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ABSTRACT

Out-of-distribution (OOD) generalization is critical for applying reinforcement
learning algorithms to real-world applications. To address the OOD problem, re-
cent works focus on learning an OOD adaptation policy by capturing the causal
factors affecting the environmental dynamics. However, these works recover the
causal factors with only an entangled or binary form, resulting in a limited gener-
alization of the policy that requires extra data from the testing environments. To
break this limitation, we propose Generalizable Causal Reinforcement Learning
(GCRL) to learn a disentangled representation of causal factors, on the basis of
which we learn a policy that achieves the OOD generalization without extra train-
ing. For capturing the causal factors, GCRL deploys a variant of β-VAE structure
with a two-stage constraint to ensure that all factors can be disentangled. Then,
to achieve the OOD generalization through causal factors, we adopt an additional
network to establish the dependence of actions on the learned representation. The-
oretically, we prove that while the optimal policy can be found in training envi-
ronments, the established dependence can recover the causal relationship between
causal factors and actions. Experimental results show that GCRL achieves the
OOD generalization on eight benchmarks from Causal World and Mujoco. More-
over, the policy learned by our model is more explainable, which can be controlled
to generate semantic actions by intervening in the representation of causal factors.

1 INTRODUCTION
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Figure 1: The OOD setting
in RL, where causal factors
affect the environmental dy-
namics.

Reinforcement Learning (RL) provides a powerful framework that
can train an agent to take proper sequential actions based on the
states (Sutton & Barto, 1998; Silver et al., 2017; Vinyals et al.,
2019). To apply the RL model in reality, we expect to generalize
the agents on factors of variation that are not in the training distri-
bution, which is defined as the OOD problem (Shen et al., 2021; Cui
& Athey, 2022; Krueger et al., 2021). An example of the OOD set-
ting is shown in Figure 1. Each instance of an environment is sam-
pled from a distribution, where the testing (red dots) and the train-
ing environments (blue dots) belong to different distributions. Most
success stories focus on the OOD adaptation that accesses extra data
from the testing environments (Sontakke et al., 2021; Zintgraf et al.,
2019; Zhou et al., 2021; Mendonca et al., 2020). However, the strict
OOD generalization could not interact with testing environments
because the testing distribution is commonly unknown in real-world applications (Kirk et al., 2021).
Thus, to develop OOD generalization in RL, an effective generalizable policy that only accesses data
from training environments is urgently needed.

One of the solutions for the OOD problem is to discover the factors of variation that affect the
environmental dynamics, from which a generalizable policy can be learned (Killian et al., 2017;
Doshi-Velez & Konidaris, 2016). Recent works (Zintgraf et al., 2019; Perez et al., 2020; Yao et al.,
2018) propose to discover the factors of variation by modeling them as hidden parameters in the
transition function of each environment. Unfortunately, the factors of variation encoded by hidden
parameters are prone to entangle and uninterpretable due to the cumulative nature of the influence
from the variation. To address this issue, Sontakke et al. (2021) propose Causal Curiosity (CC) to
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learn a disentangled representation and formally define these factors of variation as causal factors
that are related to environmental dynamics. By learning how the causal factors affect the policy
required to achieve the task, agents can generalize to previously unencountered environments. How-
ever, CC only considers a binary representation, leading to the policy with a limited generalization
that still requires extra data from the testing environments. To go a step further in this direction,
we aim to deploy the policy without any extra data by recovering the more precise disentangled
representations of causal factors.

The unsupervised learning of disentangled representations without inductive biases has been proven
theoretically infeasible (Locatello et al., 2019). Ever since then, substantial efforts (Locatello et al.,
2020; Shu et al., 2020) have focused on the weakly-supervised method, which requires the values of
some latent factors are shared among paired inputs, such as two adjacent frames in the environment.
To adapt the above approaches to RL scenarios, we need an accessible signal that can disentangle the
causal factors from other features in the states. Fortunately, recent studies on environmental dynam-
ics find that causal factors are specific to environmental change (Sontakke et al., 2021). Consider the
example of a robot lifting a cube, the coordinate of the cube might be changed by robotic arms, but
the mass of the cube should only depend on the environmental setting. Therefore, the causal factor is
commonly defined as a constant in a single environment but may differ across environments (Zhang
et al., 2021b; Huang et al., 2022), making it possible to be disentangled from other features.

Based on the natural characteristics of causal factors, we introduce Generalizable Causal Reinforce-
ment Learning (GCRL), a novel method to learn a disentangled representation, which is used to
build a policy that achieves the OOD generalization. GCRL operates in multiple training environ-
ments and does not assume access to extra data from the testing environments. For capturing the
causal factors, we employ a variant of β-VAE (Higgins et al., 2017) with a two-stage constraint
to ensure that all factors can be disentangled. Then, to achieve the OOD generalization through
causal factors, we adopt an additional network to establish the dependence of actions on the learned
representation. Our contributions are as follows:

• We propose GCRL, a novel weakly-supervised reinforcement learning algorithm, to dis-
cover the causal factors that affect the environmental dynamics, and a policy that achieves
the OOD generalization without extra data from the testing environments.

• We theoretically prove that RL agents learned with representations of causal factors are
general towards unseen environments. The established dependence can recover the causal
relationship between causal factors and actions as the policy approaches optimality.

• We empirically demonstrate that GCRL is capable of outperforming the state-of-the-art
representation of causal factors. In addition, our RL agent is more explainable and can
generate sequential semantic actions by intervening in representations.

2 PROBLEM FORMULATION

Following (Sontakke et al., 2021), we consider a set of environments that can be accessed by the
agent in the training stage and another set of environments only accessed at the testing stage. Each
instantiation of an environment has a unique setting for causal factors that are sampled from a dif-
ferent (wider) distribution at the testing stage.

