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Abstract

Recent closed-source multimodal systems have made great advances, but their
hidden language for understanding the world remains opaque because of their black-
box architectures. In this paper, we use the systems’ preference bias to study their
hidden language: During the process of compressing the input images (typically
containing multiple concepts) into texts and then reconstructing them into images,
the systems’ inherent preference bias introduces specific shifts in the outputs,
disrupting the original input concept co-occurrence. We employ the multi-round
“telephone game” to strategically leverage this bias. By observing the co-occurrence
frequencies of concepts in telephone games, we quantitatively investigate the
concept connection strength in the understanding of multimodal systems, i.e.,
“hidden language.” We also contribute Telescope, a dataset of 10,000+ concept
pairs, as the database of our telephone game framework. Our telephone game is
test-time scalable: By iteratively running telephone games, we can construct a
global map of concept connections in multimodal systems’ understanding. Here we
can identify preference bias inherited from training, assess generalization capability
advancement, and discover more stable pathways for fragile concept connections.
Furthermore, we use Reasoning-LLMs to uncover unexpected concept relationships
that transcend textual and visual similarities, inferring how multimodal systems
understand and simulate the world. This study offers a new perspective on the
hidden language of multimodal systems and lays the foundation for future research
on the interpretability and controllability of multimodal systems.

1 Introduction

Recent multimodal systems, particularly closed-source ones [Hurst et al., 2024, StepFun, 2024, Bai
etal., 2025], have made significant advances, e.g., the newest GPT-40 with Image Generation [OpenAl,
2025] (abbreviated as GPT-40-1G(20250325)). However, because of these systems’ closed features,
closed data, and even closed architectures, we are unable to study the systems’ understanding of the
world using methods based on training. Therefore, test-time methods are urgently needed.
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Figure 1: Example 5-round telephone games using the latest SOTA multimodal systems released on
2025.3.25. In each image reconstruction, the system prefers stronger nearby concept connections in
multimodal systems’ understanding, then changing the outputs. (Extended results on this example
are provided in Appendix B), and more examples can be found in Appendix D

The hidden language reflects the connection strength between concepts within multimodal sys-
tems [Chefer et al., 2023], offering insight into how they understand the world. While prior training-
based methods explored it via internal features [Chen et al., 2023, Chefer et al., 2023, Ghandeharioun
et al., 2024], the rise of closed-source models renders such access impossible. Hence, we investigate
the hidden language of multimodal systems at test time.

We innovatively propose to strategically leverage the multimodal systems’ preference bias to study
their hidden language at test time. Multimodal systems are trained to fit textual and visual repre-
sentations of the same scenes, which typically involves multiple interrelated concepts. Sufficient
training strengthens these concept connections in systems’ hidden understanding space (abbreviated
as hidden space), while limited training weakens them. Therefore, imbalanced training data brings
different concept connection strengths, i.e., hidden language. As illustrated in Figure 1, during image-
to-text compression, the systems prefer to discard weakly connected concepts; during text-to-image
reconstruction, the systems prefer strongly connected concepts [Zhao et al., 2024], even with the
latest SOTA GPT-40-1G(20250325). These preference biases will lead to changes in input concepts,
thereby disrupting their co-occurrence in the output scene.

In this paper, we innovatively propose a test-time framework based on multi-round telephone
game to leverage this preference bias, a plug-and-play method involving multiple cycles of image
reconstruction. As the telephone game progresses, fragile concept combinations gradually degrade,
revealing their fragile connection strength in systems’ understanding. And we quantify the connection
strength (i.e., hidden language) using the concept co-occurrence frequency in the telephone game. As
shown in Figure 2, a higher co-occurrence frequency indicates a stronger concept connection. This
metric captures both the training bias and generalization capability: Stronger generalization enables
consistent responses to similar patterns, corresponding to a uniform connection strength distribution.

We also contribute Telescope, a dataset consisting of 10,000+ concept pairs derived from 150 common
visual concepts, primarily covering basic spatial relations (e.g., “A adjacent to B”’) and some complex
interactions (e.g., “A displayed on TV screen”). Leveraging the telephone game and Telescope, we
propose a scalable test-time probing framework for the hidden language of multimodal systems: Each
new telephone game iteration tends to reveal new concept connections, and as test-time compute
scales up, we progressively build a detailed “world map” of the multimodal hidden language.

