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Abstract

We present Free energy Estimators with Adaptive Transport (FEAT), a novel frame-
work for free energy estimation—a critical challenge across scientific domains.
FEAT leverages learned transports implemented via stochastic interpolants and
provides consistent, minimum-variance estimators based on escorted Jarzynski
equality and controlled Crooks theorem, alongside variational upper and lower
bounds on free energy differences. Unifying equilibrium and non-equilibrium
methods under a single theoretical framework, FEAT establishes a principled
foundation for neural free energy calculations. Experimental validation on toy
examples, molecular simulations, and quantum field theory demonstrates promising
improvements over existing learning-based methods. Our PyTorch implementation
is available at https://github.com/jiajunhe98/FEAT.

1 Introduction

Estimating free energy is fundamental across machine learning (appearing as normalization factors
and the model evidence), statistical mechanics (partition functions), chemistry, and biology [Chipot
and Pohorille, 2007, Lelievre et al., 2010, Tuckerman, 2023]. The free energy is expressed as:

F=—kgTlogZ, Z = / exp(—pU (z))dx (1
Q

where Q C R, U : Q — Ris the energy function, assumed to be such that Z < oo, and 8 = 1/kpT
combines the Boltzmann constant k£ and temperature 7.

Rather than calculating F' directly, one typically estimates the free energy difference between systems
(or states) S, and S; with energies U, and Uj, which is essential for biological conformational
changes, ligand-macromolecule binding, and chemical reaction mechanisms [Wang et al., 2015]:

AF = F, — F, = —kpT log(Zy/ Z,) @)

This computational challenge has driven numerous approaches. Zwanzig [1954] reformulated the
problem as importance sampling, where one system serves as the proposal, enabling free energy
difference estimation via Monte Carlo sampling. This free energy perturbation (FEP) method,
however, suffers from high variance when the energies U, and U, of systems S, and S; differ
significantly, particularly in high-dimensional spaces.
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To mitigate this issue, targeted FEP [Jarzynski, 2002] learns an invertible mapping between two
distributions to increase their overlap. From a complementary angle, Bennett [1976] generalized
FEP to create a minimum-variance free energy estimator—the Bennett acceptance ratio (BAR)
method. However, BAR still requires sufficient distribution overlap. Shirts and Chodera [2008]
addressed this limitation with the multistate Bennett acceptance ratio (MBAR), introducing multiple
intermediate system to improve overlap. Thermodynamic integration [TI, Kirkwood, 1935] takes a
different approach by constructing a continuous path of systems S; with energies Uy, with ¢ € [0, 1],
connecting S, and S,. The free energy difference is defined by integrating instantaneous energy
differences along this path using samples from each intermediate systems .S;—effectively performing
infinitely many consecutive FEPs between infinitesimally close distributions.

The methods above rely on equilibrium averages, requiring exact samples drawn from the distributions
of each considered state. Jarzynski equality [Jarzynski, 1997] offered a breakthrough alternative
based on non-equilibrium trajectories. Similar to TI, methods based on this equality utilize a path
of intermediate systems S, but only require exact samples from one endpoint, S, or .S, allowing
the law of the transported samples to deviate from the law of the intermediate systems. The escorted
Jarzynski equality [Vaikuntanathan and Jarzynski, 2008] further refined this approach by introducing
additional control that reduce estimator variance by constraining these deviations.

Recent advances have leveraged the capacity of neural networks to approximate high-dimensional
distributions for improved free energy estimation. In Targeted FEP approaches, researchers have
developed invertible maps using normalizing flows [Wirnsberger et al., 2020] and flow matching
[Zhao and Wang, 2023, Erdogan et al., 2025]. In the context of TT, Maté et al. [2024a,b] introduced
energy-parameterized diffusion [Song et al., 2021] and stochastic interpolant models [Albergo et al.,
2023] to capture energy interpolants between endpoint distributions.

Despite recent advances, non-equilibrium approaches and their connections to other methods remain
under-explored in the deep learning landscape for free energy estimation. Our work addresses this
gap by introducing Free energy Estimators with Adaptive Transport (FEAT). Using samples from
both endpoints, FEAT constructs non-equilibrium transport via stochastic interpolants. This learned
transport is then leveraged through the escorted Jarzynski equality and Crooks theorem to obtain both
variational bounds and a consistent, minimum-variance estimator for free energy differences.

FEAT capitalizes on the key advantage of non-equilibrium transport: eliminating the need for exact
samples at intermediate distributions, thereby enabling more efficient computation. It facilitates
faster numerical simulations without costly divergence evaluations while demonstrating enhanced
robustness to discretization and network learning errors. Notably, our framework subsumes existing
equilibrium-based methods as special cases, revealing a larger design space with greater flexibility
and performance potential. Experimental results confirm that FEAT significantly outperforms leading
baselines, including targeted FEP and neural thermodynamic integration.

2 Background and Motivation

Here we summarize key free energy estimators most relevant to our approach. While this material is
well-established in the computational physics literature, it may be less familiar to machine learning
audiences. For the reader’s convenience, we provide a more comprehensive discussion and derivations
of these results in Appendix B. For simplicity, hereafter, we set the combination of Boltzmann constant
and temperature kg7 = 37! = 1 to absorb it into the definitions of the potential and free energy.

2.1 Free energy perturbation and Bennett acceptance ratio

Free energy perturbation [FEP, Zwanzig, 1954] estimates free energy differences between systems
S, and S through importance sampling, using samples from one system as proposals for the other.
This gives the following expression for the free energy difference AF:

AF = —1log(Zy/ Z,) = —1og Eq [ exp(U, — Up)], 3)

where we use E, to denote the expectation with respect to the equilibrium distribution y, (dz) =
Z;7temVa(®)dg of system S,,.



Bennett acceptance ratio [BAR, Bennett, 1976] extends FEP with a minimal variance estimator
(specifically, minimal relative mean squared error):

Eo[¢(Us — Us — O)]
Ey [¢(Uq — Uy + C)]

AF = —log(Zy/Z,) = —log +C 4)

where E, and E; denote expectations with respect to the equilibrium distributions of systems S, and
Sh, and ¢(z) is any function satisfying ¢(z)/¢(—z) = e~ 7: the usual choice is the Fermi function
¢(x) = 1/(1+ e*). The constant C' can be optimized to minimizes the variance of the estimator: this
gives C' = AF. Since AF is unknown initially, in practice it is determined iteratively by updating C'

to AF, where AF is computed from Equation (4) in the previous iteration.

Both FEP and BAR rely on importance sampling and become ineffective when the distributions of
systems S, and .S, have minimal overlap. Targeted FEP [Jarzynski, 2002] addresses this limitation
by designing an invertible transformation 7' that maps samples between states. The free energy
difference is then calculated through importance sampling with change of variable:

AF = —10gE, [exp(~®)], () = Up(T(x)) — Ua() — log VT (x)| ®)

where VT () denotes the Jacobian matrix of the map 7" and |VT'(x)] its determinant. This approach
naturally integrates with neural density estimators. Recent works have implemented this transfor-
mation using normalizing flows [Wirnsberger et al., 2020], computing the Jacobian via an invertible
network, and flow matching [Lipman et al., 2023, Zhao and Wang, 2023, Erdogan et al., 2025],
computing the Jacobian via the instantaneous change of variable formula.

2.2 Jarzynski equality, Crooks fluctuation theorem, and their escorted variations

Let U; be a smooth energy interpolating between U;—g = U, and U;—; = Uy, and consider the
stochastic process governed by the Langevin equation over this evolving potential:

dX, = —02VU(X)dt + V20, By,  Xo ~ fla, (©6)

where o, > 0 is the volatility , Xy ~ pu, indicates that X is sampled from the distribution
wa(dz) = Z; Le=Ua(®)dz, and the arrow over the Brownian motion B, indicates that this equation
must be solved forward in time. Because Uy is time-dependent, the law of X is not the Gibbs
distribution associated with U;. Yet, Jarzynski equality [Jarzynski, 1997] shows that we can correct
for these non-equilibrium effects and relate the (equilibrium) free energy difference to the work W:

1
AF = ~logEzfexp(-W)), W(X) = | aU(X) )
0

where E¢ denotes expectation over the path measure P of the solutions to Equation (6). Note that,
if we set o0, = 0 in Equation (6), the samples do not move so that we have X; = Xy ~ pu, and

Wassp(X) = fol U (X )dt = Up(Xo) — Ua(Xo), so that Equation (7) reduces to Equation (3).
The interest of Equation (7) is that it also works when o; > 0.

We can also express and interpret Jarzynski equality through Crooks fluctuation theorem [CFT,
Crooks, 1999]. Specifically, consider the following backward SDEs with path measure P:

dX, = 0?VU(X,)dt + V20, dB,, X1 ~ ®)

where X7 ~ py indicates that X is sampled from the distribution u(dz) = Zy Le=Un(#)dz and the
arrow over the Brownian motion B; indicates that this equation must be solved backward in time.
Assuming that o, > 0, the Radon-Nikodym derivative between the path measure of forward and the
backward processes solutions to Equation (6) and Equation (8), respectively, can be expressed in
terms of the free energy difference and the work as

dP
ﬁ(X) = exp(-W(X) + AF) )

Jarzynski equality can be recovered from this expression by noting that its expectation over Pisl.



