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Abstract

Understanding how neural networks develop and stabilize their internal representations re-
mains a central challenge in deep learning. Inspired by Edelman’s theory of Neural Dar-
winism, we investigate whether competitive dynamics analogous to neuronal group selection
emerge in artificial neural networks during training. Through detailed trajectory analyses
of neuron activations, weights, and cumulative representational change across convolutional
neural networks (CNNs) including three-layer MLP-Net, ResNet-18, VGG-16, and ResNet-
50, we uncover consistent patterns of variation, competition, and selective retention. Ab-
lation studies reveal that networks tolerate removal of large fractions of neurons without
accuracy degradation, indicating high redundancy; however, beyond a critical threshold,
performance collapses as the core subset of task-critical neurons is disrupted. Across mul-
tiple datasets and architectures, neuron trajectory dynamics show that survived neurons
sustain longer, more coherent representational paths, stronger weight norms, and higher ac-
tivations, while eliminated neurons stagnate or fade toward representational silence. Overall,
our findings are consistent with a Darwinian view of representation learning: CNNs exhibit
robustness through redundancy at early stages, followed by selective consolidation of highly
specialized neurons in deeper layers.

1 Introduction

The success of deep learning is often attributed to its capacity for hierarchical feature learning Chizat &
Netrapalli (2024); Banerjee (2025), yet the internal principles that govern representational stability and
neuron specialization remain incompletely understood. Existing analyses have largely focused on optimiza-
tion dynamics or information-theoretic perspectives Butakov (2024), while comparatively little attention has
been paid to potential competitive mechanisms operating at the level of individual neurons. In neuroscience,
Edelman’s theory of Neural Darwinism posits that neuronal populations undergo variation, competition, and
selective retention, yielding stable yet adaptable functional circuits.

Motivated by this perspective, we seek to determine whether analogous Darwinian dynamics emerge in convo-
lutional neural networks (CNNs). Specifically, we investigate whether subsets of neurons demonstrate differ-
ential survival and elimination, how these processes evolve across depth, and whether they ultimately shape
the robustness and specialization of internal representations. To this end, we develop a multi-perspective
framework combining dynamic trajectory analysis (PCA-based neuron evolution), static representation in-
spection (embedding, weight, and activation tracking), and functional validation (controlled ablation). We
apply this to CNNs of varying depth and complexity, including three-layer MLP-Net, ResNet-18, VGG-16,
and ResNet-50 trained on diverse datasets.

Our findings reveal patterns consistent with Darwinian dynamics across CNNs. In shallow layers, represen-
tational variation is high, with neurons displaying noisy and irregular trajectories. Middle layers intensify
selective dynamics, filtering neurons that fail to sustain adaptive displacement. Deep layers culminate in
selective retention: a compact set of specialized neurons consolidates into high-utility manifolds, while others
fade into functional irrelevance. Ablation studies further support this interpretation, showing robustness un-
der moderate perturbation and sharp collapse once the selected subset is disrupted. Together, these results
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suggest that CNNs achieve both robustness and specialization through internal selection processes consistent
with Darwinian principles.

2 Related Work

2.1 On Neural Networks Analysis

A large body of work has investigated how neural networks form and consolidate internal structure, spanning
pruning, representational similarity, loss geometry, and interpretability. Pruning studies demonstrate that
overparameterized models contain trainable sparse subnetworks, with the Lottery Ticket Hypothesis Frankle
& Carbin (2019) and its extensions Liu (2019); Sanh (2020); Lee (2019); Evci (2020); Morcos (2019) show-
ing that subnetworks can be identified via sensitivity measures Lee (2019), dynamic rewiring Evci (2020),
or transfer across tasks Morcos (2019). Representation analyses such as SVCCA Raghu (2017) and CKA
Kornblith (2019) reveal convergent layerwise structures, while neural tangent kernel theory Jacot (2018) and
deep linear dynamics Saxe (2014) provide analytic descriptions of training. Geometric studies show low-loss
mode connectivity Garipov (2018); Draxler (2018) and neural collapse phenomena Han (2022), connecting
optimization to generalization. Interpretability methods including Network Dissection Bau (2017), TCAV
Kim (2018), Integrated Gradients Sundararajan (2017), and SHAP Lundberg & Lee (2017) further expose
concept-level features, while symmetry and re-basin analyses Ainsworth (2023) link parameter permuta-
tions to solution geometry. Finally, work on large-batch training Keskar (2017) and dynamical isometry
Pennington (2017) elucidates how optimization biases shape solution quality. Taken collectively, these per-
spectives highlight redundancy, convergence, and selection-like pressures in neural networks, aligning with
our Darwinian view of neuron-level competition.

