].

A naive approach is to interpret the universe U as a bit vector where each element corresponds to
a unique entry of the vector v ∈ {0, 1}|U |. Encoding S ⊆ U works by setting the corresponding
coordinates of S to 1 and the rest to 0. Then, we can apply randomized response [33] to each entry
of v. The noisy vector v is then released as the encoding of S. Accessing an element proceeds by
reading the value at the corresponding coordinate of the noisy vector v. With this approach, the
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encoding size scales linearly with |U |. In most practical applications, the universe U is very large
while the input set S is quite small. For example, one can consider S to be set of visited websites.
The universe U will be the set of all websites that will be impractically large to store while S will be
a much smaller set. Our goal is to design a construction whose size and encoding time depends only
on the input set S size while maintaining small error matching randomized response.

To tackle this problem, prior works started non-private solutions for efficiently representing sets such
as Bloom filters [8]. First, the input set is encoded using the non-private solution. Afterwards, each
entry of the resulting representation is perturbed by injecting noise according to some distribution.
This approach was studied in [1] where they showed the encoding was private. However, their work
lacked any analysis on the error probability beyond empirical evaluation. To our knowledge, no other
work has studied DP representations of sets.

Another related line of work considers DP mechanisms for releasing sparse histograms. In this
problem, each element of the input set S is also associated with some value. The goal of a query is to
decode the value associated with the queried element (if it exists in the input set S). Sparse histograms
may also be interpreted as a sparse vector problem where the input vector has at most k non-zero
entries. Unlike the private set problem, sparse histograms and vectors have been heavily studied.
The majority of these works also take the same approach building on top of (potentially) non-private
solution and injecting noise to the resulting representation. For example, several works study count
sketch [24, 28, 34, 35] and count min-sketch [27, 21] where each entry of the resulting sketch is
perturbed by some DP mechanism. To our knowledge, the only work that slightly deviates from this
approach is [2], but they still inject noise using randomized response on bit-level representations (and
the Laplacian mechanism in certain settings).

One could attempt to use sparse histograms (or vectors) to represents sets. We can associate each
element in the input set S with the value 1. To decode, we could round the output decoding of
the underlying sparse histogram algorithm to either 0 or 1. Unfortunately, the error probability
guarantees are unclear directly using prior analysis. For example, many prior works show that the
per-entry error is at most O(1/ϵ). That is, the true value and noise value differ by at most O(1/ϵ).
However, it is unclear how this can be directly translated into error probability. In particular, the exact
constants of the per-entry error would need to be known to derive a probability bound of whether the
decoded output is closer to 0 or 1. As an example, the error probabilities would differ greatly if the
per-entry error was at most 1/ϵ as opposed to 100/ϵ when using rounding. In our work, we present
constructions using a completely different approach to avoid this technical obstacle. Our solutions
obtain better per-entry error (both theoretically and empirically) than prior sparse histograms.

1.1 Our results

Our main contributions are efficient constructions for differentially private representations of sets that
achieve optimal privacy-utility trade-offs and optimal space usage. In particular, our constructions
exactly match the utility achieved by randomized response (even up to constants). Our work deviates
from prior approaches that aim to construct some representation and perturb using noise. Instead,
we embed the input set into a random linear system. Most elements in S are guaranteed to satisfy
their corresponding linear constraint in the linear system. In contrast, all elements outside of the
element set S will be unlikely to satisfy the relevant constraint except with small probability (that is a
controllable parameter in our algorithms). Our constructions are inspired by retrieval data structures
based on linear systems such as [29, 15, 16, 7]. In particular, one can view our work as generalizations
of these techniques for differential privacy. We only consider error probabilities α < 1/2. When
error is α ≥ 1/2, the task is trivial. One can encode a random hash function (independent of the set
size) that is perfectly private with ϵ = 0 and δ = 0 (see Appendix F). We present two constructions:
one for each of approximate and pure differential privacy.
Theorem 1.1 (Approximate-DP). Let S ⊆ U be a set of size k from a universe of size n. For any
ϵ > 0 and δ > 0, there exists an (ϵ, δ)-DP algorithm for representing S with error probability
α = 1/(eϵ + 1) and space of 1.05kϵ · log(e) bits with three hash functions. The encoding time is
O(k log(1/δ)) and the decoding time is O(log(1/δ)).

Theorem 1.2 (Pure-DP). Let S ⊆ U be a set of size k from a universe of size n. For any ϵ > 0, there
exists an ϵ-DP algorithm for representing S with error probability α = 1/(eϵ + 1) and space of
kϵ · log(e) bits with one hash function. The encoding time is O(k log2 k) and the decoding time is
O(k).
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We can compare the error probabilities achieved by our DP set mechanisms compared to prior
works. For private histograms, per-entry expected error is Ω(1/ϵ) as shown in [23]. In contrast,
our constructions err with probability 1/(eϵ + 1). Note, we can convert this into the expected
per-entry error as 1/(eϵ + 1). So, we obtain exponentially smaller per-entry error of 1/(eϵ + 1),
which is impossible for private histograms. We also perform experimental evaluation in Section 5 to
corroborate our error being exponentially smaller compared to private histograms.

Lower bounds. We show that our constructions achieve optimality in two important dimensions:
trade-offs between privacy and utility as well as privacy and space. First, we present a lower bound
on the best possible trade-off between privacy and utility (that is, error probability). Our pure-DP
solution matches this lower bound exactly including constants. Similarly, our approximate-DP
algorithm matches the lower bound (including constants) if we ignore the δ factor. We also present a
lower bound showing the best possible trade-off between privacy and space (encoding size).
Theorem 1.3 (Utility-privacy trade-off). Let S ⊂ U be a set of size k. For any ϵ ≥ 0 and 0 ≤ δ ≤ 1,
any (ϵ, δ)-DP algorithm for representing S must have error probability α ≥ (1− δ)/(eϵ + 1).
Theorem 1.4 (Space-privacy trade-off). Let S ⊂ U be a set of size k. For any ϵ ≥ 0 and 0 ≤ δ ≤ 1,
any (ϵ, δ)-DP algorithm for representing S with error probability 0 < α < 1/2, the encoding bit size
must be min(Ω((1 + δ/eϵ) · k · log((1/α)− 1)), log

(
n
k

)
).

