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Abstract001

Speech Relation Extraction (SpeechRE) aims002
to extract relation triplets directly from speech003
data. However, existing datasets suffer from004
limited quantity and diversity of real-human005
speech in their training sets, while current mod-006
els are constrained by fixed single-order gen-007
eration templates and a lack of high-level se-008
mantic alignment, significantly hindering their009
performance. To address these challenges,010
we introduce CommonVoice-SpeechRE, a011
large-scale dataset comprising nearly 20,000012
real-human speech samples from diverse013
speakers, establishing a new benchmark for014
SpeechRE research. Furthermore, we pro-015
pose the Relation Prompt-Guided Multi-Order016
Generative Ensemble (RPG-MoGe), a novel017
framework that features: (1) a multi-order018
triplet generation ensemble strategy, leverag-019
ing data diversity through diverse element or-020
ders during both training and inference, and021
(2) CNN-based latent relation prediction heads022
that generate explicit relation prompts to guide023
cross-modal alignment and accurate triplet gen-024
eration. Extensive experiments demonstrate the025
superiority of our framework, outperforming026
state-of-the-art baselines. Our work not only027
provides a valuable dataset resource for the028
community but also offers an effective method-029
ology to advance SpeechRE in real-world ap-030
plications.031

1 Introduction032

Relation Extraction (RE), a fundamental task in033

information extraction, aims to extract structured034

knowledge in the form of relational triples (head035

entity, relation, tail entity) from unstructured data.036

RE plays a pivotal role in downstream applications037

such as knowledge graph construction and search038

engine optimization (Nasar et al., 2021). Despite its039

importance, most existing research focuses on Tex-040

tRE, which extracts relational triples solely from041

plain text (Eberts and Ulges, 2020; Wang et al.,042

2020; Cabot and Navigli, 2021).043

Dataset CoNLL04 ReTACRED Ours
#Rel. 5 40 45
#Train Sam. 922g 33,477ð 14,557g
#Dev Sam. 231g 9,350ð 2,495g
#Test Sam. 288g 5,805g 2,494g
#Speaker 4 8 ∼20,000

Table 1: Comparison of Key Statistics between existing
datasets and the dataset proposed in this paper (“#Rel”:
Number of Relations; “Sam.”: Samples; g: Indicates
samples with real-human speech; ð: Indicates samples
with TTS synthetic speech)

However, with the exponential growth of speech 044

data from sources such as news broadcasts, on- 045

line meetings, and social media, there is a pressing 046

need to extend RE to the speech domain. Speech 047

data contains rich structured knowledge that can 048

enhance knowledge graphs and support speech- 049

related applications. This has led to the emergence 050

of Speech Relation Extraction (SpeechRE), a 051

task that directly extracts relational triples from 052

audio recordings. 053

Overall, SpeechRE is a relatively new research 054

topic and remains underexplored. However, two 055

notable works, LNA-ED (Wu et al., 2022) and 056

MCAM (Zhang et al., 2024), have already made 057

significant contributions. Wu et al. (2022) in- 058

troduced the SpeechRE task by applying text-to- 059

speech (TTS) to TextRE datasets, creating two syn- 060

thetic speech benchmarks. They also provided the 061

first SpeechRE baseline, LNA-ED, which uses a 062

CNN-based length adapter to bridge a speech en- 063

coder and text decoder. Building on this, Zhang 064

et al. (2024) developed two real-human-speech 065

SpeechRE datasets and proposed MCAM, a more 066

powerful model that employs a Multi-Level Cross- 067

Modal Alignment Adapter to align tokens, entities, 068

and sentences across speech and text. 069

Despite these advancements, existing ap- 070

proaches suffer from several limitations: (1) Issue- 071

1: In their datasets, real-human speech data mainly 072
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   “ T h i s  M u s t  B e  t h e  P l a c e ”  i s  a  
song by new wave band Talking Heads ,  

r e l e a s e d  i n  N o v e m b e r  1 9 8 3  a s  t h e 

s e c o n d  s i n g l e  f r o m  i t s  f i f t h  a l b u m 

“Speaking in Tongues”

Relational Triples:
(This Must Be the Place, performer, Talking Heads) 

(Talking Heads, genre, new wave)
 (This Must Be the Place, part of, Speaking in Tongues)

 (Speaking in Tongues, performer, Talking Heads)
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Figure 1: Explanation of the multi-view relation tree and its linearization process. Here, “<h>”, “<r>”, and “<t>”
are special tokens representing the head entity, relation type, and tail entity of the relational triple respectively.