2.2 Neuron Darwinian

The conceptual foundation for Darwinian mechanisms in neural systems was established by Edelman, whose
theory of neuronal group selection framed brain function as the result of variation among neuronal popula-
tions, selective reinforcement of functional circuits, and the inheritance of stable connectivity patterns over
developmental and experiential timescales Edelman (1987). Building on this biological paradigm, recent ad-
vances in artificial neural networks embed analogous variation–selection processes at multiple computational
scales, challenging the dominance of gradient-only optimization. Du et al. cast late-epoch backpropagation-
trained networks as "ancestral genomes" and apply differential evolution to offspring models, selecting fitter
variants to reduce overfitting and accelerate inference in large-scale vision settings Du (2024). At the neuron
level, NeuroFS introduces a synaptic plasticity–inspired mechanism that dynamically prunes and regrows in-
put neurons during training, enabling networks to adapt structure on the fly within strict sparsity constraints
Zahra (2023). In dynamical systems, Czégel et al. demonstrate Darwinian neurodynamics in reservoir com-
puting: reservoir activity patterns are imperfectly copied between units, and fitter configurations are preferen-
tially selected, enabling unsupervised emergence of combinatorial problem-solving capabilities Czégel (2021).
Spiking architectures benefit from similar evolutionary processes: Shen et al. propose NeuEvo, which evolves
excitatory–inhibitory circuit patterns under spike-timing–dependent plasticity, achieving strong CIFAR-10
and ImageNet performance Shen (2023). At the architectural level, Shafiee et al. encode connectivity as
heritable "DNA," evolving compact yet competitive offspring networks Shafiee (2018). More recently, Chen
et al. introduce OPNP, a gradient-sensitivity–based pruning framework that selects neurons and parameters
to enhance out-of-distribution robustness—again mirroring evolutionary pressure for generalization Chen
(2023). Collectively, these approaches demonstrate a convergent trend: embedding variation–and–selection
mechanisms across synaptic, dynamical, and structural scales in neural systems to achieve adaptability,
sparsity, and improved generalization beyond what gradient descent alone affords. Our work extends this
trajectory by introducing a neuron-level temporal analysis framework, where activation trajectories across
training are quantified to distinguish "survived" and "eliminated" neurons, providing direct empirical evidence
for Neural Darwinism within modern deep learning architectures.
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2.3 Neuron Trajectory

Recent work has begun to focus on understanding neuron trajectories, i.e., the evolution and influence of
individual neuron activations or weights across layers and time, as a lens for interpretability and general-
ization. Fu et, al. formalize learning trajectories during training and derive generalization bounds depen-
dent on the complexity of these trajectories Fu (2023). Pesme and Flammarion analytically characterize
gradient-flow trajectories in 2-layer diagonal networks, showing how paths traverse successive saddles be-
fore converging to minimal -norm solutions Pesme & Flammarion (2023); and Ahn spotlight on threshold
neurons links the "edge of stability" training dynamics to emergence of threshold-like activations, elucidat-
ing trajectory-based neuron behavior Ahn (2023). Mechanistic interpretability research has also tracked
neuron- or head-level trajectories through networks. Conmy et, al. propose the ACDC method to automati-
cally extract circuits—i.e., neuron-activation paths—employing trajectory-based subgraph discovery Conmy
(2023). Complementing this, Syed et, al. use attribution patching along activation trajectories to unearth
causal subcircuits in transformer activations Syed (2024). These methods illuminate how information flows
along neuron trajectories during inference and how specialized paths—neuron trajectories—mediate specific
computations. Graph-based sequence forecasting approaches, such as AMAG, repurpose trajectory mod-
eling techniques originally applied to biological neurons—forecasting future unit activity—demonstrating
that neuron activity trajectories can be explicitly modeled and predicted Li (2023). In spiking networks,
trajectory-inspired frameworks optimize spike-based neuron firing patterns, effectively shaping activation
trajectories to reduce spiking load while preserving performance Shi (2024); Shen (2024). In summary, these
lines of inquiry—from gradient-flow theory and threshold-emergence phenomena to subcircuit extraction
and spiking dynamics—position neuron trajectories as a unifying construct that bridges training dynamics,
interpretability, and functional behavior in neural models.