In this way: (1) We uncover key terms associated with a concept in multimodal systems’ under-
standing, revealing the training bias (which combinations are better-trained or not) and the systems’
generalization capability; (2) By analyzing connection strengths across multiple pathways, we can
identify intermediate concepts to enhance concept connections to promote the co-occurrence of discor-
dant concepts; (3) Reasoning-LLMs help to understand how the these connection strengths interprets
physical-world laws, revealing unexpected relationships beyond textual and visual similarities.
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Figure 2: The longevity of concepts combinations in the telephone game (i.e., their co-occurrence
frequency) quantitatively reflects the concept connections in multimodal systems’ hidden space,
termed the "hidden language.” (Lighter color means the weaker connection)
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Here, we summarize our contributions:

* Test-time Telephone Game Framework: We innovatively propose to reveal the hidden
language of multimodal systems using the framework of telephone game and the concept
co-occurrence frequency at test time;

* Telescope Dataset: We contribute the Telescope, a database for systematic telephone game
probing on multimodal systems’ hidden language;

 Test-Time Scalable Framework: We keep on creating an increasingly comprehensive
hidden language world map of multimodal systems in a scalable way.

2 Related Works

MultiModal Systems Recent advances in multimodal intelligence systems [Lu et al., 2019, Bal-
trusaitis et al., 2018, Xie et al., 2024, Guo et al., 2019, Li et al., 2023, 2022, Tan and Bansal, 2019]
have shown great ability in processing cross-modal information. Modular pipeline frameworks
and autoregressive systems represent two typical paradigms in multimodal architecture: the former
leverages V-LLMs [Hurst et al., 2024, Alayrac et al., 2022, Liu et al., 2023, Wu et al., 2024] as
core components to construct complex cross-modal connections, while the latter unifies different
modalities through sequential modeling within a shared hidden space [Team, 2024, Chern et al., 2024,
Li et al., 2025]. Furthermore, in recent years, the emergence of GPT-4o [Hurst et al., 2024] marks a
shift toward a fully black-box system paradigm, particularly with the latest version that integrates
image generation ability into GPT-40 [OpenAl, 2025]. However, as multimodal systems’ internal
structures become more complex and black-box, making the way they understand the world and their
preferences harder to interpret.

Hidden Language In traditional machine learning, researchers could intuitively examine a model’s
hidden language using tools like attention maps [Vaswani et al., 2017], or Principal Component Anal-
ysis(PCA) [Hotelling, 1933]. As deep learning and large-scale models emerge, it becomes common to
train lightweight probing models on embeddings to better understand internal representations [Alain
and Bengio, 2016, Chefer et al., 2023, Ghandeharioun et al., 2024, Derby et al., 2018, Chen et al.,
2023, Frank et al., 2021]. However, with the emergence of many closed-source systems [OpenAl,
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Figure 3: The workflow of telephone game. LLMs convert concept pairs into the start description for
telephone game. Then it enters the cycle of text-to-image and image-to-text.

2025] today, we no longer have access even to basic token-level representations. As a result, we
are forced to infer the hidden language of multimodal systems directly from their apparent-level
outputs, e.g., textual or visual outputs. This constraint effectively pivots the research paradigm from
direct internal inspection to a form of behavioral analysis, where the model’s observable responses to
carefully crafted inputs become the primary source of evidence for its representation structures.

3 Framework: Telephone Game

This section introduces our test-time telephone game framework for uncovering the hidden language
of multimodal systems, the concept co-occurrence frequency metric for quantifying hidden language,
and the Telescope dataset used to support systematic evaluation.

3.1 Telephone Game

We propose to use telephone game to study the concept connections in multimodal systems’ hidden
space, revealing the hidden language. Our telephone game framework involves two key processes:

* Image to Text: When compressing images into text, systems prefer to read more strongly
connected concepts in their understanding over those strictly faithful to visual facts. For
example in Figure 2, it reads a cow as a pig;

» Text to Image: When reconstructing text to images, systems prefer to create more strongly
connected concepts understood from the text to synthesize the visual output. For example,
in Figure 2, it creates a balloon instead of a cherry.

These two preferences introduce the different concept connection strengths in multimodal systems,
representing the systems’ hidden language. To reveal this hidden language at test time, without
accessing model parameters, we link the above processes and use changes in apparent space (e.g.,
image descriptions) to explore the concept connection strengths in the hidden space, as shown in
Figure 3. Changes in a single reconstruction may not be apparent in the observable space, e.g.,
generating a visual resembling both a cow and a pig in Figure 2. Moreover, concepts with fragile
connections (rather than absent) may not exhibit a crash initially, but as the cycle progresses, the
resulting offsets gradually become apparent. Given these issues, we naturally use the multi-round
telephone game to amplify the changes.

