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Abstract

Speech Relation Extraction (SpeechRE) aims
to extract relation triplets directly from speech
data. However, existing datasets suffer from
limited quantity and diversity of real-human
speech in their training sets, while current mod-
els are constrained by fixed single-order gen-
eration templates and a lack of high-level se-
mantic alignment, significantly hindering their
performance. To address these challenges,
we introduce CommonVoice-SpeechRE, a
large-scale dataset comprising nearly 20,000
real-human speech samples from diverse
speakers, establishing a new benchmark for
SpeechRE research. Furthermore, we pro-
pose the Relation Prompt-Guided Multi-Order
Generative Ensemble (RPG-MoGe), a novel
framework that features: (1) a multi-order
triplet generation ensemble strategy, leverag-
ing data diversity through diverse element or-
ders during both training and inference, and
(2) CNN-based latent relation prediction heads
that generate explicit relation prompts to guide
cross-modal alignment and accurate triplet gen-
eration. Extensive experiments demonstrate the
superiority of our framework, outperforming
state-of-the-art baselines. Our work not only
provides a valuable dataset resource for the
community but also offers an effective method-
ology to advance SpeechRE in real-world ap-
plications.

1 Introduction

Relation Extraction (RE), a fundamental task in
information extraction, aims to extract structured
knowledge in the form of relational triples (head
entity, relation, tail entity) from unstructured data.
RE plays a pivotal role in downstream applications
such as knowledge graph construction and search
engine optimization (Nasar et al., 2021). Despite its
importance, most existing research focuses on Tex-
tRE, which extracts relational triples solely from
plain text (Eberts and Ulges, 2020; Wang et al.,
2020; Cabot and Navigli, 2021).

Dataset CoNLL04 ReTACRED Ours
#Rel. 5 40 45
#Train Sam. 922& 33,477 14,557&
#Dev Sam. 231& 9,350 2,495&
#Test Sam.  288& 5,805& 2,494&
#Speaker 4 8 ~20,000

Table 1: Comparison of Key Statistics between existing
datasets and the dataset proposed in this paper (‘“#Rel”:
Number of Relations; “Sam.”: Samples; &: Indicates
samples with real-human speech; . Indicates samples
with TTS synthetic speech)

However, with the exponential growth of speech
data from sources such as news broadcasts, on-
line meetings, and social media, there is a pressing
need to extend RE to the speech domain. Speech
data contains rich structured knowledge that can
enhance knowledge graphs and support speech-
related applications. This has led to the emergence
of Speech Relation Extraction (SpeechRE), a
task that directly extracts relational triples from
audio recordings.

Overall, SpeechRE is a relatively new research
topic and remains underexplored. However, two
notable works, LNA-ED (Wu et al., 2022) and
MCAM (Zhang et al., 2024), have already made
significant contributions. Wu et al. (2022) in-
troduced the SpeechRE task by applying text-to-
speech (TTS) to TextRE datasets, creating two syn-
thetic speech benchmarks. They also provided the
first SpeechRE baseline, LNA-ED, which uses a
CNN-based length adapter to bridge a speech en-
coder and text decoder. Building on this, Zhang
et al. (2024) developed two real-human-speech
SpeechRE datasets and proposed MCAM, a more
powerful model that employs a Multi-Level Cross-
Modal Alignment Adapter to align tokens, entities,
and sentences across speech and text.

Despite these advancements, existing ap-
proaches suffer from several limitations: (1) Issue-
1: In their datasets, real-human speech data mainly
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are special tokens representing the head entity, relation type, and tail entity of the relational triple respectively.

covers the test set, leaving limited training exam-
ples with few speakers (see Table 1). This may
reduce the model’s performance and generaliza-
tion in real-world scenarios. (2) Issue-2: Current
methods generate relational triples in a fixed or-
der, ignoring the inherent diversity in the order of
triple elements within the data. This restricts the
model’s ability to fully exploit the data. (3) Issue-
3: Existing approaches primarily rely on semantic
similarity for cross-modal alignment, overlooking
high-level structured semantic cues such as entity
relations.

To address these challenges, we propose a com-
prehensive solution that encompasses both data and
model innovations.

For the data limitation (Issue-1), we intro-
duce CommonVoice-SpeechRE, a newly anno-
tated dataset comprising nearly 20,000 real speech
recordings from diverse speakers. This dataset sig-
nificantly expands the variety of speaker profiles
and scenarios available for training (see Table 1).

For the model, we propose the Relation Prompt-
Guided Multi-Order Generative Ensemble (RPG-
MoGe) framework. Specifically: (1) To mitigate
the inherent limitation of fixed order in triplet gen-
eration templates (Issue-2), we introduce an inno-
vative multi-view relation tree structure (depicted
in Figure 1) to comprehensively capture the diverse
ordering patterns of triplet elements. By linearizing
these trees as generation targets, our model imple-
ments a multi-order triplet generation ensemble
strategy during both training and inference phases,
thereby fully exploiting the data’s inherent diver-

sity potential. (2) To alleviate the Issue-3, we de-
sign a CNN-based latent relation prediction head
that identifies latent relations in the speech signal.
These relations are used to construct explicit rela-
tion prompts, guiding the text decoder to generate
relational triples and align speech and text modali-
ties more effectively.