Vaikuntanathan and Jarzynski [2008] add a control term v, to the drift in Equation (6), whose aim is
to better align the law of X; with the Gibbs distribution associated with Uy:

dXt = —OtQVUt(Xt)dt+Ut(Xt)dt+\/50} d?t, XO ~ Uq (10)
Let P be the path measure of the solution to this SDE and define the generalized work W? as:
1
WU(X) = / (—V’Ut(Xt) +VUt(Xt) vt(Xt)+6tUt(Xt))dt (11)
0

where V- represents the divergence operator, i.e., trace of Jacobian.

Escorted Jarzynski equality expresses the free energy difference in terms this generalized work as:

AF = —logEg, [exp(—W")]. (12)
This expression remains valid if we use o, = 0 in Equation (10) and it reduces to the ODE
dXt = Ut(Xt)dt, Xo ~ lq (O't = 0) (13)

By chain rule, we have VU (X;) - v4(X¢) + 0. U (X;) = (d/dt)U;(X;), and hence the generalized
work in Equation (12) becomes W (X) = — fol V-0 (Xy)dt + Up(Xy) — Ug(Xo). In this case,
this expression becomes an implementation of Equation (5) in which we construct the map 7" via
solution of the ODE (13) by setting T'(Xy) = X;=1 and hence log |VT| = fol V - vy(X¢)dt. This
ODE-based mapping is also known as the continuous normalizing flow [CNF, Chen et al., 2018]. We
will come back to this connection in Section 3.5.
It can also be shown [Lelievre et al., 2010, Heng et al., 2021, Arbel et al., 2021, Vargas et al.,
2024, Albergo and Vanden-Eijnden, 2024] that the law of the solution to Equation (6) is precisely
pe(dz) = Z;7te~ U@ dy if and only if v, (z) satisfies

—V - v(z) + VU () - ve(x) + Ui (x) = O F, F, = —log Z;. (14)
In this case, the generalized work defined in Equation (11) is determinitic and given by W"(X) =

fol 0:Fidt = AF, and hence the escorted Jarzynski equality becomes a practical way to implement
thermodynamic integration (TT). We elaborate on this connection in Section 3.5.

When o; > 0, we can also establish the controlled Crooks fluctuation theorem [Vargas et al., 2024]
by considering the backward SDE:
dX, = o2VU,(X,)dt + v, (X)) dt + V20, dBy, X1 ~ (15)

Denoting the path measure of the solution to this SDE as T@”, we have:
apv
——(X) = exp(-W"(X) + AF (16)
=5 (X) = exp(-W'(X) + AF)
The expectation of this expression over P is 1, which recovers Equation (12).

3 Methods

To leverage the escorted Jarzynski equality effectively, we need a control term v; that enables
Equation (10) to transport samples from S, to S accurately. Recent neural samplers [Vargas et al.,
2024, Albergo and Vanden-Eijnden, 2024] approach this by first defining an energy interpolant (e.g.,
U, = (1-t)U, +tUy), then optimizing a neural network to learn v, in Equation (10). These methods
address the challenging scenario where only samples from one endpoint are available, making their
performance sensitive to the choice of interpolating energy U, [Syed et al., 2022, Maté and Fleuret,
2023, Phillips et al., 2024] and requiring Langevin dynamics trajectory simulation during training.

Our setting is different: like BAR and other established methods, we assume that we have access to
samples from both systems S, and S5, and our goal is solely to compute the free energy difference
between these endpoints. This simplifies matters and renders the specific choice of energy interpolant
U, less critical. In particular, it allows us to leverage stochastic interpolants framework [Albergo
and Vanden-Eijnden, 2023, Albergo et al., 2023] to develop an efficient and scalable method for
simultaneously learning the transport between the two marginal distributions and the associated
energy function U,. This learning-based strategy is explained next and summarized in Algorithm 1.



3.1 Learning a Transport with Stochastic Interpolants

Given samples from systems S, and Sy, stochastic interpolants [Albergo and Vanden-Eijnden, 2023,
Albergo et al., 2023] provide a simple and efficient way to effectively learn a transport between these
states in the form of Equation (10). We first define an interpolant between endpoint samples:

It = aqxa + Pywy + i€, Ta ~ flay  To ~ iy, €~ N(0,1d) (17)
where ap = 1,01 = 0; Sy = 0,81 = 1; and 79 = 1 = 0 ensure proper boundary conditions:
Ii—o = x4 and I;—1 = xp. From the results of Albergo et al. [2023], we know that the law of I is, at
any time ¢ € [0, 1], the same as the law of the solution to Equation (10) if we use

ve(x) = E[L|I; = ], VU () = v, "Ele|I; = ] (18)
where the dot denotes the time derivative and E[-|I; = x] denotes expectation over the law of I;
conditional on I; = z. Using the L? formulation of the conditional expectation, we can write
objective functions for the function v; and VU, defined in Equation (18); if we parametrize these
functions as neural networks v (2) and U? (z), depending on both ¢ and z, this leads to the losses:

Ly(V) = Einri0,1)Eay e [Atlvl’”(ft) —1I)?] (19)
LEM(0) = Eoni(0,0) B, [0 VUL (1) — 7 tel?] (20)

where DSM stands for denoising score matching [Vincent, 2011], and A; and n; are weighting
functions to balance optimization across different times. In practice, Ay = 1 and n; = ~; work well.

Once we have learned vf’ and VU! we can use these functions in any of the estimators presented
in Section 2 via computation of the generalized work in Equation (11) or the forward-backward
Radon-Nikodym derivative (FB RND) in Equation (16). Note that, Equation (11) requires 0;Uy,
necessitating an energy-parameterized network U7, which is known to be difficult to learn via score
matching [Zhang et al., 2022]. In contrast, the FB RND form only requires the score function,
allowing direct parameterization of VU? as a score network. In fact, using FB RND formulation also
offers additional benefits, which we will discuss in Section 3.4.

We stress that the estimators presented in Section 2 are asymptotically unbiased even if we use them
with functions vf’ and U! that have been learned imperfectly, as long as we satisfy the boundary
conditions UY_, = U, and UY_,; = Uy. In practice, however, imposing these boundary conditions
puts constraints on the neural network used to parameterize U/ or VU?, which may limit its
expressivity and impede training convergence. For these reasons, in FEAT we choose to not impose
the boundary conditions by the parameterization design, but rather learn U/ at the endpoints as
well. To this end, we enhance the denoising score matching loss in Equation (20) with target score
matching [TSM, De Bortoli et al., 2024]:

LEM(0) = Byts(0.0.5) Ean e [[VUL (1) — 07 ' VU, (24)]?] 1)

L™ 10) = Eei0.5,1) B oy [ VUL (1) = B VU () ] (22)
This objective formulation was introduced by Maté et al. [2024b] to improve energy estimation
accuracy in neural thermodynamic integration (TI). Importantly, TSM does not increase target energy
evaluation costs, as the gradients VU, (z,) and VU, () can be precomputed and stored during
molecular dynamics (MD) simulations alongside collected samples.

Unfortunately, even though TSM largely increases the accuracy of the boundary conditions, error still
exists due to imperfect learning. Next, we discuss how to generalize the escorted Jarzynski estimators
in Section 2 to account for the mismatch between Ute and U, and Uy, at the endpoints.

3.2 Estimating the Free Energy Difference with Escorted Jarzynski Equality

Suppose that we have learned a transport with stochastic interpolants for which the boundary
conditions are not necessarily satisfied, meaning U§ # U, and UY # Uy,. This boundary mismatch
requires a correction term, as specified by the following result:

Corollary 3.1 (Escorted Jarzynski Equality with imperfect boundary conditions). Given vf’ and U?,
consider the forward and backward SDEs:

dX; = —02VU?(X,)dt + vf (X})dt + V20, dB,,  Xo ~ fia, (23)
dX, = o2VUP(X,)dt + o) (X,)dt + V20, dB;, X1 ~ iy, (24)



where oy > 0 and u, and py denote the distributions associated with the energies U, and Uy,
respectively. Define also the “corrected generalized work":

exp(—Ua(Xo)) exp(~U7 (X1))

P (Tp (1) exp (T (X)) =)

1
7 (X) :/0 (V0 (X0 + VUP(X0) -0 (X0) + QUF(X,) )t + log

correction term

Using the generalized work with correction, we have the same escorted Jarzynski equality as before:
AF = —logEy, [exp(-W")] = log Es, [exp(W")] (26)
where P and ﬁ” are the path measures over the solutions to Equations (23) and (24), respectively.

The proof of this proposition is given in Appendix C.3. Note that the corrected generalized work
in Equation (25) coincides with the generalized work in Equation (11) if U§ = U, and UY = Uy, but
we stress again the proposition remains valid even if these equalities do not hold.

The escorted Jarzynski equality in Equation (26) can be used to estimate the free energy difference:

Denoting by XN L B and XON) « Pv N independent realizations of the solutions to the
forward Equation (23) and the backward Equation (24), respectively, we have

AF = —logl/Nn 22;1 exp(—ﬁ/”(y("))) ~ log 1/NZ£[:1 exp(wv(y(”))) 27)

and these expressions become unbiased in the limit as N — oco. These finite sample size estimators
coincide with the importance-weighted autoencoder [IWAE, Burda et al., 2015], and they give us
bounds on the free energy difference in expectation:

E [log /v S0, exp(W (X™))| < AF < - [log /v S0, exp(- W (X™)]  @28)
These bounds are much tighter in general than the usual variational bounds:
Eg, [W'] < AF < Eg,[W"] (29)

which are also known as the evidence lower and upper bounds (ELBO and EUBO) in variational
inference [Blei et al., 2017, Ji and Shen, 2019, Blessing et al., 2024] and were applied to free energy
estimation by Wirnsberger et al. [2020], Zhao and Wang [2023] in their targeted FEP. We prove the
IWAE bounds and the variational bounds in Appendix C.1.