We can consider the space lower bound restricted to algorithms that obtain the optimal privacy-utility
trade-off as well. Therefore, we can set α = (1− δ)/(eϵ + 1) into the above lower bound. Assuming
standard values of very small δ, we can see that the lower bound becomes Ω(k log(1/α)) = Ω(k · ϵ).
Note that our constructions use space of 1.05kϵ · log(e) and kϵ · log(e) bits respectively with error
probability α = 1/(eϵ +1). In other words, the space usage asymptotically matches our lower bound
for all reasonable parameter choices of δ. In our proof, we work out the exact constants and show
that the constant in the lower bound approaches log(e) for larger values of ϵ. In fact, we show that
both our constructions exactly match the lower bound up to a very small constant of at most 4 that
only occurs when ϵ = 0. Furthermore, we note our lower bounds also apply to probabilistic filters
(such as Bloom filters) that could also emit false negative errors.

1.2 Related work

Private filters. Bloom filter [8] is a space efficient, probabilistic data structure that can be used to
test whether an element is a member of a set. [1] show that flipping each bit of a Bloom filter with
probability 1/(1 + eϵ/t) is ϵ-DP where t is the number of hash functions. However, their work only
experimentally evaluates the utility without any provable guarantees. Additionally, we note that prior
works have attempted to analyze the privacy properties of filter data structures without modification.
For example, this has been studied for Bloom filters [6], counting Bloom filters [31] as well as groups
of multiple filter data structures [30]. In general, the conclusion is that filter data structures without
modification fail to obtain reasonable privacy guarantees. Finally, we note Bloom filters have also
been used in other differential privacy contexts such as RAPPOR [20] where the goal is to aggregate
discrete value responses from clients with local DP.

Private sparse histograms and vectors. A histogram is a frequency vector where each coordinate
may take on real values. It is known that histograms can be made differentially private by adding
Laplacian noise to each coordinate [18]. The expected error of each entry is O(1/ϵ) where ϵ is the
privacy parameter, and it was shown that this privacy-utility trade-off is essentially optimal [23, 4].

Several works have considered the setting where the histogram is sparse and at most k out of
d coordinates are non-zero. The goal is to release a representation of the histogram whose size
does not depend on d. Compared to the Laplacian mechanism, earlier works either suffered from
significantly worse privacy-utility trade-offs [25, 13] or incurred very slow access time [3]. More
recently, Aumuller et al. [2] proposed an ALP mechanism that achieves expected error of O(1/ϵ)
(matching the lower bound asymptotically) with access time of O(1/δ). The space usage is also very
efficient, obtaining O(k log(d+ u)) bits where u is the upper bound on the value of the entries.

Another line of work considers private versions of count sketch, introduced in [12], which can be
viewed as a generalization of the Bloom filter. Each element in the set has an associated frequency,
and the goal is to estimate the frequency of any element in the universe. Viewing the set as a sparse
vector of frequencies, the basic idea of the count sketch is to transform the sparse vector x ∈ Nd

to a lower dimensional vector via an affine transformation Ax ∈ ND, where A is a random matrix
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from a specific distribution. From Ax, each coordinate xi can be estimated with error that depends
on D and the norm of x. Several works [24, 28, 34, 35] analyze the privacy-utility trade-off of the
private count sketch with different noise distributions in the context of estimating the frequencies of
the elements. Due to the linearity of count sketch, these works also studied the problem in the local
model where the histogram is distributed amongst multiple parties. These works consider a more
general problem setting than ours. As discussed earlier, it is not immediately obvious how the error
guarantees of private count sketch will translate to our problem setting.

2 Preliminaries

Notation. Throughout our paper, we will use lnx to denote natural (base-e) logarithms and use log x
to denote base-2 logarithms. We denote [x] as the set {1, . . . , x} for any integer x ≥ 0. We denote
all vectors in lower case boldface x and matrices in capital case boldface M. We denote x[i] as the
i-th entry of x. Similarly, we denote M[i][j] as the j-th entry of the i-th row vector of M, M[i] as
the ith row vector, and M[:][j] as the jth column vector. We denote x[a : b] as the subvector of x
in range [a, b]. We use x⊺ as the transpose of x. We use Fn to denote the set of all column vectors
of length n over a field F and Fn×m to denote the set of all n by m matrices over a field F. We use
the notation 1x∈S such that 1x∈S = 1 if and only if x ∈ S and 1x∈S = 0 otherwise when x /∈ S.
Finally, given a countable set S, we will use Si to denote the i-th element in S (in arbitrary order).
The subscript is simply used as a label to distinguish the elements.

Differential privacy. The notion of differential privacy (DP) was introduced by [18]. DP algorithms
guarantee that small changes to the input will not drastically change the output probability distribution.
In other words, two similar (or nearby) inputs will result in very similar output distributions.

Throughout our work, our inputs will be sets S from a universe U , S ⊆ U . We measure the distance
between two sets S and S′ as the symmetric set difference that we denote as S∆S′ = |S\S′|+|S′\S|.
This is the number of elements that appear in exactly one of S and S′. One can interpret the symmetric
set difference as the minimum number of elements that need to be added or removed to obtain S′ from
S (or vice versa). We say that two input sets are neighboring when their symmetric set difference is
one, that is, S∆S′ = 1. For convenience, we will denote the distance between two sets S and S′ as
|S − S′| = S∆S′ to conform with standard differential privacy notation.

We note that one can also interpret the above using ℓ1 distances between vectors. For every entry
u ∈ U , we can denote with a unique integer from the set [|U |]. Suppose, we use a function
z : U → [|U |] as this mapping. For any set S ⊆ U , we map S to the vector xS ∈ {0, 1}|U | such
that xS [i] = 1 if and only if there exists u ∈ S such that z(u) = i. With this interpretation, we note
that the symmetric set difference between two sets S and S′, S∆S′, is identical to the ℓ1 distance
between the corresponding vectors defined as |xS − xS′ |1 =

∑
i∈[|U |] |xS [i]− xS′ [i]|.

We present the definition of differential privacy following standard definitions [19].

Definition 2.1. A randomized algorithmM with domain D is (ϵ, δ)-differentially private if, for all
R ⊆ Range(M) and for all x, y ∈ D such that |x− y| = 1, then

Pr[M(x) ∈ R] ≤ eϵ · Pr[M(y) ∈ R] + δ

over the randomness of the algorithmM.

