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Abstract

Implicit feedback is easy to collect and contains rich weak supervision signals, thus is broadly
used in recommender systems. Recent works reveal a huge gap between the implicit feedback
and the user-item relevance due to the fact that users tend to access items with high expo-
sures but these items may not be necessarily relevant to users’ preferences. To bridge the
gap, existing methods explicitly model the item exposure degree and propose unbiased esti-
mators to improve the relevance. Unfortunately, these unbiased estimators suffer from the
high gradient variance, especially for long-tail items, leading to inaccurate gradient updates
and degraded model performance.
To tackle this challenge, we propose a bi-level framework for debiasing implicit feedback
with low variance. We first develop a low-variance unbiased estimator from a probabilis-
tic perspective, which effectively bounds the variance of the gradient. Unlike previous
works which either estimate the exposure via heuristic-based strategies or use a large bi-
ased training set, we propose to estimate the exposure via an unbiased small-scale valida-
tion set. Specifically, we parameterize the user-item exposure by incorporating both user
and item information, and propose to construct the unbiased validation set only from the
biased training set instead of using random policy at the cost of degrading user experi-
ence. By leveraging the unbiased validation set, we adopt a bi-level optimization frame-
work to automatically update exposure-related parameters along with recommendation
model parameters during the learning. Experiments on two real-world datasets and two
semi-synthetic datasets verify the effectiveness of our method. Our code is available at
https://anonymous.4open.science/r/TMLR-Biff/README.md.

1 INTRODUCTION

Recent years have witnessed the fast development of the recommender system. It has been successfully
deployed in many web services like E-commerce and social media. Learning from historical interactions, a
recommender system can predict the relevance or preference between users and items, based on which, the
system recommends items that the user may prefer. To enable these, there are two types of feedback: explicit
feedback and implicit feedback. Explicit feedback can be the ratings on items that explicitly represent the
preferences of the users. However, collecting explicit feedback requires the user active participation, which
makes explicit feedback unavailable in most real-world scenarios. Compared with explicit feedback, implicit
feedback such as clicks is widely used because of its ubiquity and wide availability. Though easier to collect,
implicit feedback is one-sided and positive only Yang et al. (2018), which means the recommender can only
observe the user interactions with relevant items. A missing link between a user and an item can either be
that the user dislikes the item or that the item is not exposed to the user Liang et al. (2016b).

Many important works have tried to improve recommendation performances in implicit feedback by explic-
itly modeling the user-item exposure. For example, the work Yang et al. (2018) finds implicit feedback
subject to popularity bias, and proposes an unbiased evaluator based on the Inverse-Propensity-Scoring
(IPS) technique Joachims & Swaminathan (2016), which significantly reduces the evaluation bias. Exposure
matrix factorization (ExpoMF) Liang et al. (2016b) introduces exposure variables to build a probabilistic
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model, and considers external information when estimating exposure. Yet, RelMF Saito et al. (2020) finds
that ExpoMF is biased towards popular items and yields unsatisfied results for rare items. Based on the
IPS technique, RelMF proposes an unbiased estimator to maximize the user-item relevance. In their work,
both the user-item exposure and the user-item relevance are modeled as Bernoulli random variables, and
the click probability is the product of the exposure probability and the relevance probability. RelMF better
achieves the objective of the unbiased recommendations than alternatives Liang et al. (2016b); Hu et al.
(2008). Using the same unbiased estimator in RelMF, CJMF Zhu et al. (2020) adopts a combinational joint
learning framework to more accurately estimate exposure.

However, we find Saito et al. (2020); Zhu et al. (2020) suffer from the high gradient variance problem.
Inaccurate gradient updates occur in the learning process, which degrades the model performance. Moreover,
these existing approaches Hu et al. (2008); Yang et al. (2018); Saito et al. (2020); Zhu et al. (2020) adopt
some simple heuristic-based strategies or only leverage the biased training set to estimate exposure, which
inevitably leads to a biased recommendation model.

To tackle the high gradient variance problem, we develop a low-variance estimator from a probabilistic per-
spective. To better estimate exposure, we model exposure by incorporating both user and item information
and propose to construct a small-scale unbiased validation set only from the biased training set to guide
exposure estimation. This construction process does not involve any random policy and thus will not de-
grade user experience. With the unbiased set, we introduce bi-level optimization Colson et al. (2007) with
exposure parameters as the outer variable and relevance parameters (recommendation model parameters)
as the inner variable, to update exposure parameters automatically. Overall, we propose Biif : A Bilevel
framework for Debiasing Implicit Feedback with Low Variance to update exposure parameters simultaneously
with relevance parameters. We further analyze the inner mechanism of the bi-level framework in Biif and
compare bi-level optimization with other optimization methods to demonstrate the necessity of the bi-level
framework. We verify the effectiveness of Biif on both real-world and semi-synthetic datasets.

To summarize, our work has three contributions:

1. We propose a low-variance unbiased estimator which effectively bounds gradient variance.

2. We connect exposure estimation to both user and item information and propose to form a unbiased
set without degrading user experience. With the unbiased set, we propose a bi-level framework to
guide exposure estimation.

3. Furthermore, we give a natural interpretation of why bi-level optimization works by gradient analysis,
and compare it with other optimization methods to better understand its necessity.

The structure of the paper is as follows. In Section 2, we introduce some notations and illustrate the Biif
algorithm. Then we analyze the experimental results on two real-world datasets in Section 3 and two semi-
synthetic datasets in Section 4. In Section 5, we discuss related work from two perspectives: debiasing and
bi-level optimization in the recommender system. In Section 6, we summarize our findings.