Causal MDPs In Causal MDPs (Sontakke et al., 2021), an RL task can be modeled as a tuple
G =< S,A, P,R, γ >. The state s ∈ S can be divided into two portions - the controllable state s

c

and uncontrollable state s
u. The uncontrollable portion of the state s

u consists of the causal factors
of the environment, and the controllable state s

c can be influenced by policy. In each environment
step t, the policy π(⋅∣st) chooses an action at ∈ A depending on the current state st ∈ S. Based
on the action at and the transition function P (sct+1, sut+1∣sct , sut , at), the environment transfers to
the next state (sct+1, sut+1) and returns a reward rt. The aim of the agent is to maximize the cumu-
lative reward Eπ[∑T

t=1 γ
t−1

rt], where γ denotes the discount factor. In the same environment, su

remains constant, i.e., ∀t < T , s
u
t = s

u
t+1. Inspired by (Bica et al., 2021), we want to learn a policy

π(⋅∣sct , sut ) that depends on causal factors recovered from the state.

Disentangled representations for Causal Factors An environment could be regarded as a gener-
ative model, such as the state s is generated from the distribution p(s∣z), where z is drawn from a set
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Figure 2: The GCRL framework. (a) Environment setup where objects in scene A and scene B are
different. (b) The weakly-supervised generative model for disentangled representations of causal
factors. (c) The policy network with representations of the variant causal factors ẑ.

of independent ground-truth factors of variation p(z) = ∏i p(zi) (Locatello et al., 2020). Based on
the Causal MDPs, z = [z̃, ẑ, z] ∈ Z, where Z is the set of factors generating s, z̃ corresponds to s

c,
and the remaining parts correspond to s

u. In a single environment, ẑ and z are equivalent because all
causal factors remain constant. For example, while a robotic arm pushes an item, the coordinates of
the item (zi ∈ z̃) may be changed, but causal factors will remain constant, such as gravity. However,
some (but not all) causal factors may vary with the settings, such as some properties (size, mass) of
the items being different in multiple environments. Thus, we denote ẑ as the variant part, and z refers
to the invariant part (gravity, etc.) in multiple environments. The goal of disentangled representation
learning is to learn a function f(s) mapping the state s to a vector that contains information about
causal factors, with each coordinate containing information about only one factor.

Weakly-supervised generative model for RL states Inspired by Shu et al. (2020), we utilize
paired states to learn disentangled representations of causal factors, where some factors of varia-
tion have the same value. This can be modeled as sampling two states from the trajectories of the
environments, as illustrated in Figure 2. Formally, the generative model is given by

p(z′) =
d

∏
i=1

p(zi), p(z̃) =
k

∏
i=1

p(z̃i), p(ẑ) =
m

∏
i=1

p(ẑi), p(z) =
d−(k+m)
∏
i=1

p(zi), (1)

sx = g
∗(z′), sy = g

∗([z̃, ẑ, z]T ), (2)

where z
′ and [z̃, ẑ, z] ∈ Z, d is the dimension of the encoded vector, k is the number of factors

that correspond to s
c in two states, and m is the number of variant causal factors. The generative

mechanism is modeled using a function g
∗ ∶ z → s, which maps the factors to the reconstructed

states. To make the relation between sx and sy explicit, we add the shared constraint z′k+1∶d = [ẑ, z]
in a single environment. As sx and sy are sampled from different environments, the constraints on
ẑ and z are further redefined as z

′
k+1∶k+m ≠ ẑ and z

′
k+m∶d = z. We aim to infer the disentangled

representation ẑ to approximate a subset of su that varies across environments.

3 GENERALIZABLE CAUSAL REINFORCEMENT LEARNING

The goal of Generalizable Causal Reinforcement Learning (GCRL) is to learn a disentangled repre-
sentation of the variant causal factors that are related to environments and a policy π that depends
on these factors. Our aim is to achieve OOD generalization for a policy π.
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3.1 LEARNING REPRESENTATIONS FOR CAUSAL FACTORS

To learn a disentangled representation, we adopt a weakly-supervised generative model, which uses
qϕ(z∣s) to approximate the actual posterior distribution p(z∣s) by the variational inference (Hig-
gins et al., 2017). By imposing shared constraints on partial approximation posteriors of the paired
states, the encoded vector contains all the information about factors while guaranteeing they are
disentangled. Specifically, we can achieve the above goal by optimizing the reconstruction loss

max
ϕ,ψ

E(sx,sy)(Eq̃ϕ(z∣sx) log(pψ(sx∣z)) + Eq̃ϕ(z∣sy) log(pψ(sy∣z))

+βDKL(q̃ϕ(z∣sx)∣∣p(z)) + βDKL(q̃ϕ(z∣sy)∣∣p(z))),
(3)

where β ≥ 1 and q̃ϕ denotes that a subset of dimensions in qϕ is subject to the shared constraint, i.e.,
qϕ(zi∣sx) and qϕ(zi∣sy) are replaced by their average distribution (Locatello et al., 2020), where the
dimension i is imposed the shared constraint. However, directly disentangling from the paired states
is unreasonable because causal factors may satisfy both non-shared and shared constraints depend-
ing on the environmental setting. For example, in a grasping task, the robot may encounter some
environments with different objects. If paired states belong to the same environment, the mass factor
should align with the shared constraints; otherwise, it should align with the non-shared constraints.

Thus, in order to ensure that the causal factors align with the correct constraints, we need to satisfy
the following conditions in two stages: (1) z should be invariant in the single environment, and (2)
z should be varied across the different environments.