Differentially private set representations. We focus on differentially private algorithms for releasing
sets S of size at most k̂, that is, S ⊆ U such that |S| ≤ k̂ for some input parameter k̂. We will focus
on the case where the universe U is substantially larger than the input set S.

Definition 2.2. An algorithm Π = (Π.Encode,Π.Decode) for representing sets consists of:

• Ŝ ← Encode(S): The (randomized) encoding takes set S ⊆ U and returns encoding Ŝ.

• b ← Π.Decode(Ŝ, u): The decoding takes encoding Ŝ and element u ∈ U and outputs
b ∈ {0, 1}.

The construction (encoding) time is the running time of Π.Encode and the access (decoding) time is
the running time of Π.Decode. The space is the size of encoding Ŝ.
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In other words, an algorithm for releasing sets creates an encoding Ŝ of a set S ⊆ U . Furthermore,
the algorithm enables checking whether any element u ∈ U , appears in S using the encoding Ŝ.

Next, we define the utility of the differentially private set problem through its error probability. An
error occurs when the decoding algorithm for a query q ∈ U returns an answer that is inconsistent
with the original input set S.
Definition 2.3. An algorithm Π = (Π.Encode,Π.Decode) for representing sets has error probability
at most α if, for any input set S ⊆ U and any set of queries Q ⊆ U ,

Pr[∀q ∈ Q,1q∈S ̸= Π.Decode(Ŝ, q)] ≤ α|Q|

where Ŝ ← Π.Encode(S) and the probability is over the randomness of Π.Encode.

For any set of queries Q, the probability that all |Q| queries are incorrect is at most p|Q|. This is
a stronger definition than prior works that consider |Q| = 1 because it also ensures independence
of incorrect answers. For example, consider any two queries q1 ̸= q2 ∈ U . Each of them must be
incorrect with probability at most α by setting Q = {q1} or Q = {q2}. Furthermore, they must be
independent since the probability that they are both incorrect is at most α2 by setting Q = {q1, q2}.
This independence argument may be extended to arbitrary query set with more than two queries.

We can also interpret this definition as per-entry expected error used in private histograms that bounds
the absolute value between the true and decoded value. Our definition may be viewed as privately
encoding an |U |-length binary vector such that E[|1q∈S − Π.Decode(Ŝ, q)|] ≤ α for any element
q ∈ U and encoding Ŝ ← Π.Encode(S). In other words, the expected per-entry error is at most α.

3 Differentially private sets

In this section, we present our main two constructions for differentially private sets. Before we
present our constructions, we present a framework for building these algorithms using linear systems
that satisfy certain properties. In particular, our work is inspired and generalizes prior retrieval data
structures based on linear systems such as [29, 15, 16, 7]. Afterwards, we instantiate the linear
systems in two different ways to obtain our constructions (although, one could use other linear
systems as we will provide some examples later).

3.1 Framework from linear systems

We present a general framework based on linear systems for building DP set mechanisms. We
consider linear systems over a finite field F with two functions: Row and Solve.

Recall that our problem is to release differentially private representation of S ⊆ U such that |S| ≤ k̂,
where k̂ is the input to the algorithm. We assume Row : U → F1×m is a hash function mapping
universe elements to row vectors of length m. Here, the parameter m is a function of k̂ and does not
depend on the size of the input set S. Given a set S = {s1, . . . , sk} ⊆ U of k ≤ k̂ elements, one can
view Row as hashing S to a k ×m matrix:

M =

[
Row(s1)

. . .
Row(sk)

]
.

The algorithm Solve takes an matrix M ∈ Fk×m and solution vector b ∈ Fk to compute the solution
x ∈ Fm satisfying Mx = b. In particular, Solve will make the assumption that M is the generated
output of Row for some set S ⊆ U of size k. For our chosen linear systems, Solve will be faster than
the naive application of Gaussian elimination. We also make some additional assumptions about
Solve. First, we will exclusively focus on the case where the matrix has more columns than rows,
n ≥ k. Secondly, if the input matrix M does not have full rank, then Solve will return ⊥. Lastly, all
free variables will be set to uniformly random elements from F.

We note that Row will generate rows in some structured way depending on the chosen linear system to
ensure Solve successfully outputs a solution with high probability assuming the number of columns m
is sufficiently larger compared to the number of rows k. In our work, we focus on two constructions:
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random band [15] and Vandermonde matrices. Although, our framework is compatible with any
linear system.

We will also use a hash function h : U → F that maps each element in the universe U to elements in
F. We will use h to generate the solution vector b in the above linear system. For some noised input
set S = {s1, . . . , sk} ⊆ U , the solution vector will be b = [h(s1), . . . , h(sk)]

⊺.

In our work, we will assume that all hash functions are fully random following prior works includ-
ing [28, 34, 35]. In practical implementations, we use cryptographic hash functions to replace this
assumption as done in the past [14, 34]. Specifically, we will assume that h and Row are fully random
when necessary (for one of our constructions, Row will be deterministic).

Encoding. Suppose we are given an input set S = {s1, . . . , sk} ⊆ U of size |S| = k. First, we
generate random hash function h and (possibly random) row function Row. Next, we will randomly
sample a subset S′ ⊆ S such that each element of S will appear in S except with some exclusion
probability p (that we pick later during analysis). For convenience, denote S′ = {s′1, . . . , s′k′}
where k′ = |S′|. Encoding works by constructing a matrix M using Row and noisy input set S′

as M = [Row(s′1), . . . ,Row(s
′
k′)]⊺. Next, a solution vector b is created by hashing each of the

elements in S′ using the hash function h. So, b = [h(s′1), . . . , h(s
′
k′)]⊺. Finally, we compute

encoding x using Solve for the following linear system:

Mx =

[
Row(s′1)

. . .
Row(s′k′)

]
· x =

[
h(s′1)
. . .

h(s′k′)

]
.

The final encoding will be Ŝ = (x, h,Row). See Algorithm 1 for formal pseudocode.