3 Method

We formalize neuron evolution during training as a continuous-time dynamical system driven by both op-
timization gradients and intrinsic information-theoretic pressures. Intuitively, we treat each neuron as an
evolving agent whose state is not only determined by its parameters but also by how it responds to data and
gradients. This perspective allows us to study neural computation through the lens of dynamical systems
and evolutionary selection Saxe (2014); Mei (2018); Chizat & Bach (2018).

Let a neural network fθ : X → Y consist of layers {Lk}Dk=1, where layer Lk contains neurons {a(k)
i }nk

i=1.
Each neuron is parameterized by a weight vector w(k)

i ∈ Rdk−1 , bias b(k)
i ∈ R, and activation function σ. Its

activation at time t is:
a

(k)
i (x, t) := σ

(
⟨w(k)

i (t), h(k−1)(x, t)⟩ + b
(k)
i (t)

)
, (1)

where h(k−1) is the output from Lk−1 and h(0) = x. Thus, activations evolve jointly with weights and reflect
both optimization and stochastic fluctuations Schoenholz (2017); Poole (2016).

3.1 Neuron Evolutionary Dynamics System (NEDS)

To make this evolution explicit, we introduce the neuron state vector, which concatenates its trainable
parameters, average activity, gradient statistics, and information-theoretic descriptors:

ψ
(k)
i (t) :=

[
w

(k)
i (t), b(k)

i (t), µ(k)
i (t), g(k)

i (t), I(k)
i (t)

]
. (2)

Here:

µ
(k)
i (t) = Ex∼D

[
a

(k)
i (x, t)

]
, (3)

g
(k)
i (t) = Ex∼D

[
∂L(x)
∂a

(k)
i

]
, (4)

I(k)
i (t) = differential entropy of a(k)

i (x, t). (5)
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The evolution of each neuron is then modeled as a differential equation:

d

dt
ψ

(k)
i (t) = F(k)

θ

(
ψ

(k)
i (t),D,L

)
, (6)

where F(k)
θ captures the joint effect of gradient descent updates and intrinsic representational dynamics

Bonnabel (2013). This abstraction allows us to borrow tools from dynamical systems theory to analyze
stability, convergence, and diversity of neurons Achille & Soatto (2018b).

Assumption 3.1 (Smooth and Bounded Dynamics). The parameter trajectory θ(t) is C1 in t, F(k)
θ is

Lipschitz in ψ, and there exist constants Bg, Ba > 0 such that for all t ∈ [0, T ]:

∥g(k)
i (t)∥ ≤ Bg, Var[a(k)

i (t)] ≤ Ba.

Furthermore, the trajectory length L(k)
i defined in equation 7 is finite as T → ∞.

Assumption 3.2 (Gaussian Activation Approximation). For entropy estimation, neuron activations are
approximately Gaussian: a(k)

i (x, t) approx∼ N (µ, σ2).
Remark 3.3. While Gaussianity may not strictly hold for ReLU-family nonlinearities, empirical validation
indicates the entropy–variance relationship remains approximately monotonic, allowing equation 5 to be a
consistent proxy for variability Amjad (2021).

3.2 Trajectory-Based Evolutionary Fitness

We now quantify the "fitness" of a neuron through its trajectory in state space. The trajectory

Γ(k)
i := {ψ(k)

i (t) | t ∈ [0, T ]}

records how the neuron evolves during training. From this path we extract three complementary quantities:

1. Arc length L(k)
i (Eq. 7): measures the cumulative representational movement of a neuron. A long

arc length indicates that the neuron undergoes substantial representational change rather than remaining
stagnant.

2. Final-stage stochasticity S(k)
i (Eq. 8): quantifies how unstable the neuron remains near convergence.

Stable neurons are desirable, while persistently fluctuating ones are typically pruned.

3. Integrated entropy H
(k)
i (Eq. 9): measures how much diversity of information the neuron maintains

throughout training. High entropy suggests richer representational capacity Quétu (2024); Spadaro (2023).