2 METHOD

In this section, we begin by introducing some preliminaries including notations and the previous unbiased
estimator. Then we show the high gradient variance problem in the previous unbiased estimator and derive
our low-variance unbiased estimator from a probabilistic perspective. Further, we parameterize the user-item
exposure by considering both user and item information and propose to construct a small unbiased validation
set to guide exposure estimation via a bi-level optimization framework.

2.1 Preliminaries

Notations. Assume we have an implicit feedback dataset D with N users indexed by u and M items
indexed by i. Let R̃ui denote the observed feedback between u and i. R̃ui = 1 indicates positive feedback,
while R̃ui = 0 indicates either positive unlabeled feedback or negative feedback.
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To precisely formulate implicit feedback, RelMF Saito et al. (2020) introduces two kinds of Bernoulli random
variables Rui and Oui. Rui represents the user-item relevance between u and i with γui as the Bernoulli
parameter. Rui = 1 means u and i are relevant, and Rui = 0 means u and i are not relevant. Similarily, Oui

represents the user-item exposure between u and i with mui as the Bernoulli parameter. Oui = 1 means i
is exposed to u, and vice versa. We denote m̄ui as the estimated exposure between u and i in the following
paper. Note that both Rui and Oui can not be observed in implicit feedback. R̃ui is also a Bernoulli variable:

R̃ui = RuiOui. (1)

The Bernoulli parameter of R̃ui can be written as:

P (R̃ui = 1) = muiγui. (2)

From Eq. (1), we can see that a positive feedback Rui = 1 means that i is exposed to u and u likes i.

The task of the implicit recommendation system is to provide an ordered set of items for users based on the
predicted user-item relevance. We use pui = p(Rui = 1|ω) to represent the predicted user-item relevance
where the relevance parameters (recommendation model parameters) ω include the user embedding ωu and
the item embedding ωi. Since matrix factorization is the most widely used technique Koren et al. (2009) in
the recommender system, in this paper we compute the predicted user-item relevance as:

pui = σ(ωu
⊤ωi), (3)

where σ(·) represents the sigmoid function. Note that our Biif algorithm can also be easily applied on other
neural network based modelsHe et al. (2017); Wang et al. (2019a).

Unbiased Estimator. The work Saito et al. (2020) finds the top-k recommendation metrics such as the
mean average precision Yang et al. (2018) can not directly signify relevance, and thus are not proper to
measure recommendation results. To optimize the performance metric of relevance, the work Saito et al.
(2020) proposes an unbiased estimator from the IPS technique, and the log loss form can be written as:

L1(ω) = −
∑

(u,i)∈D

R̃ui

m̄ui
log pui

+(1 − R̃ui

m̄ui
) log(1 − pui).

(4)

Once we have the expectation of L1(ω), we will find the optimal solution for pui is γui given an accurate
exposure estimation m̄ui = mui. This proves this estimator unbiased. In this paper, we mainly consider the
log loss form since it is the most widely used form. Other loss forms such as the mean squared loss can be
analyzed similarly.

2.2 Proposed Unbiased Estimator

High gradient variance. We compute the gradient of L1(ω) with respect to pui as:

∂L1(ω)
∂pui

= −[ R̃ui

m̄ui
( 1
pui

+ 1
1 − pui

) − 1
1 − pui

]. (5)

The variance of ∂L1(ω)
∂pui

can be calculated by:

V (∂L1(ω)
∂pui

) = V (R̃ui)
m̄2

ui

( 1
pui

+ 1
1 − pui

)2

= γui(1 − m̄uiγui)
m̄uip2

ui(1 − pui)2 .

(6)

For rare items, m̄ui can be very small so that V ( ∂L1(ω)
∂pui

) becomes unbounded. This problem leads to
inaccurate gradient updates and decreases the model performance.
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Low-variance unbiased estimator. Instead of deriving from the IPS technique, which leads to the high
gradient variance problem, we propose a low-variance unbiased estimator from a probalistic view. More
specifically, we first write the cross-entropy loss as:

L(ω) = −
∑

(u,i)∈D

R̃ui log p(R̃ui = 1|ω)

+(1 − R̃ui) log p(R̃ui = 0|ω).
(7)

Recall that we are caring about the user-item relevance prediction pui. From the probabilistic perspective,
we could have:

p(R̃ui = 1|ω) = m̄uipui. (8)

p(R̃ui = 0|ω) = 1 − m̄uipui. (9)
Our estimator is defined as:

L2(ω) = −
∑

(u,i)∈D

R̃ui log(m̄uipui)

+ (1 − R̃ui) log(1 − m̄uipui).
(10)

After computing the expectation of L2(ω), we can easily find the optimal solution for pui is also γui given
an accurate exposure estimation m̄ui = mui. This proves our estimator unbiased (see Appendix A.1 for
details). Besides, our unbiased estimator yields better gradient properties for rare items. Specifically, we
calculate the gradient as:

∂L2(ω)
∂pui

= −( R̃ui

pui
+ (R̃ui − 1)m̄ui

1 − m̄uipui
). (11)

The variance of ∂L2(ω)
∂pui

is calculated as:

V (∂L2(ω)
∂pui

) = V (R̃ui)(
1

pui
+ m̄ui

1 − m̄uipui
)2

= m̄uiγui(1 − m̄uiγui)
p2

ui(1 − m̄uipui)2 .

(12)

V ( ∂L2(ω)
∂pui

) stays bounded as m̄ui becomes small, and thus this estimator yileds stable gradient updates. We
do not consider the possible high gradient variance problem caused by pui = 0 or pui = 1 since this occurs
in both estimators. Our estimator only solves the high gradient variance problem related to m̄ui.