Algorithm 1 DPSet.Encode algorithm
Require: S, p,m: input, exclusion probability
p, output length m

Ensure: Ŝ : DP encoding of S
Generate random hash function h : U → F.
Generate (random) Row : U → F1×m.
S′ ← {}
for s ∈ S do

Add s to S′ with probability 1− p
end for
M← |S′| ×m matrix F|S′|×m

b← length |S′| column vector.
for i ∈ [|S′|] do
M[i]← Row(S′[i])
b[i]← h(S′[i])

end for
x← Solve(M,b)
if bx ̸= ⊥ then

return Ŝ ← (x,Row, h,⊥)
else

return (⊥,⊥,⊥, S)
end if

Algorithm 2 DPSet.Decode algorithm

Require: Ŝ = (x,Row, h, S), u
Ensure: returns b ∈ {0, 1}

if S ̸= ⊥ then
return u ∈ S

end if
y ← Row(u) · x
return 1y=h(u)

We can view the above as using the linear system to embed linear constraints that are satisfied by
elements of the noisy input set S′. For every s′ ∈ S′, we know that Row(s′) · x = h(s′) assuming
Solve succeeded. In contrast, fix any u /∈ S′. Then, we can see that Pr[h(u) = Row(u) · x] = |F|−1

since h is a random hash function. So, elements outside of the set S′ are unlikely to be satisfy their
corresponding linear constraint. We control this probability by picking the field size |F| accordingly.

We will capture the event of Solve failing using δ. For our pure-DP construction, we guarantee
that δ = 0 and Solve never fails. For our approximate-DP algorithm, we rely on the fact that Solve
succeeds with high probability assuming Row is randomly generated in a correct manner. If Solve
fails, we assume that encode simply returns the input set S.
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Decoding. Suppose we are given an encoding Ŝ = (x, h,Row) and an element u ∈ U . Decoding
checks whether an element’s corresponding linear system is satisfied by computing Row(u) · x and
comparing with h(u). In other words, the decoding algorithm simply returns 1Row(u)·x=h(u). We
present the pseudocode in Algorithm 2.

We start by presenting the error probability (utility) with respect to field size |F| and the exclusion
probability p of removing any element. We defer the proofs to Appendix A.

Theorem 3.1. If |F| = α−1 and p = α/(1− α), then DPSet.Decode has error probability α.

For error probability α, we pick |F| ≥ 1/α holds where F is a finite field. We note that there is a
finite field of size qr for any prime q and positive integer r ≥ 1. For practical purposes, we use the
smallest integer qr larger than 1/α that gives us slightly smaller error probability.

Next, we prove privacy of our framework. We defer the full proof to Appendix B.

Theorem 3.2. If Solve errs with probability at most δ, then DPSet is (ϵ, δ)-DP with error (eϵ+1)−1.

Our construction’s expected per-entry error of α = 1/(eϵ+1) is exponentially smaller than achievable
by private histograms where Ω(1/ϵ) error is required [23].

Next, we analyze the encoding size. In general, these are largely dependent on the underlying linear
system. The encoding size depends on the number of variables (columns) m in the linear system.
Additionally, it also includes representations of the functions h and Row.

Theorem 3.3. DPSet.Encode outputs encodings of m field elements and encodings of h and Row.

In Appendix E, we outline a possible optimization to reduce encoding size by picking m closer to
the expected size of the sampled set S′. This turns out to be a more theoretical as we were unable to
observe space improvements empirically for reasonable choices of set size k and error probability α.

Computational time. For computation, the majority of the work is done by the underlying linear
system. In particular, DPSet.Encode requires only O(k) time outside of Solve and Row. Similarly,
DPSet.Decode requires an execute of Row and the computation will depend on the number of
non-zero entries in Row. We analyze the computational costs for our instantiations later.

Larger error of α > 1/2. Our constructions only consider error probabilities α ≤ 1/2. This is
implicit as the smallest field has size at least 2. There are trivial algorithms to obtain mechanisms
with ϵ = 0 and δ = 0 for the case of α ≥ 1/2 using a random hash function (see Appendix F).

3.2 Approximate differentially private sets

From Section 3.1, our goal essentially boils down to constructing a linear system where a solution
exists and may be efficiently computed with high probability. Furthermore, we want to minimize the
number of variables required to ensure small encoding sizes. To this end, we will use the random
band row vector construction of [15].

The random band construction is parameterized by the row length m and the band length w. At a high
level, each row consists of a single band of w random field elements. The band’s location is chosen
uniformly at random. All m− w entries outside of the band will be zero. Formally, the construction
uses hash functions h1 : U → [m − w + 1] and h2 : U → F1×w. For u ∈ U , h1(u) denotes the
band’s starting location and h2(u) is the w elements in the band. Generating a random Rowband is
equivalent to generating the two random hash functions h1 and h2. Solveband works by sorting the
rows by starting band location and executing Gaussian elimination. See Algorithms 3 and 4.

Algorithm 3 Rowband algorithm
Require: u: element u ∈ U
Ensure: v : random band row vector
m← length of the vector
v← 01×m (all zero row vector of length m)
s← h1(u)
v[s : s+ w − 1]← h2(u)
return v

Algorithm 4 Solveband algorithm
Require: M,b: matrix and vector
Ensure: x : solution satisfying Mx = b

Sort rows by starting band location.
Execute Gaussian elimination and set free vari-
ables to be random elements in F to obtain
encoding x.
return x
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At a high level, If k is the number of rows of the matrix, Dietzfelbinger and Walzer [15] showed that
if m = (1 + β)k and w = O(log k) for some constant β > 0, then the matrix generated using the
random band row construction has full rank and Solveband runs in O(mw) time except with probability
O(1/m). Bienstock et al. [7] extended this result to show that, if w = O(log(1/δ) + log k), then the
matrix has full row rank and the linear system can be solved in time O(mw) except with probability
δ. DPSet.Decode takes O(w) time since computing the dot product scales linearly with w, the length
of the band. We obtain the following using random band row vectors:

Theorem 3.4. For any ϵ > 0, δ > 0, β > 0, there is an (ϵ, δ)-DP set mechanism with error (eϵ+1)−1

and encodings consisting of (1 + β)k field elements and three hash functions. DPSet.Encode takes
O(kw) time and DPSet.Decode takes O(w) time where w = O(log(1/δ) + log k).