Our contributions can be summarized as follows:

* We present Common Voice-SpeechRE, a large-
scale, diverse real-human-speech dataset that
sets a new benchmark for SpeechRE research.

* We propose RPG-MoGe, a novel framework
that integrates multi-order triple generation
and explicit relation prompts to fully exploit
data diversity and high-level semantic cues.

» Extensive experiments on multiple SpeechRE
benchmarks show that our approach outper-
forms state-of-the-art baselines, validating the
effectiveness of our dataset and model design.

2 Related Work

2.1 Speech Relation Extraction

Speech Relation Extraction (SpeechRE) is a critical
yet underexplored task in Information Extraction
(IE) and Spoken Language Understanding (SLU)
(Shon et al., 2022). While Speech Named Entity
Recognition (Speech NER), an important subtask
in both SLU and IE, has seen significant progress
(Yadav et al., 2020; Ghannay et al., 2018; Chen
et al., 2022), SpeechRE remains nascent, with lim-
ited advancements in datasets and models. Two



key contributions have shaped this field. Wu et al.
(2022) introduced the SpeechRE task by converting
TextRE datasets into synthetic speech using a text-
to-speech (TTS) system, creating two benchmark
datasets. They also proposed the LNA-ED model,
which connects a speech encoder and text decoder
via a CNN-based length adapter. Later, Zhang
et al. (2024) advanced the field by constructing a
dataset with real human speech and introducing
the MCAM model, which employs a Multi-Level
Cross-Modal Alignment Adapter to align speech
and text across tokens, entities and sentences.

2.2 Multi-view Prompt Text Generation

Recent work in aspect-based sentiment analysis has
shown that leveraging element order diversity in
triples (Gou et al., 2023) or quadruples (Bai et al.,
2024) during training and inference can enhance
model performance and generalization. Inspired by
this, we are the first to explore the impact of ele-
ment order diversity in relational triplets on model
performance in SpeechRE, a cross-modal text gen-
eration task involving both speech and text. This ap-
proach distinguishes our work from prior research
and opens new avenues for improving SpeechRE
through structured data diversity.

3 The New Dataset

We present CommonVoice-SpeechRE, a novel
dataset derived from the English subset of the
Common Voice 17.0 corpus (Ardila et al., 2020).
Common Voice 17.0 is a large-scale, multilingual
speech dataset comprising 20,408 validated hours
of recordings across 124 languages, contributed
by volunteers globally. Released under the CC-0
license, it permits unrestricted use, modification,
and redistribution, making it an ideal foundation
for secondary annotation tasks such as Speech Re-
lation Extraction (SpeechRE).

Most samples in Common Voice 17.0 are neg-
ative examples lacking entities or relations. To
identify potential positive samples, we employed
a pre-trained BERT NER tagger! to analyze tran-
scriptions and filter relevant data. We adopted en-
tity and relation type definitions from the ACE04
and ACEOQS datasets, crafting a tailored annotation
guide. A team of 10 graduate students (all CET-6
certified) manually labeled approximately 20,000
transcriptions using Label Studio®. The annotation

'https://huggingface.co/flair/ner-english-ontonotes
*https://labelstud.io

process involved dividing the data into batches of
no more than 1,000 sentences, with 10% randomly
selected for verification. Experienced annotators
ensured sentence-level accuracy exceeded 95%;
otherwise, the batch was re-annotated.

Detailed statistics of the CommonVoice-
SpeechRE dataset are provided in the appendix
due to page constraints. Sample data and anno-
tation guidelines can be found in the supplemen-
tary material.

4 Methodology

In this section, we formally define the Speech Rela-
tion Extraction (SpeechRE) task and present the de-
tailed implementation of our proposed RPG-MoGe
framework.

4.1 Task Definition

Given a speech signal S, the SpeechRE task aims
to directly extract a set of relational triples I =
{(hi,ri,t;) | hi,t; € E,r; € R} from the speech
signal, where E denotes the set of entities in the
speech transcript, and R represents the set of pre-
defined relations.

4.2 Details of the RPG-MoGe Framework

The ERP-MoGe framework consists of three core
modules: a Speech Encoder, a Latent Relation Pre-
diction Head, and a Text Decoder. The detailed
structure is illustrated in Figure 2.

4.2.1 Speech Encoder

Given an input raw speech signal S, we first con-
vert it into log-mel spectrogram features X . Sub-
sequently, the features X are fed into the Whisper
speech encoder (Radford et al., 2023) to extract
high-level speech features H of the speech:

H = WhisperEncoder(X) € RE#>dr (1)

where WhisperEncoder(-) represents the encoding
operation of the Whisper encoder model, Ly and
dy, are sequence length and dimension of speech
features H.