2.3 Exposure Estimation

2.3.1 Exposure Modeling

It is not realistic to assign every Oui entry a learnable parameter to represent the user-item exposure due to
the space limit, so we need a distributed representation for all Oui entries. In this paper, we parameterize the
user-item exposure mui with one MLP (multi-layer perceptron) and N user-wise embeddings, and connect
exposure estimation with both user and item information. On one hand, mui is large if the item is popular,
which means we should consider the item popularity when estimating mui. Note that the popularity He
et al. (2016) of the item i can be approximated as the following:

θi = (
∑

u R̃ui

maxi

∑
u R̃ui

)0.5. (13)

On the other hand, mui becomes large if the item is exposed to the user often or the user is active, which
means we should also consider the impact of the user. We introduce a new user-wise embedding eu and use
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Algorithm 1 Bi-level Optimization Framework
Input: the training set Dtrain; the unbiased validation set Dval; the max iteration T ; other hyperparameters.
Parameter: ω: the relevance parameters(the user and the item embeddings); α: the exposure parameters
to parameterize m̄ui.
Output: ω∗.

1: for t ∈ range(0, T ) do
2: SampleMiniBatch Btrainfrom Dtrain;
3: Update ω with Btrain by Eq.(16);
4: Update α with Dval by Eq.(17);
5: end for

σ(eu
⊤ωi) to represent the user impact. Note that the introduced user embedding eu can be learned directly

through external user information Liang et al. (2016b), whereas, in this paper, we assume we do not have
the external information, which is more general. To sum up:

mα(u, i, ω) = r(ωi)σ(eu
⊤ωi) + (1 − r(ωi))θi. (14)

Here r(·) learns the trade-off between the impact of the user and the popularity of the item, and we use one
layer MLP followed by a sigmoid function to parameterize r(·). We use α to denote exposure parameters,
which include the introduced user embeddings and the MLP parameters in r. For convenience, we still use
m̄ui instead of mα(u, i, ω) to represent the estimated exposure in the following paper.

2.3.2 Bi-level Optimization

Previous work Hu et al. (2008); Yang et al. (2018); Saito et al. (2020); Zhu et al. (2020) adopt some simple
heuristics or only use the biased training set to estimate exposure, which inevitably results in a biased
model. We propose to construct a small unbiased validation set to guide exposure estimation via bi-level
optimization. Specifically, we select the most popular positive item and negative item for each active user
to form the unbiased validation set. The reason why the validation set can be treated as unbiased is that
these items are very likely to be exposed to these users and we approximate mui as 1 in the validation set.
The proposed unbiased validation set is different from the one in AD Chen et al. (2021), which is collected
by deploying random policy to the recommendation platform and degrades the user experience a lot. This
means the proposed Biff algorithm can be much more practical than AD.

Formulation. We use the proposed estimator in Eq. (10) to calculate the training loss Ltrain and the
validation loss Lval. Given an unbiased training set, we obtain the optimal user and item embeddings ω∗

by minimizing Ltrain(ω). Whereas in a biased training set, different user-item pairs have different exposure.
To be specific, for a biased training set, we need to first estimate the user-item exposure m̄ui parametrized
by α. Given m̄ui, the optimal ω is computed as:

ω∗(α) = arg min
ω

Ltrain(ω, α). (15)

The exposure parameters α can be seen as a special type of hyper-parameter and we update α automatically
by minimizing the validation loss Lval(ω∗(α)) on the unbiased validation set. Note that Lval(ω∗(α)) does
not explicitly contain any α term since the user-item exposure mui is approximated as 1 in the unbiased
validation set.

Our formulation implies a bi-level optimization problem with exposure parameters α as the outer variable
and the model parameters ω as the inner variable:

min
α

Lval(ω∗(α)). (1Biif)

s.t. ω∗(α) = arg min
ω

Ltrain(ω, α). (2Biif)

For efficiency, we use a gradient step with the learning rate η to approximate ω∗(α) in the inner loop:

ω∗(α) ≈ ω − η
∂Ltrain(ω, α)

∂ω
. (16)
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Similarly, in the outer loop, we update α by minimizing Lval(ω∗(α)) via a gradient descent step with the
outer loop learning rate η

′ :
α∗ ≈ α − η

′ ∂Lval(ω∗(α))
∂α

. (17)

This proposed bi-level optimization framework is summarized in Algorithm 1.

Interpretation by gradient analysis. By analyzing gradients, we give a natural interpretation of bi-level
optimization in Biif. In the validation set, assume u likes i1 and dislikes i2 (i1 or i2 can not be i); u1 likes i
and u2 dislikes i (u1 or u2 can not be u). We first compute the gradient for R̃ui = 1 (see Appendix A.2):

∂L′

val

∂m̄ui
= 0. (18)

This means m̄ui will not be updated explicitly for the positive feedback. Denote ωu
⊤ωi as R̄ui and then we

compute the gradient for R̃ui = 0 (see Appendix A.3 for details):

∂L′

val

∂mui
= ∂L′

val

∂ω⊤
u

∂ωu(mui)
∂mui

+ ∂L′

val

∂ω⊤
i

∂ωi(mui)
∂mui

= ησ(R̄ui)σ(−R̄ui)
(1 − m̄uiσ(R̄ui))2

[ωi1
⊤ωiσ(−R̄ui1)

−ωi2
⊤ωiσ(R̄ui2) + ωu1

⊤ωuσ(−R̄u1i)
−ωu2

⊤ωuσ(R̄u2i)].