3.3 Pure differentially private sets

We consider a pure differentially private construction of the framework in Section 3.1 with δ = 0.
In Section 3.1, the failure probability of solving the constructed linear system corresponds to δ in
the DP definition. To obtain a pure DP construction, our goal is to construct a linear system that is
solvable with probability 1. So, we want to construct a matrix M that has full rank with probability
1. To do this, we use the Vandermonde matrix construction (where Row is deterministic) that may
be solved in O(k log2 k) time as shown in [9]. This construction has another advantages over the
random band approach beyond obtaining δ = 0. The resulting encodings are smaller with only k
field elements whereas the other construction requires m = (1 + β)k field elements with β > 0. In
contrast, decoding times are larger here. See Appendix C for full description and proof.

Theorem 3.5. For any ϵ > 0, there exists an ϵ-DP set mechanism with error (eϵ + 1)−1.
DPSet.Encode takes O(k log2 k) time and DPSet.Decode takes O(k) time.

Other Constructions. We present two concrete constructions from specific linear systems, but it is
possible to plug in other linear systems. For example, plugging in [22] would result in a pure DP
solution with faster encoding times, but larger encoding sizes compared to Theorem 3.5.

4 Lower bounds

Privacy-utility lower bounds. We start by considering the possibility of improving the error
probability (utility) with respect to the desired levels of privacy. Our construction achieved error
probability at most 1/(eϵ + 1) for any choice of ϵ ≥ 0. In other words, for any error α, our
construction achieves privacy ϵ = log((1− α)/α). We show that this trade-off between ϵ and error
probability is optimal even up to constants (ignoring δ factors). See Appendix D for the proof.

Theorem 4.1. Consider any (ϵ, δ)-DP algorithm Π for sets of size k. Suppose that Π has error
probability at most α ≤ 1/2. Then, ϵ ≥ ln((1− α− δ)/α). In other words, for a fixed privacy level
ϵ ≥ 0 and δ ≥ 0, the error probability of Π must be α ≥ (1− δ)(eϵ + 1).

Space lower bounds. Next, we move onto determining the necessary space usage of set representa-
tions. There exist space lower bounds for probabilistic membership data structures (such as Bloom
filters) that have a false positive probability of α and no false negatives. It is well known that such
data structures require k · log(1/α) bits of space when given an input of size k. However, these lower
bounds only apply when the false negative rate is 0. See Broder and Mitzenmacher [10] for the prior
lower bound. We present a space lower bound for DP mechanisms with non-zero false negatives
using a proof through compression that deviates from prior counting arguments (see Appendix D).

Theorem 4.2. Consider any (ϵ, δ)-DP Π for sets of size k. If Π produces s-bit encodings with error
probability 0 < α ≤ 1/2, then E[s] = Ω ((1 + δ/(eϵ)) · k · log(1/α)).

5 Experimental evaluation

Setup. We implemented DPSet, ALP [2] and DP Count Sketch [34] in C++ using 800 lines of code.
For DPSet, we use the analysis of Bienstock et al. [7] to choose appropriate parameters for δ ≤ 2−40

with parameter β = 0.05. To fit ALP and DP Count Sketch to our problem setting, we round the
query results of these mechanisms to the nearest 0 or 1. We target privacy parameter δ ≤ 2−40 for all
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Figure 1: Comparisons of of DPSet, ALP, and DP Count Sketch with δ ≤ 2−40. The x-axis is
privacy parameter ϵ and the y-axis is error probability, encoding time (ms) or decoding time (ms).

three constructions. To fairly compare utility, we chose parameters to ensure that encoding sizes are
approximately equal for all three constructions (see Appendix G for more details on encoding sizes).

We consider experiments for input sets of size k ∈ {212, 216, 220}. Each trial picks input sets as
k uniformly random 128-bit strings from a universe of all n = 2128 strings. Although, all three
constructions are agnostic to the distribution of the input set. We ran all experiments using a Ubuntu
PC with 12 cores, 3.7 GHz Intel Xeon W-2135 and 64 GB of RAM. Our experiments enable AVX2
and AVX-512 instruction sets with SIMD instructions. All reported results use single-thread execution
as the average of at least 1,000 trials with standard deviation less than 10% of the average. The entire
experimental evaluations (including setup) took approximately 1 hour of compute time.

Utility. To measure utility, we query the entire input set of size k as well as a random subset of k
elements outside of the set in each trial. We plot our results in Figure 1 along with our lower bound
(Theorem 4.1). We see that DPSet has much better utility compared to the prior works. Furthermore,
our experiments corroborate our theoretical analysis that error probability exponentially decreases in
ϵ and essentially matches our lower bound of α ≥ (1− δ)/(eϵ + 1) ≥ (1− 2−40)/(eϵ + 1).

Efficiency. We compare the efficiency of encoding input sets and decoding random elements. For
larger input set sizes k and bigger ϵ, our constructions have faster encoding times. In contrast, DPSet
has slower encoding for smaller k and ϵ. For decoding, DPSet has slower times than both prior
works. Nevertheless, decoding times of DPSet remain very fast and are less than 0.3 milliseconds.

9



6 Conclusions

In this work, we present constructions of DP sets that are essentially optimal in privacy-utility and
space trade-offs nearly matching our lower bounds. The error obtained is exponentially smaller (both
theoretically and empirically) than possible for private histograms mostly studied in prior works.
Additionally, we experimentally show that our constructions are concretely efficient.

Limitations. A limitation of our work is that we consider sparse sets (as opposed to the more general
sparse histograms). Nevertheless, we believe this specific problem has several important applications
with the added benefit of exponentially smaller error. Our constructions assume fully random hash
functions (following several prior works) and instantiations are limited to finite field sizes. If we
assume pseudorandom hash functions (PRFs), our construction obtains computational DP instead.
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A Proof of correctness of DPSet

We prove the correctness of our constructions. First, we present a lemma about the false positive and
false negative rates. Afterwards, we use this to get a final error probability.
Lemma A.1. DPSet.Decode has false positive probability of |F|−1 and false negative probability of
p · (1− |F|−1). Also, the probabilities are independent for each q ∈ U .

Proof. First consider false positives. If u /∈ S, then u /∈ S′. We know Pr[Row(u)·x = h(u)] = |F|−1

since h is a fully random hash function. For false negatives, consider any s ∈ S. Note, that
Pr[s /∈ S′ | s ∈ S] = (1− p). Since DPSet.Decode only returns 0 if x = ⊥, there is no additional
error from DPSet.Encode failing. If s /∈ S′, the decoding will return 1 with probability |F|−1. So,
the false negative probability is s not sampled into S′ and the linear constraint being unsatisfied that
is p · (1− |F|−1). Finally, these probabilities are independent for every q ∈ U following from the fact
that sampling each element into S′ is independent and that h is a fully random hash function.