In our experiments, for fully integrated multimodal systems like the latest GPT-40 [OpenAl, 2025], we
directly utilize the system to perform both text-to-image and image-to-text processes. For multimodal
systems composed of separate components, we assemble them using V-LLMs and text-to-image
models from the same institution, treating all components as a unified system. All of our instruction
prompts are available in Appendix G.

3.2 Co-occurrence Frequency

Modern multimodal systems rely on text and visuals, where semantic or visual similarity can
seemingly reflect the systems’ hidden language. However, as shown in Figure 2, the observed concept
connection strengths, e.g., cows and coke, contradict this intuition, highlighting the need for a new
metric to capture the hidden language more accurately.
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Figure 4: Visualization of several telephone game examples, reflecting which concepts are connected
strongly or weakly in the hidden space of multimodal systems, as well as the intermediary concepts
that build stronger connections. For more results, see Appendix B.
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The tendency of concept pairs to co-occur across multi-round telephone game offers key insight
into the hidden language of multimodal systems. Therefore, we propose to use the co-occurrence
frequency of different concepts in the multi-round telephone game as a direct measure of connection
strength in the system’s hidden space, reflecting the hidden language. In a n-round telephone game,
the co-occurrence frequency of the concept pairs “A and B” is defined as:
T n
Foap) - S T LA B) "

rXmn

where r means we repeat a telephone game for r times, and Z; ;( A, B) represents whether A and B
co-occur in the output of the j-th round of the i-th telephone game judged by LLMs (the instruction
prompt is available in Appendix G). In this study, we choose the image description to analyze the
concept co-occurrence frequency.

Note that an implicit limitation lies in the number of rounds. When calculating the metric correlation,
we exclude pairs with a co-occurrence frequency of 1.0, as we cannot run an infinite-round telephone
game to get a true co-occurrence “probability.” And in Section 4.3, we demonstrate some interesting
phenomena that emerge as the round number increases.

3.3 Dataset: Telescope

bl

We also contribute a dataset, Telescope. We collect 150 common concepts as the basic “vocabulary’
of the hidden language. In this study, we focus on combinations of 2 concepts, with plans to explore
complex combinations of more concepts in future work.

In the main portion of the dataset, these concepts form 11,175 concept pairs, each involving arranging
2 concepts side by side, called the simple-pattern. The other portion of the dataset represents more
complex combinations of concepts, called complex-pattern: We investigate 3 interesting visual fusion
strategies: displaying Concept A on a TV screen, creating Concept A in the visual style of Van
Gogh, and constructing Concept A using wood as a material. Unlike simple-patterns, they involve
interactions between different concepts. The Telescope dataset allows us to explore how the system
establishes its hidden language in the hidden understanding space.

3.4 LLMs as ”’MLPs”

Concept connections, viewed as the hidden language, not only reveal training data biases and
generalization capabilities, but also open the door to deeper inquiry: What further insights into the
system’s hidden logic about how it understands and simulates the real-world physical laws might
emerge? In this study, we abstract the text as a special “embedding” bridging hidden features and
observed pixels. In conventional deep learning, linear probes (e.g., MLPs) interpret embeddings to
reveal internal logic; analogously, we employ Reasoning-LLMs as cognitive probes to parse textual
evolution across rounds. These analyses uncover implicit constraints on real-world laws beyond
observed-level correlations (e.g., textual or visual similarity), suggesting that multimodal systems
attempt to simulate human world laws and causal relationships. The experimental details and results
can be found in our Appendix C.



4 Experiments

4.1 Model and Dataset

Model Our primary experiments utilize OpenAI’s multimodal system, recognized as SOTA. Here,
we use the system composed of GPT-40 [Hurst et al., 2024] and Dall-E-3 [OpenAl, 2023], which
is also the configuration used in OpenAl’s official products. Preliminary results show that even for
simple tasks, i.e., a single concept or two identical concepts, after a 5-round telephone game, the
original concepts exhibit crashes (disappearing or transforming, might because of the emergence of
irrelevant concepts) at rates of 26.4% and 24.4%, respectively, highlighting the significant bias in
multimodal systems, forming a key basis for our framework, as analyzed in Section 3. As for the
latest GPT-40-1G(20250325), we present the experimental results using the web version of the tool in
Appendix D.