(19)

For those i similar to i1, we know u likes i because u likes i1. Hence, the only explanation of R̃ui = 0 is that
mui is so small that u misses i. The first term in Eq.(19) leads to the same conclusion. To be specific, given
i and i1 are similar, ω⊤

i1
ωi is positive because ωi and ωi1 are in the same embedding space. Then we know

ησ(R̄ui)σ(−R̄ui)
(1−muiσ(R̄ui))2 ω⊤

i1
ωiσ(−R̄ui1) is positive, therefore this term contributes to the decrease of m̄ui. Since all

m̄ui share the same distributed representation, the user-item exposure m̄ui where i is unsimiliar to i1 will
be updated automatically. The other three terms in Eq. (19) can be analyzed similarly.

3 REAL-WORLD EXPERIMENTS

In this section, we conduct experiments on two real-world datasets and compare several state-of-the-art
methods with the proposed method Biif. We aim to answer the following two research questions:

• RQ1: How does Biif perform compared with other existing methods?

• RQ2: Is the proposed bi-level optimization framework necessary in Biif?

3.1 Experimental Setup

In this subsection, we introduce the datasets, comparison methods, evaluation protocols, and training details.

3.1.1 Datasets

To be best of our knowledge, the Yahoo!R31 dataset and the Coat2 dataset are the only two public datasets
that contain users’ ratings for randomly selected items, and we use the two datasets to measure the true
recommendation performance of Biif and the comparison methods.

To be specific, the Yahoo dataset contains approximately 15.4k users, 1k songs, and 300k five-star user-song
ratings in the training set. Besides, the unbiased test set is collected by sampling a subset of 5,400 users and

1https://webscope.sandbox.yahoo.com/
2https://www.cs.cornell.edu/ schnabts/mnar
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Table 1: (RQ1): Experiment Results on Yahoo for Comparison.
Metrics RelMF ExpoMF CJMF AD CEB BPR UMF(ours) Biif(ours)

DCG@1 0.501 ± 0.004 0.521 ± 0.007 0.535 ± 0.003 0.531 ± 0.006 0.462 ± 0.005 0.534 ± 0.007 0.541 ± 0.009 0.552 ± 0.004
DCG@2 0.686 ± 0.002 0.724 ± 0.011 0.742 ± 0.002 0.738 ± 0.005 0.664 ± 0.008 0.740 ± 0.007 0.731 ± 0.010 0.766 ± 0.004
DCG@3 0.794 ± 0.007 0.849 ± 0.008 0.866 ± 0.001 0.852 ± 0.007 0.779 ± 0.007 0.856 ± 0.005 0.842 ± 0.014 0.888 ± 0.002
MAP@1 0.501 ± 0.004 0.521 ± 0.007 0.532 ± 0.007 0.531 ± 0.006 0.460 ± 0.005 0.534 ± 0.009 0.541 ± 0.009 0.552 ± 0.004
MAP@2 0.583 ± 0.004 0.610 ± 0.009 0.622 ± 0.001 0.620 ± 0.004 0.558 ± 0.006 0.622 ± 0.007 0.625 ± 0.008 0.642 ± 0.003
MAP@3 0.608 ± 0.005 0.636 ± 0.007 0.646 ± 0.001 0.643 ± 0.005 0.586 ± 0.005 0.645 ± 0.006 0.652 ± 0.008 0.664 ± 0.003

asking every one of them to rate 10 randomly selected songs. The Coat dataset contains approximately 290
users, 300 coats, and 6,500 five-star user-coat ratings in the training set. Similar to the Yahoo dataset, the
unbiased test set is collected by asking all users to rate 16 randomly selected coats.

Both datasets use the following preprocessing procedure. Suggested by Yang et al. (2018), we treat ratings
≥ 4 as positive feedback and others as negative feedback. We first select the most popular negative item
and the most popular positive item for the most active 20% users to form the validation set, which can be
approximated as unbiased since the items are very likely to be exposed to the users. Following the suggestion
in Ren et al. (2018), we add the unbiased validation set into the training set since the model can always
leverage more information from the unbiased validation set. Apart from the unbiased validation set, we
select 10% data from the training set to form a hyper-validation set to tune hyperparameters.

3.1.2 Comparison methods

We mainly compare Biif with the following methods. RelMF Saito et al. (2020) adopts an unbiased es-
timator and uses the item popularity to approximate exposure; ExpoMF Liang et al. (2016b) introduces
exposure variables to build a probabilistic model and uses the Expectation-Maximization algorithm to es-
timate exposure; CJMFZhu et al. (2020) leverages different parts of the training dataset to jointly train
multiple models for exposure estimation. Note that Biif and CJMF both adopt the cross-entropy loss in
this paper for a fair comparison; ADChen et al. (2021) proposes a general learning framework to debias
recommendation and improve relevance; CEBGupta et al. (2021) propose a novel loss function for learning
the exposure and correcting exposure bias; BPR Rendle et al. (2009) is the most widely pairwise algorithm
for the top-N recommenders in implicit feedback; UMF uses the same exposure estimation as that in RelMF
but adopts our unbiased low-variance estimator.

3.1.3 Evaluation protocols

Suggested by Saito et al. (2020), we report the DCG@K (Discounted Cumulative Gain) and MAP@K (Mean
Average Precision) to evaluate the ranking performance of all methods. We set K=1,2,3 in our experiments
since the number of exposed items in the test set is small: Yahoo has 10 items and Coat has 16 items.

3.1.4 Training details

We use Pytorch to implement Biif and optimize it with AdamKingma & Ba (2014). We set the learning rate
as 10−3, the hidden dim as 50, the batch size as 1024, the training epoch as 100 for all methods on all datasets
unless otherwise specified. Since CJMF uses C=8 models, we train CJMF for a total of 15 epochs for a fair
comparison. For AD requiring an unbiased validation set, we use the validation set constructed by Biif for
a fair comparison. For other hyperparameters such as weight decay, we tune them via the performance on
the hyper-validation set using the SNIPS Yang et al. (2018) estimator. We run every experiment five times
and report the average result and one standard deviation.