4.2.2 Latet Relation Prediction Head

The Latent Relation Prediction Head (LRPH) is
designed to leverage semantic entity-relation cues
by predicting latent relations in the speech signal.
It consists of the following steps:
1.CNN Layers: We pass H through four CNN
layers with ReLLU activation to capture local pat-
terns:
H_,, = Convy(H) )


https://huggingface.co/flair/ner-english-ontonotes
https://labelstud.io
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2.Flattening and Linear Transformation: The
CNN output is flattened and fed into a linear layer
to compute relation prediction scores:

H g, = Flatten(H ¢y ) 3)
score) =& (WiepH o + birp) (4)
where o is the sigmoid function, Wy, € RIRIxdn

and by, € RIRI are learnable parameters, and
score!) e RIRI represents the scores for all pre-
defined relation types.

3.Loss Function: We employ the Binary Cross
Entropy (BCE) loss for training the LRPH module:

R

__ 1 (R)
Lip = TR & Z [yz log(score, )
4)
+(1— yg )) log(1 — scoregR))

where y(R) denotes the ground-truth relation labels.
Since each sample may contain multiple relations,
this prediction task is a multi-label classification

(R)

problem. In y*), each element y, ~ can be either O
or 1, indicating the absence or presence of the i-th
relation type, respectively. This approach enables
the model to predict multiple relations simultane-

ously for each given input.

4.2.3 Multi-view Relation Tree and
Linearization

To model the diversity introduced by permutations
of triplet element orders, we propose the Multi-
view Relation Tree structure. As depicted in Figure
1, each tree consists of four layers, with each layer
(excluding the first) corresponding to an element
of the triple. For a given sample, we can generate
P(3,3) = 6 distinct relation trees by permuting
the order of triplet elements.

Formally, for a speech signal .S with a set of rela-
tion triplets 7, we apply the Treeify(+, -) function
to construct a relation tree gwi from a specific order
perspective ;:

Gy, = Treeify(T, ¢;) (6)

where v; € ¥ represents an order perspective, and
¥ encompasses all six possible order perspectives.
The relation tree Qwi is then linearized into a

token sequence using the SeqLin(-) operation:
T’l?ZJ’L

lin — Sequ(ng) (7)



. #Instances #Triplets .
Datasets #Relations train dev test  train dgv test #Avg. audio length
@CoNLL04-SpeechRE 5 922 231 288 1,283 343 422 11.3s
®ReTACRED-SpeechRE 40 33,477 9,350 5,805 58,465 19,584 13,418 12.9s
&CommonVoice-SpeechRE 45 14,557 2,495 2,494 15948 2,696 2,728 11.6s

Table 2: Dataset statistics. §: TTS-synthesized speech; &: real human speech. ReTACRED-SpeechRE enumerates
all entity pairs as triplets, including “no_relation” type, while the other two datasets only contain positive triplets.

4.2.4 Text Decoder

The Text Decoder uses relation prompts and multi-
order triplet generation to decode relational triplets.
We utilize the pre-trained Whisper decoder (Rad-
ford et al., 2023) for this purpose. The input token
sequence to the decoder consists of three parts:

1.Relation type prompt tokens: 7., =
[t7el, ... trél], where t7 are special tokens rep-
resenting the predicted relation types generated by
the Latent Relation Prediction Head. These tokens
guide the decoder by incorporating latent relational
cues from speech.

2.0rder view control tokens: Tf;i’"l =
permute ([(h), (r), (t)], 1;), which specify the or-
der of special tokens (h) , (r) , (t) for a given per-
spective v;, as illustrated in Figure 1.

3. Linearized relation tree tokens: TZ? which
represent the linearized token sequence of the rela-
tion tree. This component encodes the hierarchical
structure of the relation tree into a sequential for-
mat suitable for the decoder.

These components are concatenated into the de-
coder input sequence Tyee = [Trer, ngl, Tizzn]
At the ¢-th decoding step, the probability distri-
bution Pydec of the output token tfec is computed
as:

(8)
Pyec = Softmax (Wiphyee + b))

haec = WhisperDecoder (H, T'5",)

dec

where h,qc. is the hidden state, and W,,,, b,,, are
learnable parameters.

The decoder is trained using the Cross-Entropy
Loss:

N |V

1
Lace = =77 2 D Yuaee i) 1og(Pygec i]) (10)

i=1 j=1

where N is the sequence length, |V| is the vocab-
ulary size, and y,q.. is the token label at the i-th
decoding step.

4.2.5 Training and Inference Strategies

During training, each sample is expanded into mul-
tiple generation targets corresponding to all possi-
ble order views for participation in training. The
total loss combines the Ly, and L

‘Ctotal = ﬁlrp + ﬁdec (11)

During inference, as illustrated in Figure 3, the
text decoder takes the speech features H and re-
lation prompt tokens T',..; as initial inputs. By
varying the order view control tokens, the decoder
autoregressively generates triplets under all order
views. A triplet is included in the final results if it
appears in more than A, order views.