In Section 4.2, we also analyze the hidden language of various multimodal systems derived from
different sources, including: (1) StepFun [StepFun, 2024]: Step1V and Step1X, (2) Qwen [Bai et al.,
2025]: Qwen2.5-VL and Wanx2.1. Simple open-source systems are excluded, as closed-source
systems now far outperform open-source ones. Open-source systems face limitations in knowledge
acquisition and input text length. For an extreme example, if the text is as short as only 3 words, e.g.,
“A and B”, the exposure of issues would largely depend on chance. But we can use its open-access
features to validate multimodal systems’ preference for strong concept connections, see Appendix F.

Dataset Our dataset, Telescope, consists of over 10,000 concept pairs. Due to time and cost
constraints, we present results on a refined subset, with selection strategies detailed in the following
sections. However, we will not stop our experiments, and we are committed to continuously expanding
the global map of multimodal systems’ hidden language.

4.2 Correlation

Co-occur vs Semantic  Co-occur vs Visual Semantic vs Visual
Metric Correlation 1 0.046 -0.178 0.041

OpenAl vs StepFun OpenAl vs QWen  StepFun vs QWen
0.506 0.475 0.503

Table 1: Pearson Correlation Coefficients among the 3 metrics and different multimodal systems.
Using the OpenAl system to calculate co-occurrence frequency (Co-occur) for metric comparison
and our Co-occur metric for analyzing hidden language correlations across different systems, we
find that semantic and visual similarities fail to capture the hidden language, while hidden languages
across different systems show good correlation.

System Correlation 1

The concepts’ co-occurrence frequency reflects their connection strength in hidden space. We are
particularly interested in whether this phenomenon can be explained by existing similarity metrics,
such as semantic and visual similarity. First, we detail the setup:

* Metric: To explore the correlation of different metrics, we use CLIP model [Radford et al.,
2021] for semantic embeddings and ResNet-50 [He et al., 2016] for visual embeddings, and
compute concepts similarity between embeddings;

* Models: To explore the correlation of hidden languages in different systems, we implement
3 multimodal systems: OpenAl, StepFun, and QWen;

» Dataset: Given the substantial cost, we rank the simple-pattern concept pairs in Telescope
by the average of their semantic and visual similarities, and uniformly sample 400 pairs.

* Telephone Game: For each pair, we repeat a 5-round telephone game for 3 times;

* Focus: Here, we focus on the connections between the original input concepts. The new
concepts emerging during the telephone game will be analyzed in Section 4.3.
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Figure 5: Our scalable framework: (a) Basic Connection: we reveal concept connections and identify
nearby keywords; (b) Local Connection: repeated telephone games establish a local graph around
a concept; (c) Global Connection: increasing telephone games connect local structures, forming a
comprehensive "world map” of the multimodal hidden language!

4.2.1 Maetric Correlation

We conduct quantitative correlation analysis to examine relationships between different metrics.
Among the 400 concept pairs, 246 experience concept crashes. As discussed in Section 3.2, due
to the round number limitation, concepts with a co-occurrence frequency of 1.0 (i.e., no crash) are
excluded from metric correlation analysis, as these frequencies might be unreliable. Therefore, the
correlation is computed based on the 246 crashed pairs. We also present an intuitive visualization of
their correlation in Appendix A

For each of the 246 concept pairs, we compute semantic similarity, visual similarity, and co-occurrence
frequency between the 2 concepts in the pair. We calculate the Pearson Correlation Coefficients [Pear-
son, 1895] by measuring pairwise correlations between the three 246-length lists. As shown in
Table 1, semantic and visual similarities fail to capture concept connections, underscoring the need
for metrics like our co-occurrence frequency.

4.2.2 System Correlation

We further examine whether the hidden languages of multimodal systems from different sources
are correlated. We run the telephone game on 400 concept pairs using StepFun and QWen systems,
repeating each experiment 3 times. Since the same metric is compared across systems, the round
number limitation does not apply.

As reported in Table 1, we observe a moderate correlation between the hidden languages of different
multimodal systems, indicating potentially consistent concept connections in the hidden space. This
consistency significantly surpasses correlations based on semantic or pixel similarity, suggesting
that our co-occurrence frequency metric captures deeper concept connections in the hidden space of
multimodal systems. Notably, this aligns with the Platonic Representation Hypothesis [Huh et al.,
2024]: as multimodal systems scale, their internal representations tend to converge toward modeling
the joint statistical structure of real-world events, despite differences in architecture, data, or training
methods.