3.2 RQ1: Biif outperforms other methods.

In this subsection, we aim to answer RQ1: How does Biif perform compared with other existing methods?
Table 1 and Table 2 show the performances for all six methods including Biif on the Yahoo dataset and the
Coat dataset respectively.
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Table 2: (RQ1): Experiment Results on Coat for Comparison.
Metrics RelMF ExpoMF CJMF AD CEB BPR UMF(ours) Biif(ours)

DCG@1 0.555 ± 0.013 0.523 ± 0.033 0.504 ± 0.022 0.526 ± 0.009 0.539 ± 0.014 0.568 ± 0.015 0.556 ± 0.013 0.573 ± 0.015
DCG@2 0.739 ± 0.003 0.728 ± 0.020 0.729 ± 0.023 0.752 ± 0.009 0.757 ± 0.014 0.770 ± 0.015 0.742 ± 0.015 0.792 ± 0.014
DCG@3 0.887 ± 0.013 0.851 ± 0.021 0.873 ± 0.016 0.907 ± 0.008 0.899 ± 0.018 0.906 ± 0.011 0.896 ± 0.018 0.931 ± 0.004
MAP@1 0.555 ± 0.013 0.523 ± 0.033 0.504 ± 0.022 0.526 ± 0.009 0.539 ± 0.014 0.568 ± 0.015 0.556 ± 0.013 0.573 ± 0.015
MAP@2 0.622 ± 0.008 0.594 ± 0.024 0.589 ± 0.017 0.607 ± 0.011 0.620 ± 0.011 0.635 ± 0.010 0.621 ± 0.015 0.648 ± 0.015
MAP@3 0.636 ± 0.008 0.606 ± 0.024 0.603 ± 0.013 0.626 ± 0.011 0.638 ± 0.009 0.650 ± 0.008 0.639 ± 0.015 0.659 ± 0.013

Firstly, we observe Biif achieves the best performance among all methods on the two datasets. This verifies
the effectiveness and robustness of the proposed Biif. Furthermore, Biif outperforms UMF in DCG@3 by
about 4% in both datasets because Biif connects exposure estimation not only with the item information
but also with the user information.

Last but not least, UMF outperforms RelMF in DCG@3 by about 7.4% in the Yahoo dataset. This can
be explained by the high gradient variance problem of RelMF. High gradient variance causes inaccurate
gradient updates and thus reduces the recommendation performance. Note that we cannot visualize the
gradient variance since the gradient variance comes from the assumption of the randomness of the dataset.
A single dataset can be seen as a single data point and thus cannot compute its variance. The advantage
of UMF over RelMF in the Coat dataset is smaller. The reason may be that the size of the Coat dataset
is small and can not reveal the difference between UMF and RelMF. Note that the high gradient variance
problem may also explain why Biif outperforms AD.

As for the time complexity, in the Yahoo dataset, RelMF takes 1.35 seconds to finish one epoch on the
GeForce GTX1650 platform and Biif takes 6.54 seconds due to the bi-level optimization computing process.
Also, we have done some experiments, which apply clipping parametersSaito et al. (2020) such as 0.01 on
RelMF, CJMF, UMF, CEB and Biif. Results are very similar to the ones without clipping parameters and
the reason may be reducing variance while introducing bias.

3.3 RQ2: Necessity of bi-level optimization

Figure 1: (RQ2): Experiment results on Yahoo and Coat for comparison. This demonstrates the importance
of our bi-level framework.

In this subsection, we aim to answer RQ2: Is bi-level optimization necessary in our method? To better
understand the necessity of bi-level optimization in Biif, we investigate two baseline strategies, where the
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exposure parameters and the relevance parameters are jointly optimized and alternately optimized, respec-
tively. We denote the two baseline strategies as JointOpt and AlterOpt respectively. As we can see in Fig.
1, JointOpt and AlterOpt yield similar results, and Biif outperforms both of them in DCG3 by around 3%
in both datasets. The reason is that JointOpt and AlterOpt do not leverage the information of the unbiased
validation set when updating the exposure parameters.

Inspired by Ma et al. (2020), we also consider another baseline strategy of bi-level optimization. Instead
of using the unbiased validation set, we treat every train batch as the validation set and perform bi-level
optimization between them:

min
α

Ltrain(ω∗(α), α). (1BiOpt2)

s.t. ω∗(α) = arg min
ω

Ltrain(ω, α). (2BiOpt2)

Note that exposure in the validation set can not be approximated as 1 anymore, so we use the estimated m̄ui

to represent the user-item exposure. We denote this new bi-level optimization strategy as BiOpt2. BiOpt2
receives no guidance from the unbiased validation set and thus is worse than Biif. BiOpt2 improves DCG3
over JointOpt and AlterOpt, by around 3% in Yahoo and 1% in coat respectively. The reason may be that
BiOpt2 considers the relation between ω and α explicitly, which narrows down the optimization space to a
more reasonable one and thus improves the training process. Similar results are also reported in Ghosh &
Lan (2021) where bi-level optimization on a biased validation set achieves satisfying performance.

4 SEMI-SYNTHETIC EXPERIMENTS

Besides the real-world dataset experiments which have verified the effectiveness of Biif, we further investigate
the correctness of the estimated exposure of Biif on semi-synthetic datasets. Specifically, we aim to investigate
the following research question — RQ3: Does Biif learn exposure correctly?