S Experiments

5.1 Datasets & Evaluation Metrics

We conducted experiments on three datasets:
CoNLLO04-SpeechRE, ReTACRED-SpeechRE and
the CommonVoice-SpeechRE dataset proposed in
this paper. The Common Voice-SpeechRE dataset
includes diverse real human speech in its train-
ing, development, and test sets. For CoNLLO04-
SpeechRE and ReTACRED-SpeechRE, since the
real human speech test set and partial real human
speech training set proposed by Zhang et al. (2024)
have not yet been released, we used the fully TTS-
generated speech version released by Wu et al.
(2022). Detailed statistics of the datasets are pro-
vided in Table 2. For evaluation metrics, following
previous work (Wu et al., 2022; Zhang et al., 2024),
we used the micro-F1 score to assess the perfor-
mance of models in entity recognition, relation
prediction, and relation triplet extraction. For an
entity, relation or triple to be considered correct, it
must exactly match its counterpart in the ground
truth tags.

5.2 Experimental Settings

Our model was implemented using PyTorch-
Lightning® and PyTorch (Paszke et al., 2019), with

*https://github.com/Lightning- Al/pytorch-lightning
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Model External #CoNLL04-SpeechRE #ReTACRED-SpeechRE ~ &Common Voice-SpeechRE

Resources Entity Relation Triplet Entity Relation Triplet Entity Relation Triplet

GPT-3.5(LLM) - 58.74 49.45 2227 4046 17.63 3.22 53.74 28.41 10.73
GPT-4(LLM) - 61.36 62.67 28.83 47.4 39.12 9.12 57.33 38.32 15.35

TextRE TP-Linker - 78.63 83.49 58.56  50.46 51.83 20.39  64.61 69.31 46.61
Spert - 76.38 81.83 63.45  60.26 63.48 2146  66.34 70.82 47.26

REBEL - 85.36 89.86 7146  60.09 65.15 25.15  71.32 74.32 49.81
GPT-3.5pip(LLM) - 28.21 69.61 6.31 16.61 43.84 1.32 21.30 46.81 3.34
SpeechRE GPT-4pc(LLM) - 29.41 70.31 7.13 19.76 46.31 4.23 23.61 44.35 4.94
(Pipline) TP-Linkery;pe - 35.21 78.21 9.76 30.27 50.01 6.59 31.06 64.13 7.61
Spertpipe - 30.43 75.95 11.88  34.36 57.17 6.89 32.61 64.48 7.54

REBEL e - 37.06 83.35 14.01  32.07 51.97 6.49 31.54 66.10 7.92
GPT-40-audio(LLM) - 31.21 59.57 5.64 13.21 41.61 1.14 29.33 31.70 3.12
Qwen2-audio(LLM) - 36.74 16.31 2.31 10.50 23.61 0.31 31.16 14.92 0.85
LNA-ED(520M),; PL-FT 18.87 55.66 10.41 17.21 43.37 3.20 26.34 37.31 5.37

SpeechRE  LNA-ED(770M),,1,; - 19.13 56.32 11.12 18.26 43.15 3.67 27.61 38.51 6.01
(End2End) MCAM(520M),, ASR-PTC  40.13 77.89 22.07 3534 58.96 8.07 43.94 48.37 14.96
MCAM(770M) i - 40.66 77.61 2271  35.61 59.13 8.21 4534 50.34 15.71
RPG-MoGe(250M),,,; - 43.16 76.91 22.17  36.00 57.46 8.09 45.59 49.60 15.32
RPG-MoGe(770M),,p,; - 50.21 79.64 24.67  36.76 58.38 9.18 47.20 53.48 18.29

Table 3: Fl-score (%) comparison: RPG-MoGe versus baselines. Subscript pipe denotes ASR+TextRE pipeline
methods; ‘PL-FT” indicates fine-tuning with pseudo-labeled data; ‘ASR-PTC’ refers to pre-training with ASR data.
Subscript or: represents the original LNA-ED(Wu et al., 2022)/MCAM(Zhang et al., 2024) backbone: 24-layer
Wave2vec encoder + 12-layer BART-large decoder (520M). Subscript whi denotes Whisper (Radford et al., 2023)
backbones: 24-layer encoder/decoder (770M) or 12-layer encoder/decoder (250M).

OpenAI’s Whisper* (Radford et al., 2023) as the
backbone, specifically the whisper-small® (244M)
and whisper-medium® (769M) versions. We opti-
mized the model parameters using the Adam opti-
mizer with a learning rate of 1e-5, a batch size of
12. Training epochs were set to 50 for CoNLL04-
SpeechRE, 20 for ReTACRED-SpeechRE, and 10
for CommonVoice-SpeechRE. For the relation pre-
diction head, we employed a four-layer CNN with
2D convolutions (kernel size = 3) and progressively
increasing channel dimensions (16, 32, 64, 128).
During inference, the voting threshold A, for
all order views was set to 2. All hyperparame-
ters were tuned on the development set, and the
best-performing checkpoint was selected for test
set evaluation. Training was conducted on a single
NVIDIA A40 GPU, while inference was performed
on a single NVIDIA GeForce RTX 4090 GPU.