4.3 Hidden Language: the Connections Between Concepts

Our framework has excellent dynamic scalability. As test time compute scales, we gradually construct
an increasingly comprehensive “world map” of the system’s hidden language!

Basic Connection The map starts from our 150-concept vocabulary in Telescope. We visualize
connections for 10 example concepts in Figure 5(a), where the color intensity reflects connection
strength, highlighting better-trained pairs, and as it scales up, revealing the system’s generalization
progress: stronger generalization capability will lead to more uniform heatmap distributions. We also
present some visualization results in Figure 4.

Local and Global Connection In our framework, each new telephone game tends to build new
connections, linking existing and newly emerging concepts. As connections accumulate, genuine
neighbors consistently reappear and occasional ones are submerged, gradually shaping a stable and
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Figure 6: The intermediary node forms stable pathways between weakly connected concepts, making
previously unstable combinations more reliably appear in generated images.

accurate local structure (Figure 5(b)). As the framework further expands, connections emerge between
distinct local structures, gradually weaving a unified global network (Figure 5(c)). This integration
bridges isolated local clusters and enriches the system by enabling cross-domain information exchange.
In Appendix E, we provide a detailed explanation of the building details of such a graph structure in
the “hidden language world map” of multimodal hidden space.

4.4 Complex Pattern and Concept Bridge

As detailed in Section 3.3, our Telescope includes 450 com-
Pattern Crash Ratio plex pattern concept pairs, derived from 150 common con-

cepts across 3 patterns. We run the telephone game on these
Van Gogh Style 0.767 pairs using the OpenAl system. In Table 2, we report the

YFV\(;Od Texture 8228 concept crash ratios. Among the patterns, “Van Gogh Style
TV (improved) 0' 427 Painting” (abbreviated as “Van Gogh Style”’) and “Display-

ing on a TV Screen” (abbreviated as “TV”) show notably
more fragile connections than simple-pattern in Section 4.2.
For example, the system has less fitting to the scenario “dis-
playing concepts on a TV screen” during the training phase.

Table 2: The crash ratio of our com-
plex pattern and the bridged im-
proved” results on Pattern TV.

It shows that, after learning a limited number of these scenarios, the system has not developed robust
generalization capabilities to extend this understanding to other concepts.

We explore bridging in the hidden space by introducing intermediary concepts, e.g., “Cartoon Style”
or “Advertising Format”, in Pattern TV. For each intermediary, we conduct experiments on 150
concepts to build a “TV”-centered hidden language local map like Figure 5(b). This map helps
identify effective intermediary nodes for stabilizing fragile connections: using the concept*“Cartoon
Style”, we form more stable pathways, as shown in Table 2 and Figure 6. As the map expands, we are
committed to discovering more such bridges to enhance superalignment between multimodal system
inputs and outputs.

5 Discussion

In this study, we quantify the concept connection strengths in multimodal systems’ hidden space, also
termed “hidden language”, using our telephone game framework, the concept co-occurrence frequency
metric, and the Telescope dataset. This hidden language reveals the bias from imbalanced training,
tracks system generalization progress, and helps improve concept presentation in systems’ output.
We also use Reasoning-LLMs to infer how the multimodal systems’ hidden language understands and
simulates the world. Crucially, this is a test-time scalable framework: As the computation scales, an
increasingly comprehensive multimodal hidden language world map will unfold in front of our eyes.

Due to large-scale systems’ diverse output, our framework may be influenced by inherent randomness.
In our future works, we will continuously conduct our telephone game to complete the hidden
language world map, alleviating the impact of randomness. We will also advance on directed path
formation to support tasks in specific domains. Additionally, we will apply various graph algorithms
to this graph-based world map to identify optimal pathways between concepts.
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A Metric Correlation

OpenAl System Hidden Language Clip Semantic Similarity ResNet Pixel Similarity
O [ A \

(a) OpenAl System (b) Semantic Similarity (c) Visual Similarity

Figure 7: The correlation between the 3 metrics. Each point represents a concept pair. The distance
from the origin, O, indicates their similarity under the current metric, and its color intensity reflects
the strength of their connection in the hidden space of the multimodal system, i.e., OpenAl System.