To fulfill condition (1), we propose a structure for the variational family that allows us to tractably
perform approximate inference on the weakly-supervised generative model (see the pre-training
stage in Figure 2(b)). In a single environment, the alignment constraints imposed by the paired states
imply the true posterior: if zi ∈ z̃, p(zi∣sx) ≠ p(zi∣sy); otherwise p(zi∣sx) = p(zi∣sy). Inspired
by Locatello et al. (2020), we enforce these constraints on the approximate posterior qϕ(z∣s) of our
learned model. Concretely, the constraints can be imposed by replacing each shared coordinate with
the average (avg) of the two posteriors

q̃ϕ(zi∣sx) = qϕ(zi∣sx) if i ≤ k,

q̃ϕ(zi∣sx) = avg(qϕ(zi∣sx), qϕ(z∣sy)) else.
(4)

q̃ϕ(z∣sy) can be computed in an analogous manner. By implementing a DKL-term to impose the
hard constraint (4), qϕ(z∣sx) and qϕ(z∣sy) can jointly encode only one value per shared coordinate.

Out of all possible representations that are invariant in the individual environment, we want to search
for one that also varies with the different environments, fulfilling condition (2). To ensure that the
representations are environment-specific, we utilize the outcome of q̃ϕ(z∣s) to discover the subset of
causal factors ẑ. Specially, we fine-tune the variational model learned from the previous stage to dis-
entangle the latent features ẑ via a new constraint over states collected from multiple environments
(see the fine-tuning stage in Figure 2(b)). For the causal factors [ẑ, z], the alignment constraints
imposed by the paired states imply another true posterior: if zi ∈ ẑ, p(zi∣sy) ≠ p(zi∣sw); other-
wise p(zi∣sy) = p(zi∣sw). Similarly to Equation 4, the approximate posteriors are subject to the
following constraints

q̃ϕ(zi∣sy) = qϕ(zi∣sy) if i ≤ k +m,

q̃ϕ(zi∣sy) = avg((qϕ(zi∣sy), qϕ(z∣sw)) else.
(5)

q̃ϕ(z∣sw) can be computed in an analogous manner. With the above two-stage constraints, we can
separate ẑ from other factors, where ẑ is mapped into the dimensions range [k + 1 ∶ k +m] of the
encoded vector. In particular, q̃ϕ is only for the representation learning, and qϕ is then used for the
policy’s inputs.

3.2 TRAINING AGENTS FOR OOD GENERALIZATION

On the basis of the representation, we shall learn a generalizable policy π (parameterized by θπ)
in the multiple training environments, such that it maximizes the cumulative external rewards. To
begin, we condition π on the representation qϕ(z∣s) and adopt SAC as a basic optimization algo-
rithm (Haarnoja et al., 2018). In each iteration, SAC performs the soft policy evaluation step and the
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improvement step. The policy evaluation step updates a parametric Q-function Q(st, at) by mini-
mizing the soft Bellman residual. Then, the policy improvement step minimizes the KL divergence
between the policy and a Boltzmann distribution induced by the Q-function

Lπ(θπ) = Est∼D[DKL(π(⋅∣qϕ(z∣st); θπ)∣∣Q(st, ⋅))], (6)

where Q(st, ⋅) is positively related to exp{ 1
α
Q(st, ⋅)}. However, the disentangled representation

learning tends to constrain all encoded factors to remain independent, which may slightly alter their
semantic implication (Zhang et al., 2021c; Träuble et al., 2022). As a result, the input containing
only disentangled factors may hurt generalization (see Figure 7). Instead, we learn a policy that
establishes the dependence of actions on the partial representations F(z; z ∼ qϕ(z∣s)) by an ad-
ditional network. F is a selector that captures the variant causal factors ẑ by selecting features
from k to k + m dimensions, namely, F(z; z ∼ qϕ(z∣s)) = zk+1∶k+m. For brevity, we denote
F(z; z ∼ qϕ(z∣s)) with F(qϕ(z∣s)).

As shown in Figure 2(c), we add two separate networks (θ1 and θ2) to receive the
state and the representations of variant causal factors separately in the policy model
π(⋅∣fθ1(F(qϕ(z∣s))), fθ2(s); θπ, θ1, θ2). Then, in the policy improvement step, we optimize the
following object

Lπ(θπ, θ1, θ2) = Est∼DDKL(π(⋅∣fθ1(F(qϕ(z∣s))), fθ2(s); θπ, θ1, θ2)∣∣Q(st, ⋅)), (7)

where fθ1 is used to establish the dependence of actions on causal factors and fθ2 is used to receive
the information of the original state. In particular, the representation ϕ is frozen at this training stage.

Since the combination of causal inference and machine learning has been proven to be one of the
effective ways to achieve OOD generalization (Cui & Athey, 2022), we further want to theoretically
analyze whether the established dependence can recover the actual causal relationship. According
to the definition of causality (Peters et al., 2017), learning the causal relationship between causal
factors and actions needs to satisfy the condition: causal factors are independent of other factors that
lead to actions. Inspired by Mahajan et al. (2021), we claim the following (proof in Appendix B).

Proposition 1 Under the Causal MDP setup as above, if policy π converges to optimal π∗, where
policy π

∗ can maximize the expected cumulative reward for all training environments E, then the
GCRL for learning representations yields a generalizable agent such that learnt representation
F(qϕ(z∣s)) is independent of other factors in the controllable state s

c given the causal factors
s
u. Specifically, the entropy H(sc∣su) = H(sc∣F(qϕ(z∣s)), su).

The above proposition indicates that the representation of causal factors is independent of other
factors in the states sampled by the optimal policy π

∗. Thus, while the optimal policy can be found
in training environments, the established dependence can recover the causal relationship between
causal factors and actions. Meanwhile, the causal relationship ensures that the policy can achieve
OOD generalization.