Figure 2: Trend of the PCC value between the ground-truth exposure and the learned exposure for ExpoMF,
CJMF, CEB, JointOpt, and Biif on the ML 100K dataset and the Amazon CDs dataset. The Biif line is
high and stable all the time, which is consistent with the expressive results of Biif in Fig. 3.

4.1 Datasets

To answer RQ3, we need to know the ground-truth exposure parameters in the dataset. We use the MovieLens
(ML) 100K3 dataset and the Amazon CDs4 dataset to construct semi-synthetic datasets. The ML 100K

3https://grouplens.org/datasets/movielens/100K/
4http://snap.stanford.edu/data/amazon/
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dataset is collected by a movie website and contains five-star movie ratings for 1683 movies by 944 users.
The Amazon CDs dataset has 3, 749, 004 five-star ratings for 486, 360 items by 1, 578, 597 users. Following
Schnabel et al. (2016); Saito et al. (2020), we create two semi-synthetic datasets based on the Amazon CDs
dataset and the ML 100K dataset respectively. For the Amazon CDs dataset, we first remove the users who
have less than 10 interactions and the items which have less than 8 interactions. Then we only keep the
first 3,000 users and 3,000 items for the Amazon CDs dataset, due to the limited memory of our computer.
Specifically, to construct the semi-synthetic dataset, we need to recover the matrix, whose size is the product
of the number of the user and the number of the item. Yet the size of the Amazon CDs dataset is too large
for the construction process. We do not reduce the size of the ML 100K dataset since the size already fits
our computer. The following procedure has three steps:

• Oui is 0 if the rating of (u, i) is observed and 0 otherwise. We use logistic matrix factorization
Johnson (2014) to fit Oui, and then treat the returned value Ōui as true exposure parameter mui.

• Rui is 1 if the rating of (u, i) is larger than 3 and 0 otherwise. Similar to Oui, we can get true
relevance parameter by fitting Rui, and treat the returned value R̄ui as the true relevance γui.

• We generate the observe variable R̃ui as follows: R̃ui = RuiOui where Oui ∼ Bernoulli(θui) and
Rui ∼ Bernoulli(γui).

The preprocessing procedure of semi-synthetic datasets is the same as that of the Yahoo dataset.

4.2 Training and Evaluation

Denote m̄ui as the estimated exposure between u and i. To measure the correlation between the estimated
exposure m̄ui and the true exposure mui, we introduce Pearson Correlation Coefficient (PCC) Wright (1921).
The PCC value ranges from −1 to 1. A value approximating to 1 means a strong positive linear relationship
between the two variables, and a value approximating to −1 means a strong negative linear relationship. A
zero value means no linear correlation between the two variables. Note that any metric that can measure
the relationship between the estimated exposure and true exposure can also be used. For every user u, we
compute the PCC value between m̄ui and mui against all M items:

pccu = M
∑

i muim̄ui −
∑

i mui

∑
i m̄ui√

M
∑

i m2
ui − (

∑
i mui)2

√
M

∑
i m̄2

ui − (
∑

i m̄ui)2
. (20)

We report the average pccu for all users. To speed up training in the Amazon CDs, we use a batch size 8096
instead of 1024. The rest of the procedure is similar to that of the real-world experiments.

4.3 RQ3: Does Biif learn exposure correctly?

In experiments, we find the performance of JointOpt is very similar to that of AlterOpt so we only report
the results of JointOpt. We analyze the PCC value for ExpoMF, CJMF, CEB, JointOpt, and Biif since only
the five methods estimate exposure during training. For the Amazon CDs dataset, we find the exposure
estimated by ExpoMF barely changed in the whole training process and the exposure updating frequency of
ExpoMF is much lower. To better visualize the trend for all four methods, we only plot the PCC line for the
first 100 iterations and use a straight line with the mean PCC value to represent the PCC line of ExpoMF.
For CJMF, we use the official code in Zhu et al. (2020) and average the estimated exposure on the C = 8
models as the final estimated exposure.

Performance. In Fig. 3 we observe that Biif is still the best performing method in the Amazon CDs dataset
and outperforms other methods except for CJMF on the ML 100K dataset. One possible explanation is that
CJMF leverage C = 8 models and one residual component simultaneously, which improves training. UMF
achieves better performances than RelMF on both datasets due to the low gradient variance.

PCC Trend Analysis. Firstly, the PCC values in Fig. 2 for all four methods are larger than 0.8 at early
training iterations, which indicates a strong positive linear correlation. This means all methods can estimate

10
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Figure 3: (RQ3): Experiment results (DCG@3) for all comparision methods on both the ML 100K dataset
and the Amazon CDs dataset. Biif still performs the best in the Amazon CDs dataset and outperforms
other methods except for CJMF on the ML 100K dataset. One possible explanation is that CJMF leverage
C = 8 models and one residual component simultaneously, which improves training.

exposure correctly. Besides, we observe the ExpoMF line is the lowest at the early training iterations and
this is consistent with the unsatisfying results of ExpoMF in Fig. 3. The reason may be that ExpoMF is a
biased estimator Saito et al. (2020).

Furthermore, we compare JointOpt with Biif. In Amazon CDs, the Biif line is higher than JointOpt all the
time, in accordance with that Biif outperforms JointOpt in Fig. 3. For ML 100K, although the PCC line of
JointOpt is higher than Biif at the early training iterations, the JointOpt line experiences a gradual decrease.
In real-world datasets, we do not have access to the PCC value which relies on the ground-truth exposure so
we can not stop the training process early to get a good result of JointOpt. After some training iterations,
the JointOpt line becomes very low in accordance with the results in Fig. 3. The explanation may be that
JointOpt updates exposure parameters and relevance parameters on the training set simultaneously, and
thus experiences instability during training. In contrast, guided by a small unbiased validation set, Biif can
enjoy a stable training process and thus estimate exposure more accurately than JointOpt. The comparison
between CEB and Biff can be analyzed similarly. CEB proposes novel loss functions to minimize the true risk
objective with the high probability and avoid the trivial solutions, but CEB does not receive the guidance
from the unbiased validation set, which explains its unstable exposure learning process.