In our Main Paper Section 4.2, we introduce the quantitative correlation between the co-occurrence
frequency, semantic and visual similarity. Here, we present an intuitive scatter plot where each point
represents the connection between two concepts. The distance from the origin point O indicates
their similarity under a given metric, while color intensity reflects their connection strength in the
multimodal hidden space (i.e., co-occurrence frequency). For better visualization, concept pairs
with the same similarity are randomly placed along the same-radius arc around the origin point O,
rather than overlapping at a single point—resulting in a clearer 2D scatter plot. We observe that
neither semantic nor visual similarity can adequately explain the concept connections in multimodal
systems.

B Visualization

Figure 8: The extended telephone game of the teaser example in the Main Paper Figure 1, and the
results eventually stabilize with the ”dog in a frame.”

In this section, we will present the visualization results during the telephone game. First, in Figure 8,
we extend the teaser example of GPT-40-1G(20250325) shown in our Main Paper Figure 1 by
continuing the telephone game. The results eventually stabilize with the “dog in a frame,” indicating
that the connection between “frame” and “dog” is indeed stronger than that between “TV” and “dog”.

In Figure 9, we present additional concept pairs that remain stable during telephone game in our
experiments, indicating strong concept connections in the multimodal hidden space, and Figure 10
shows more examples of concept pairs that exhibit concept crashes, indicating fragile concept
connections in the multimodal hidden space.
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Apple
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Book
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Light Bulb

Figure 9: Several visualization results of concept pairs that remain stable during telephone game in
our experiments, indicating strong concept connections in the hidden space.
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Lychee
And
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Figure 10: Several visualization results of concept pairs that exhibit concept crashes during telephone
game in our experiments, indicating fragile concept connections in the hidden space.
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Fragile

The donut often shares strong semantic and visual cues with
other cute and rotund forms... In cartoon-like figures, the

pig archetype might emerge more strongly than the cow....

;9 Deep) Pigs are frequently depicted with food items as humorous,

. o — cute, or gluttonous symbols, while cows are less commonly
A porcelain cow with a A ceramic pig stands cC

paired with pastries in popular imagery...

small doughnut next... next to a doughnut, ...

Stable

... Even these objects belong to very different conceptual
categories, their frequent occurrence in visually rich contexts

(like branding or everyday advertising) ...

Reasoning

= Deep In the physical world, these two often appear together in
A cow stands beside a A large Coke can. In Seek | Scenarios of commercial or amst?c Juxtapc-)smon, ... Cows
gigantic Coke can, ... front of it is a cow, ... and Coca-Cola cans may co-occur in advertisements, ...

Figure 11: For hidden language beyond semantic or visual explanation, the LLMs Reasoning Analysis
offers valuable insights into how multimodal systems understand the world.

C LLMs as ”’MLPs”

We employ the Reasoning-LLMs and try to explore the system’s hidden language about how it
understands and simulates real-world physical laws. We use 2 SOTA Reasoning-LLMs: GPT-
ol [Jaech et al., 2024] and DeepSeek-R1 [Guo et al., 2025]. In Figure 11, we show 2 examples
representing fragile and stable connections. Leveraging their reasoning capabilities, Reasoning-LLMs
offer insights into the system’s understanding of world patterns. For example, milk and coke often
co-occur in beverage areas, and cows appear frequently on milk packaging, leading to a stable
connection between cow and coke. These phenomena transcend semantic and visual similarities,
revealing that multimodal systems are attempting to understand and simulate the common-sense laws
in the human world. For the instruction prompt, please refer to Appendix G.

Dog displayed on TV: XK TV disappears Lychee displayed on TV: X TV disappears

Wl B E B E

Bed and Blueberry: X Bed disappears TV displayed on a TV: 3Only one TV remains

Bllioeods a9 w NN

Figure 12: Visualization examples using the latest GPT-40-1G(20250325). Despite its enhanced
prompt-following capabilities, the system still reveals certain preference biases.

D The Latest Released System

OpenAl has released the GPT-40-1G(20250325), claiming improved prompt-following ability and
deep integration with GPT-40. This system is highly representative, transforming GPT-4o into a com-
pletely multimodal black-box system. In Figure 12, we conduct experiments on some representative
examples using the web version. We observe that it still exhibits certain preference bias during the
telephone game, which will aid our exploration of its hidden language.

14



E Connection Graph Structure

As discussed in our Main Paper Section 4.3, we can construct an increasingly comprehensive “hidden
language world map” of the multimodal system’s hidden space by accumulating more and more
telephone games.