covers the test set, leaving limited training exam-073

ples with few speakers (see Table 1). This may074

reduce the model’s performance and generaliza-075

tion in real-world scenarios. (2) Issue-2: Current076

methods generate relational triples in a fixed or-077

der, ignoring the inherent diversity in the order of078

triple elements within the data. This restricts the079

model’s ability to fully exploit the data. (3) Issue-080

3: Existing approaches primarily rely on semantic081

similarity for cross-modal alignment, overlooking082

high-level structured semantic cues such as entity083

relations.084

To address these challenges, we propose a com-085

prehensive solution that encompasses both data and086

model innovations.087

For the data limitation (Issue-1), we intro-088

duce CommonVoice-SpeechRE, a newly anno-089

tated dataset comprising nearly 20,000 real speech090

recordings from diverse speakers. This dataset sig-091

nificantly expands the variety of speaker profiles092

and scenarios available for training (see Table 1).093

For the model, we propose the Relation Prompt-094

Guided Multi-Order Generative Ensemble (RPG-095

MoGe) framework. Specifically: (1) To mitigate096

the inherent limitation of fixed order in triplet gen-097

eration templates (Issue-2), we introduce an inno-098

vative multi-view relation tree structure (depicted099

in Figure 1) to comprehensively capture the diverse100

ordering patterns of triplet elements. By linearizing101

these trees as generation targets, our model imple-102

ments a multi-order triplet generation ensemble103

strategy during both training and inference phases,104

thereby fully exploiting the data’s inherent diver-105

sity potential. (2) To alleviate the Issue-3, we de- 106

sign a CNN-based latent relation prediction head 107

that identifies latent relations in the speech signal. 108

These relations are used to construct explicit rela- 109

tion prompts, guiding the text decoder to generate 110

relational triples and align speech and text modali- 111

ties more effectively. 112

Our contributions can be summarized as follows: 113

• We present CommonVoice-SpeechRE, a large- 114

scale, diverse real-human-speech dataset that 115

sets a new benchmark for SpeechRE research. 116

• We propose RPG-MoGe, a novel framework 117

that integrates multi-order triple generation 118

and explicit relation prompts to fully exploit 119

data diversity and high-level semantic cues. 120

• Extensive experiments on multiple SpeechRE 121

benchmarks show that our approach outper- 122

forms state-of-the-art baselines, validating the 123

effectiveness of our dataset and model design. 124

2 Related Work 125

2.1 Speech Relation Extraction 126

Speech Relation Extraction (SpeechRE) is a critical 127

yet underexplored task in Information Extraction 128

(IE) and Spoken Language Understanding (SLU) 129

(Shon et al., 2022). While Speech Named Entity 130

Recognition (Speech NER), an important subtask 131

in both SLU and IE, has seen significant progress 132

(Yadav et al., 2020; Ghannay et al., 2018; Chen 133

et al., 2022), SpeechRE remains nascent, with lim- 134

ited advancements in datasets and models. Two 135
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key contributions have shaped this field. Wu et al.136