Further details and the full algorithm for optimizing GCRL can be found in Appendix A.

4 EXPERIMENTS

The experimental studies aim at examining if the GCRL achieves the OOD generalization, and
whether the causal relationships between causal factors and actions are recovered.

4.1 EXPERIMENTAL SETUP

To verify the performance of the OOD generalization, we carry out benchmark tasks on Causal
World (Ahmed et al., 2020) and Mujoco Control Suite (Tassa et al., 2018). In particular, additional
experiments on OOD generalization, visualization, ablation, and parameter sensitivity can be found
in Appendix C. Further details about the GCRL setting are provided in Appendix D.

Causal World The environments in the Causal World consist of a 3-fingered robot with 3 joints
on each finger. Each environment is constrained to consist of a single object with which the agent
interacts. For each object, the causal factors are mass (m), size (s), and height (h), which can be
manipulated in the experiments.
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Figure 3: Comparison of OOD generalization in testing environments. The x-axis represents the
episodes of extra training in the testing environments. The y-axis represents the average reward at
each evaluation. GCRL is only learned in the training environments and deployed directly in the
testing environments, which is the strict OOD generalization setting. The reward curve shows that
GCRL generalizes better to the new values of causal factors compared with other baselines.

Mujoco Control Suite Mujoco includes a set of baseline environments for RL where the agent is
required to simulate animal or human behavior. We select four verification environments (i.e., Ant,
HalfCheetah, Hopper, and Walker), where their causal factors are the mass of the agent.

Baselines We compare the recent method Causal Curiosity (CC), which discovers binary repre-
sentations of causal factors in different environments (Sontakke et al., 2021). Based on (Perez et al.,
2020), we implement another two baselines, i.e., the Generalist and the Specialist, to verify the
generalization ability of the GCRL. The Specialist does not access the training environments but is
directly learned in the testing environments. Besides, the Specialist also serves as a benchmark for
the complexity of the tasks. In contrast, the Generalist has access to the training environments but
without access to the representations of causal factors. Finally, we add a pre-trained VAE baseline
by following the setting of (Träuble et al., 2022). All comparison algorithms are implemented based
on the SAC model to ensure fairness (Haarnoja et al., 2018).

4.2 VERIFICATION OF OOD GENERALIZATION

To verify the OOD generalization performance of GCRL in unseen environments, we select multiple
scenarios in the Causal World and Mujoco, where the settings of each scenario are consistent with
(Sontakke et al., 2021). For Causal World, we select Pushing and Picking, and set different causal
factors (mass, size, height) to create training environments and testing environments. Specifically,
we set the mass from 0.01 to 0.05, the size from 2.0 to 2.5, and the height from 0.1 to 0.15 in the
training environments. In testing environments, we increase the difficulty of the tasks by modifying
the mass to 0.1, size to 1.5, and height to 0.2. For Mujoco, we set the mass from 0.5x to 1.0x the
default in training environments, and 1.5x the default in testing environments. In particular, our
GCRL only learns in the training environments, but other methods additionally access extra 1000
episodes in the testing environment.

Figure 3 shows the OOD generalization performance comparison of the algorithms in the testing
environment, where the x-axis represents the extra data used by baselines. In general, we find that
GCRL generalizes well to all unseen environments and outperforms other baselines without extra
training. Furthermore, GCRL outperforms other algorithms that learn extra in testing environments
from the Causal World. In particular, we noticed that two scenarios (Pushing and Picking) with
augmented causal factors are challenging, which makes other baselines unable to achieve optimal
through extra data. In Ant and Walker, the CC slightly outperforms us after extra training in the
testing environments, but the ability of zero-shot generalization is significantly behind the GCRL.
Finally, we summarize the rewards obtained by the OOD generalization policies and OOD adapta-
tion policies in Table 1, where the rewards in Mujoco are multiplied by a coefficient of 10−3.
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Table 1: Performance comparison of OOD generalization policies and OOD adaptation policies in
unseen environments. Values are episodic rewards averaged over 100 episodes using a held-out set
of environment seeds. GCRL, CC, and Generalist are only learned in the training environments and
deployed directly in the testing environments. CC°, Generalist°, and Specialist are baselines for extra
training in the testing environments.

Environments OOD generalization OOD adaptation
GCRL CC Generalist CC° Generalist° Specialist

Pushing-m 4.44 ± 0.04 0.02 ± 0.24 0.10 ± 0.53 0.62 ± 0.10 2.94 ± 1.79 1.62 ± 1.59

Pushing+m+s 3.49 ± 0.42 0.17 ± 0.30 0.67 ± 0.57 2.66 ± 1.55 0.63 ± 0.37 0.49 ± 0.15

Picking+m 3.82 ± 0.04 0.24 ± 0.18 0.06 ± 0.39 1.97 ± 1.17 0.60 ± 0.15 0.58 ± 0.22

Picking+m+h 2.94 ± 0.40 0.22 ± 0.19 0.13 ± 0.45 1.27 ± 0.96 0.16 ± 0.59 0.64 ± 0.22

Ant+m 5.93 ± 0.23 3.36 ± 1.50 2.48 ± 1.69 6.03 ± 0.46 5.91 ± 0.16 4.48 ± 0.78

Walker2d+m 4.07 ± 0.02 0.75 ± 0.04 1.03 ± 0.50 4.11 ± 0.12 3.75 ± 0.12 3.56 ± 0.56

Hopper+m 2.89 ± 0.26 1.85 ± 0.79 1.23 ± 0.72 2.73 ± 0.59 2.33 ± 0.64 2.87 ± 0.12

HalfCheetah+m 3.95 ± 0.06 2.71 ± 0.24 2.75 ± 0.27 3.86 ± 0.02 3.94 ± 0.07 3.72 ± 0.12
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Figure 4: Comparison of OOD generalization in over 100 environments. The heatmap shows the
success rate of GCRL, CC, and Generalist in each environment, where training environments are
selected from the upper left quarter. GCRL can basically generalize to all difficult environments,
while CC and Generalist can only generalize to some of the more similar environments.