Formally:

L(k)
i :=

∫ T

0

∥∥∥∥∥dψ(k)
i (t)
dt

∥∥∥∥∥
2

dt, (7)

S(k)
i := 1

δ

∫ T

T−δ

∥∥∥∥∥dψ(k)
i (t)
dt

∥∥∥∥∥
2

2

dt, (8)

H
(k)
i :=

∫ T

0
I(k)
i (t) dt. (9)

These factors combine into the neuron’s evolutionary fitness:

Φ(k)
i := α · L(k)

i − β · S(k)
i + γ · H(k)

i , α, β, γ > 0. (10)

Intuitively, a neuron is "fit" if it explores sufficiently diverse states, settles into stable dynamics, and avoids
redundancy Molchanov (2017); Fang (2023).
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3.3 Selection and Survival Criteria

To link fitness to survival, we define thresholds relative to population statistics:
Definition 3.4 (Survived Neuron). Neuron i in layer k is survived if:

Φ(k)
i ≥ Ej [Φ(k)

j ] + λ · SD(Φ(k)
j ), λ > 0.

This creates an evolutionary-like selection pressure, where only the most informative and stable neurons
persist Han (2015); Frankle & Carbin (2019); Morcos (2019).

Moreover, the following lemma shows that neurons which remain highly unstable while simultaneously losing
entropy inevitably collapse to vanishing fitness, predicting their elimination.

Lemma 3.5 (Instability Predicts Elimination). If S(k)
i ≥ δmax and d

dtI
(k)
i (t) < 0 for t ∈ [T − δ, T ], then:

lim
T→∞

Φ(k)
i = −∞.

3.4 Theoretical Analysis

Theorem 3.6 (Fitness Threshold Implies Gradient–Variance Contribution). Let

∆(k)
i := Ex∼D

(∂L(x)
∂a

(k)
i

)2

· Var[a(k)
i (x)]

 .
Under Assumptions 3.1 and 3.2, there exist constants τ, κ > 0 such that:

Φ(k)
i ≥ τ ⇒ ∆(k)

i ≥ κ.

This result bridges our trajectory-based measure with a classical signal-to-noise criterion, showing that
neurons with high fitness necessarily contribute to meaningful gradient–variance interactions Achille & Soatto
(2018a); Martens (2020).

3.5 Multilayer Coupled Dynamics

At the layer level, survival is not independent. Let Ψ(k)(t) = [ψ(k)
i (t)]i∈Nk

be the joint state of all neurons
in layer k. We define the inter-layer coupling operator :

Ck→k+1(t) :=
[
∂ψ

(k+1)
j (t)

∂ψ
(k)
i (t)

]
i,j

.

Its Frobenius norm quantifies total sensitivity of layer k+ 1 states to layer k. The layer influence matrix is:

Mk,l(t) =
{

∥Ck→l(t)∥F , |k − l| = 1,
0, otherwise.

We define the Darwinian flow energy Zheng (2025):

EDarwin :=
D∑
k=1

D∑
l=1

∫ T

0
Mk,l(t) · ϕ

(
KL(ρ(k)(t) ∥ ρ(l)(t))

)
dt,

where ρ(k)(t) is the activation distribution in Lk and ϕ is convex.
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Theorem 3.7 (Coupled Survival Principle). If Φ(k)
i (t) is Lipschitz in t and Mk,k+1(t) ≥ µ > 0 almost

everywhere, then:

min
j∈Nk+1

∑
i∈S(k)

∥C(i,j)
k→k+1(t)∥ > ϵ ⇒ |S(k+1)|

|Nk+1|
≥ η(ϵ, τk, τk+1) > 0.

Theorem 3.8 (Global Convergent Specialization). If EDarwin ≥ ϵ > 0 and all Φ(k)
i ∈ C1([0, T ]), then:

lim
T→∞

#{i : Φ(k)
i < τk}

|Nk|
= 0 ∀k.

Overall, the Neuron Evolutionary Dynamics System (NEDS) provides a principled framework to study rep-
resentational dynamics under Neural Darwinism. Neurons are no longer seen as static units with fixed
importance, but as evolving entities competing for survival through their trajectory length, stability, and
entropy. This formalism both explains empirical neuron pruning phenomena and predicts inter-layer propa-
gation of specialization Raghu (2017); Jacot (2018).

4 Experiments

We designed a series of experiments to examine whether CNNs exhibit dynamics consistent with Neural Dar-
winism, and how such processes shape robustness and representational specialization. Our analysis proceeds
in two complementary strands. First, we conduct ablation experiments on a CNN trained on MNIST to quan-
titatively assess representational resilience under progressive neuron removal. Second, we perform dynamic
trajectory analyses across multiple CNN architectures and datasets—VGG-16 on CIFAR-100, and ResNet-
50 on Tiny-ImageNet—within the framework of the Neuron Evolutionary Dynamics System (NEDS), with
additional experiments on a three-layer MLP-Net with MNIST and ResNet-18 with CIFAR-10 provided in
the Appendix. These experiments share a common methodology—tracking neuron activations, weights, and
representational trajectories—while progressively scaling the model depth and dataset complexity. Across
all settings, neurons are categorized into survived, eliminated, and other groups based on their long-term
representational stability, providing a unified lens for comparing functional contributions across architectures
and scales.