The error probability is the maximum of the false positive and negative probabilities. Suppose we
desired a certain error probability α, we can pick the field size and exclusion probability as follows.

Proof of Theorem 3.1. First, we see that α = |F|−1 for the false positives. Then, we pick p satisfying
α = p · (1− α) for false negatives to see that p = α/(1− α).

B Proof of privacy of DPSet

In this section, we present the full proof of Theorem 3.2. In particular, we show that it follows directly
from the following theorem by plugging in ϵ accordingly. In our proof, we require the randomness of
h only for correctness and not privacy.
Theorem B.1. Suppose |F| = α−1, p = α/(1 − α) and Solve fails with probability fSolve for
correctly generated Row. Then, DPSet is (ln( 1−α

α ), fSolve)-DP.

Proof. Let S1 and S2 be the two neighboring sets such that S2 = S1 ∪ {u}. Let ZS1
and ZS2

be the two random variables denoting the representations output by DPSet.Encode for S1 and S2,
respectively. Let m be the number of variables (length of the encoded vector) in Algorithm 1. Let
x ∈ Fm, Row and h be arbitrary, and let v = (x,Row, h,⊥). We first show that

Pr[ZS1
= v] ≤

(
1− α

α

)
· Pr[ZS2

= v] (1)

Pr[ZS2
= v] ≤

(
1− α

α

)
· Pr[ZS1

= v] (2)

where the probability is over the random coin tosses performed by DPSet.Encode.

We first prove Equation 1. Let Ru be the event where the element u is removed during DPSet.Encode
on S2. Recalling that Pr[Ru] = p = α

1−α from Algorithm 1, we have

Pr[ZS2
= v]

= Pr[Ru] Pr[ZS2
= v | Ru] + Pr[Ru] Pr[ZS2

= v | Ru]

= Pr[Ru] Pr[ZS1
= v] + Pr[Ru] Pr[ZS2 = v | Ru]

≥ Pr[Ru] Pr[ZS1 = v] =
α

1− α
Pr[ZS1 = v]

where the second equality follows from the fact that the distribution of ZS2
is identical to ZS1

conditioned on the event Ru. Rearranging, we get the desired bound.

Next, we prove Equation 2. By again decomposing Pr[ZS2
= v] conditioned on Ru, we have

Pr[ZS2
= v]

=Pr[Ru] Pr[ZS2
= v | Ru] + Pr[Ru] Pr[ZS2

= v | Ru]

=Pr[Ru] Pr[ZS1
= v] + Pr[Ru] Pr[ZS2

= v | Ru].
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Before proceeding with the proof, we claim that

Pr[ZS2
= v | Ru] ≤ α−1 Pr[ZS1

= v]. (3)

Then plugging in Equation 3 to the above equation, we get

Pr[Ru] Pr[ZS1
= v] + Pr[Ru] Pr[ZS2

= v | Ru]

≤ Pr[Ru] Pr[ZS1
= v] + Pr[Ru](α

−1 Pr[ZS1
= v])

≤ (
α

1− α
+

1− 2α

α− α2
) Pr[ZS1

= v]

=
1− α

α
Pr[ZS1 = v].

We now prove Equation 3 to complete the proof. Let S′
1 and S′

2 be random variables denoting the
set of elements that survived the removal process in DPSet.Encode for input S1 and S2, respectively.
Consider an arbitrary subset S′ ⊆ S1. We can see that Pr[S′

2 = S′ ∪ {u} | Ru] = Pr[S′
1 = S′],

and so if we show that

Pr[ZS2
= v | Ru ∩ (S′

2 = S′ ∪ {u})] ≤ α−1 Pr[ZS1
= v | S′

1 = S′] (4)

then we can apply the law of total probability to obtain Equation 3.

One way to see why Equation 4 holds is as follows. If the left hand side is 0, then the bound trivially
holds, so we may assume that the probability is positive. For any choice of hash functions (that also
determine Row), the linear systems generated are uniquely determined by the surviving elements.
Thus, conditioned on the event that S′

1 = S′ and S′
2 = S′ ∪ {u}, the generated linear systems are

deterministic. Let L1 and L2 be the corresponding linear systems for S1 and S2, respectively. From
the condition, it must be that L1 ⊂ L2 and L2 has exactly one more equation than L1 that is linearly
independent of the other rows. In other words, L1 has exactly one more degree of freedom than L2,
which corresponds to an extra free variable. By the construction of Algorithm 1, the free variables are
independently and uniformly randomly set to values in F. Thus, the probability that this random free
variable is set to the corresponding value in x (the first component of v) is exactly 1/|F| = α. This
establishes the inequality (in fact an equality) and completes the proof of Equation 4, from which
Equation 2 follows immediately.

From Equation 1 and Equation 2, the proof of the main theorem follows immediately by applying
Definition 2.1 and using the failure probability of Solve is at most δ = fSolve.

C Pure differentially private subsets

As discussed in Section 3.3, to obtain a pure DP construction, our goal is to construct a linear
system that is full rank with probability 1. To achieve this goal, we will use the Vandermonde matrix
construction. Vandermonde matrix is a n× k matrix of the form

1 u1 . . . uk−2
1 uk−1

1

1 u2 . . . uk−2
2 uk−1

2
...

1 un . . . uk−2
n uk−1

n


where each ui ∈ F. If n ≤ k then this matrix is always full rank for any set of distinct ui.

Suppose that the universe U = F for some finite field F. Let S be the input set and let k = |S|. Then
we can construct the matrix in Algorithm 1 using the Vandermonde matrix construction to obtain a
pure differentially private construction. The algorithm for constructing the row vector is presented in
Algorithm 5. Using [9], the linear system constructed using the Vandermonde matrix can be solved
in O(k log2 k) time. We point to the prior work to find the corresponding SolveVandermonde. Plugging
this into the framework of Section 3.1, we immediately obtain Theorem 3.5.
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Algorithm 5 RowVandermonde algorithm
Require: u: element u ∈ U = F
Ensure: v : Vandermonde matrix row

k ← |S|, size of the input set
return v← [1, u, u2, . . . , uk−1]

D Proof of lower bounds

We start by proving our lower bound of utility stated in Theorem 4.1.