3.3 Minimizing Variance with Non-equilibrium Bennett Acceptance Ratio

Equation (27) provides two estimators for the free energy difference. While simply averaging them
can reduce variance, we can achieve optimal variance reduction using an approach similar to Bennett’s
Acceptance Ratio [BAR, Bennett, 1976].

Proposition 3.2 (Minimum variance non-equilibrium free energy estimator). Let W be the work
terms defined in Corollary 3.1. The minimum-variance estimator is given by:

SN (=X 4 ) U
AF = log &=m — +o, X@EN) Pr XAN) (B (30)
SN (W (X)) —O)

where ¢ is the Fermi function ¢(z) = 1/(1 + exp(z)). In addition, the minimum variance estimator
is obtained with C' = AF.

In practice, we initialize C' as the mean of Equation (27), then iteratively update AF' using C' set to
the current estimate until convergence. This estimator was originally introduced by Bennett [1976] for
equilibrium averages, with non-equilibrium variants later developed by Shirts et al. [2003], Hahn and
Then [2009], Minh and Chodera [2009], Vaikuntanathan and Jarzynski [2011] using work likelihood
or “density of trajectory" concepts. In Appendix C.2, we provide an alternative derivation based on
the Radon-Nikodym derivative between path measures.



3.4 Improving Accuracy and Efficiency of Free Energy Estimation with FB RND

We now turn our attention to estimators of the free energy difference using forward-backward
Radon-Nikodym derivative (FB RND), which is enabled by the (controlled) Crooks fluctuation
theorem. This approach allows us to address an issue we have left open: in practice, numerical
integration of Equations (23) and (24) requires time discretization, introducing additional error. We
demonstrate below that FB RND-based estimators yield asymptotically unbiased estimates of free
energy differences, even in the presence of this discretization error.

We first describe the calculation of the “corrected generalized work" with discretized FB RND: let us
discretize the time interval [0, 1] into M steps tg =0 < t1 < -+ < tps—1 < tpr = 1 with step size
At, and denote by A+ and AV~ the transition kernels under Euler-Maruyama discretization for the
forward and backward SDEs in Equations (23) and (24):

N*(Xo |X,) =N (Xtm Xy, + vf (X0,) At — 02 VU (X,,)At, 202 At) 31)

N~ (Xi X)) =N (XtH 1X;, — vl (X2, At — 02 VU? (X,,)At, 207 At) (32)
The “corrected generalized work" in the FB RND form can be calculated as:
— dpv ~Ua(Xo) [T, N (X, | X,
WU(X):AF*IOg (X)WIO exp( ( 0)) Hg?l ( t; t1—1)
dﬁv exp(be(Xl))Hi:lNi(Xti—l‘Xti)

Even though the quantities at the right hand-sides are only approximate expressions for those at the
left hand-side, they give consistent estimators for the free energy:

Proposition 3.3 (Discretized controlled Crooks theorem with imperfect boundary conditions). Let
N+ and N~ be as in Equations (31) and (32), and define the forward/backward discretized paths:

thwrl = th — UiVUg(X)t,)Atz + U;{)(ytl)Atz + 2Atiati i, Xzo ~ Ha, (34)
yti,l = Xti — o7 VU, (&ti)Ati—l - Ug:(yti)Ati—l + /24t _10¢, 13, X1~y (35

where we assume that oy > 0, At; = t;11—t; and n; ~ N (0, Id), independent for eachi =0, ..., M.
Then, we have:

(33)

exp(~Uy(X ) [T, N (X, X))
exp(—Ua(Xo) TTML, N+ (X4, (X, )

exp(—Ua(Xo) ITM, N (X4, X, )

AF = —1o
=l oxp( 0K ) [I', N (Xr,LIXr)

(36)

:| =logE

The proof is given in Appendix C.3. This proposition shows that the FB RND yields estimators
that are asymptotically unbiased in the limit of infinite sample size, even when the time-step
size is finite. Furthermore, imperfect boundary conditions do not alter the form of the FB RND;
Equation (36) hold whether Ug =U,, U{’ = U or Ug %+ U,, Uf # Up. This results in a more
compact formulation for calculating the generalized work compared to Equation (25).

The FB RND approach also offers another advantage in terms of computational efficiency as
it allows direct parameterization of the score VU! without divergence calculations, eliminating
backpropagation needs during training and sampling, thus enhancing efficiency and scalability. In
contrast, the calculation based on Equation (25) requires both time derivative 9,U¢ and divergence

V- v;/) , complicating training and sampling.

In summary, to estimate the free energy difference between two systems S, and S, our approach
learns stochastic interpolants using their samples. This yields forward and backward SDEs, as
detailed in Equations (23) and (24), with potentially imperfect boundary conditions as discussed,
which approximately transport samples between the two states. We then map samples from both
states using these SDEs, and compute the “generalized work" via FB RND as in Equation (33). This
computation results in a consistent, minimal-variance estimator for the free energy difference as
defined in Equation (30). Since our method relies on the escorted Jarzynski equality with a learned
escorting term adaptive to the data, we dub it the Free energy Estimators with Adaptive Transport
(FEAT). An outline of FEAT is provided in Algorithm 1.

3.5 Limiting Cases of FEAT with Connections to Other Approaches

Our algorithm generalizes several existing approaches and reduces to them under specific conditions.
We illustrate these relationships in Figure | and elaborate below, focusing on connections beyond the
already established link to the (escorted) Jarzynski equality.
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Figure 1: Connection between our proposed algorithm and other free-energy estimation approaches.

FEP and Target FEP. Our method generalizes targeted FEP with flow matching [Zhao and Wang,
2023] when setting o; = 0. Specifically, escorted Jarzynski equality becomes equivalent to targeted
FEP with instantaneous change of variables [Chen et al., 2018] in this deterministic limit, even with
imperfect boundary conditions as in Corollary 3.1. We show this equivalence in Appendix C.4.
Taking further reduction, our method also generalizes standard FEP when both o, = 0 and v; = 0.
In this scenario, the dynamic transport vanishes completely, and we revert to simple importance
sampling using equilibrium samples from both endpoints.

Bennett Acceptance Ratio (BAR). Similar to FEP, our method recovers BAR when setting both
ot = 0 and v; = 0 and applying the minimum-variance estimator in Equation (30).

Thermodynamic Integration (TT). When U and vf’ are optimally learned, our method recovers TIL.
Specifically, this occurs when the distribution of X; simulated from Equation (23) exactly matches
the density defined by energy U;. We derive this equivalence in Appendix C.5.

This connection reveals a limitation of TI: the energy function must precisely match the sample
distribution. In neural TI [Maté et al., 2024a,b], the energy network must accurately capture the data
density at every time step ¢, or the estimator becomes significantly biased. Our approach, based on
escorted Jarzynski equality which accommodates non-equilibrium trajectories, remains effective even
with imperfect learning, similar to Vargas et al. [2024], Albergo and Vanden-Eijnden [2024].

3.6 One-sided FEAT

In the last section, we focus on estimating the free energy difference between two states by learning a
stochastic interpolant model. Notably, the same formulation also applies to estimating the absolute
free energy, by choosing one of the states to be a reference distribution with known free energy, such
as a Gaussian. In this case, we do not need to learn both the vector field and the score independently,
as they are related in closed form [Albergo et al., 2023]. In fact, in this case, the one-sided stochastic
interpolant recovers a diffusion model [Song et al., 2021]. The diffusion model learns a score network
sf, from which one can easily recover the vector field. We refer to this variant as one-sided FEAT.

To estimate the free energy difference between two arbitrary states, one can also apply one-sided
FEAT to each state and then compute the difference between their estimated absolute free energies.
This formulation can be viewed as an extension of DeepBAR [Ding and Zhang, 2021], which
estimates absolute free energies using a normalizing flow with the BAR equation. In contrast, our
approach replaces the normalizing flow with FEAT, enabling more flexible and scalable modeling.
Empirically, we found DeepBAR with one-sided FEAT achieves better performance compared to
using one FEAT directly bridging two states, especially on large systems. A potential reason is
learning the transport from a Gaussian distribution to a complex target is simpler than learning it
directly between two different complex targets.

4 Experiments

We evaluate FEAT on a diverse range of systems, from toy examples to molecular simulations and
quantum field theory. Detailed experimental setups and hyperparameters appear in Appendix F.

Comparison with Target FEP. We benchmark our approach against targeted FEP with flow matching
[Zhao and Wang, 2023] across four systems of increasing complexity: (1) Gaussian mixtures, (2)



Table 1: Comparative free energy difference (AF’, unitless) estimation using targeted FEP [Zhao and
Wang, 2023] and our proposed approach. MBAR results serve as reference values for LJ and ALDP
systems. We report the mean and std across three runs with different seeds. (*) indicates prohibitively
expensive computation due to divergence operations.