Figure 4 shows the comparison of OOD generalization performance under more than one hundred
groups of different causal factors in Picking, where the difficulty of the environment is proportional
to the mass and height. Compared with CC and Generalist, GCRL achieves better generalization
in all environments. This is because: 1) GCRL learns a continuous disentangled representation of
causal factors from RL states, which can efficiently discover the important changes in environments;
2) GCRL recovers the causal relationship between actions and causal factors, ensuring that policies
can directly predict the actions of unseen environments. The policies based on binary representation
(CC) cannot generalize to factors with different values, resulting in poor performance in difficult
environments. A broader range of the testing value can be seen in Appendix C.1.

4.3 PROBING THE INTERPRETABILITY OF GCRL

To better understand how the OOD generalization is achieved in GCRL, we intervene in disen-
tangled representations and visualize the behavioral trajectories of policies in Figure 5. Based on
the optimal policy, we record one optimal trajectory and two intervened trajectories separately in the
Mujoco environments, where the intervened causal factor is the mass. For the representations of each
causal factor, we introduce two interventions, i.e., grow and shrink, achieved by multiplying with a
coefficient. This experiment allows us to observe the causal relationship between causal factors and
actions. In Figure 5(a), we find that the intervention causes the ants to either fail to lift their legs or
lift their legs excessively, compared with normal walking. This phenomenon intuitively illustrates
GCRL’s finding that mass affects leg strength, which is consistent with human understanding of their
causal relationship. A similar phenomenon can be seen in Figure 5(b) that the hopper controls the
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Figure 5: Visualization of behavioral trajectories under the interventions. The first trace shows the
normal behaviors of the optimal policy without interventions. The last two trajectories show differ-
ences in behaviors after intervention on the representations (mass). It is worth noting that in this
experiment, the coefficients act directly on the latent variables.
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Figure 6: Visualization of the disentangled representations. The x-axis and y-axis correspond to the
two dimensions of the encoded factor, respectively. The distributions of learned representations shift
similarly with the setting of the masses, indicating that the information about variant causal factors
is encoded into the specified dimensions.

jumps’ force, resulting in two unbalanced trajectories due to the interventions. As a result, we find
that GCRL is able to recover the causal relationship between causal factors and actions based on the
learned representations, thereby generalizing to unseen environments.

4.4 PROBING THE DISENTANGLED REPRESENTATIONS OF CAUSAL FACTORS

To verify whether the learned representation satisfies the conditions presented in Section 3.1, we
collect 30 trajectories generated in environments with different settings (mass) and visualize the
low-dimensional embedding of the representations for the variant causal factors in the trajectories.
For each task, we set the mass factor to be multiplied by three different coefficients (0.5, 1.0, 1.5) and
assign a two-dimensional encoded vector to infer the approximate posterior. As shown in Figure 6,
the shift of the distribution is approximated when the coefficients go from 0.5 to 1.0 and from 1.0
to 1.5. Furthermore, the distribution of the representation shifts similarly with the setting of the
causal factor, indicating that it encodes the information of mass. These results further substantiate
our proposal of the two-stage constraint in the GCRL framework.

4.5 ABLATION STUDY

To verify the contribution of the disentanglement and each part of the representations to the general-
ization, we add an additional baseline pre-trained VAE (Träuble et al., 2022) and ablations that use
each part of the representation as inputs to the policy. As shown in Figure 7(a), only the variant causal
factor significantly improves the generalization, indicating that in the Causal MDP setting (Sontakke
et al., 2021), factors that alter the dynamics of the environment need to be focused on. We find that
the performance is slightly reduced when all factors are used as input to the policy. This is because
some of these factors may be correlated with each other in the environment (Träuble et al., 2022).
However, the disentangled representation learning tends to constrain the encoded factors to be as
independent as possible, which may change their semantic implication (Träuble et al., 2022; Zhang
et al., 2021c). In Figure 7(b), GCRL outperforms the pre-trained VAE, indicating that the weakly
supervised disentanglement helps the policy model discover the critical changes in environmental
dynamics and achieves better generalization.
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Figure 7: Ablation study on representations. (a) Ablations that use each part of the representation (N:
non-causal factor, I: invariant causal factor, and V: variant causal factor), and all of them, as inputs to
the policy. (b) Compared with the pre-trained VAE. The solid lines represent the fine-tuning curves;
the dash lines represent the generalization rewards in testing environments.

5 RELATED WORK

Causality in Reinforcement Learning Several ideas from causality have been applied to some
aspects of reinforcement learning, such as sample efficiency (Seitzer et al., 2021; Wang et al., 2020),
generalization (Lee et al., 2021; Yao et al., 2018), and theoretical analysis (Lee & Bareinboim.,
2020; Zhang & Bareinboim., 2019). Sonar et al. (2021) utilize the Invariant Risk Minimization
(Arjovsky et al., 2019; Ahuja et al., 2020; Tobin et al., 2017) to learn an optimal RL policy that
generalizes across domains. To avoid spurious correlations and learn the actual causal relationship,
Zhang et al. (2020); Bica et al. (2021) propose the idea of conditioning the policy on causal par-
ents that are shared across environments. The above methods have been well verified in scenarios
with different task-irrelevant features, such as different backgrounds. In contrast, we try to explore
another scenario with different task-relevant features, such as manipulating a robot to move boxes
of different sizes and qualities. Perhaps a similar setting to GCRL is one in (Sontakke et al., 2021),
which proposes to discover the causal factors in multiple environments and then equip the policy to
improve generalization. However, their models learn the OOD adaptation policy, leading to a limited
generalization that requires extra training data from the testing environments.