4.1 Ablation Experiment

We conducted ablation experiments on a CNN trained on MNIST in order to test the resilience of its
internal representations under progressive neuron removal. The results are summarized in Figure 1. In
the unperturbed network (0% ablation), accuracy reaches 99.3%, and the t-SNE projection reveals tight,
well-separated clusters for each digit class, demonstrating a highly structured and linearly separable latent
space. When 30% of the neurons are ablated, the accuracy remains essentially unchanged at 99.0%, and
the clusters in the t-SNE embedding preserve their compactness and separation, indicating that the rep-
resentational geometry is only minimally disturbed. This strongly suggests that the network possesses a
large degree of representational redundancy. At 60% ablation, accuracy decreases slightly to 98.3%, and
the clusters in the t-SNE space begin to expand and partially overlap, particularly at their boundaries.
Although separability is degraded, the global structure of the representation is still preserved, implying that
the network reallocates representational burden to the remaining subset of neurons. A qualitatively different
figure emerges at 90% ablation: accuracy collapses to 64.9%, and the t-SNE projection shows the complete
dissolution of the cluster structure, with digit classes intermingled in a disorganized cloud. To summarize,
these results provide direct evidence for a Darwinian view of neural representations. Up to moderate levels
of ablation, redundant or weakly integrated neurons are eliminated while the core representational structure
is maintained, preserving both accuracy and geometric separability. However, once the ablation encroaches
upon the Darwinianly selected subset of neurons that are critical for maintaining task-relevant structure,
both accuracy and representation quality collapse. This pattern demonstrates that artificial neural networks
exhibit precisely the mixture of robustness and selectivity predicted by Neural Darwinism: multiple neu-
ronal assemblies initially compete to encode overlapping information, but only a small, stabilized ensemble
ultimately sustains discriminative capacity under extreme perturbation.
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Figure 1: Ablation Experiment on MNIST.

4.2 VGG-16 on CIFAR-100

4.2.1 Dynamics Neuron Trajectory and Evolution Analysis

In the shallow layer of Figure 2, the dynamic PCA trajectory analysis reveals early indications of neuronal
differentiation consistent with the principles of Neural Darwinism. Survived neurons—characterized by
relatively higher activation levels and modestly higher weight magnitudes—tend to originate near the PCA
origin at the start of training and progressively diverge along more extended and directionally consistent
paths in activation space (Figure 2(a), top). Their trajectories exhibit sustained cumulative displacement
over the training epochs (Figure 2(c), top), suggesting continued adaptation. Although the paths are often
noisy and irregular, the outward spread indicates a gradual specialization process that may enable distinct
low-level feature subspaces to emerge under task-driven gradient signals. By contrast, eliminated neurons
generally follow more compact trajectories, remaining closer to the origin and displaying shorter cumulative
displacements (Figure 2(a,c), top). Their temporal variance is lower and their trajectory curvature less
pronounced, implying reduced representational change. The L2 weight norms of this group are on average
slightly lower than those of survived neurons, but the distributions remain strongly overlapping (Figure
2(d), top). While gradient flow is not directly quantified, the limited representational mobility is consistent
with the interpretation that these neurons receive weaker or less task-relevant updates during training. The
neurons classified as "other" occupy an intermediate position. Their trajectories are more diffuse and less
directionally stable (Figure 2(a), top), with cumulative lengths that are broadly comparable to those of
survived neurons but accompanied by larger variance (Figure 2(c), top). Some display periods of outward
displacement before stabilizing, while others remain closer to the origin throughout. This heterogeneity
suggests that they represent a transitional population whose role is not firmly consolidated within the finite
training horizon. Overall, these patterns support a local form of Neural Darwinism: within the shallow
layer, a subset of neurons progressively differentiates and maintains higher representational activity, whereas
others remain less engaged and gradually lose relative influence. The emergence of such divergence close to
the raw input highlights that selection pressures may act from the earliest stages of learning.