Method GMM (16 modes to 40 modes) LJ (w/o to w. LJ interaction) ALDP-S ALDP-T
d =40 d =100 d=055x3 d=T79%x3 d=128x3 d=22x3 d=22x3
Reference 0 0 23477 +0.09 35743 +3.43 59598 to.58 2943 +o.01  -4.25 +o.05
TargetFEP (FM) 0.09 +o.26 -17.96 +1.49 232.06 +0.03 * * 29.47 +0.22  -4.78 +0.32
FEAT (ours) 0.04 10.04 -5.34 1152 232.47 1015 356.74 t0.79  595.04 £6.52  29.38 to.04  -4.56 +o.08
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(a) Illustration of ALDP-T. (b) LJ-128. (c) ALDP-S.

Figure 2: (a) Two states of ALDP-T. S,: ¢ € (0,2.15); Sp: ¢ € [—m,0] U [0, 7); (b) (c) Estimators
with egs. (27) and (30) and their dynamics along training in LJ-128 and ALDP-S.

Lennard-Jones potentials with varying parameters, (3) alanine dipeptide in vacuum vs. implicit solvent
(ALDP-S), and (4) alanine dipeptide in two metastable phases (ALDP-T, illustrated in Figure 2a). For
fair comparison, all methods use identical model architectures, and we apply the minimum-variance
estimator to both targeted FEP and our approach. Reference values for the last three systems are
obtained using MBAR [Shirts and Chodera, 2008]. Results in Table 1 demonstrate that our approach
consistently outperforms Target FEP. Our method’s advantage over targeted FEP likely stems from
the latter’s reliance on instantaneous changes of variables, making it more susceptible to discretization
errors. As discussed in Section 3.4, our approach offers inherent robustness to such errors while also
eliminating divergence calculations for improved computational efficiency.

Comparison with Neural TT [Maté et al., 2024a,b]. We report the Tuple 2: Neural TI with and
results of Neural TT on GMM-40 and LJ-79. For the accuracy of Neural
TIL, it is crucial to ensure the learned energy matches the sample distri-
bution along the entire interpolant path. Therefore, Mat¢ et al. [2024b] GMM-40 LJ-79
proposed to parameterize the energy network using the energy of State  \med 1616567 dinstsia
A and B as preconditioning. To have a fair comparison, we report Neu-
ral TI both with and without preconditioning. Details of the preconditioning design are provided in
Appendix F.5. Table 2 shows that Neural TI relies heavily on such problem-specific preconditioning,
which constrains flexibility and can be costly when the energy evaluation is expensive.

without preconditioning.

Different estimators and training dynamics. We visualize the estimates using only forward or
backward simulation in Equation (27), and the minimum-variance form in Equation (30) throughout
training for LJ-128 and ALDP in Figure 2. Our method converges rapidly on both systems, with the
minimum-variance estimator clearly outperforming the forward or backward-only estimators.

Application on umbrella sampling. A valuable application of our method is umbrella sampling
for free energy surface estimation (potential of mean force) in collective variable (CV) space. Tra-
ditionally addressed via weighted histogram analysis method [WHAM, Kumar et al., 1992], this
approach requires defining a sequence of “umbrellas" by adding harmonic potentials along the CV
dimension to the target potential, then sampling from these umbrellas using MCMC. To correctly
aggregate samples from different umbrellas projected onto CV space, we must estimate relative free
energies between umbrella potentials for proper reweighting. Our approach integrates naturally into
this pipeline by efficiently estimating free energy differences between umbrella pairs.

We demonstrate this with * quantum field theory, also studied in Albergo and Vanden-Eijnden
[2024] for sampling tasks. The variables are field configurations ¢ € RY*L and we estimate the
average magnetization histogram (see Appendix F.1.5 for energy details). The lattice exists in an
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Figure 3: Eight example lattice configurations. We can see Figure 4: Umbrella samples and
that the lattices are either mostly positive or negative. reweighted histogram. We denote the
two umbrellas as u, and uy.

ordered phase where neighboring sites correlate with the same sign and magnitude, creating the
bimodal distribution shown in Figure 3. We estimate the magnetization histogram by performing
two umbrella sampling runs—one biased toward negative magnetization and another toward positive
magnetization—then combine them by reweighting according to the free energy difference estimated
by our method (calculation details in Appendix F.1.5). As illustrated in Figure 4, the reweighted
average magnetization distribution successfully recovers the symmetrical nature of the ©* energy.

One-sided FEAT and large-scale experiments. We evaluate FEAT on  Typie 3: One-sided FEAT
two larger systems—alanine tetrapeptide (ALA-4) and Chignolin—to  ,, A[.A-4 and CHIG.
estimate the solvation free energy. The standard stochastic interpolant

struggles to fit larger molecular systems, so we adopt one-sided FEAT to ALA-4 CHIG
learn the absolute free energies of each system and take their difference, — foar™ 1008 2255 320082 0.70
as described in Section 3.6. Leveraging the diffusion-model design of
Karras et al. [2022], our model fits both systems well. As shown in Table 3, the proposed FEAT

delivers accurate predictions, demonstrating its scalability and strong potential.

Runtime discussion. We report FEAT’s inference time in Table 4. Relative to Target FEP (FM),
FEAT avoids costly divergence evaluations, significantly improving efficiency.

5 Conclusions and Limitations

Free energy difference estimation between states remains a fundamental challenge with wide-ranging
applications, yet research in the modern machine learning context has predominantly focused on
equilibrium approaches, leaving non-equilibrium methods largely unexplored. Our Free Energy
Estimators with Adaptive Transport (FEAT) address this gap by leveraging the stochastic interpolant
framework to learn transports that permit both equilibrium and non-equilibrium estimation of the free
energy difference through the escorted Jarzynski equality and the Crooks theorem.

One caveat of FEAT is the variance of estimator can be large even with the minimum variance
estimator, especially for larger-scale systems. This is because FEAT is based on importance sampling
over the path space, while target FEP is based on importance sampling in the state space. By the
data-processing inequality, the overlap (formally, mutual information) between two distributions is
non-decreasing when lifted from state space to path space. In fact, FEAT and Target FEP with flow
matching can be understood as different points on a bias—variance spectrum: FEAT is asymptotically
unbiased but tends to exhibit higher variance. How to design a proper diagnosis to detect unreliable
estimator still requires future works.

Our current approach requires access to samples from both states of interest. Future work could
explore approaches that relax this requirement, such as those proposed by Vargas et al. [2024], Albergo
and Vanden-Eijnden [2024], potentially enabling free energy estimation in settings with limited
sampling access. However, these sampling techniques still face notable challenges in scalability,
stability, and mode collapsing. How to resolve these issues efficiently remains an open problem.

Investigating the generalizability of our approach is another promising direction, potentially with
transferable networks as demonstrated by Klein and No¢ [2024]. We present a primary demonstration
on a toy example in Appendix E.3, and leave molecular systems exploration to future works.
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Broader Impact

This work aims to estimate the free energy difference, a core quantity in studying chemical reactions,
phase transitions, and biomolecular conformational changes. We expect it to have positive impacts
in accelerating drug and materials discovery. However, more efficient free energy estimation also
carries the risk of enabling the development of harmful chemicals or toxins. We therefore advocate
for their responsible use.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: | Yes]

Justification: We proposed Free energy Estimators with Adaptive Transport (FEAT), based
on learning stochastic interpolants and Escorted Jarzynski equality, showing promising
improvement over previous neural network-based free energy estimation methods. Our
abstract and introduction accurately reflect the paper’s contributions and scope.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]
Justification: See Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: | Yes]
Justification: In Appendix C.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes]

Justification: Information on targets, hyperparameters and baseline settings can be found in
Appendix F.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: | Yes]
Justification: https://github.com/jiajunhe98/FEAT
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [ Yes]

Justification: Information on targets, hyperparameters, and baseline settings can be found in
Appendix F.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: | Yes|
Justification: We repeat each setting 3 times and report mean & std.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes|
Justification: The details on computing resources used can be found in F.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: | Yes]
Justification: We confirm the research has no ethical concerns.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: | Yes]
Justification: On Page 11.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]|

Justification: We rely on our implementation. We cite and state the license for the used
packages in Appendix F.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: | Yes]
Justification: The dataset used will be released along the code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm

Algorithm 1 Free energy estimation with FEAT

Input: Energy function of both states U, and U, and their samples xfll:N) ~ g, xél:N) ~ lp;
learning rate 7, SDE solver step size At.

Qutput: Free energy difference estimator AF ~ — log Zy,/ Z,.
Randomly initialize vector field v’ and score network s¢ (or energy network Uf);
repeat 0 < 0 — Vg (EgSM + EESM’ o4 EESM’ l); Y < —mVy (L£,,); until convergence;

Simulate the forward eq. (34) from Yémv) = m((llzN); calculate TW? (X)(l:N)) by eq. (33);

Simulate the backward eq. (35) from %glw) = xélzN); calculate Wv(y(l:N)) by eq. (33);

initialize C to be the average value of the estimators in eq. (27);
repeat calculate AF" with eq. (30); and set C' < AF’; until convergence.

B Extended review of free energy estimation methods

Here, we provide an extended review of free energy estimation methods. This section complements
the background in Section 2 by offering more details on FEP, target FEP, and BAR, along with a
review of MBAR and TI.

Free energy perturbation [FEP, Zwanzig, 1954] leverages importance sampling to estimate free
energy difference:

AF = — =log ? = —logzi/exp(—Ub(x))dx 37
~ g Zi / exp(—(Up(@) — Ua(2) + Ua()))dz (38)
~ log / exp(—(Up(x) — Ua(2)))pa (x)dz (39)
= —logE, [exp(Ua — Ub)] (40)

where E, denotes expectation w.r.t. the equilibrium distribution 1, (dz) = Z; 'e~V+@)dx of state
Sa, and p, is the density of ji,.