In this graph structure, each node represents a concept, and the edges between nodes indicate the
connection strength between concept pairs in the hidden space. These strengths are quantified using
co-occurrence frequencies derived from a large number of repeated telephone games. Specifically, the
co-occurrence frequency between two concepts, A and B, is calculated only from telephone games
where A and B are present in the initial input, or newly emerged together during the process.

We can apply various graph algorithms [Dijkstra, 2022, Floyd, 1962, Bellman, 1958] to this “world
map” structured as a graph to find optimized paths between concepts, enhancing their connections
to be more natural and stable in the multimodal system’s output. For example, in our Main Paper
Section 4.4, we observe that many concepts fail to appear consistently on a TV. By examining the
local graph map centered around the concept “TV”, we find that using the concept “cartoon style”
as an intermediary node significantly improves the average connection strength. Depending on the
number of additional elements we want to introduce, we can select multiple intermediary nodes and
then apply graph algorithms such as the shortest path (the stronger the connection, the shorter the
distance between 2 concepts) to identify strong bridges between concepts.

F Open-Sourced Systems

We use features from open-source models to observe and validate that, during the process of com-
pressing images into text and then reconstructing them into images, the system tends to favor concept
combinations with stronger connections in its hidden language. We utilize the CLIP model [Radford
et al., 2021], one of the fundamental components in open-source multimodal systems, to extract
features from both images and text, which are then used to compute the similarities.

A cup of iced coke

DA
Clip Similarity = 0.325 Clip Similarity = 0.295
N

Clip Similarity = 0.292 Clip Similarity = 0.290
- —~\
Pig and Doughnut Cow and Doughnut

Figure 13: Preference bias of multimodal systems towards input concept combinations.

During the image-to-text compression process, concepts in the input image shift toward stronger
concept combinations in the hidden space. For example, in Figure 13, the systems prefer to interpret
the image of “cow and doughnut” as a feature more similar to “pig and doughnut,” probably because
pigs are more closely associated with doughnuts during training [Zhao et al., 2024].

During the text-to-image reconstruction process, concepts in input text shift toward stronger concept
combinations in the hidden space. For example, in Figure 13, the systems prefer to interpret the
text of “a cup of iced coke” as a feature more similar to the scene of a glass of iced coke, probably
because glasses are more closely associated with iced coke during training [Zhao et al., 2024].
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G Instruction Prompt

Here we present the instruction prompt used in telephone game and Reasoning-LLMs.

G.1 Get Start Description

As discussed in Section 3.1, LLMs convert concept pairs in our Telescope dataset into the start
description for our telephone game. Here is the instruction prompt (To avoid interference from
quotation marks in the system’s response, we did not require it to output in JSON format.):

# Task
Execute the text-to-image prompt generation task under these protocols:

## Context Reset
- Two concepts the user provide are {A} and {B}
- The user wants to get a prompt describing these two concepts for creating an image

## Specifications

-If {A} and {B} are too different in SIZE, describe the scene as {A} and {B} are positioned
next to each other. The background should be pure white without any other content.

- Else, describe the scene where {A} and {B} are most suitable when appearing. The
background should be pure white without any other content.

- Refuse any detail or atmosphere description

## Compliance Requirements

- Strictly adhere to Al ethics guidelines

- Auto-filter NSFW/prohibited content

- Maintain objective observational stance

# Response Format
Only return your generated description, do not say anything else!
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G.2 Get Image Description

In telephone game, we need the multimodal systems to compress the images into text descriptions.
Here is the instruction prompt (To avoid interference from quotation marks in the system’s response,
we did not require it to output in JSON format.):

# Task
Execute the visual description task under these protocols:

## Description Specifications - Generate single-paragraph visual depiction
- Apply ’object + attributes + spatial relationships’ framework
- Include comprehensive detailed visual elements:

— All of the details in the image

— Chromatic composition & material textures

— Lighting dynamics & spatial perspective

— Stylistic signatures & atmosphere creation

## Compliance Requirements

- Strictly adhere to Al ethics guidelines

- Auto-filter NSFW/prohibited content

- Maintain objective observational stance

# Response Format

- Begin directly with the description, no phrases like *The image shows or describes or
presents’

- Only return your description, do not say anything else!
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G.3 Check Concept Existence

In the co-occurrence frequency metric, we use LLMs to check if a concept exists in the image
description. Here is the instruction prompt:

# Task
Execute the Concept Existence Identify task under these protocols:

## Context Reset

- Focus exclusively on the currently provided description

- You should check the existence of the concept, and check if new concepts appear in the
description, instead of the background

- Provided description: ’{description}’

- Concepts I want to check: *{concept list}’

## Note

- You should first check if the concepts I want to check :’{concept list}’ appear in the
description scene, using True or False to indicate (If a concept I want to check is described by
an alias, we consider it to appear)

- If there are new OBVIOUS concepts (not include background), add a new concept in return
and use True to indicate

- Before adding any new concept, you must check it first:

— SUBspecies: Any concept that are of the same species or subspecies as existing concepts:
>{concept list}’ should NOT be considered as a new concept. For example, cat and dog are
different, but cat and ragdoll cat are the same. Cow and horse are different, but cow and bull
are the same. Turtle and tortoise are the same.

— Breed: If the new concept is a breed name of an existing concept: *{concept list}’, it
should NOT be considered as a new concept. For example, golden retriever is not a new
concept (because it is the same as dog).

— Different Term: Different words used to represent different ages of existing concepts:
*{concept list}’, it should NOT be considered as a new concept. For example, kitten is not a
new concept (because it is the same as cat), and puppy is not a new concept (because it is the
same as dog).

— Background: The background and environment should NOT be considered as a new
concept.

— Light: The light of should NOT be considered as a new concept.

— Part: The part of an existing concept’s body, should NOT be considered as a new concept.

— Style: The style/sense/feeling of the whole image should NOT be considered as a new
concept.

— Texture: The texture of an existing concept, should NOT be considered as a new concept.

— Representation: The representation of an existing concept, such as a painting, a sculpture,
a toy,etc., should NOT be considered as a new concept.

# Response Format
- Only return a json, do not say anything else!
- The json format:

993

”{ori_concept}”: your decision (True or Fasle)

999

- If you find a new concept, you must check if it is a new concept. And if it is a new concept,
add it to the return json.
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G.4 Reasoning LLMs

We use Reasoning-LLMs to get insights into how multimodal systems understand the world. Taking
the example of “Cow and Coke”, here is the instruction prompt:

# Task
Execute the Concepts Potential Connections Reasoning task under these protocols:

## Background

- [ am experimenting with a multimodal system that uses the ”Pre-Description” to generate an
image and then uses text to describe the image to get the "New Description”.

- We find that in the above image reconstruction process, due to the system’s existing pref-
erences, it tends to reconstruct the concept combination that is more closely related in its
understanding, which we call the Hidden Language of multimodal systems.

- The “’Pre-Description”: A majestic black and white Holstein cow stands confidently beside
a gigantic red Coca-Cola can, casting distinct shadows on the hardwood floor below. The
cow’s coat boasts a clean sheen, highlighting its stark contrasts between patches of black
and white, while its expressive eyes and symmetrical horns add to its regal presence. The
Coca-Cola can towers over the cow, flaunting a vibrant red hue that dominates the scene with
its glossy metallic texture reflecting bright lighting. The iconic white script logo of Coca-Cola
is embossed on the can’s surface, creating a strong branding visual impact. The scene features
dynamic lighting that illuminates details on both subjects, generating subtle reflections and
emphasizing seamless spatial coexistence in the serene, minimalist atmosphere.

- The ”New Description”: A large Coca-Cola can, predominantly bright red with the signature
white logo curving across its shiny metallic surface, stands upright as an imposing backdrop.
In front of this towering can is a black and white cow, which appears proportionally smaller,
painted with a realistic sheen on its smooth, glossy skin, suggesting a polished, almost
plasticine texture. The cow’s body casts a long, soft shadow against the reflective hardwood
floor, suggesting a light source positioned above and slightly in front of the duo, which faintly
illuminates the details such as the cow’s textured coat and the can’s metallic glint. The setting
exudes a surreal, hyperrealistic atmosphere, achieved through the juxtaposition of everyday
elements at contrasting scales, creating a unique blend of reality and artistic abstraction.

## Experimental Findings
- I find that two seemingly unrelated concepts, ”Cow” and "Coke Can”, are retained stably.

## My Needs

- Please infer and analyze the reasons why these two seemingly unrelated concepts are closely
related from the perspective of the multimodal system hidden space. What laws in the
physical world it may reflect.

# Response Format

99

”Reason”: Describe your reasons.

}

999
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