Representation in Reinforcement Learning Various existing deep RL methods have been pro-
posed to learn representations implicitly by optimizing some RL objectives (Zhang et al., 2021a;
Sodhani et al., 2021; Yarats et al., 2021; Träuble et al., 2022; Moskovitz et al., 2022; Chen & Pan.,
2022; Touati & Ollivier., 2021; Yamada et al., 2022; Träuble et al., 2021; Wahlstrom et al., 2015).
Unlike these common methods, disentangled representations are more interpretable (Hosoya, 2019)
and are also used in RL algorithms (Liu et al., 2021). However, Locatello et al. (2019) theoretically
prove that unsupervised disentanglement without inductive biases is impossible and highly unstable,
susceptible to random seed values. To address this issue, they also theoretically prove that pairwise
inputs provide sufficient inductive bias to disentangle causal factors of variation (Locatello et al.,
2020). Unfortunately, the above method cannot be directly applied in our setting because causal
factors may satisfy both non-shared and shared constraints. Instead, we split the process of disen-
tangling into two stages: the pre-training stage in a single environment and the fine-tuning stage in
multiple environments.

6 CONCLUSION

In this paper, we propose a novel framework GCRL for learning RL agents that achieve the OOD
generalization. In GCRL, we propose an encoder that learns a disentangled representation from
paired states with a two-stage constraint, which can capture information about causal factors. Based
on the disentangled representations, we learn a policy that establishes a dependence of action on
causal factors by setting an independent network. Moreover, we theoretically prove that the estab-
lished dependence can recover the causal relationship between causal factors and actions when the
policy approaches optimality. Experimental results verify that agents learned by our framework can
generalize to unseen environments from Causal World and Mujoco. The visualized results show that
after intervening with representations, our model is able to generate semantic behaviors based on
the recovered causal relationship.
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Appendix

A PSEUDOCODE FOR GCRL

The pseudocode for GCRL training is shown in Algorithm 1. The pre-training stage of representa-
tion learning for causal factors corresponds to lines 2 − 13 (Algorithm 1). The fine-tuning stage of
representation learning for causal factors corresponds to lines 15− 22 (Algorithm 1). The last stage
of policy learning for OOD generalization corresponds to lines 24 − 32 (Algorithm 1). Source code
is available at here.

Algorithm 1: Generalizable Causal Reinforcement Learning (GCRL)
Input: CausalMDP G =< S,A, P,R, γ >; The policy (parametered by θπ) with two

independent networks θ1, θ2; The disentangled representation model qϕ, A set of
training environments E = {ei}ni=1

Output: The learnt policy θπ, θ1, θ2; The learnt disentangled representation model qϕ
1 Initialize θπ, θ1, θ2, ϕ
2 Pre-training qϕ in single environment ei
3 for each iteration do
4 Sampling from a single environment ei
5 Update representation model qϕ with weakly-supervised method
6 Take a minibatch paired states from the replay buffer
7 Add the following constrains to qϕ
8 q̃ϕ(zi∣sx) = qϕ(zi∣sx) if i ≤ k
9 q̃ϕ(zi∣sx) = avg(qϕ(zi∣s1x) + qϕ(z∣sy)) else

10 Update qϕ by maximizing the ELBO object
11 maxϕ,θ E(s1,s2)Eq̃ϕ(z∣s1) log(pθ(s1∣z)) +Eq̃ϕ(z∣s2) log(pθ(s2∣z))
12 +βDKL(q̃ϕ(z∣s1)∣∣p(z)) + βDKL(q̃ϕ(z∣s2)∣∣p(z))
13 end
14 Refresh the replay buffer
15 Fine-tuning qϕ in multiple environments E
16 for each iteration do
17 Sampling from multiple environments E
18 Add the following constrains to qϕ
19 q̃ϕ(zi∣sy) = qϕ(zi∣sy) if i ≤ k +m
20 q̃ϕ(zi∣sy) = avg(qϕ(zi∣sy) + qϕ(z∣sw)) else
21 Fine-tuning qϕ by maximizing the ELBO object
22 end
23 Refresh the replay buffer
24 Training θπ, θ1, θ2 with qϕ
25 for each iteration do
26 Sampling from multiple environments E
27 for each epoch do
28 Take a minibatch data from the replay buffer
29 Update a parametric Q-function Q(st, at) by minimizing the soft Bellman residual
30 Update agents by minimizing the following object
31 Lπ(θπ, θ1, θ2) = Est∼D[DKL(π(⋅∣fθ1(F(qϕ(z∣s))), fθ2(s); θπ)∣∣Q(st, ⋅))]
32 end
33 end

B PROOF OF PROPOSITION 1

Proposition 1 relates to the Causal MDP setup, where the state contains causal and no-causal factors.
This setting allows different environments have different causal factors su, leading to different P (s)
marginals. Similar to the Environment Invariance Contraint (Creager et al., 2021), we assume that
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the controllable states sc in different environments are the same for the task. In other words, there
exists some s

c such that the p(sc) marginals should be the same (as well as p(sc∣π∗)). The proof
uses the entropy formulation of distribution-matching methods, as done by (Akuzawa et al., 2019).

Proof. We can write the GCRL model as optimizing two objectives: maximize the expected rewards
in the multiple training environments, and learn a disentangled representation F(q̃ϕ(z∣s)) that is
specific to the environment e given the optimal policy π

∗. For simplicity, we use F(s) refer to
F(q̃ϕ(z∣s)) in the following.