(2022) introduced the SpeechRE task by converting137

TextRE datasets into synthetic speech using a text-138

to-speech (TTS) system, creating two benchmark139

datasets. They also proposed the LNA-ED model,140

which connects a speech encoder and text decoder141

via a CNN-based length adapter. Later, Zhang142

et al. (2024) advanced the field by constructing a143

dataset with real human speech and introducing144

the MCAM model, which employs a Multi-Level145

Cross-Modal Alignment Adapter to align speech146

and text across tokens, entities and sentences.147

2.2 Multi-view Prompt Text Generation148

Recent work in aspect-based sentiment analysis has149

shown that leveraging element order diversity in150

triples (Gou et al., 2023) or quadruples (Bai et al.,151

2024) during training and inference can enhance152

model performance and generalization. Inspired by153

this, we are the first to explore the impact of ele-154

ment order diversity in relational triplets on model155

performance in SpeechRE, a cross-modal text gen-156

eration task involving both speech and text. This ap-157

proach distinguishes our work from prior research158

and opens new avenues for improving SpeechRE159

through structured data diversity.160

3 The New Dataset161

We present CommonVoice-SpeechRE, a novel162

dataset derived from the English subset of the163

Common Voice 17.0 corpus (Ardila et al., 2020).164

Common Voice 17.0 is a large-scale, multilingual165

speech dataset comprising 20,408 validated hours166

of recordings across 124 languages, contributed167

by volunteers globally. Released under the CC-0168

license, it permits unrestricted use, modification,169

and redistribution, making it an ideal foundation170

for secondary annotation tasks such as Speech Re-171

lation Extraction (SpeechRE).172

Most samples in Common Voice 17.0 are neg-173

ative examples lacking entities or relations. To174

identify potential positive samples, we employed175

a pre-trained BERT NER tagger1 to analyze tran-176

scriptions and filter relevant data. We adopted en-177

tity and relation type definitions from the ACE04178

and ACE05 datasets, crafting a tailored annotation179

guide. A team of 10 graduate students (all CET-6180

certified) manually labeled approximately 20,000181

transcriptions using Label Studio2. The annotation182

1https://huggingface.co/flair/ner-english-ontonotes
2https://labelstud.io

process involved dividing the data into batches of 183

no more than 1,000 sentences, with 10% randomly 184

selected for verification. Experienced annotators 185

ensured sentence-level accuracy exceeded 95%; 186

otherwise, the batch was re-annotated. 187

Detailed statistics of the CommonVoice- 188

SpeechRE dataset are provided in the appendix 189

due to page constraints. Sample data and anno- 190

tation guidelines can be found in the supplemen- 191

tary material. 192

4 Methodology 193

In this section, we formally define the Speech Rela- 194

tion Extraction (SpeechRE) task and present the de- 195

tailed implementation of our proposed RPG-MoGe 196

framework. 197

4.1 Task Definition 198

Given a speech signal S, the SpeechRE task aims 199

to directly extract a set of relational triples Γ = 200

{(hi, ri, ti) | hi, ti ∈ E, ri ∈ R} from the speech 201

signal, where E denotes the set of entities in the 202

speech transcript, and R represents the set of pre- 203

defined relations. 204

4.2 Details of the RPG-MoGe Framework 205

The ERP-MoGe framework consists of three core 206

modules: a Speech Encoder, a Latent Relation Pre- 207

diction Head, and a Text Decoder. The detailed 208

structure is illustrated in Figure 2. 209

4.2.1 Speech Encoder 210

Given an input raw speech signal S, we first con- 211

vert it into log-mel spectrogram features X . Sub- 212

sequently, the features X are fed into the Whisper 213

speech encoder (Radford et al., 2023) to extract 214

high-level speech features H of the speech: 215

H = WhisperEncoder(X) ∈ RLH×dh (1) 216

where WhisperEncoder(·) represents the encoding 217

operation of the Whisper encoder model, LH and 218

dh are sequence length and dimension of speech 219

features H . 220

4.2.2 Latet Relation Prediction Head 221

The Latent Relation Prediction Head (LRPH) is 222

designed to leverage semantic entity-relation cues 223

by predicting latent relations in the speech signal. 224

It consists of the following steps: 225

1.CNN Layers: We pass H through four CNN 226

layers with ReLU activation to capture local pat- 227

terns: 228

Hcnn = Conv4(H) (2) 229

3
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Figure 2: The overall architecture of RPG-MoGe.
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Figure 3: Implementation details for the Inference Phase
in RPG-MoGe.

2.Flattening and Linear Transformation: The230

CNN output is flattened and fed into a linear layer231

to compute relation prediction scores:232

Hflat = Flatten(Hcnn) (3)233

score(R) = σ
(
W lrpHflat + blrp

)
(4)234

where σ is the sigmoid function, W lrp ∈ R|R|×dh235

and blrp ∈ R|R| are learnable parameters, and236

score(R) ∈ R|R| represents the scores for all pre-237

defined relation types.238

3.Loss Function: We employ the Binary Cross239

Entropy (BCE) loss for training the LRPH module:240

Llrp =− 1

|R|

|R|∑
i=1

[
y(R)
i log(score(R)

i )

+(1− y(R)
i ) log(1− score(R)

i )
] (5)241

where y(R) denotes the ground-truth relation labels. 242

Since each sample may contain multiple relations, 243

this prediction task is a multi-label classification 244

problem. In y(R), each element y(R)
i can be either 0 245

or 1, indicating the absence or presence of the i-th 246

relation type, respectively. This approach enables 247

the model to predict multiple relations simultane- 248

ously for each given input. 249

4.2.3 Multi-view Relation Tree and 250

Linearization 251

To model the diversity introduced by permutations 252

of triplet element orders, we propose the Multi- 253

view Relation Tree structure. As depicted in Figure 254

1, each tree consists of four layers, with each layer 255

(excluding the first) corresponding to an element 256

of the triple. For a given sample, we can generate 257

P (3, 3) = 6 distinct relation trees by permuting 258

the order of triplet elements. 259

Formally, for a speech signal S with a set of rela- 260

tion triplets T , we apply the Treeify(·, ·) function 261

to construct a relation tree Gψi
from a specific order 262

perspective ψi: 263

Gψi
= Treeify(T , ψi) (6) 264

where ψi ∈ Ψ represents an order perspective, and 265

Ψ encompasses all six possible order perspectives. 266

The relation tree Gψi
is then linearized into a 267

token sequence using the SeqLin(·) operation: 268

Tψi

lin = SeqLin(Gψi
) (7) 269
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Datasets #Relations #Instances #Triplets #Avg. audio lengthtrain dev test train dev test
ðCoNLL04-SpeechRE 5 922 231 288 1,283 343 422 11.3s
ðReTACRED-SpeechRE 40 33,477 9,350 5,805 58,465 19,584 13,418 12.9s
gCommonVoice-SpeechRE 45 14,557 2,495 2,494 15,948 2,696 2,728 11.6s

Table 2: Dataset statistics. ð: TTS-synthesized speech; g: real human speech. ReTACRED-SpeechRE enumerates
all entity pairs as triplets, including “no_relation” type, while the other two datasets only contain positive triplets.