Bennett acceptance ratio [BAR, Bennett, 1976] extends the FEP equation into a general form:
Eo[¢(Uy — Us — C)]
Eb [(,ZS(UQ - Ub + C)]

7
AF = —logZ—b = —log 41)

where it has been proven the minimum variance free energy estimator can be obtained by setting
¢ =1/(1 4+ exp(x)) and C = AF. This estimator was first proposed by Bennett [1976] without
detailed proof. Meng and Wong [1996] termed the ratio estimator as “bridge sampling" and proved
that the BAR form minimizes MSE using Cauchy—Schwarz inequality. Generalizing this estimator
and the proof by Meng and Wong [1996] to non-equilibrium settings, we obtain Proposition 3.2.

Multi-state Bennett acceptance ratio [MBAR, Shirts and Chodera, 2008] method K > 2 states,
which are typically chosen as interpolants between two ends, so that each adjacent pair of distributions
have enough overlap. Specifically, we are interested in estimating the free energy difference between
all pairs of distributions:

Zi
AFij = Fj — Fl = —log— (42)

Zj
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To this end, MBAR bases on the detailed balance between all pairs:

ZiEi[aij exp(=Uj)] = Z;E; [aij exp(=U;)] (43)
Assume for each distribution ¢, we use N; samples { X, } n—1...n,. The optimal form of Qyj is
N;Z7!
= ] (44)

Sy NkZytexp(—Uy)

This is similar to BAR, where the minimal-variance estimator of the free energy differences contains
the value to be estimated. Therefore, MBAR also takes an iterative form. Making all the necessary
substitutions, we obtain:

- exp(=Ui(Xjn))
—log (45)
jzlnzl Zk 1Nkexp(Fk_Ukan)

Tan [2004] first generalized the “bridge sampling" framework [Meng and Wong, 1996] to multiple
states and derived the optimal form of c. Shirts and Chodera [2008] then combined this formulation
with the BAR estimator across multiple states, leading to the well-known MBAR method.

Targeted FEP [Jarzynski, 2002] method aims to design an invertible transformation 7' that maps
Tq ~ [g tO pyp such that uy largely overlaps with py. This allows us to use the change of variable
formula to track the free energy difference:

Eq[exp(—®p)] = exp(—AF), ®p(z) = Uy(T(x)) — Ua(z) — log |VT ()| (46)

where |VT(z)| is the determinant of the Jacobian matrix of the function 7". Similarly, as the
transformation is invertible, we can write in the reverse direction:

Ep[exp(—®R)] = exp(—AF), @g(z)=U.(T " (z)) — Up(z) — log |VT ' (2)| (47)

Thermodynamic Integration (TT) approach also introduces a sequence of distributions that connects
the two marginal distributions and estimate free energy difference using the following equality:

AF = / @dt (48)
1 SZt

= - 9t _dt 49

/0 Z (49)

L [exp(—Uy)(— aUt)dZ'

- 0 J exp(—U,)dz di 0
1

:/ E, [(gﬂdt (51)
0

C Proofs

C.1 Variational Bounds (Equation (29)) and IWAE Bounds (Equation (28))
We restate the bounds for easier reference:
Let W denote the generalized work associated with samples from the forward and backward SDEs:

dX; = —o2VU?(X,)dt + vl (X)dt + V20, dB,, X ~ fia, (52)
AdX, = o2VU?(X,)dt + vf (X;)dt + V20, dBy, X1 ~ iy, (53)

We then have

N
< AF < —E |log % Z exp(fwv(y(”))) (54)

n=1

N
E |log % Z exp(va”(X(")))

n=1

23



and

Eg,[W'] < AF < Eg,[W'] (55)

Proof. These bounds are corollary based on the escorted Crooks theorem, which says

j§:< = exp(~W¥(X) + AF) = log ﬁ: (X) = —W"(X) + AF (56)

We first look at the ELBO and EUBO bounds, and then we prove the IWAE bounds.

Taking the expectations over escorted Crooks theorem, we obtain

u

Es. =B [W] — AF (57)

log d
dPu dPpu

We recognize their LHS are negative KL divergences, which are always non-positive. Therefore,

=Ep., [fW”} + AF, Eg, llog dF

Eg.[-W']+ AF <0, Eg,[W']—AF<0 (58)

Rearrange these equations, we obtain
E.[W'] < AF < Eg,[WY], (59)
which finishes the proof. O

The IWAE bound can then be obtained by Jensen’s inequality. The green color indicates the terms in
Equations (28) and (29) for a clearer visualization.

AF =logE, 5. [exp(W”(X))} (60)
1 N
—108E y1n) 50 [Nz_: (e (x ) ))1 61)
N
> Eyamopu [log Z (W( X(")))] (62)
N
>E,q N)Nﬁuﬁ Z {log exp(W*( <”>))] (63)
= Eg,[W"] (64)
AF =—logE, 3. [exp(—W”(X))} (65)
1 & ~
—logE (1. Bu [N Eexp(_Wv(X(n)))] (66)
1 & —
< —Eyan e [logNZexp(—Wv(X(n)))] 67)
n=1
1 & —
< -Examepory O {1og exp(—W*( X(n)»} (68)
n=1
= Eg.[WY] (69)

We hence can see that IWAE bounds are tighter compared to the ELBO and EUBO bounds.
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C.2 Minimum Variance Non-equilibrium Free Energy Estimator (Proposition 3.2)

Proposition 3.2 (Minimum variance non-equilibrium free energy estimator). Let Wa_ﬂj and Wb_m
be the work terms defined in Corollary 3.1. The minimum-variance estimator is given by:

SN (WX + ) LN T SN e
AF ~ 1 m - c. XN JPr KON P 0
BTN s @®Em) o) ’ 70

where ¢ is the Fermi function ¢(-) = 1/(1 + exp(+)) and C = AF in optimal.

Proof. Our proof follows Bennett [1976], Meng and Wong [1996] closely, with a slight extension to
path measures. To increase the readability of the proof, we first summarize the entire structure:

1. express the normalizing factor ratio;
2. express MSE? of the normalizing factor ratio estimator, and approximate it with d-method;

3. apply Cauchy-Schwartz inequality to obtain a lower bound of MSE?. This gives an optimal
condition to minimize MSE?,

4. plug the condition back to the normalizing factor ratio expression and finish the proof.

[ 1. express the normalizing factor ratio: ]

First, we have the following equality:

Z.Ep, , [oz(X)g (W(X))] = Z,Ep, . [a(X)g (-I/T/(X)ﬂ 71)

where « is an arbitrary function, and g is any function such that g(r)/g(—r) = exp(—r). Our
goal is to find a form of o to minimize the variance (MSE) of the estimator of the ratio between
normalization factors. Also, to make things clearer, we explicitly write the direction in the path
measure P,_,;, Py, ., and note that we drop the superscript (V) for simplicity.

The equality Equation (71) holds, because:

Z.Ep, , [a(X)g (W(X))} (72)
=ZuBr, ., [a(X)g (-W(X)) exp (-W(X))]|  wasg(r) = g(~r)exp(-r)  (73)
—Z.Ep. [a( g (-7 (X)) exp (1 og SPZ:Z( ) + log Zﬂ (74)

2, e, olX)g (-T7(X)) 2 00) 5)
=2, ., [a(X)g (W (X)) (76)

2. express MSE? of the normalizing factor ratio estimator, and approximate it with 5-method: ]

We now write down its Monte Carlo form For simplicity, we assume we use the same number of
samples from X(gl ~ P,_p and X(1 ~ Py_q.

oy 2 00 (Wexi)] = 2 3 izl (-Wx2)] - am
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Therefore,

Za ¥ Ln [(Xéim (-]

— =7 (78)
2 k5, [ax g (Wx ()]
We consider the MSE of 7:
MSE = E[# — r]?/r? (79)
To simply the calculation of MSE, ket 77, 72 be respectively the numerator and denominator of 7:
_ 1 n n
e la(x{") g (-W(x{")) ] (80)
"= Z [a(x)g (W(x(,)] 81
and we denote 77 and 7, as the true value.
M= Epora [a(Xomra)g (~W (Xoa) )] (2)
2 = Eamst [a(Xasn)g (W(Xaon) )| (83)
where we write E,_,, as a shorthand of Ep, .. Note that
Zym = ZaM2 (84)
Following Meng and Wong [1996], we use §-method to approximate the MSE:
MSE = E[/ — r]?/r? ~ (771) + LZQ) (85)
0 2
The variances are given by:
1 — 2 —
VOR) = 5 (B [0 (- 000)) | = B [aXindg (~7(Xo0))] )
(86)

Vin) = 5 (EM [a<Xﬁb>2g (W<Xﬁb>)1 B2y [a(Xaon)g (V“V’(Xﬁw)]) 87

and hence we have

Bics @K (< 0X00)) | + B oo (W) |

2 _ 2
T BZ , |o(Xima)g (~W (Xoma)) | N
(88)
We now look at the second term in the numerator:
72 . 2
FBan | (X)) (59)
:%Ea%b [a(Xsz)Qg (W(Xaﬁb)) 9 (W<Xa%b))} (90)
-Z 7550 (0o (W (Xa) ) g (=W (Xam)) exp (- (X)) | 1
ﬁ Easb -Oé(Xa»b)zg (W(wa)) g (—W/(Xﬁb)) exp (log iizﬁb (Xasb) + log aﬂ
' (92)
=220 |a(Xar (W (X)) 9 (-7 (X)) if,t:j(XHb)} ©3)
S Brsa [a(Ximsa g (W (X)) 9 (-7 (X)) 04
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Therefore, we can write the MSE as