Proof of Theorem 4.1. Pick any x and y that differ in exactly one entry. Without loss of generality,
pick the unique index i ∈ [n] such that x[i] = 0 and y[i] = 1. Let Zx and Zy be the random
variables denoting the representations output by Π for x and y respectively. We will consider the
probability that Π produces a representation such that Π.Decode outputs 1 on index i for each of
Zx and Zy. Note that Pr[Π.Decode(Zy, i) = 1] ≥ 1 − α since y[i] = 1. Similarly, we note that
Pr[Π.Decode(Zx, i) = 1] ≤ α since x[i] = 0. In other words, we see

1− α ≤ Pr[Π.Decode(Zy, i) = 1]

≤ eϵ Pr[Π.Decode(Zx, i) = 1] + δ

≤ eϵα+ δ.

By re-arranging the inequality 1− α ≤ eϵα+ δ, we get the desired theorem.

To prove our space lower bound stated in Theorem 4.2, we start with proving an intermediate result
about the required space for any mechanism (not necessarily differentially private) that has error
probability at most α. In particular, the existence of such a mechanism enables a very efficient
compression algorithm to encode random vectors x with k non-zero entries.
Lemma D.1. Consider any mechanism Π for binary vectors x ∈ {0, 1}n with at most k non-zero
entries, |x|1 ≤ k. If Π produces representations using s bits of space in expectation and has error
probability at most 0 < α ≤ 1/2, then

E[s] ≥ (1− 2α)k · log
(
1

α
− 1

)
− 2 log k − log log(en/k).

Proof. We will make the assumption that Π never produces representations larger than log
(
n
k

)
bits

on any input and any choice of randomness. Note, this is without loss of generality because a trivial
representation of binary vectors with k non-zero entries can be done in log

(
n
k

)
bits with zero error

probability. If Π violates this assumption, we can modify Π to replace any longer encodings with the
trivial one that will either maintain or decrease the space usage and error probability.

We consider the following two-party, one-way compression problem between an encoder (Alice)
and a decoder (Bob). As input, Alice receives as input a uniformly random vector x ∈ {0, 1}n
conditioned that exactly k entries are non-zero, |x|1 = k. Alice’s job is to encode x into a single
message enabling Bob to correctly decode x. In particular, Alice’s goal is to make the message as
small as possible. To do this, Alice will utilize the mechanism Π. At a high level, Alice will use Π to
construct a representation x with error probability α. Additionally, Alice will send some auxiliary
information that will enable Bob to correctly identify the non-zero entries of x using the answers of
Π. We present the compression algorithm below.

Alice’s Encoding: Receives x ∈ {0, 1}n such that |x|1 = k and shared randomnessR.

1. Construct Z← Π.Encode(x;R) using randomnessR.

2. Set X = {i ∈ [n] | x[i] = 1}.

3. Initialize A← ∅ and B ← ∅.

4. For all i ∈ [n]:
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(a) If Π.Decode(Z, i;R) = 0, set A← A ∪ {i}.
(b) Else when Π.Decode(Z, i;R) = 1, set B ← B ∪ {i}.

5. Encode |Z| using log log
(
n
k

)
bits.

6. Encode |X ∩A| using log k bits.

7. Encode X ∩A using log
( |A|
|X∩A|

)
bits.

8. Encode X ∩B using log
( |B|
|X∩B|

)
bits.

9. Compute encoding E = (|Z|,Z, |X ∩A|, X ∩A,X ∩B).

Bob’s Decoding: Receives Alice’s encoding and shared randomnessR.

1. Decode |Z| using the first log log
(
n
k

)
bits and Z using the next |Z| bits.

2. Initialize A← ∅ and B ← ∅.

3. For all i ∈ [n]:

(a) If Π.Decode(Z, i;R) = 0, set A← A ∪ {i}.
(b) Else when Π.Decode(Z, i;R) = 1, set B ← B ∪ {i}.

4. Decode the size of |X ∩ A| using the next log k. Additionally, we know that |X ∩ B| =
k − |X ∩A|.

5. Using knowledge of |A|, |B|, |X ∩A| and |X ∩B|, decode X ∩A and X ∩B.

6. Using knowledge of A and B as well as X ∩A and X ∩B, we can decode X and, thus, x.

Prefix-freeness. We will later apply Shannon’s source coding theorem. However, to do this, it is
required that Alice’s encoding algorithm is prefix-free. That is, any possible encoding cannot be a
strict prefix of any other possible encoding. First, we note that the last components |X ∩A|, X ∩A
and X ∩B will always be the same length. We use a fixed length to represent |X ∩A|. The two sets
X ∩A and X ∩B always encode exactly k elements. Therefore, the encoding length will only be
different for various sizes of Z. However, we prefix each encoding with the length |Z|. Therefore,
any encodings of different lengths (meaning different length |Z|) will be prefix-free. Finally, it is
clear that any set of equal length encodings will be prefix-free.

Encoding length. The expected length of Alice’s encoding is exactly

log log

(
n

k

)
+E[s] + log k +E

[
log

(
|A|

|X ∩A|

)
+ log

(
|B|

|X ∩B|

)]
as we consider expected space usage s and all of A,B,X ∩A and X ∩B are random variables. Next,
we note that the function f(a, b)→

(
a
b

)
is log-concave for the relevant range a ≥ b ≥ 0 (see [11] for

example). Therefore, we can apply Jensen’s inequality to obtain

E

[
log

(
|A|

|X ∩A|

)
+ log

(
|B|

|X ∩B|

)]
≤ log

(
E[|A|]

E[|X ∩A|]

)
+ log

(
E[|B|]

E[|X ∩B|]

)
.

Next, we know that |X ∩A|+ |X ∩B| = k and |A|+ |B| = n. Therefore, we can rewrite

log

(
E[|A|]

E[|X ∩A|]

)
+ log

(
E[|B|]

E[|X ∩B|]

)
= log

(
E[|A|]

E[|X ∩A|]

)
+ log

(
n−E[|A|]

k −E[|X ∩A|]

)
.