4.2.4 Text Decoder270

The Text Decoder uses relation prompts and multi-271

order triplet generation to decode relational triplets.272

We utilize the pre-trained Whisper decoder (Rad-273

ford et al., 2023) for this purpose. The input token274

sequence to the decoder consists of three parts:275

1.Relation type prompt tokens: T rel =276

[trel1 , . . . , treln ], where treli are special tokens rep-277

resenting the predicted relation types generated by278

the Latent Relation Prediction Head. These tokens279

guide the decoder by incorporating latent relational280

cues from speech.281

2.Order view control tokens: T ctrl
ψi

=282

permute ([⟨h⟩ , ⟨r⟩ , ⟨t⟩] , ψi), which specify the or-283

der of special tokens ⟨h⟩ , ⟨r⟩ , ⟨t⟩ for a given per-284

spective ψi, as illustrated in Figure 1.285

3. Linearized relation tree tokens: T lin
ψi

, which286

represent the linearized token sequence of the rela-287

tion tree. This component encodes the hierarchical288

structure of the relation tree into a sequential for-289

mat suitable for the decoder.290

These components are concatenated into the de-291

coder input sequence T dec = [T rel,T
ctrl
ψi
,T lin

ψi
].292

At the i-th decoding step, the probability distri-293

bution ptdeci
of the output token tdeci is computed294

as:295

htdeci
= WhisperDecoder

(
H,T<i

dec

)
(8)296

ptdeci
= Softmax

(
W lmhtdeci

+ blm

)
(9)297

where htdeci
is the hidden state, and W lm, blm are298

learnable parameters.299

The decoder is trained using the Cross-Entropy300

Loss:301

Ldec = − 1

N

N∑
i=1

|V |∑
j=1

ytdeci
[j] log(ptdeci

[j]) (10)302

where N is the sequence length, |V | is the vocab-303

ulary size, and ytdeci
is the token label at the i-th304

decoding step.305

4.2.5 Training and Inference Strategies 306

During training, each sample is expanded into mul- 307

tiple generation targets corresponding to all possi- 308

ble order views for participation in training. The 309

total loss combines the Llrp and Ldec: 310

Ltotal = Llrp + Ldec (11) 311

During inference, as illustrated in Figure 3, the 312

text decoder takes the speech features H and re- 313

lation prompt tokens T rel as initial inputs. By 314

varying the order view control tokens, the decoder 315

autoregressively generates triplets under all order 316

views. A triplet is included in the final results if it 317

appears in more than λvote order views. 318

5 Experiments 319

5.1 Datasets & Evaluation Metrics 320

We conducted experiments on three datasets: 321

CoNLL04-SpeechRE, ReTACRED-SpeechRE and 322

the CommonVoice-SpeechRE dataset proposed in 323

this paper. The CommonVoice-SpeechRE dataset 324

includes diverse real human speech in its train- 325

ing, development, and test sets. For CoNLL04- 326

SpeechRE and ReTACRED-SpeechRE, since the 327

real human speech test set and partial real human 328

speech training set proposed by Zhang et al. (2024) 329

have not yet been released, we used the fully TTS- 330

generated speech version released by Wu et al. 331

(2022). Detailed statistics of the datasets are pro- 332

vided in Table 2. For evaluation metrics, following 333

previous work (Wu et al., 2022; Zhang et al., 2024), 334

we used the micro-F1 score to assess the perfor- 335

mance of models in entity recognition, relation 336

prediction, and relation triplet extraction. For an 337

entity, relation or triple to be considered correct, it 338

must exactly match its counterpart in the ground 339

truth tags. 340

5.2 Experimental Settings 341

Our model was implemented using PyTorch- 342

Lightning3 and PyTorch (Paszke et al., 2019), with 343

3https://github.com/Lightning-AI/pytorch-lightning
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Model External
Resources

ðCoNLL04-SpeechRE ðReTACRED-SpeechRE gCommonVoice-SpeechRE
Entity Relation Triplet Entity Relation Triplet Entity Relation Triplet

TextRE

GPT-3.5(LLM) - 58.74 49.45 22.27 40.46 17.63 3.22 53.74 28.41 10.73
GPT-4(LLM) - 61.36 62.67 28.83 47.4 39.12 9.12 57.33 38.32 15.35
TP-Linker - 78.63 83.49 58.56 50.46 51.83 20.39 64.61 69.31 46.61
Spert - 76.38 81.83 63.45 60.26 63.48 21.46 66.34 70.82 47.26
REBEL - 85.36 89.86 71.46 60.09 65.15 25.15 71.32 74.32 49.81

SpeechRE
(Pipline)

GPT-3.5pipe(LLM) - 28.21 69.61 6.31 16.61 43.84 1.32 21.30 46.81 3.34
GPT-4pipe(LLM) - 29.41 70.31 7.13 19.76 46.31 4.23 23.61 44.35 4.94
TP-Linkerpipe - 35.21 78.21 9.76 30.27 50.01 6.59 31.06 64.13 7.61
Spertpipe - 30.43 75.95 11.88 34.36 57.17 6.89 32.61 64.48 7.54
REBELpipe - 37.06 83.35 14.01 32.07 51.97 6.49 31.54 66.10 7.92

SpeechRE
(End2End)

GPT-4o-audio(LLM) - 31.21 59.57 5.64 13.21 41.61 1.14 29.33 31.70 3.12
Qwen2-audio(LLM) - 36.74 16.31 2.31 10.50 23.61 0.31 31.16 14.92 0.85
LNA-ED(520M)ori PL-FT 18.87 55.66 10.41 17.21 43.37 3.20 26.34 37.31 5.37
LNA-ED(770M)whi - 19.13 56.32 11.12 18.26 43.15 3.67 27.61 38.51 6.01
MCAM(520M)ori ASR-PTC 40.13 77.89 22.07 35.34 58.96 8.07 43.94 48.37 14.96
MCAM(770M)whi - 40.66 77.61 22.71 35.61 59.13 8.21 45.34 50.34 15.71
RPG-MoGe(250M)whi - 43.16 76.91 22.17 36.00 57.46 8.09 45.59 49.60 15.32
RPG-MoGe(770M)whi - 50.21 79.64 24.67 36.76 58.38 9.18 47.20 53.48 18.29

Table 3: F1-score (%) comparison: RPG-MoGe versus baselines. Subscript pipe denotes ASR+TextRE pipeline
methods; ‘PL-FT’ indicates fine-tuning with pseudo-labeled data; ‘ASR-PTC’ refers to pre-training with ASR data.
Subscript ori represents the original LNA-ED(Wu et al., 2022)/MCAM(Zhang et al., 2024) backbone: 24-layer
Wave2vec encoder + 12-layer BART-large decoder (520M). Subscript whi denotes Whisper (Radford et al., 2023)
backbones: 24-layer encoder/decoder (770M) or 12-layer encoder/decoder (250M).