MSE?
Ebosa [0(X0-0)0 (< W (Xoa)) (9 (- W (Xoa)) + 29 (W(Xoma)))| o5
EY . {a(Xbﬁa)g (‘W(Xbﬁa))} N
[ 3. apply Cauchy-Schwartz inequality to obtain a lower bound of MSE?: ]
We denote
— — 7
_ 2 (_ _ —a
AX) = a(x Py (-17(0)) (3 (-700) + 720 (W(1)) ) %6)
N — 7
B(X)=g(-W(X -W(X))+ g (W(X 97
0= (-W00) / (s (-700) + Z2a (1)) ) o)
We can write the denominator as
B}, [a(Xoa)g (-W(Xima))| = B2, [VAVE] ©98)
and the entire MSE as
MSE = E, . [4] /B3, [VAVB| - 2/N (99)
Following Meng and Wong [1996], we apply the Cauchy-Schwartz inequality:
Ef .o |VAVB| < Epa [A] B0 [B] (100)
Due to the property of g, we can see B is always positive:
— — Zo [~
BX)=g|-W(X —-W(X))+—g WX 101
)= (-W00) / (s (-700) + Z2a (W) ) (101)
=1/(1 + Za/Zy exp(~W (X)) (102)
We hence have
Epsa [A] /B o [VAVE| 2 1/E, ., [B] (103)

Note that E;,_,, [B] does not depend on «. Hence, we found a lower bound of the MSE w.r.t . The
equality holds when A x B, i.e.,

1

" C0) + 2 20 (F00)

(104)

4. plug the condition back to the normalizing factor ratio expression and finish the proof:

Plugging « back to Equation (78), we obtain

g(*W(Xég)a))
don L(W(X(”’ () )>]

Za $00)) +Zal Zog (W (XS,

PN 105

Zb Z |: Q(W(Xt(:izb)) :| ( )
" Lo (-WX) )+ Za ) Zog(W(X(,))

27



We now use the property of g, namely g(r)/g(—r) = exp(—r), to simplify both the numerator and
the denominator:

g (—W(Xzfi)a))

g (W) + 2a) 709 (W(X[,)) (106)
1
— 1+ Z,/Zyexp ( W(Xéi)a)) (107)
1
= 1+ exp(AF) exp ( W(Xé"_za)) (108)
1
:1 + exp ( W(Xéﬁfa) + AF) (109)
and
g( a—>b )
( x, ) + 2,/ 29 (W(XT),) (110)
exp (VNV(X(E_)WD + Z4) 2 (111)
B Nexp(—AF) (112)
exp (W(Xa—ﬂ)) AF)

Taking log on both sides of Equation (105) and plugging in the simplified numerator and denominator,
we obtain

1
Z. 2n Ltexp (- W(X{"),)+AF)
AF =log — = log = — (113)
Zy Z exp(—AF)
n _exp(W( 517311 AF))+1_
1
Zn 1+exp<7W(X£Qa)+AF)
= log = — + AF (114)
1
2on Lexp(W(X("),~AF))+1

Let ¢(-) = 1/(1 + exp(+)) as the Fermi function, we have

AF ~ log 2n 21 (Zﬂ) + AF)
S, oW (X™,) — AF)

which finishes the proof. O

+ AF (115)

C.3 Escorted Jarzynski and Controlled Crooks with Imperfect Boundary Conditions
(Corollary 3.1 and proposition 3.3)

Corollary 3.1 (Escorted Jarzynski with imperfect boundary conditions). Given v;’b and U?, consider
the forward and backward SDEs:

dX; = —02VU?(X,)dt + vf (X})dt + V20, dB,,  Xo ~ fia, (116)
dX, = o2VU(X,)dt + v/ (X,)dt + V20, dB;, X1 ~ iy, (117)
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where oy > 0 and g and py denote the distributions associated with the energies U, and Uy,
respectively. Define also the “corrected generalized work"

WY (X) = / 1 (= of (X0) + VUL (X0) - 0} (X0) + UL (X)) dt

exp(—Ua(Xo)) exp(~U{ (X1)) (118)
exp(—Up(X1)) exp(—Uf (Xo))
correction term

Using the generalized work with correction, we have the same escorted Jarzynski equality as before:
AF = —logEg, [exp(—W”] =logEs, [exp(W”)] (119)
where BV and PV are the path measures over the solutions to the forward and backward SDE,

respectively.

Proposition 3.3 (Discretized Controlled Crooks theorem with imperfect boundary conditions). Let
N and N~ be as in Equations (31) and (32), and define the forward and backward discretized
paths via

Xioy = X1, — a2 VUL(X4,) Aty + 0 (X1,) Aty + /2 Ati0w, i, Xo ~ pa, (120)
Koy =X, — 02VUL(X1) Atioy — ) (K1) Aty + V286 100, mi, X1~y (121)

where we assume that oy > 0, At; = t;11—1t; andn; ~ N (0, 1d), independent for eachi =0, ..., M.
Then, we have:

+ lo

M e
AF = —1oge | SPEBED LN (X 1% (122
exp(~Ua(Xo) TTL N+ (X1 [ X0, )
M i
_ tog | 2PN [y N (X, Ffti_n] 123)
exp(—Uy (X 1) TT1L, N~ (Xs,, X,

We first prove Corollary 3.1.

Proof. First, we note that the escorted Jarzynski AF = —1ogJEﬁ;v[exp(—W“)] =

logEs, [exp(W?)] can be obtained from controlled Crooks theorem. Therefore, to show Equa-
tion (119), we only need to prove:

/1 (_V ¥ (X)) + VUL (Xy) - of (Xy) + atUte(Xt)) dat
0

exp(~Ua(Xo)) exp(-Uf(X0)) _ o dB"

7] - — log (
exp(—Us(X1)) exp(=Ug(Xo)) dPv
Consider the SDEs as Equations (23) and (24). However, instead of starting from U, and Up, we start
from U and UY. We define their path measures as B and ﬁ”/, and we have

@( - dﬁ?v( X exp(—Ua(X0))/Za xP(=UT(X1))/Zuy
AP’ dP exp(—Uy(X1))/Zy  exp(=Ug(Xo))/Zye

According to the controlled Crooks theorem (as in Equation (16)) applied to the transport between
Uf and U, we have
dp’

! P 0 0 Z
—V-v +VU! v +3U>dt:710 lo
/0 ( t t Uy tUy gZUe ngPg

Take logarithm of Equation (125) and add with Equation (126), we obtain

1 0
—Ua(Xo)) exp(=UY (X1))
Vool + VUL ol + 0,07 dt + log P !
/0 ( vt + vt o ) + exp(—Up(X7)) exp( U(’ (X0))

~log 22 —1%% log (X) (127)
g ﬁ

which finishes the proof of Corollary 3.1. O

+ log (124)

(125)

(X) (126)
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Next, we look at Appendix C.3.

Proof. We will only provide proof for Equation (122) in the following, and Equation (123) follows
exactly the same principle.

As the Gaussian kernel in Equations (120) and (121) is normalized, we have

/exp H/\/ o | X)dX = 24, (128)

/exp H/\/+ (XX, )dX = Z, (129)

Therefore,

exp =Up le H’?/il'/\/’_(yti—l|?ti)

exp(—Ua (Xo) T, N+ (X1, X0, )

. /exp Ua(Ko) ILE N (KXo y) (UK ) T N (KX
= — log

—logE l (130)

Zg exp(— 20 +(th]yti_1)dy

i

(131)

— log [ exp(—=Uy(X1)) H?;l/\/(?ti_jti)dy .
o ? - (133)
O

C.4 Escorted Jarzynski Equality with ODE Transport

We restate the equivalence of escorted Jarzynski equality with ODE transport and target FEP formula
with the instantaneous change of variables in the following:

Let X evolve according to the ODE
dX; = v(Xe)dt, Xo ~ fla. (134)

For a smooth energy function U; with, potentially Uy # U, and U; # Uy, the escorted Jarzynski
equation with imperfect boundary conditions (Corollary 3.1) holds:

AF = —logEx, ., [eXP(—WU)} ;

exp(—Ua(Xo)) exp(—U1(X1))
xp(—Up(X1)) exp(—Uo(Xo))

This is equivalent to the target FEP formula with the instantaneous change of variables:

1
we :/ (—V'Ut+VUt -Ut+8tUt)dt+log (135)
0

1
AF = —1ogExymp, [exp(—®)], ®(X) = Up(X1) — Ua(Xo) _/ Voudt.  (136)
0

We note that the proof for escorted Jarzynski by Vargas et al. [2024], Albergo and Vanden-Eijnden
[2024] requires oy # 0. Concretely, the proof by Vargas et al. [2024] relies on the FB RND, which
applies only to SDEs. On the other hand, while Proposition 3 by Albergo and Vanden-Eijnden [2024]
states that o, > 0, the proof essentially requires o, # 0 in order to eliminate o, from both sides in
Equation (63) on page 19. One valid proof for o, = 0 was provided by Tian et al. [2024] using the
generalized Liouville equation. Here, we consider a more straightforward derivation, which also
directly showcases the equivalence to target FEP formula with the instantaneous change of variables.