Last but not least, we make a comparison between CJMF and Biif. In Amazon, the low PCC line of CJMF
in Fig. 2 corresponds to the unsatisfying results in Fig. 3. Yet, on ML 100K, CJMF outperforms Biif in terms
of performance in Fig. 3 while the PCC line of CJMF is lower than that of Biif in Fig. 2. The reason may
be CJMF leverages an extra residual component to improve training, which is not included in the exposure
estimation process in Fig. 2.

5 RELATED WORK

Our proposed algorithm Biif is inspired by two lines of research in recommender systems: 1) debiasing and
2) bi-level optimization, as illustrated below.

5.1 Debiasing

Many important work Steck (2010); Harald (2013); Hernández-Lobato et al. (2014); Wang et al. (2018;
2019b); Joachims & Swaminathan (2016); Wang et al. (2020); Liang et al. (2016a); Bonner & Vasile (2018);
Schnabel et al. (2016) have studied the bias in the explicit rating data. For example, as the user can choose
which items to rate freely, the observed ratings cannot serve as a representative sample of all ratings. Thus
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the biased rating data leads to challenges for both recommendation evaluation and training. To correct this
bias, many methods Wang et al. (2018; 2019b); Joachims & Swaminathan (2016); Wang et al. (2020); Liang
et al. (2016a) use causal inference to learn from biased data and achieve better performances.

Compared with explicit feedback, implicit feedback is much easier to collect and thus plays a more important
role, which renders debiasing in implicit feedback an important topic. The work Yang et al. (2018) develops
an unbiased offline evaluator which significantly reduces the bias toward popular items To debias in model
training, many methods Hu et al. (2008); Devooght et al. (2015) adopt a heuristic-based strategy, where
unobserved interactions are assigned with a lower weight. Furthermore, the methods in Pan et al. (2008);
Pan & Scholz (2009) associate the weight with the user’s activity and the methods in He et al. (2016); Yu
et al. (2017) specify the weight with the item popularity. The work Tran et al. (2021) designs an unbiased
learning to rank toolbox on implicit feedback for researchers. CEB Gupta et al. (2021) proposes to lever-
age known exposure probabilities to mitigate exposure bias for link prediction. From a casual perspective,
ExpoMF Liang et al. (2016b) directly incorporates exposure into collaborative filtering and builds a proba-
bilistic model. Based on the IPS technique, RelMF Saito et al. (2020) propose an unbiased estimator with
the item popularity as exposure estimation. For better exposure estimation, CJMF Zhu et al. (2020) propose
a combinatorial joint learning framework to solve the estimation-training overlap problem. The estimated
exposure can still be biased since it only leverages biased training data. Besides, we find the unbiased esti-
mator in Saito et al. (2020); Zhu et al. (2020) suffers from the high gradient variance problem. In this paper,
we propose an unbiased estimator with low variance from a probabilistic view. The work Yu et al. (2020)
propose to use influence function to correct the data bias, and AD Chen et al. (2021) leverages another set
of data to debias data by solving the bi-level optimization problem. The main differences between AD and
Biif are a) Biif has a low-variance unbiased estimator while AD does not and b) AD requires an unbiased
set in advance at the expense of degrading user experience by deploying random policy on the recommender
platform, while Biif forms the unbiased set from the offline biased training set, which is much more practical
in real-world scenarios.

5.2 Bi-level Optimization

Bi-level optimization Colson et al. (2007) is a mathematical framework where one problem is nested in
another. Recently, many important workRendle (2012); Chen et al. (2019); Ma et al. (2020); Lee et al.
(2019); Lu et al. (2020) connect recommender system with bi-level optimization due to the nested nature of
their formulations. These work treat model parameters as the inner variable and specify the outer variable
according to the specific problem. Specifically, the methods Rendle (2012); Chen et al. (2019) use the
validation set to update the regularization coefficient during training, where the regularization coefficient
serves as the outer variable. Similarly, the work Ma et al. (2020) view the margin in the hinge loss as the
learnable parameter and generate different margins for different training triplets. Another research line Lee
et al. (2019); Lu et al. (2020) is to treat the model parameters as both the inner variable and the outer
variable following Finn et al. (2017). In this work, we view the exposure parameters as the outer variable
and the relevance parameters as the inner variable. We first construct an unbiased validation set from the
biased training set and then propose to update the exposure parameters with the learning process of the
relevance parameters.

6 CONCLUSION

To bridge the gap between the implicit feedback and the user-item relevance, existing approaches explicitly
model the user-item exposure while the proposed unbiased estimators suffer from high gradient variance.
In this paper, we propose a low-variance unbiased estimator from a probabilistic view and this estimator
effectively bounds the gradient variance. Besides, we connect exposure estimation with both user and item
information and then collect an unbiased set to guide exposure estimation. By leveraging the unbiased set, we
update exposure parameters and relevance parameters simultaneously via bi-level optimization. Experiments
on real-world datasets and semi-synthetic datasets verify the effectiveness of Biff.
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A Appendix

A.1 Unbiased Estimator

Our estimator is defined as:
L2(ω) = −

∑
(u,i)∈D

R̃ui log(m̄uipui)

+(1 − R̃ui) log(1 − m̄uipui).
(21)

With this definition, we can calculate the expectation of L2(ω) as the following:

E(L2(ω)) = −
∑

(u,i)∈D

muiγui log(m̄uipui)

+(1 − muiγui) log(1 − m̄uipui).
(22)

Given an accurate exposure estimation m̄ui = mui, we know the optimal solution which minimizes E(L2(ω))
is pui = γui, which proves our estimator unbiased.