Let us focus on the second objective, which can be interpreted as maximizing the entropy of other
factors in the controllable state s

c given the optimal policy π
∗ and disentangled representation

H(sc∣π∗
,F(s)). Let F∗ be the optimal representation for the GCRL. Then, we can write

F∗
= argmax

F
H(sc∣π∗

,F(s)). (8)

Based on the property of entropy, we have H(sc∣π∗
,F(s)) ≤ H(sc∣π∗). Thus, the optimal F∗

satisfies
H(sc∣π∗

,F∗(s)) = H(sc∣π∗). (9)

Now two cases arise: su ⫫ s
c∣π∗ or su ⫫̸ s

c∣π∗. Based on the Environment Invariance Contraint,
we assume the former. If su is independent of other factors in the controllable state s

c conditioned
on the optimal policy, then

H(sc∣π∗) = H(sc∣π∗
, s
u). (10)

Here environment sc is independent of both s
u and F∗(s), conditional on π

∗. Since the causal
factors su cannot be caused by the representation F∗(s), it cannot be a collider in any graph con-
necting s

c, su and F∗(s) (Pearl, 2009). Thus, conditioning on s
u does not remove the independence

between s
c and F∗(s)∣π∗ (conditioned on π

∗). Hence, we condition on Eq. 9 with s
u and obtain

H(sc∣π∗
, s
u) = H(sc∣π∗

, s
u
,F∗(s)). (11)

Plugging it into the above equations, we drive

H(sc∣π∗) = H(sc∣π∗
, s
u) = H(sc∣π∗

, s
u
,F∗(s)). (12)

Since there is a unique optimal solution for the environment, su can completely predict the optimal
policy π

∗. Thus, we can remove π
∗ from the above equation

H(sc∣su) = H(sc∣F∗(s), su). (13)

The above equation implies that the learned representation F∗(s) is independent of other factors in
the controllable state sc given the causal factors su. Thus F∗(s) depends on s

u and not on any other
factors.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL RESULTS OF GENERALIZATION OVER CAUSAL WORLD

We additionally verify the OOD generalization performance of GCRL in Pushing and add the com-
parison results of the Generalist. In the training environments, we set the mass from 0.1 to 0.15 and
the size from 2.0 to 2.25. In the test, we set different environments by modifying the mass from 0.05
to 0.2 and size from 1.75 to 2.25. Figure 8 shows the comparison of generalization performance
under more than one hundred groups of different causal factors in Pushing and picking, where the
difficulty of the environment is proportional to the quality and inversely proportional to the size.
GCRL achieves better generalization than Causal Curiosity in all environments. This is because
(1) GCRL can efficiently discover the important changes in environments by learning a continuous
disentangled representation from RL states. (2) GCRL can predict new actions for unseen causal
factors by establishing causality between actions and causal factors. Based on original states, the
Generalist cannot adapt to factors with large differences, resulting in poor performance in unseen
environments. In Figure 9, training environments are selected from the bottom right quarter. Due to
the simpler dynamics of the environment in the test distribution, models are easier to achieve the
zero-shot generalization.
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Figure 8: Comparison of OOD generalization in over one hundred environments. The heatmap shows
the success rate of GCRL, Causal Curiosity, and Generalist in each environment, where training
environments are selected from the upper left quarter. Generalist has the worst generalizability be-
cause it is the only method that does not consider causal factors. GCRL can basically generalize to
all difficult environments, while Causal Curiosity can only generalize to some of the more similar
environments.
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Figure 9: Comparison of OOD generalization in over one hundred environments. The heat map
shows the success rate of GCRL, Causal Curiosity in each environment, where training environments
are selected from the bottom right quarter. Benefiting from the simpler dynamics of the environment
in the test distribution, the model is easier to achieve the zero-shot generalization.

C.2 ADDITIONAL VISUALIZATION RESULTS OF MUJOCO

We also record one non-intervention and two intervention trajectories separately in another two Mu-
joco environments, where the intervened factor is the mass. In Figure 10 (a), we found that both
forward and back occurred after the intervention compared to normal walking. This phenomenon
intuitively illustrates GCRL’s finding that mass affects leg strength, which is consistent with human
understanding of their causal relationship. A similar phenomenon can be seen in Figure 10 (b) that
the cheetah controls the jumps’ force according to the mass, resulting in two unbalanced trajectories
due to the interventions. As a result, we find that GCRL is able to discover the actual causal rela-
tionship between causal factors and actions based on learned representations in training sets, thereby
generalizing to unseen environments.

C.3 PARAMETER SENSITIVITY ANALYSIS

We select the β, k, and m to evaluate whether our model is sensitive to specific essential hyperpa-
rameters. The results are shown in Figure 11. For β, we find that β = 1 is enough for GCRL to
disentangle the causal factors, leading to excellent generalization. For k, we recommend choosing a
relatively larger value (> m) to ensure complete encoding of controllable states, which is beneficial
to disentangle causal factors of variation in the fine-tuning stage. For m, the results in Figure 11 (c)
show that its value is inversely proportional to the generalization performance of the policy because
the large m may lead to an incorrect encoding of non-causal factors. As a result, We conclude as
follows: (1) The choice of β does not significantly affect the performance of the model. (2) A large
k facilitates the separation of non-causal factors. (3) A small m is sufficient to encode causal factors,
which is consistent with the conclusion in (Hosoya, 2019).
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the normal behaviors of the optimal policy without interventions. The last two trajectories show
differences in behaviors after intervention on the representations (mass).
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Figure 11: Parameter Sensitivity Analysis. (a) Performance comparisons based on constraints of
different strengths β. (b) Performance comparisons of different encoding dimensions k for non-
causal factors. (c) Performance comparisons of different encoding dimensions m for causal factors.