5.3 Baselines

To comprehensively evaluate the performance of
our proposed model, we compare it with three
categories of competitive baselines: (1) TextRE
Models. These models are designed to jointly ex-
tract entities and relations from input text. For a
fair comparison, following prior works (Wu et al.,
2022; Zhang et al., 2024), we adopt three state-of-

*Whisper has become a standard backbone in speech pro-
cessing, similar to BERT and BART in NLP.

Shttps://huggingface.co/openai/whisper-small.en

®https://huggingface.co/openai/whisper-medium.en

the-art TextRE models: TP-Linker (Wang et al.,
2020), Spert (Eberts and Ulges, 2020), and REBEL
(Cabot and Navigli, 2021). Additionally, to explore
the potential of large language models (LLMs)
in relation extraction, we include GPT-3.57 and
GPT-4? as baselines, leveraging their in-context
learning capabilities for TextRE tasks. (2) Pipeline
SpeechRE Models. These models follow a two-
stage pipeline: first, an Automatic Speech Recog-
nition (ASR) module transcribes the input speech
into text; second, a TextRE module extracts rela-
tion triplets from the transcribed text. To ensure
a fair comparison, we follow the setup of prior
works (Wu et al., 2022; Zhang et al., 2024) and
employ the pre-trained wav2vec-large model as
the ASR module. For the TextRE module, we use
the same five TextRE models mentioned above,
resulting in five pipeline models: TP-Linkery;p.,
Spertyipe, REBELipe, GPT-3.5,p¢, and GPT-4,;,,c.
(3) End-to-End SpeechRE Models. These mod-
els are designed to directly extract relation triplets
from input speech, without the intermediate step of
text transcription. Our proposed RPG-MoGe also
falls into this category. As baselines, we include
two existing end-to-end SpeechRE models: LNA-
ED (Wu et al., 2022) and MCAM (Zhang et al.,
2024). Additionally, to explore the capabilities of
recent advancements in speech-based LLMs, we
introduce two in-context learning baselines: GPT-

7apt-3.5-turbo-0125
8 gpt-4-turbo-2024-04-09
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https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4

Model Common Voice-SpeechRE

Entity Relation Triplet
MCAM(520M) 43.94 48.37 14.96
RPG-MoGe(250M) 45.59 49.60 15.32
w/o RPG 44.61 48.06 14.89
w/o LRPH&RPG 43.86 48.36 14.61
w/o Moge(infer) 43.64 46.40 12.46
w/o Moge(infer&train)  40.68 45.94 11.15

Table 4: An ablation study of the RPG-MoGe(250M).
‘RPG’ denotes Relation Prompt Guide in text decoder;
‘LRPH’ refers to CNN-based Latent Relation Prediction
Head; ‘w/o MoGe (infer)’ uses multi-order triplet gen-
eration in training and single-order in inference. ‘w/o
Moge(infer&train)’ means single-order triplet genera-
tion in both training and inference.

40-audio’ and Qwen2-audio!” (Chu et al., 2024).

5.4 Results and Analysis
5.4.1 Main Results

We conducted a comprehensive performance com-
parison between our proposed RPG-MoGe model
and several strong baselines, including TextRE,
SpeechRE (Pipeline), and SpeechRE (End2End).
The experimental results, presented in Table 3, re-
veal the following key observations:

(1) RPG-MoGe outperforms all SpeechRE
(End2End) baselines, achieving state-of-the-art per-
formance in entity, relation, and triplet F1 scores
across all datasets. Notably, RPG-MoGe with a
250M parameter Whisper backbone surpasses the
SOTA baseline MCAM using a 520M backbone
and matches MCAM'’s performance with a 770M
backbone. This demonstrates RPG-MoGe’s ability
to leverage the diversity of relation triplet element
orders and effectively utilize high-level semantic
cues through its potential relation prediction head
and explicit relation prompts.

(2) RPG-MoGe consistently outperforms all
SpeechRE models in triplet extraction, highlighting
the limitations of the pipeline approach, where cas-
cading ASR with TextRE introduces significant er-
rors. The end-to-end approach effectively mitigates
error accumulation, improving entity, relation, and
triplet extraction accuracy.

(3) Large language models without fine-tuning
(e.g., GPT-3.5, GPT-4, GPT-40-audio, Qwen2-
audio) perform significantly worse on the datasets
compared to fine-tuned smaller models, emphasiz-

% gpt-4o-audio-preview-2024-12-17
"Qwen2-Audio-7B-Instruct

Method CommonVoice-SpeechRE

Entity Relation Triplet
Order#1 43.59 47.01 12.46
Order#2 42.76 44.32 11.73
Order#3 45.07 47.18 13.31
Order#4 43.80 44.50 12.01
Order#5 4291 45.83 12.08
Order#6 43.70 47.45 12.56
Average 43.64 46.05 12.36
Ensemble 45.59(+1.95) 49.60(+3.55) 15.32(+2.96)

Table 5: Performance comparison of RPG-MoGe be-
fore and after voting ensemble of individual order view
predictions.

ing the continued importance of developing fine-
tuned models in TextRE and SpeechRE domains.