Next, we see that E[|A|] ≤ (1− α)n and E[|X ∩ A|] ≤ αk. Given that α ≤ 1/2, we immediately
see that this is maximized when E[|A|] = (1− α)n and E[|X ∩A|] = αk. So, we see that
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log

(
E[|A|]

E[|X ∩A|]

)
+ log

(
n−E[|A|]

k −E[|X ∩A|]

)
≤ log

(
(1− α)n

αk

)
+ log

(
αn

(1− α)k

)
.

Complete the lower bound. To finally complete the proof of the lower bound, we will apply
Shannon’s source coding theorem [32] that states that the expected length of Alice’s prefix-free
encoding cannot be smaller than the entropy of Alice’s input conditioned on any shared input. First,
we see that

H(x | R) = H(x) = log

(
n

k

)
.

Therefore, we get that Alice’s expected encoding length must satisfy

log log

(
n

k

)
+E[s] + log k + log

(
(1− α)n

αk

)
+ log

(
αn

(1− α)k

)
≥ log

(
n

k

)
.

By re-arranging, we see that the following is equivalent by applying linearity of expectation and
using Stirling’s approximation such that

(
n
k

)
≤ (en/k)k.

E[s] ≥ log

( (
n
k

)(
(1−α)n

αk

)(
αn

(1−α)k

))− 2 log k − log log(en/k)

≥ log

((
1− α

α

)(1−2α)k
)
− 2 log k − log log(en/k)

≥ (1− 2α)k · log
(
1− α

α

)
− 2 log k − log log(en/k).

Therefore, we get our desired lower bound.

To sanity check, we can consider various choices of α. For example, if we set α = 1/2, we note that
the space lower bound becomes trivially 0. In fact, this makes sense as there are simple algorithms
to obtain α = 1/2 that require essentially no space. For example, we can use any random hash
function h that outputs random bits and return positive only when h(x) = 0. This obtains α = 1/2
and essentially ignores the input set. Therefore, we can see that our lower bound is sensible.

Finally, we can use the above lemma combined with Theorem 4.1 to obtain our space lower bound
for differentially private mechanisms that already require error probability.

Proof of Theorem 4.2. First, we apply Theorem 4.1 to get that the error probability α must satisfy

α ≥ 1− δ

eϵ + 1
.

Note, for all choices ϵ ≥ 0 and δ ≥ 0, we see that 0 < α ≤ 1/2. Plugging in the error probability
α ≥ (1− δ)/(eϵ + 1) into Lemma D.1, we get the following

E[s] ≥ eϵ − 1 + 2δ

eϵ + 1
· k · log

(
1

α
− 1

)
−O(log k + log log n).

First, we note that (eϵ − 1)/(eϵ + 1) = Θ(1) for all choices of ϵ ≥ 0. For sufficiently large
k = Ω(log log n), we get that

E[s] = Ω

((
1 +

δ

eϵ

)
· k · log(1/α)

)
completing the proof.
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Figure 2: Comparisons of of DPSet, ALP, and DP Count Sketch with δ ≤ 2−40. The x-axis is
privacy parameter ϵ and the y-axis is encoding size in bytes.

E Space optimization

In our construction, we set the encoding size m = (1 + β)k in Section 3. This is a worst-case
guarantee to ensure that Solve may always be executed with the condition that the number of columns
m satisfies m ≥ (1 + β)n where n is the number of rows (i.e., sampled set size S′). Instead, we can
pick m closer to the expected size of S′ and fail if it goes over.

For example, we can apply known probability tail bounds (such as Chernoff bounds) and pick m to
be closer to (1− p)k that is the expected size of S′. This increases the failure probability of Solve
(and δ) by an additive e−O(k) to account for if the number of rows is too large. Let 0 < γ ≤ 1 be a
fixed constant. Invoking Chernoff bound, we see that the probability that |S′| ≥ (1 + γ)(1− p)k is
bounded above by e−O(k). Suppose that we assume that |S′| ≤ k′ = (1 + γ) 1−2α

1−α |S| and choose
m = (1 + β)k′. This increases the failure probability of Solve by an additive e−O(k), which is very
small. As this optimization increases δ, it cannot be used for pure differentially private schemes.

Unfortunately, this ends up being a theoretical improvement as we were unable to empirically observe
space efficiency gains in natural settings.

F Trivial algorithm for large error Probability

If we consider the case of large error probabilities α ≥ 1/2, there are trivial algorithms for differen-
tially private subsets that use, essentially, no space and has perfect privacy guarantees of ϵ = δ = 0.
In fact, it suffices to simply consider the case with error probability α = 1/2.

Consider the following construction that completely ignores the input subset S. Pick a random hash
function h : U → {0, 1}. We represent the input subset S using h. For any element u ∈ U , the
decoding algorithm returns 1h(u)=1. In other words, the decoding algorithms returns a uniformly
random bit for each element u ∈ U . It is not hard to see that the error probability of this construction
is exactly 1/2. As the hash function h is chosen independent of the input subset S, it is quite clear
that this trivial algorithm achieves perfect privacy of ϵ = 0 and δ = 0. Therefore, all the constructions
in our work focus on the case when α ≤ 1/2.
Theorem F.1. There exists a perfectly secure (0, 0)-DP set mechanism with error probability α = 1/2
where the encoding consists of a single hash function independent of the input set size.

G Experimental evaluation of encoding size

We present graphs in Figure 2 showing the encoding sizes used in our experimental evaluation in
Section 5. Recall that, for the purposes of comparing utility, we chose parameters such that all three
constructions have similar encoding sizes. Therefore, the encoding sizes are essentially the same for
all three constructions: DPSet from our work, ALP from [2] and DP Count Sketch from [34].
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a short section discussing limitations of our work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides full set of assumptions relevant to the asserted claims.
However, all the proofs are put in the appendix for space.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information on the experimental setup and the parameters
used. We plan to open source the code in the near future as well.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to open source the code in the near future, but at the moment they are
not ready to be released publicly.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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versions (if applicable).
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experimental evaluation provides detailed setup of the experiment and
how the relevant parameters were chosen.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While we do not explicitly include error bars or confidence intervals, we report
all our numbers averaged over at least 10 trials with standard deviation less than 10% of the
average.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the computer resources used to conduct
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We believe our work does not incur negative societal impacts, as the goal of
our work is to enhance user privacy. We implicitly discuss how our work may be beneficial
to protect user privacy in the introduction.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe our work poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
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compare with a Python code). The dataset was artificially crafted and no external dataset
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• The answer NA means that the paper does not use existing assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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