OpenAI’s Whisper4 (Radford et al., 2023) as the344

backbone, specifically the whisper-small5 (244M)345

and whisper-medium6 (769M) versions. We opti-346

mized the model parameters using the Adam opti-347

mizer with a learning rate of 1e-5, a batch size of348

12. Training epochs were set to 50 for CoNLL04-349

SpeechRE, 20 for ReTACRED-SpeechRE, and 10350

for CommonVoice-SpeechRE. For the relation pre-351

diction head, we employed a four-layer CNN with352

2D convolutions (kernel size = 3) and progressively353

increasing channel dimensions (16, 32, 64, 128).354

During inference, the voting threshold λvote for355

all order views was set to 2. All hyperparame-356

ters were tuned on the development set, and the357

best-performing checkpoint was selected for test358

set evaluation. Training was conducted on a single359

NVIDIA A40 GPU, while inference was performed360

on a single NVIDIA GeForce RTX 4090 GPU.361

5.3 Baselines362

To comprehensively evaluate the performance of363

our proposed model, we compare it with three364

categories of competitive baselines: (1) TextRE365

Models. These models are designed to jointly ex-366

tract entities and relations from input text. For a367

fair comparison, following prior works (Wu et al.,368

2022; Zhang et al., 2024), we adopt three state-of-369

4Whisper has become a standard backbone in speech pro-
cessing, similar to BERT and BART in NLP.

5https://huggingface.co/openai/whisper-small.en
6https://huggingface.co/openai/whisper-medium.en

the-art TextRE models: TP-Linker (Wang et al., 370

2020), Spert (Eberts and Ulges, 2020), and REBEL 371

(Cabot and Navigli, 2021). Additionally, to explore 372

the potential of large language models (LLMs) 373

in relation extraction, we include GPT-3.57 and 374

GPT-48 as baselines, leveraging their in-context 375

learning capabilities for TextRE tasks. (2) Pipeline 376

SpeechRE Models. These models follow a two- 377

stage pipeline: first, an Automatic Speech Recog- 378

nition (ASR) module transcribes the input speech 379

into text; second, a TextRE module extracts rela- 380

tion triplets from the transcribed text. To ensure 381

a fair comparison, we follow the setup of prior 382

works (Wu et al., 2022; Zhang et al., 2024) and 383

employ the pre-trained wav2vec-large model as 384

the ASR module. For the TextRE module, we use 385

the same five TextRE models mentioned above, 386

resulting in five pipeline models: TP-Linkerpipe, 387

Spertpipe, REBELpipe, GPT-3.5pipe, and GPT-4pipe. 388

(3) End-to-End SpeechRE Models. These mod- 389

els are designed to directly extract relation triplets 390

from input speech, without the intermediate step of 391

text transcription. Our proposed RPG-MoGe also 392

falls into this category. As baselines, we include 393

two existing end-to-end SpeechRE models: LNA- 394

ED (Wu et al., 2022) and MCAM (Zhang et al., 395

2024). Additionally, to explore the capabilities of 396

recent advancements in speech-based LLMs, we 397

introduce two in-context learning baselines: GPT- 398

7gpt-3.5-turbo-0125
8gpt-4-turbo-2024-04-09

6

https://huggingface.co/openai/whisper-small.en
https://huggingface.co/openai/whisper-medium.en
https://platform.openai.com/docs/models#gpt-3-5-turbo
https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4


Model CommonVoice-SpeechRE
Entity Relation Triplet

MCAM(520M) 43.94 48.37 14.96
RPG-MoGe(250M) 45.59 49.60 15.32
w/o RPG 44.61 48.06 14.89
w/o LRPH&RPG 43.86 48.36 14.61
w/o Moge(infer) 43.64 46.40 12.46
w/o Moge(infer&train) 40.68 45.94 11.15

Table 4: An ablation study of the RPG-MoGe(250M).
‘RPG’ denotes Relation Prompt Guide in text decoder;
‘LRPH’ refers to CNN-based Latent Relation Prediction
Head; ‘w/o MoGe (infer)’ uses multi-order triplet gen-
eration in training and single-order in inference. ‘w/o
Moge(infer&train)’ means single-order triplet genera-
tion in both training and inference.

4o-audio9 and Qwen2-audio10 (Chu et al., 2024).399

5.4 Results and Analysis400

5.4.1 Main Results401

We conducted a comprehensive performance com-402

parison between our proposed RPG-MoGe model403

and several strong baselines, including TextRE,404

SpeechRE (Pipeline), and SpeechRE (End2End).405

The experimental results, presented in Table 3, re-406

veal the following key observations:407

(1) RPG-MoGe outperforms all SpeechRE408

(End2End) baselines, achieving state-of-the-art per-409

formance in entity, relation, and triplet F1 scores410

across all datasets. Notably, RPG-MoGe with a411

250M parameter Whisper backbone surpasses the412

SOTA baseline MCAM using a 520M backbone413

and matches MCAM’s performance with a 770M414

backbone. This demonstrates RPG-MoGe’s ability415

to leverage the diversity of relation triplet element416

orders and effectively utilize high-level semantic417

cues through its potential relation prediction head418

and explicit relation prompts.419

(2) RPG-MoGe consistently outperforms all420

SpeechRE models in triplet extraction, highlighting421

the limitations of the pipeline approach, where cas-422

cading ASR with TextRE introduces significant er-423

rors. The end-to-end approach effectively mitigates424

error accumulation, improving entity, relation, and425

triplet extraction accuracy.426

(3) Large language models without fine-tuning427

(e.g., GPT-3.5, GPT-4, GPT-4o-audio, Qwen2-428

audio) perform significantly worse on the datasets429

compared to fine-tuned smaller models, emphasiz-430

9gpt-4o-audio-preview-2024-12-17
10Qwen2-Audio-7B-Instruct

Method CommonVoice-SpeechRE
Entity Relation Triplet

Order#1 43.59 47.01 12.46
Order#2 42.76 44.32 11.73
Order#3 45.07 47.18 13.31
Order#4 43.80 44.50 12.01
Order#5 42.91 45.83 12.08
Order#6 43.70 47.45 12.56
Average 43.64 46.05 12.36
Ensemble 45.59(+1.95) 49.60(+3.55) 15.32(+2.96)