A.2 Zero Gradient

For analysis convenience, we treat every m̄ui as a learnable parameter instead of using MLP to parameterize
m̄ui. Recall our estimator is defined as:

L2(ω) = −
∑

(u,i)∈D

R̃ui log(m̄uipui)

+(1 − R̃ui) log(1 − m̄uipui).
(23)

For R̃ui = 1, we can write the loss function term related to u and i as:

Lui = − log(m̄uipui)
= − log(m̄ui) − log(pui).

(24)

Note that the updated ωu and ωi do not contain any m̄ui term since the − log(m̄ui) term in Eq. (24) is a
constant in the inner loop update. As a result, Lval does not contain any m̄ui term, which means:

∂Lval

∂m̄ui
= 0. (25)

A.3 Gradient Analysis

Note that the training loss function with regard to m̄ui for R̃ui = 0 can be written as:

Lui = − log(1 − m̄uiσ(R̄ui)). (26)
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where R̄ui = ωu
⊤ωi. After a gradient descent step, the user embedding is updated as:

ωu(m̄ui) =ωu − η
∂Lui

∂ωu

=ωu − η
∂Lui

∂σ(R̄ui)
∂σ(R̄ui)

∂ωu

=ωu − η
m̄uiσ(R̄ui)σ(−R̄ui)ωi

1 − m̄uiσ(R̄ui)
.

(27)

Similarly, the item embedding is updated as:

ωi(m̄ui) =ωi − η
m̄uiσ(R̄ui)σ(−R̄ui)ωu

1 − m̄uiσ(R̄ui)
. (28)

Recall that in the validation set, assume u likes i1 and dislikes i2 (i1 or i2 can not be i); u1 likes i and u2
dislikes i (u1 or u2 can not be u). We write the loss on the unbiased validation set regard to the related
users(u1 and u2) and the related items(i1 and i2) as:

L
′

val = − log(σ(R̄ui1)) − log(1 − σ(R̄ui2))
− log(σ(R̄u1i)) − log(1 − σ(R̄u2i)).

(29)

According to the chain rule, we can write the gradient as:

∂Lval

′

∂m̄ui
= ∂L′

val

∂ω⊤
u

∂ωu

∂m̄ui
+ ∂L′

val

∂ω⊤
i

∂ωi

∂m̄ui
. (30)

We unroll the ∂L
′
val

∂ωu
⊤ term as:

∂L′

val

∂ω⊤
u

= − σ(R̄ui1)σ(−R̄ui1)
σ(R̄ui1)

ω⊤
i1

−−σ(R̄ui2)σ(−R̄ui2)
1 − σ(R̄ui2)

ω⊤
i2

= − σ(−R̄ui1)ω⊤
i1

+ σ(R̄ui2)ω⊤
i2

.

(31)

Similarly, the ∂L
′
val

∂ωi
term is unrolled as:

∂L′

val

∂ω⊤
i

= − σ(R̄u1i)σ(−R̄u1i)
σ(R̄u1i)

ω⊤
u1

−−σ(R̄u2i)σ(−R̄u2i)
1 − σ(R̄u2i)

ω⊤
u2

= − σ(−R̄u1i)ω⊤
u1

+ σ(R̄u2i)ω⊤
u2

.

(32)

We unroll the ∂ωu(m̄ui)
∂m̄ui

term as:

∂ωu(m̄ui)
∂m̄ui

= − ησ(R̄ui)σ(−R̄ui)ωi

∂ m̄ui

1−m̄uiσ(R̄ui)

∂m̄ui

= − ησ(R̄ui)σ(−R̄ui)ωi

(1 − m̄uiσ(R̄ui))2
.

(33)

Similarly, the ∂ωi(m̄ui)
∂m̄ui

term is unrolled as:

∂ωi(m̄ui)
∂m̄ui

= − ησ(R̄ui)σ(−R̄ui)ωu

∂ m̄ui

1−m̄uiσ(R̄ui)

∂m̄ui

= − ησ(R̄ui)σ(−R̄ui)ωu

(1 − m̄uiσ(R̄ui))2
.

(34)
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In the end, we write ∂L
′
val

∂m̄ui
as:

∂L′

val

∂m̄ui
= ∂L′

val

∂ω⊤
u

∂ωu(m̄ui)
∂m̄ui

+ ∂L′

val

∂ω⊤
i

∂ωi(m̄ui)
∂m̄ui

= [σ(−R̄ui1)ω⊤
i1

− σ(−R̄ui2)ω⊤
i2

] ησ(R̄ui)σ(−R̄ui)
(1 − m̄uiσ(R̄ui))2

ωi

+ [σ(−R̄u1i)ω⊤
u1

− σ(−R̄u2i)ω⊤
u2

] ησ(R̄ui)σ(−R̄ui)
(1 − m̄uiσ(R̄ui))2

ωu

= ησ(R̄ui)σ(−R̄ui)
(1 − m̄uiσ(R̄ui))2

[ω⊤
i1

ωiσ(−R̄ui1)

−ω⊤
i2

ωiσ(R̄ui2) + ω⊤
u1

ωuσ(−R̄u1i)
−ω⊤

u2
ωuσ(R̄u2i)].

(35)

By analyzing this equation, we can have a natural interpretation of the bi-level optimization framework in
Biif as we have discussed in Sec 2.3.2. This also demonstrates the effectiveness of the proposed bi-level
framework.
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