(4) Replacing the non-aligned Wave2vec and
BART encoders in LNA-ED and MCAM with the
pre-trained and aligned Whisper encoder and de-
coder eliminates the need for extensive external
corpus alignment and improves performance. This
also ensures a fairer comparison with RPG-MoGe,
which utilizes Whisper as its backbone.

5.4.2 Ablation Study

To assess the contribution of different modules in
RPG-MoGe, we conducted ablation experiments
on the fully human-annotated Common Voice-
SpeechRE dataset (see Table 4). The results re-
veal two key insights: (1) Removing the Relation
Prompt Guide (RPG) generated by the Latent Rela-
tion Prediction Head (LRPH) leads to performance
degradation, demonstrating that LRPH enhances
the model’s ability to capture high-level semantic
information (e.g., entity relations) from speech sig-
nals. Additionally, the RPG, derived from LRPH
predictions, acts as a prompt for the text decoder,
guiding the model to focus on potential relation
types and enhancing speech-text alignment through
high-level semantic information. (2) The strategy
of integrating multi-order triplet generation signifi-
cantly boosts model performance in both training
and inference stages. As shown in the results, RPG-
MoGe with a 250M-parameter backbone outper-
forms the state-of-the-art method MCAM, which
uses a 520M-parameter backbone. This suggests
that the effective information in speech data has not
yet been fully exploited. For example, the diversity
introduced by the order of relational triple elements,
as utilized in this work, represents a potential av-
enue for further improving model performance.


https://platform.openai.com/docs/models#gpt-4o-audio
https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct
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Figure 4: The impact of number of order views on RPG-MoGe performance.

5.4.3 Discussion on Multi-Order Triplet
Generation Ensemble

To quantitatively assess the effectiveness of the
Multi-Order Triplet Generation Ensemble strategy
in RPG-MoGe, we conducted experiments to ana-
lyze the impact of the number of generation order
views during training and inference (see Figure 4)
and compared performance before and after ensem-
ble across different order views (see Table 5). The
results highlight two key findings: during training,
increasing the number of generation order views
significantly improves model performance, as it ex-
poses the model to more diverse data, enhancing its
ability to capture underlying patterns; during infer-
ence, ensembling predictions from multiple order
views reduces individual model biases and errors,
as predictions from different orders complement
and correct each other, leading to higher overall
accuracy.

5.4.4 Human vs. TTS Speech Data Analysis

To investigate the impact of using TTS-generated
speech data for training and evaluating SpeechRE
models, we synthesized TTS-based training and
test sets for the CommonVoice-SpeechRE dataset
using the same TTS tools applied to CoNLLO04-
SpeechRE and ReTACRED-SpeechRE. We con-
ducted experiments comparing the performance
of RPG-MoGe when trained and tested on human
speech versus TTS-generated speech (see Table
6). The results reveal two key findings: (1) Mod-
els trained on TTS data exhibit significantly lower
performance compared to those trained on human
speech, indicating that human speech data better
reflects real-world scenarios and yields more robust
models; (2) Models trained on TTS data perform
notably worse on human speech test sets than on
TTS test sets, suggesting that TTS-generated data
fails to accurately replicate real-world speech en-

Test Speech  Speech

Train (TTS) (Human)
Entity 50.25 40.59
i‘;‘;?;;l Relation  53.88  42.13
Triplet 18.78 12.17
Entity 41.91 45.59
(IS{lu)liﬁzl;) Relation  48.04  49.60
Triplet 14.13 15.32

Table 6: Impact of TTS and Human Speech on Model
Training and Performance Evaluation

vironments, leading to biased performance evalu-
ation. These findings underscore the value of the
fully human-annotated Common Voice-SpeechRE
dataset proposed in this work, which not only pro-
vides diverse, real-world training data for robust
model development but also establishes a more
reliable benchmark for evaluating SpeechRE per-
formance in authentic settings.

Due to page constraints, the computational
efficiency analysis of RPG-MoGe is provided in
the appendix.

6 Conclusions

In this work, we address the limitations of existing
datasets and models in Speech Relation Extrac-
tion (SpeechRE) by introducing Common Voice-
SpeechRE, a large-scale dataset with diverse real-
human speech samples, and proposing RPG-MoGe,
a novel framework that leverages a multi-order
triplet generation ensemble strategy and CNN-
based latent relation prediction heads to enhance
triple generation and cross-modal alignment. Ex-
tensive experiments demonstrate the superiority of
our approach, outperforming state-of-the-art base-
lines and setting a new benchmark for SpeechRE
research. Our contributions provide both a valuable
resource and an effective methodology, advancing
the field toward real-world applications.