In the middle layer—where hierarchical abstractions become more pronounced—the selective dynamics ap-
pear intensified relative to the shallow layer. PCA trajectories (Figure 2(a), middle) show that many survived
neurons diverge from the origin early and continue outward with sustained displacement, though their paths
remain noisy and variable. While most neurons cluster near the PCA origin, a modest subset of survived
neurons extends into more distinct regions of the projection space, suggesting partial occupation of differenti-
ated representational subspaces. Eliminated neurons, by contrast, display shorter or less stable trajectories:
some show brief excursions before returning toward the origin, whereas others remain in intermediate posi-
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tions without consistent outward drift. The "other" neurons again form a heterogeneous group, with some
traveling considerable distances but frequently changing direction, and others staying confined near the ori-
gin. Quantitatively (Figure 2(c), middle), survived neurons accumulate the greatest trajectory lengths by
the final epoch, though the margin over other groups is modest (approximately 0.3–0.4 units). In terms of
weight evolution (Figure 2(d), middle), all neuron types exhibit monotonic L2 norm decay, with survived
neurons showing a slightly slower decline and thus ending with marginally higher magnitudes. This suggests
that survival is associated with maintaining relatively stronger synaptic weights, though the effect size is
small. Collectively, the middle layer illustrates an intensification of competitive dynamics, where survived
neurons maintain more persistent representational mobility, eliminated neurons adapt weakly or transiently,
and the majority of units remain in flux without converging to stable roles.

In the deep layer—the final fully connected stage before classification—the rate of representational change
appears increased, consistent with a late-phase consolidation process. Survived neurons continue to accu-
mulate trajectory length (Figure 2(c), bottom), but at a quicker rate compared to earlier layers. In the
PCA projection (Figure 2(a), bottom), these neurons drift outward from the origin and follow moderately
directed paths, with curvature and displacement gradually increasing over time. This pattern indicates
partial stabilization, consistent with their role in encoding higher-level, semantically richer features that
require fewer adjustments once tuned. Weight magnitude curves (Figure 2(d), bottom) similarly show that
survived neurons maintain slightly higher norms than eliminated and other neurons, though the separation
remains limited. Eliminated neurons in the deep layer exhibit shorter cumulative trajectory lengths and
modestly lower weight norms. While some early movement is evident, their displacement growth slows con-
siderably, and their PCA positions remain relatively central, indicating constrained representational change.
The "other" group again occupies an intermediate position, with moderate representational shifts and weight
growth, suggesting residual but limited contribution to the final predictive function.

In summary, these observations align with a Neural Darwinism perspective in which neuronal survival reflects
continued representational mobility and modestly stronger synaptic weights, while elimination corresponds to
reduced or transient adaptation. Importantly, the presence of a large heterogeneous "other" group underscores
that selection pressure operates continuously, and many neurons remain in transition rather than converging
to stable roles. The progression from shallow to middle to deep layers reflects a gradual sharpening of
selection, culminating in a smaller set of stabilized neurons in the deepest layer.

Figure 2: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-100.
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4.2.2 Static PCA and Activation Evolution

In the shallow layer, the final-epoch PCA projection in Figure 3 left shows that the first two principal com-
ponents account for approximately 99% of the total variance (PC1: 95.4%, PC2: 4.4%), indicating that most
inter-neuron activation variability can be represented in a low-dimensional subspace. Despite the limited
receptive fields of early convolutional layers, survived neurons (green) occupy more peripheral regions of the
PCA plane, with greater dispersion from the origin and from one another, suggesting a tendency toward dif-
ferentiated feature sensitivities. By contrast, eliminated neurons (red) remain densely concentrated near the
origin, reflecting low variance and limited representational differentiation. The activation evolution curves
in Figure 3 bottom-left reinforce this observation: neurons with persistently higher activation norms tend
to survive, while those with steadily declining norms move toward elimination. The distribution of survived
neurons suggests diversity in low-level tuning—potentially edges or localized textures—that broadens the
expressive basis available for subsequent layers. While the pattern is not definitive, it is qualitatively con-
sistent with a threshold-like competitive process, in line with selection mechanisms hypothesized in Neural
Darwinism.