Table 5: Performance comparison of RPG-MoGe be-
fore and after voting ensemble of individual order view
predictions.

ing the continued importance of developing fine- 431

tuned models in TextRE and SpeechRE domains. 432

(4) Replacing the non-aligned Wave2vec and 433

BART encoders in LNA-ED and MCAM with the 434

pre-trained and aligned Whisper encoder and de- 435

coder eliminates the need for extensive external 436

corpus alignment and improves performance. This 437

also ensures a fairer comparison with RPG-MoGe, 438

which utilizes Whisper as its backbone. 439

5.4.2 Ablation Study 440

To assess the contribution of different modules in 441

RPG-MoGe, we conducted ablation experiments 442

on the fully human-annotated CommonVoice- 443

SpeechRE dataset (see Table 4). The results re- 444

veal two key insights: (1) Removing the Relation 445

Prompt Guide (RPG) generated by the Latent Rela- 446

tion Prediction Head (LRPH) leads to performance 447

degradation, demonstrating that LRPH enhances 448

the model’s ability to capture high-level semantic 449

information (e.g., entity relations) from speech sig- 450

nals. Additionally, the RPG, derived from LRPH 451

predictions, acts as a prompt for the text decoder, 452

guiding the model to focus on potential relation 453

types and enhancing speech-text alignment through 454

high-level semantic information. (2) The strategy 455

of integrating multi-order triplet generation signifi- 456

cantly boosts model performance in both training 457

and inference stages. As shown in the results, RPG- 458

MoGe with a 250M-parameter backbone outper- 459

forms the state-of-the-art method MCAM, which 460

uses a 520M-parameter backbone. This suggests 461

that the effective information in speech data has not 462

yet been fully exploited. For example, the diversity 463

introduced by the order of relational triple elements, 464

as utilized in this work, represents a potential av- 465

enue for further improving model performance. 466
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Figure 4: The impact of number of order views on RPG-MoGe performance.

5.4.3 Discussion on Multi-Order Triplet467

Generation Ensemble468

To quantitatively assess the effectiveness of the469

Multi-Order Triplet Generation Ensemble strategy470

in RPG-MoGe, we conducted experiments to ana-471

lyze the impact of the number of generation order472

views during training and inference (see Figure 4)473

and compared performance before and after ensem-474

ble across different order views (see Table 5). The475

results highlight two key findings: during training,476

increasing the number of generation order views477

significantly improves model performance, as it ex-478

poses the model to more diverse data, enhancing its479

ability to capture underlying patterns; during infer-480

ence, ensembling predictions from multiple order481

views reduces individual model biases and errors,482

as predictions from different orders complement483

and correct each other, leading to higher overall484

accuracy.485

5.4.4 Human vs. TTS Speech Data Analysis486

To investigate the impact of using TTS-generated487

speech data for training and evaluating SpeechRE488

models, we synthesized TTS-based training and489

test sets for the CommonVoice-SpeechRE dataset490

using the same TTS tools applied to CoNLL04-491

SpeechRE and ReTACRED-SpeechRE. We con-492

ducted experiments comparing the performance493

of RPG-MoGe when trained and tested on human494

speech versus TTS-generated speech (see Table495

6). The results reveal two key findings: (1) Mod-496

els trained on TTS data exhibit significantly lower497

performance compared to those trained on human498

speech, indicating that human speech data better499

reflects real-world scenarios and yields more robust500

models; (2) Models trained on TTS data perform501

notably worse on human speech test sets than on502

TTS test sets, suggesting that TTS-generated data503

fails to accurately replicate real-world speech en-504

Train
Test Speech

(TTS)
Speech

(Human)

Speech
(TTS)

Entity 50.25 40.59
Relation 53.88 42.13
Triplet 18.78 12.17

Speech
(Human)

Entity 41.91 45.59
Relation 48.04 49.60
Triplet 14.13 15.32

Table 6: Impact of TTS and Human Speech on Model
Training and Performance Evaluation

vironments, leading to biased performance evalu- 505

ation. These findings underscore the value of the 506

fully human-annotated CommonVoice-SpeechRE 507

dataset proposed in this work, which not only pro- 508

vides diverse, real-world training data for robust 509

model development but also establishes a more 510

reliable benchmark for evaluating SpeechRE per- 511

formance in authentic settings. 512

Due to page constraints, the computational 513

efficiency analysis of RPG-MoGe is provided in 514

the appendix. 515

6 Conclusions 516

In this work, we address the limitations of existing 517

datasets and models in Speech Relation Extrac- 518

tion (SpeechRE) by introducing CommonVoice- 519

SpeechRE, a large-scale dataset with diverse real- 520

human speech samples, and proposing RPG-MoGe, 521

a novel framework that leverages a multi-order 522

triplet generation ensemble strategy and CNN- 523

based latent relation prediction heads to enhance 524

triple generation and cross-modal alignment. Ex- 525

tensive experiments demonstrate the superiority of 526

our approach, outperforming state-of-the-art base- 527

lines and setting a new benchmark for SpeechRE 528

research. Our contributions provide both a valuable 529

resource and an effective methodology, advancing 530

the field toward real-world applications. 531
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Limitations532