Limitations

While our work introduces significant advance-
ments in Speech Relation Extraction (SpeechRE),
it is not without limitations. The Common Voice-
SpeechRE dataset, despite its diversity, primarily
focuses on English speech, which may restrict its
generalizability to other languages. Additionally,
the RPG-MoGe framework, though effective, relies
on computationally intensive components such as
multi-order ensemble strategies and cross-modal
alignment, which could pose challenges for deploy-
ment in resource-constrained environments. Future
work could explore multilingual extensions of the
dataset and more efficient model architectures to
further enhance the practicality and scalability of
SpeechRE systems.
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Method Entity Relation Triplet Speed(inference)
LNA-ED(770M) 1 27.61 38.51 6.01 4.61sample/s
MCAM(770M) 1 45.34 50.34 15.71 4.55sample/s
RPG-MoGe(250M),,,;  45.59 49.60 15.32 4.68sample/s
RPG-MoGe(770M),,;  47.20 53.48 18.29 0.78sample/s

Table 7: Comparison of computational efficiency between RPG-MoGe and baseline methods. All experiments were
conducted on a single NVIDIA GeForce RTX 4090 GPU with a batch size of 1.

Gender Count
Male/Masculine 7598
Female/Feminine 5992
Unknown 5993

Table 8: Gender distribution of speech collectors in the
dataset.

A Analysis on Model Efficiency

The computational efficiency of RPG-MoGe is
evaluated against several baseline methods, includ-
ing LNA-ED and MCAM, across key metrics such
as entity, relation, and triplet F1 score (%), as well
as inference speed. As shown in Table 7, RPG-
MoGe demonstrates superior performance in terms
of prediction accuracy. Specifically, the 770M pa-
rameter version of RPG-MoGe achieves the high-
est scores across all metrics, significantly outper-
forming both LNA-ED and MCAM. Notably, the
250M parameter version of RPG-MoGe also de-
livers competitive performance compared to the
baseline methods.

However, during the inference phase, RPG-
MoGe requires generating relational triplets from
six different order views and ensembling them,
which increases model complexity. This is reflected
in the significantly lower inference speed of 0.78
samples per second for the 770M version. In con-
trast, RPG-MoGe (250M), due to its smaller pa-
rameter size, maintains the highest inference speed
of 4.68 samples per second among all models. This
trade-off between accuracy and efficiency under-
scores the importance of selecting the appropriate
model size based on specific application require-
ments.

In summary, RPG-MoGe strikes a balance be-
tween computational efficiency and prediction ac-
curacy. The 250M version offers a practical so-
lution for scenarios prioritizing speed, while the
770M version delivers state-of-the-art performance
for tasks where accuracy is paramount.
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Age Group Count

Unknown 5553
Twenties 5441
Thirties 2689
Forties 2052
Fifties 1263
Teens 1238
Sixties 1199
Seventies 118
Eighties 23
Nineties 7

Table 9: Age distribution of speech collectors in the
dataset.

B Detailed Statistical Analysis of the
Dataset

In this section, we present a comprehensive statis-
tical analysis of the dataset, focusing on four key
aspects: the distribution of relation triplet types,
the gender distribution of speech collectors, the age
distribution of speech collectors, and the accent
distribution of speech collectors. These analyses
provide valuable insights into the composition and
diversity of the dataset.

B.1 Distribution of Relation Triplet Types

The distribution of relation triplet types in the
dataset is presented in Table 10, which provides a
detailed breakdown of the frequency and percent-
age of each triplet type. The dataset encompasses a
wide variety of triplet types, reflecting the diversity
and complexity of the relationships captured.

The most frequent triplet type is Per-
son:holds_title: Title, which accounts for 3,333 in-
stances (15.54% of the dataset). This is followed by
Person:affiliated_with: Organization with 2,065 in-
stances (9.63%) and Location:located_in:Location
with 1,738 instances (8.11%). These triplet types
dominate the dataset, indicating a strong focus
on personal titles, organizational affiliations, and
geographical relationships.



Other notable triplet types include Organiza-
tion: Establishes:Title (1,233 instances, 5.75%), Or-
ganization:located_in:Location (1,163 instances,
5.42%), and Person:creates:Work_of _art (1,112
instances, 5.19%). These relationships highlight
the dataset’s coverage of organizational structures,
geographical contexts, and creative works.

Less frequent triplet types, such as Per-
son:opposes:Regulation (28 instances, 0.13%) and
Organization:violates_opposes:Regulation (12 in-
stances, 0.06%), represent more specialized or
niche relationships. While these triplet types are
underrepresented, they contribute to the dataset’s
richness and applicability to a broader range of
tasks.

Overall, the distribution of relation triplet types
demonstrates the dataset’s comprehensive cover-
age of diverse relationships, ranging from common
personal and organizational associations to more
specialized interactions. This diversity is essen-
tial for training models capable of handling a wide
array of real-world scenarios.

B.2 Gender Distribution of Speech Collectors

As shown in Table 8, the gender distribu-
tion of speech collectors is well-balanced, with
7,598 male/masculine speakers and 5,992 fe-
male/feminine speakers. This balanced representa-
tion ensures that the dataset is suitable for tasks re-
quiring gender-neutral or gender-specific analysis,
contributing to its overall robustness and fairness.