30



Proof. To prove Equation (135), we directly show the equivalence between ¢ and W, To do so, we
consider the total derivative of Uy (X}):

dU,(X;)  9UL(Xy) dX,  9U(X,)
dt ot + VU(X) - dt ~ ot

The second equality is due to the ODE Equation (134). We therefore have

+ VUt(Xt) . Ut(Xt) (137)

= _ [ exp(—Ua(Xo)) exp(—=U1(X1))
Wv = /0 (—V"Ut + VU; - vy +5tUt) dt+10g ex (—Ub(Xl)) eXp(_UO(XO)) (138)
L AU (Xy) ! exp(—Ua(Xo)) exp(—U1(X1))
= _— Vv dt +1 139
[ Fat - ) oo o e encron (3
B ! exp(—Uy(Xo)) exp(—=U1(X1))
=Uy(X1) — Up(Xo) — /0 V - vy dt + log oxp(— Ty (X1)) exp(—To(Xo)) (140)
1
:Ub(Xl)fUa(Xo)f/ V‘Ut dt (141)
0
= d(X) (142)
which finishes the proof. O

C.5 Equivalence between TI and Our Approach with Perfect Transport

When our method is optimally trained—such that the density of samples simulated from the SDE
matches the energy U, at every time step—it becomes equivalent to TI. We only prove this equivalence
using forward work, while the backward work will follow the same argument. To show this, let
p: denote the sample density at time step ¢. At optimality, following Albergo and Vanden-Eijnden
[2024], we have:

V- (vipt) = Oipy (143)

V- upy + vV - pr = Oy (144)
V- vpy — vipeV - U = pi0y log py (145)
Vv — v V- U = 9 log py (146)

Then, the generalized work

1
W :/ (=V v + VU; - v + 0,Uy) dt
0

1 1
= / (_6t logpt + 8tUt) dt = / —615tht = Z() — Z1 (147)
0 0

ie., We will always be a constant under perfect transport. Therefore, we can write the escorted
Jarzynski as

AF = —log Eﬁu[exp(fwv)] (148)
=E3. [W”] >as W is a constant (149)
1
= / Ept [—at logpt + 8tUt]dt (150)
0
1 1
0 ——— 0

=[-0 dz=0
f et (z)de TI formula

D SE(3)-equivariant and -invariant Graph Neural Networks

For n-particle problem and molecular systems, we adopt E(n)-equivariant graph neural networks
(EGNN) proposed in [Satorras et al., 2021]. Given a 3D graph G = (V, E, X, H) where V is a set of
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vertices, £ C V x V is a set of edges, X € R™V*3 is a set of atomic coordinates and H € RV*X jg
a set of node features with feature dimension K. The procedure of EGNN is the following:

rij =@ — (152)
mi= Y ¢e(hi,hh, |rijlls ei)) (153)
JEN (D)
Rt = ¢ (bl mb) (154)
e =gl > riiga(ml) (155)
JEN (D)

where we discard the coordinate update when we only need SE(3) invariance. To break the re-
flection symmetry, we introduce a cross-product during the position update which is reflection-
antisymmetric [Du et al., 2022].

l l
IZ-X.T-

i = J (156)
T ek x b
e =2l D riida(ml) + cijéo(ml) (157)
JEN (D)

where ¢, ¢p, ¢, and ¢, are different neural networks to encode edge, node, relative direction and
cross direction scalar features.

E Additional Experimental Results

E.1 Runtime Analysis

Table 4: Inference time for FEAT and Target FEP (FM).

Name GMM (d=100) LJ-55 ALDP-T
FEAT (ours) 8s 2 min 20's
Target FEP (FM) 40's >10h 40 min

Besides the results in Table 4, we also include a brief discussion against neural TI and MBAR below:

* Versus neural TI, FEAT performs transport from both sides, which can roughly double its runtime.
However, we observed that Neural TI requires a much larger sample size, and preconditioning for
the network to achieve ideal performance, which largely increase its inference time.

* Versus MBAR, FEAT is a neural network approach that requires training. But it does not need
intermediate samples. We here take an example using ALDP. This can make it more favorable
when sampling from the intermediate is expensive. For ALDP, generating samples for each target
requires about 1 day on our machine. Collecting all the targets for MBAR can hence take between
1-10 days, depending on whether the simulations are run in parallel. In contrast, our training
process takes only 1-2 hours, which is significantly faster than sampling from all intermediate
densities. However, this comparison can vary depending how the sample collection pipeline are
implemented.

E.2 Robustness of FEAT

In this section, we analyze the robustness of FEAT and Target FEP with flow matching against
different sample size and number of discretization steps on GMM with different dimensionalities.
We can see FEAT achieves greater robustness toward less steps and less samples. This results also
reflect our discussion in Proposition 3.3 for discretization errors.
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Table 5: FEAT Table 6: Target FEP

#step samplesize GMM-40D  GMM-100D #step sample size GMM-40D  GMM-100D
50 5000 -0.05£0.33 -4.04 £1.92 50 5000 -0.98 £0.23  -15.44 £6.02
100 5000 0.12£0.07 -643 £1.72 100 5000 -0.48 £0.17 -12.10 =4.80
500 5000 0.00 £0.06 -3.59 +1.06 500 5000 -0.12+£0.08 -13.72 £2.46
500 500 0.13£0.09 -5.56 +1.87 500 500 -0.16 £ 037 -22.24 +3.43
500 1000 -0.04 £0.05 -6.46 £+ 1.86 500 1000 0.02+0.18 -19.73 +2.13
500 5000 0.00 £0.06 -3.59 +1.06 500 5000 -0.12+£0.08 -13.72 £2.46

E.3 Demonstration of Transferable FEAT

FEAT can be trained on several datasets from multiple targets, with conditions on the target parameters.
Once trained, this model will allow us to apply FEAT to similar systems without re-training, similar
to what has been demonstrated in transferable Boltzmann generators [Klein and Noé, 2024].

We showcase this potential on GMM-40 with different scaling factor. Concretely, we scale the state
B with a scalar 0.5,0.7,0.9, 1.1, 1.3, 1.5 when training. The network also takes the scalar as an input.
After training, we evaluate on unseen scalars and report the average error and standard deviation
across 3 runs. As we can see, the transferable FEAT model achieves good accuracy across a range of
unseen targets. Also, as expected, interpolation yields better performance than extrapolation.

Table 7: Transferable FEAT on GMM with different scalars unseen during training.
Scalar 0.45 0.6 0.8 1.0 1.2 1.4 1.55
Error +std -3.52+ 1.13  -0.07+£0.05 -0.02+£0.06 -0.01+0.06 0.01+004 0.003+0.04 0.03+0.13

F Additional Experimental Details

F.1 Systems
F.1.1 Gaussian Mixtures

We consider estimating the free energy differences between two Gaussian Mixtures in 40/100-
dimensional space. Our implementation is based on the code by Midgley et al. [2023]. Below are
parameters for S, and Sj:

* S,: 16 mixture components, components mean ~ U (—2, 2), std softplus(—3), random seed 10.

* Sp: 40 mixture components, components mean ~ U/ (—2, 2), std softplus(—2), random seed 0.

F.1.2 Lennard-Jones (LJ) particles

We consider alchemical free energy for N = 55/79/128 LJ particles. We obtain samples from states
S, and Sy with the Metropolis-adjusted Langevin algorithm (MALA) for 100,000 steps. We remove
the first 20,000 samples as the burn-in period. The step size is dynamically adjusted on the fly to
ensure the acceptance rate is roughly 0.6. Below are detailed settings for .S, and Sj:

* S,: LI-potential with the harmonic oscillator:

N 2

Uy = S Un(IX~ X, )+ 2 3

i#£] n=1

s 1e[(5)" - ()]

In our experiments, we set 0 = € = 1.

(158)

1 N
anﬁn/zzlxg

where
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¢ Sp: the harmonic oscillator:
2

1 N
!
Xo =5 > X, (160)

n'=1

1N
Us=75D

n=1

where X,, € R? is the coordinate for n-th particle in the system.

F.1.3 Alanine dipeptide - solvation (ALDP-S)

We consider the solvation free energy between ALDP in the vacuum environment and with implicit
solvent, defined with AMBER {f96 classical force field. Specifically, the samples were gathered
from a 5 microsecond simulation under 300K with Generalized Born implicit solvent implemented in
openmmtools Chodera et al. [2025]. The Langevin middle integrator implemented in Eastman et al.
[2023] with a friction of 1/picosecond and a step size of 2 femtoseconds was used to harvest a total of
250,000 samples. The same sampling protocol was used in the following paragraph as well. Below
are settings for S, and Sy:

e S,: ALDP in the vacuum environment;
* Sp: ALDP in implicit solvent.
We also rescale each target scale by 20, i.e., we define the energy as U (2%) Note that this will only

change the scale of input and the score, with no influence on the free energy difference as long as we
apply the same scaling to both targets.

F.1.4 Alanine dipeptide - transition (ALDP-T)

We consider Alanine dipeptide in the vacuum. As shown in Figure 2a, there are two metastable states
in this system. We therefore consider the transition free energy between them. Below are settings for
S, and Sy:

* S,: ALDP in the vacuum environment, ¢ € (0, 2.15);

* Sp: ALDP in the vacuum environment, ¢ € [—m, 0] U [0, 7).