While our work introduces significant advance-533

ments in Speech Relation Extraction (SpeechRE),534

it is not without limitations. The CommonVoice-535

SpeechRE dataset, despite its diversity, primarily536

focuses on English speech, which may restrict its537

generalizability to other languages. Additionally,538

the RPG-MoGe framework, though effective, relies539

on computationally intensive components such as540

multi-order ensemble strategies and cross-modal541

alignment, which could pose challenges for deploy-542

ment in resource-constrained environments. Future543

work could explore multilingual extensions of the544

dataset and more efficient model architectures to545

further enhance the practicality and scalability of546

SpeechRE systems.547
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Method Entity Relation Triplet Speed(inference)
LNA-ED(770M)whi 27.61 38.51 6.01 4.61sample/s
MCAM(770M)whi 45.34 50.34 15.71 4.55sample/s
RPG-MoGe(250M)whi 45.59 49.60 15.32 4.68sample/s
RPG-MoGe(770M)whi 47.20 53.48 18.29 0.78sample/s

Table 7: Comparison of computational efficiency between RPG-MoGe and baseline methods. All experiments were
conducted on a single NVIDIA GeForce RTX 4090 GPU with a batch size of 1.

Gender Count
Male/Masculine 7598

Female/Feminine 5992
Unknown 5993

Table 8: Gender distribution of speech collectors in the
dataset.

A Analysis on Model Efficiency639

The computational efficiency of RPG-MoGe is640

evaluated against several baseline methods, includ-641

ing LNA-ED and MCAM, across key metrics such642

as entity, relation, and triplet F1 score (%), as well643

as inference speed. As shown in Table 7, RPG-644

MoGe demonstrates superior performance in terms645

of prediction accuracy. Specifically, the 770M pa-646

rameter version of RPG-MoGe achieves the high-647

est scores across all metrics, significantly outper-648

forming both LNA-ED and MCAM. Notably, the649

250M parameter version of RPG-MoGe also de-650

livers competitive performance compared to the651

baseline methods.652

However, during the inference phase, RPG-653

MoGe requires generating relational triplets from654

six different order views and ensembling them,655

which increases model complexity. This is reflected656

in the significantly lower inference speed of 0.78657

samples per second for the 770M version. In con-658

trast, RPG-MoGe (250M), due to its smaller pa-659

rameter size, maintains the highest inference speed660

of 4.68 samples per second among all models. This661

trade-off between accuracy and efficiency under-662

scores the importance of selecting the appropriate663

model size based on specific application require-664

ments.665

In summary, RPG-MoGe strikes a balance be-666

tween computational efficiency and prediction ac-667

curacy. The 250M version offers a practical so-668

lution for scenarios prioritizing speed, while the669

770M version delivers state-of-the-art performance670

for tasks where accuracy is paramount.671

Age Group Count
Unknown 5553
Twenties 5441
Thirties 2689
Forties 2052
Fifties 1263
Teens 1238
Sixties 1199

Seventies 118
Eighties 23
Nineties 7

Table 9: Age distribution of speech collectors in the
dataset.

B Detailed Statistical Analysis of the 672

Dataset 673

In this section, we present a comprehensive statis- 674

tical analysis of the dataset, focusing on four key 675

aspects: the distribution of relation triplet types, 676

the gender distribution of speech collectors, the age 677

distribution of speech collectors, and the accent 678

distribution of speech collectors. These analyses 679

provide valuable insights into the composition and 680

diversity of the dataset. 681

B.1 Distribution of Relation Triplet Types 682

The distribution of relation triplet types in the 683

dataset is presented in Table 10, which provides a 684

detailed breakdown of the frequency and percent- 685

age of each triplet type. The dataset encompasses a 686

wide variety of triplet types, reflecting the diversity 687

and complexity of the relationships captured. 688

The most frequent triplet type is Per- 689

son:holds_title:Title, which accounts for 3,333 in- 690

stances (15.54% of the dataset). This is followed by 691

Person:affiliated_with:Organization with 2,065 in- 692

stances (9.63%) and Location:located_in:Location 693

with 1,738 instances (8.11%). These triplet types 694

dominate the dataset, indicating a strong focus 695

on personal titles, organizational affiliations, and 696

geographical relationships. 697
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Other notable triplet types include Organiza-698