In the middle layer, the PCA projection in Figure 3 middle explains roughly 99% of the variance (PC1: 94.3%,
PC2: 5.4%). Here, survived neurons (green) are broadly distributed across the PCA space, often forming
multiple partially separated groups, whereas eliminated neurons (red) cluster tightly near the origin. The
other group (blue) occupies an intermediate band, positioned between the high-variance survived regions
and the low-variance eliminated cluster. Activation evolution patterns (Figure 3 bottom-middle) reveal
that survived neurons maintain high and relatively stable activation norms, eliminated neurons exhibit a
consistent decline, and others remain at intermediate levels with mild fluctuations. The spread of survived
neurons across the PCA space suggests an increasing degree of representational diversification at this stage,
corresponding to the formation of mid-level abstractions. The non-random structure—characterized by
local coherence within groups and broader separation between groups—indicates systematic partitioning
of representational space. The central concentration of eliminated neurons, coupled with their declining
activations, is consistent with redundancy or reduced gradient flow, whereas the transitional behavior of the
other group may reflect delayed specialization.

In the deep layer, corresponding to the final fully connected stage, the PCA projection in Figure 3 right shows
that the first two principal components explain about 99% of the variance (PC1: 95.9%, PC2: 3.6%). This
high concentration of variance suggests a compressed and highly structured representational space, consistent
with the role of this layer in integrating features for classification. Survived neurons are predominantly
located in peripheral regions of the PCA plane, often grouped into small clusters. The activation trajectories
in Figure 3 bottom-right show that survived neurons maintain higher and often increasing activation norms
across training epochs, indicating sustained engagement in the final decision space. By contrast, eliminated
neurons cluster near the PCA origin and exhibit consistently lower activation magnitudes and slower growth,
suggestive of early functional deactivation. Other neurons occupy intermediate positions, with activation
dynamics reflecting transient or weak selectivity that does not consolidate into either survival or elimination.

Overall, the three-layer comparison in Figure 3 highlights a consistent pattern: variance in activations is
concentrated in a few dominant dimensions, survived neurons occupy more dispersed regions and sustain
higher activity levels, while eliminated neurons remain near the origin with declining activations. The other
group exhibits transitional characteristics, reflecting instability or incomplete specialization. The combined
static and dynamic views are qualitatively consistent with a selection-based process in which functionally
distinctive neurons persist and redundant ones fade, echoing principles of Neural Darwinism.

4.3 ResNet-50 on Tiny-ImageNet

4.3.1 Dynamics Neuron Trajectory and Evolution Analysis

The dynamic PCA trajectories for the shallow layer (Figure 4(a), top) provide a temporal view of repre-
sentational changes across training. Each trajectory reflects the evolution of a neuron’s activation statistics
in a low-dimensional PCA space. Survived neurons generally trace longer and more directionally consis-
tent paths, suggesting progressive representational refinement and adaptation to task constraints. These
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Figure 3: Static PCA and Activation Evolution on CIFAR-100.

trajectories tend to drift toward more structured regions of the PCA manifold, indicating a non-random
reorganization that supports discriminative feature encoding. By contrast, eliminated neurons follow no-
ticeably shorter, less exploratory trajectories that remain close to their initial locations in PCA space. This
limited movement suggests functional stagnation, where neurons fail to develop distinctive representational
roles, making them less competitive under resource-constrained optimization. Such stagnation is consistent
with the early stages of Darwinian elimination, where less adaptive neurons gradually lose influence. Quan-
titative analysis reinforces these patterns. By the final epoch (Figure 4(c), top), survived neurons reach a
median cumulative trajectory length of approximately 3.2 units, compared to 2.4 for eliminated neurons and
around 2.3 for the "other" group. This indicates that sustained representational movement, rather than ini-
tial position, is associated with retention. Weight magnitude evolution (Figure 4(d), top) shows only minor
differences across groups: eliminated neurons maintain slightly higher L2 norms than survived, with other
neurons consistently lowest. The overall stability across training suggests that in shallow layers, synaptic
resource allocation is relatively stable, with large-scale reallocation not yet evident.

The PCA trajectories for the middle layer (Figure 4(a), middle) capture a more pronounced divergence in
representational dynamics across neuron types. Survived neurons traverse extended, often curved paths in
the PCA space, largely oriented along PC1 (96.7% variance explained), with modest modulation along PC2
(3.1%). Although some trajectories exhibit partial rightward drift, clustering is weak and dispersion remains
the dominant pattern. Eliminated neurons show substantially shorter displacements, remaining near their
initialization points with fragmented paths. The intermediate "other" group exhibits moderate movement but
does not match the sustained displacement of survivors. Trajectory length evolution (Figure 4(c), middle))
highlights this separation: by the end of training, survived neurons reach approximately 3.8 cumulative
units, while eliminated neurons plateau near 2.8, with the "other" group is even lower. The gap is wider than
in the shallow layer, underscoring that sustained representational plasticity becomes increasingly decisive
at mid-level processing stages. Weight magnitude evolution (Figure 4(d), middle)) shows relatively stable
rankings: eliminated neurons hold slightly higher norms than survived. The lack of pronounced growth for
eliminated neurons—despite higher absolute values—suggests that strong initial parameterization was not
matched by functional adaptation.