C.4 ADDITIONAL ABLATION STUDY

Our goal is to discover the dependencies of actions on causal factors. To facilitate the model to
achieve this goal, we add additional parameters θ1 to receive disentangled representations of the
variant causal factors and θ2 to receive the original state. To verify the advantage of using additional
networks to learn the dependence of actions on causal factors proposed in Section 3.2, we compare
with the original policy networks (θπ) that receive both the representations and states. As shown
in Figure 12, GCRL achieves better performance since the additional network is able to increase
the influence of causal factors on the choice of actions. In the Hopper scenario, the original policy
exhibits poor generalization and is significantly inferior to our policy. This is because the mass
factor is not obvious and invariant in the same environment, leading to the importance of its features
in generalization is not easily perceived by a single network.

C.5 THE REWARD GAP BETWEEN TRAINING AND TESTING

Consistent with the settings in Figure 3, we report the training curves for GCRL and CC. As shown
in Figure 13, both GCRL and CC have achieved good performance in the training environments.
However, CC generalizes poorly in the testing environment, especially in the Causal World. This is
because CC has not learned to adjust policies based on the changes in causal factors.

C.6 ENVIRONMENTS WITH DIFFERENT TASK-IRRELEVANT FACTORS

In real-world applications, task-irrelevant features such as background and noise may also change
and induce spurious correlations. In this case, a common approach is to learn representations that
are invariant across environments (Zhang et al., 2021a; 2020). Therefore, we need to separate this
part of the features to ensure that only task-relevant features are used as the input of the policy.
Fortunately, task-irrelevant features can also be disentangled by GCRL models using two-stage con-
straints because they usually depend on the setting of the environment, such as grasping an object
with different colors (Träuble et al., 2022). In other words, task-irrelevant factors will be encoded
into ẑ, while other parts are invariant across environments. We can define a selector F̃ to filter the
task-relevant factors corresponding to [z̃, z] by selecting features from 1 to k and from k + m to
d dimensions, namely, F̃(z; z ∼ qϕ(z∣s)) = [z1∶k, zk+m∶d]. Similar to Section 3.2, we define
F̃(qϕ(z∣s)) to represent F̃(z; z ∼ qϕ(z∣s)). Due to the presence of task-irrelevant factors in the
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Figure 12: Ablation study on policy networks. Compared with the policy (θ1, θ2, θπ) in GCRL, the
original policy receive both representations of the variant causal factors and the original state by a
single network (θπ).
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Figure 13: The reward gap between training and testing. The solid lines denote the reward cure
in the training environments, and the dashed lines represent the generalization rewards in the test
environments.

original state, we train the model to rely directly on the representation of task-relevant factors:

Lπ(θπ) = Est∼D[DKL(π(⋅∣F̃(qϕ(z∣st)); θπ)∣∣Q(st, ⋅))], (14)

where Q(st, ⋅) is approximately computed by the a parametric Q-function in SAC, and the repre-
sentations model ϕ is frozen at this training stage.
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Figure 14: The OOD generalization testing in
evironments with different task-irrelevant factors
(O:original state, N: non-causal factor, I: invariant
causal factor, and V: variant causal factor).

To verify the generalization of GCRL in
the testing environment with different task-
irrelevant factors, we set different colored ob-
jects in Causal World and different back-
grounds in Mujoco. We test factors of differ-
ent combination types as input to the policy
and compare them with the original state. As
shown in Figure 14, the combination of N
and I achieve the best performance, indicating
that the color information is encoded into the V
part. The other two combinations (N + V and
I + V ) suffer severe performance degradation
due to the lack of task-relevant information.

D IMPLEMENT DETAILS

We implement the disentangled representation model using VAE as the core component in com-
bination with fully-connected layers (FC layer). Experiments are carried out on NVIDIA GeForce
RTX 2070 SUPER GPUs and with fixed hyperparameter settings, as described in the following. For
the encoder, we employ a nonlinear layer (256 units) based on the RELU activation function and
an FC layer (16 units) to output the posterior distribution qϕ(z∣s). we set the dimension zdim of
qϕ(z∣s) is 16. For the decoder, we employ a nonlinear layer (16 units) based on the RELU activation
function and an FC layer (the size is equal to states) to reconstruct the input from the encoder. For
constraining, we refer to (Hosoya, 2019) to select k = 6 in the single environment, and m is equal
to the number of factors that change in the multiple environments. k is relatively large to ensure that
non-causal factors are adequately coded, while m is relatively small to avoid non-causal factors from
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being coded in the fine-tuning stage. For training, we collect 1000 episodes in single environments
and 100 episodes in multiple environments.

Table 2: Hyperparameters used in Causal World.
common hyperparameters value

soft target tau 5e-3
gamma 0.95

learning rate in RL 1e-4
learning rate in representation 1e-4

batch size 256
optimizer Adam

reward scale 1
max path length 1000

num trains per train loop 1000
use automatic entropy tuning Ture

Table 3: Hyperparameters used in Mujoco.
common hyperparameters value

soft target tau 5e-3
gamma 0.99

learning rate in RL 1e-4
learning rate in representation 3e-4

batch size 256
optimizer Adam

reward scale 1
max path length 1000

num trains per train loop 1000
use automatic entropy tuning Ture

We implement the policy using SAC as the core component in combination with two independent
networks. For fθ1 , we employ a nonlinear layer (32 units) based on the RELU activation function
and an FC layer (16 units) to output the causal effect on actions. For fθ2 , we employ a nonlinear
layer (256 units) based on the RELU activation function and an FC layer (16 units) to predict the
causal effect from controllable state. For the output of actions, we employ an FC layer (the number
of units is equal to the action space in environments) to predict the final actions. For training, we
collect 1000 episodes in training environments.

More hyperparameters for GCRL are shown in Table 2 and Table 3.
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