Similar to the solvation case, we rescale each target scale by 20.

F.1.5 " lattice field theory

For ¢* experiments, we consider reweighting the histograms obtained from two umbrella samplings
with the free energy estimated by our approach. The random variables here are field configurations
¢ € REXL and the energy function is defined as

U(e) =) <2Z%%+u + (4 4+m?)p? +Asoi> (161)
x M

Here, we use ¢, to represent the value of ¢ at index x. We choose m? = —1, A = 0.8 follow-
ing Albergo and Vanden-Eijnden [2024]. The two states are defined with two different umbrella
samplings:

S ) = V() + 5 e — )
e Sy Ub((p) = U(g@) + %(% Ez Oy — M2)2-

where k1 = ko = 10, and p; = —0.3, uo = 0.6. We deliberately choose asymmetric values, as a
symmetric setup will render the analysis less complicated.

We then estimate the free energy difference AF = F, — F, with our proposed approach. With this

estimate, we construct the histogram of the average magnetization by reweighting the samples from

U, and Uy. Concretely, for each bin £ in the histogram, we compute its reweighted probability as
P(é—) x - na(g) + nb(f) -

Noexp(Fy — 5(§ — p1)?) + Nyexp(Fy — 2 (§ — p2)?)

where N, denotes the total number of samples from u,, and n, is the number of those samples falling

in bin &.

(162)
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F.2 Hyperparameter

We include hyperparameters for model training and evaluation in Table 8. We explain some hyperpa-
rameters in the following:

* ay, B4, vi: these parameters define the interpolant: X; = oy Xo + 3; X1 + i€, where € ~ N (0, I);

* OT pair: To facilitate training, instead of randomly sampling a pair (X, X1), we compute an

optimal transport (OT) plan to select pairs of data points that are closer to each other. We use the
implementation by Tong et al. [2024] (MIT License) to find the OT pair.
Additionally, we note that standard OT chooses the closest pair in the Euclidean distance, which
does not directly apply to our rotation-invariant alanine dipeptide and permutation/rotation-invariant
Lennard-Jones data. To solve this problem, we first canonicalize all data points. Specifically, we
select one sample as the reference system and rotate all other samples from both states to align
with this reference using the Kabsch algorithm [Kabsch, 1976]. For the Lennard-Jones system, we
additionally canonicalize atom permutations by applying the Hungarian algorithm [Kuhn, 1955,
1956] to find the optimal assignment that minimizes the distance matrix between each sample and
the reference. Similar approaches were also adopted by Klein et al. [2023]. In practice, we found
this significantly accelerates the training and enhances the performance for larger systems.

* OT batch size: instead of running OT on the entire dataset, we run OT within a much smaller batch
to ensure a low running cost. Note that this number is different from the “batch size".

* FM warm up: we found it is helpful to warm up the vector field network with flow matching,
especially for GMM in high-dimensional space. If we use this warm-up, we will put the iteration
number in the table; otherwise, we will leave “-".

* oy: recall that during simulation, we run the forward and backward SDEs as defined in Equa-
tions (23) and (24). oy is the diffusion term in these SDEs. We note that o is not the noise level for
the stochastic interpolants (which is ;).

Table 8: Hyperparameters of our experiments.
GMM LJ ALDP-S/T

Hyperparameters
d=40 d=100 d=55x3 d=79x3 d=128x3 d=22x3

Model and Interpolant choices
Network architecture MLP SE(3)-GNN
Network size 5, 400 4, 64
(673 1-—1t
Bt t
Ve at(1—t),a=0.05

Training
learning rate 0.001
batch size 1,000 1,000 100 30 20 500
iteration number 50,000 200,000 10,000 20,000 40,000 20,000
OT pair No Yes No Yes Yes Yes
OT batch size - 1,000 - 500 500 500
FM warm up - 50,000 - - - -
Simulation and Estimation

number of discretization steps 500
evaluating sample size 1,000 5,000 1,000 1,000 1,000 1,000
€ 0.01

F.3 Hyperparameters and Settings for One-sided FEAT

Network. For one-sided FEAT, we only need one network to parameterize the score/mean/noise for
the diffusion process. We adopt the parameterization (precisely, Cin, Cskip, Cout) Tollowing Karras
et al. [2022], with an EGNN (fully-connected) as the network to prediction the mean E[X|X;]. We
increase the EGNN size with 5 hidden layers, each with 256 hidden units.
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Training details. We train the network for 200,000 iterations, with a batch size of 20 for both
Chignolin and Ala-4. We observe a better convergence for larger batch size, while we choose 20 to fit
in our GPU. We keep an EMA with rate 0.99.

Estimation details. We estimate the free energy for each states with 500 discretization steps. We use
1,000 samples for ALA-4 and 3,000 samples for Chignolin. Additionally, we found it is more stable
to use DDPM kernel [Ho et al., 2020] as the denoising and noising kernel instead of EM discretization
kernel. This will only slightly change the formulation of the Gaussian expression, with other key
components of FEAT unchanged.

Precisely, the forward SDE is defined following Karras et al. [2022] as:
dX, = V2tdB;, Xo ~ 1t (163)
where ( is the target system distribution. The backward SDE is defined as:
dX, = 2tVU? (X,)dt + vV2dB,, X7 ~ N(0, T*I) (164)

where VU is the learned score network. The score and the mean-prediction E[X|X;] are connected
with Tweedie’s formula:

X; — E[Xo| X
—VU(X;) = —w (165)
The DDPM kernels for this pair of SDEs are:
N+ (Xti+1 ‘th) = N (Xti+1 |Xti7 (t12+1 - t?)I) (166)
_ 7 7 7
N (Xti Xti+1) =N (Xti tzilXtiH + (1 - +2 )E[X0|Xti+1}7 tzil(tz%rl - t?)j) (167)
i+1 i+1 i+1

F.4 Computing Resources

All experiments are run on a single 80G NVIDIA H100.

F.5 Baseline and Reference Settings

Target FEP. We use the same parameter as Table 8. Note that the interpolant becomes X; =
o Xg + PB: X1, and the simulation process will be ODE. We do not align the iteration number to be
the same as SI. Instead, we run the training until convergence.

Neural TI. We use the same parameter as Table 8. We parameterize the energy network instead of
the score network in order to use the TI formula. Specifically, we take the output of the network, and
take an inner product with the input to form a scalar as the energy.

Neural TI Preconditioning Design. We include preconditioning for the energy network to ensure
boundary conditions and also to increase the accuracy of the learned energy U,.

For GMM, we set the energy network to be
U($t,t) = atUA(xt) +btUB(xt) —|—CtU9(l’t,t) (168)

where a; = exp|fo(t) — fo(0)] - (1 —1t), by = explga(1) — go(t)] - t and ¢; = exp(ho(t))-t- (1 —1¢).
fo, 90, he, Uy are neural networks. We can exactly ensure the boundary condition by this.

For LJ, U4 and Up is more sensitive to noisy x;. Therefore, inspired by Maté et al. [2024b], we set
the energy network to be

Ul(ae,t) = by - Ung(ae, e, ae) + ¢ - Ug (24, t)

where 7 is the radius parameter in LJ, ranging from 0 to 1. a; = exp(ag(t)) - ¢ - (1 — ¢) is a smooth
parameter, as used by Maté et al. [2024b]. b = 1—exp(Bo(t))-t-(1—t) and ¢; = exp(y9(t))-t-(1—1t)
are scalar to ensure boundary conditions.

Due to this specific choice of smoothing parameters, we failed to design a stable preconditioning for
ALDP and hence did not compare FEAT with neural TT on ALDP.

MBAR. We use MBAR (with pymbar) to obtain the reference value for the LJ system and ALDP:
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» LJ: for LJ-potential, we create N distributions as follows:
2

N N
1 1
U; = E Ui (| X — X511) + 3 E Xn — N E : X, (169)
n=1 n'=1

i#]

where

r r

Upy.i(r) = de; [(‘“)12 - (‘“ﬂ (170)

Wesetoy =€ = 1,0y = ey = 0, and let 0,, = ¢, vary as a linear interpolant between 1 and
0 For LJ-55/79, we use N = 41 distributions, and for LJ-128, we choose N = 81. We run the
Metropolis-adjusted Langevin algorithm (MALA) to obtain 20,000 samples for each marginal, and
then randomly choose 1,000 of them for each marginal to decorrelate the samples.

* ALDP-S: We set 11 distributions by modulating the solvation parameter with a factor A € [0, 1]
that scales the charges in the ‘CustomGBForce’ in the force field with OpenMM. Specifically, we
modify the force by the following code:

1 for force in system.getForces():

2 if force.__class__.__name__ == ’CustomGBForce’:

3 for idx in range(force.getNumParticles()):

4 charge, sigma, epsilon = force.getParticleParameters (idx)

5 force.setParticleParameters (idx, (chargexlamb, sigma, epsilon))

Listing 1: Python code example for changing the solvation strength.

The 11 distributions are set with A = 0.0,0.1,...,1.0. We run MD for each distributions using
the setup described in Appendix F.1.3, and randomly choose 2,000 of them for each marginal to
decorrelate the samples to run MBAR.

* ALDP-T: we define three distinct distributions: (1) a distribution containing only .S,, where the
energy in regions corresponding to state Sj are set to +00, (2) a distribution containing only Sp,
where the energy in regions corresponding to state .S, are set to +oo; and (3) a full distribution that
includes both S, and Sj,.
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