B.3 Age Distribution of Speech Collectors

The age distribution of speech collectors in the
dataset, as shown in Table 9, exhibits a broad and
diverse representation across various age groups,
ranging from teens to individuals in their nineties.
This diversity ensures the inclusion of a wide spec-
trum of vocal characteristics and speech patterns,
enhancing the dataset’s ability to support robust and
generalizable SpeechRE models. The significant
representation of younger and middle-aged speak-
ers, complemented by meaningful contributions
from older age groups, underscores the dataset’s
comprehensive coverage of speaker demographics,
making it well-suited for real-world applications.

B.4 Diversity of Accents Among Speech
Collectors

The distribution of accents among speech collec-
tors, as shown in Table 11, demonstrates signifi-
cant diversity. Among the labeled accents, "United
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States English" (4,967 instances) and "England En-
glish" (1,533) are the most prevalent, followed by
"India and South Asia English" (1,453), "Cana-
dian English" (1,032), and "German English, Non-
native speaker” (896). Accents from regions such
as Australia, Southern Africa, Scotland, and North-
ern Ireland are also well-represented, while accents
from Singapore, Malaysia, and Hong Kong ap-
pear less frequently. Notably, some collectors ex-
hibit multiple accent backgrounds, such as "United
States English and England English" (40 instances)
and "United States English and Transatlantic En-
glish" (31 instances). Overall, the dataset encom-
passes a wide range of English accents, reflecting
the global diversity of English usage.



ID | Head_Entity Relation Tail_Entity | Quantity | Percentage
1 Person holds_title Title 3333 15.54%
2 Person affiliated_with Organization 2065 9.63%
3 Location located_in Location 1738 8.11%
4 | Organization Establishes Title 1233 5.75%
5 | Organization located_in Location 1163 5.42%
6 Person creates Work_of _art 1112 5.19%
7 Person participates_in Event 938 4.37%
8 Person business/work Person 778 3.63%
9 Person family Person 702 3.27%
10 Person visits Location 667 3.11%
11 Event Occurs_at Location 615 2.87%
12 Person belongs_to_NORP Organization 612 2.85%
13 | Organization Engagement Event 548 2.56%
14 Person resides_at Location 548 2.56%
15 Person performs Work_of _art 539 2.51%
16 | Organization | develops/produces/sells | Production 483 2.25%
17 Person born_in Location 404 1.88%
18 Person is_character_in Work_of_art 386 1.80%
19 Person works_at Location 385 1.80%
20 Person owns/uses Production 266 1.24%
21 | Organization is_subordinate_to Organization 262 1.22%
22 | Organization publishes Work_of_art 256 1.19%
23 Location Adjacent Location 232 1.08%
24 Person died_at Location 215 1.00%
25 Person creates Production 213 0.99%
26 Person founds Organization 205 0.96%
27 Event Occurs_on Date 185 0.86%
28 Person competes_with Person 142 0.66%
29 Person coreference Person 138 0.64%
30 | Organization manages/uses Production 132 0.62%
31 Person harms Person 130 0.61%
32 Person provides_services_to Organization 117 0.55%
33 | Organization Organization Event 106 0.49%
34 Person leaves Organization 91 0.42%
35 Person leads_NORP Organization 77 0.36%
36 Person supports Regulation 73 0.34%
37 | Production Originated_in Location 57 0.27%
38 Person critiques Work_of_art 55 0.26%
39 | Organization collaborates_with Organization 54 0.25%
40 Person proposes Regulation 47 0.22%
41 | Organization Complies_With Regulation 43 0.20%
42 | Organization Legislative_Actions Regulation 39 0.18%
43 Person opposes Regulation 28 0.13%
44 Person Endorses Production 18 0.08%
45 | Organization violates_opposes Regulation 12 0.06%

Table 10: Distribution of relation triplet types: Frequency and percentage of each triplet type in the dataset.
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Accent Count

Unknown 7690
United States English 4967
England English 1533
India and South Asia 1453
Canadian English 1032
German English, Non native speaker 896
Australian English 627
Southern African 240
Scottish English 229
Northern Irish 143
Irish English 131
New Zealand English 112
Filipino 88
Liverpool English, Lancashire English 61
Singaporean English 48
England English, New Zealand English 47
United States English, England English 40
United States English, Transatlantic English 31
Hong Kong English 30
United States English, Midwestern, Low, Demure 21
Malaysian English 20
Welsh English 19
South African accent, Southern African 18
United States English, Scandinavian 14
Nepali 13
Academic southern English, England English 12

Southern United States, United States English
Northern Irish, Culchie
Southern United States, New Orleans dialect
United States English, Midwestern, Minnesotan
New Zealand English, England English
Polish
Southern Californian, United States English
United States English, Canadian English
West Indies and Bermuda
German
United States English, Midwestern

| | b | | OV O\ O\ 00| 00| \O

Table 11: Distribution of accents among speech collectors in the dataset.
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