tion:Establishes:Title (1,233 instances, 5.75%), Or-699

ganization:located_in:Location (1,163 instances,700

5.42%), and Person:creates:Work_of_art (1,112701

instances, 5.19%). These relationships highlight702

the dataset’s coverage of organizational structures,703

geographical contexts, and creative works.704

Less frequent triplet types, such as Per-705

son:opposes:Regulation (28 instances, 0.13%) and706

Organization:violates_opposes:Regulation (12 in-707

stances, 0.06%), represent more specialized or708

niche relationships. While these triplet types are709

underrepresented, they contribute to the dataset’s710

richness and applicability to a broader range of711

tasks.712

Overall, the distribution of relation triplet types713

demonstrates the dataset’s comprehensive cover-714

age of diverse relationships, ranging from common715

personal and organizational associations to more716

specialized interactions. This diversity is essen-717

tial for training models capable of handling a wide718

array of real-world scenarios.719

B.2 Gender Distribution of Speech Collectors720

As shown in Table 8, the gender distribu-721

tion of speech collectors is well-balanced, with722

7,598 male/masculine speakers and 5,992 fe-723

male/feminine speakers. This balanced representa-724

tion ensures that the dataset is suitable for tasks re-725

quiring gender-neutral or gender-specific analysis,726

contributing to its overall robustness and fairness.727

B.3 Age Distribution of Speech Collectors728

The age distribution of speech collectors in the729

dataset, as shown in Table 9, exhibits a broad and730

diverse representation across various age groups,731

ranging from teens to individuals in their nineties.732

This diversity ensures the inclusion of a wide spec-733

trum of vocal characteristics and speech patterns,734

enhancing the dataset’s ability to support robust and735

generalizable SpeechRE models. The significant736

representation of younger and middle-aged speak-737

ers, complemented by meaningful contributions738

from older age groups, underscores the dataset’s739

comprehensive coverage of speaker demographics,740

making it well-suited for real-world applications.741

B.4 Diversity of Accents Among Speech742

Collectors743

The distribution of accents among speech collec-744

tors, as shown in Table 11, demonstrates signifi-745

cant diversity. Among the labeled accents, "United746

States English" (4,967 instances) and "England En- 747

glish" (1,533) are the most prevalent, followed by 748

"India and South Asia English" (1,453), "Cana- 749

dian English" (1,032), and "German English, Non- 750

native speaker" (896). Accents from regions such 751

as Australia, Southern Africa, Scotland, and North- 752

ern Ireland are also well-represented, while accents 753

from Singapore, Malaysia, and Hong Kong ap- 754

pear less frequently. Notably, some collectors ex- 755

hibit multiple accent backgrounds, such as "United 756

States English and England English" (40 instances) 757

and "United States English and Transatlantic En- 758

glish" (31 instances). Overall, the dataset encom- 759

passes a wide range of English accents, reflecting 760

the global diversity of English usage. 761
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ID Head_Entity Relation Tail_Entity Quantity Percentage
1 Person holds_title Title 3333 15.54%
2 Person affiliated_with Organization 2065 9.63%
3 Location located_in Location 1738 8.11%
4 Organization Establishes Title 1233 5.75%
5 Organization located_in Location 1163 5.42%
6 Person creates Work_of_art 1112 5.19%
7 Person participates_in Event 938 4.37%
8 Person business/work Person 778 3.63%
9 Person family Person 702 3.27%
10 Person visits Location 667 3.11%
11 Event Occurs_at Location 615 2.87%
12 Person belongs_to_NORP Organization 612 2.85%
13 Organization Engagement Event 548 2.56%
14 Person resides_at Location 548 2.56%
15 Person performs Work_of_art 539 2.51%
16 Organization develops/produces/sells Production 483 2.25%
17 Person born_in Location 404 1.88%
18 Person is_character_in Work_of_art 386 1.80%
19 Person works_at Location 385 1.80%
20 Person owns/uses Production 266 1.24%
21 Organization is_subordinate_to Organization 262 1.22%
22 Organization publishes Work_of_art 256 1.19%
23 Location Adjacent Location 232 1.08%
24 Person died_at Location 215 1.00%
25 Person creates Production 213 0.99%
26 Person founds Organization 205 0.96%
27 Event Occurs_on Date 185 0.86%
28 Person competes_with Person 142 0.66%
29 Person coreference Person 138 0.64%
30 Organization manages/uses Production 132 0.62%
31 Person harms Person 130 0.61%
32 Person provides_services_to Organization 117 0.55%
33 Organization Organization Event 106 0.49%
34 Person leaves Organization 91 0.42%
35 Person leads_NORP Organization 77 0.36%
36 Person supports Regulation 73 0.34%
37 Production Originated_in Location 57 0.27%
38 Person critiques Work_of_art 55 0.26%
39 Organization collaborates_with Organization 54 0.25%
40 Person proposes Regulation 47 0.22%
41 Organization Complies_With Regulation 43 0.20%
42 Organization Legislative_Actions Regulation 39 0.18%
43 Person opposes Regulation 28 0.13%
44 Person Endorses Production 18 0.08%
45 Organization violates_opposes Regulation 12 0.06%

Table 10: Distribution of relation triplet types: Frequency and percentage of each triplet type in the dataset.
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Accent Count
Unknown 7690

United States English 4967
England English 1533

India and South Asia 1453
Canadian English 1032

German English, Non native speaker 896
Australian English 627
Southern African 240
Scottish English 229
Northern Irish 143
Irish English 131

New Zealand English 112
Filipino 88

Liverpool English, Lancashire English 61
Singaporean English 48

England English, New Zealand English 47
United States English, England English 40

United States English, Transatlantic English 31
Hong Kong English 30

United States English, Midwestern, Low, Demure 21
Malaysian English 20

Welsh English 19
South African accent, Southern African 18

United States English, Scandinavian 14
Nepali 13

Academic southern English, England English 12
Southern United States, United States English 9

Northern Irish, Culchie 8
Southern United States, New Orleans dialect 8

United States English, Midwestern, Minnesotan 6
New Zealand English, England English 6

Polish 6
Southern Californian, United States English 5

United States English, Canadian English 5
West Indies and Bermuda 5

German 5
United States English, Midwestern 5

Table 11: Distribution of accents among speech collectors in the dataset.
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