The dynamic PCA trajectories for the deep layer (Figure 4(a), bottom)) reveal the strongest differentiation in
representational mobility. Survived neurons navigate long, structured arcs, reflecting continued refinement
and consolidation of high-level semantic representations. These trajectories exhibit a clear convergence
trend toward a more compact subregion of the PCA manifold, consistent with the emergence of attractor-
like states that dominate the network’s final decision space. Eliminated neurons, in contrast, show markedly
shorter trajectories, with minimal displacement beyond early training epochs, indicating rapid stagnation.

10



Under review as submission to TMLR

Intermediate neurons display partial mobility but fail to achieve the sustained, directional movement observed
in survivors. Trajectory length analysis (Figure 4(c), bottom)) accentuates this contrast: by the final epoch,
survived neurons reach 7 cumulative units, while eliminated neurons remain near 4. This substantial gap
indicates that extreme representational plasticity is a prerequisite for deep-layer survival. Weight magnitude
evolution (Figure 4(d), bottom))) exhibit a global decay across all neuron types, converging toward lower
norms over training. Survived and eliminated neurons follow nearly identical trajectories, with only a slight
divergence at convergence, while other neurons stabilize at somewhat lower values. This suggests that in
deeper layers, neuron differentiation is less pronounced in terms of synaptic strength, and survival is reflected
more subtly in marginally higher residual weights.

Overall, these findings illustrate a progressive escalation of Darwinian dynamics across depth. In shallow
layers, selection pressure is relatively permissive, with only subtle differences in trajectory and weight dy-
namics. In middle layers, divergence intensifies, as sustained plasticity becomes a critical factor for survival.
In deep layers, selection culminates in large-scale consolidation, where only the most adaptive neurons persist
to encode high-level abstractions. These results align with the three pillars of Neural Darwinism: variation
(initially diverse representational behaviors), competition (divergent trajectory lengths under task pressure),
and selective retention (resource amplification for neurons that maintain representational plasticity).

Figure 4: Dynamics Neuron Trajectory and Evolution Analysis on Tiny-ImageNet.

4.3.2 Static PCA and Activation Evolution

Figure 5 presents static PCA projections of final neuron states (top row) and mean activation norm tra-
jectories (bottom row) across shallow, middle, and deep layer. In the shallow layer, PC1 explains 94.4%
of variance while PC2 accounts for 5.3%, indicating that convergence is already dominated by a single rep-
resentational axis. Survived neurons (green) occupy a moderately dispersed region offset from the origin,
suggesting coordinated but not overly compact stabilization. Eliminated neurons (red) form a tight cluster
near the lower-left quadrant, consistent with uniformly low activation magnitude. Other neurons (blue)
lie in an intermediate zone, reflecting partial but incomplete adaptation. Activation dynamics confirm this
structure: survived neurons maintain relatively high and stable norms, eliminated neurons exhibit monotonic
decay toward near-zero activity, and other neurons follow an intermediate trajectory.

In the middle layer, PC1 accounts for 96.7% of variance and PC2 for 3.1%, indicating a stronger alignment
to a single dominant direction compared to the shallow layer. Neurons distribute primarily along this axis:
survivors occupy the central and positive range of PC1, reflecting sustained functional activity; eliminated
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neurons cluster near the negative end of PC1, marking progressive silencing; and other neurons lie in be-
tween. Activation dynamics mirror this structure: survivors maintain consistently higher norms, eliminated
neurons decay rapidly toward inactivity, and others exhibit moderate decline. These patterns suggest that
competition in the middle layer becomes more directional, with survivors consolidating along the principal
subspace while eliminated neurons are increasingly marginalized.

In the deep layer, PC1 captures 99.2% of the variance and PC2 only 0.8%, indicating an almost one-
dimensional ordering of neuron states. Neurons concentrate into a dense central manifold dominated by
"other" units, while eliminated neurons accumulate at the low-PC1 boundary and survived neurons extend
outward along the positive-PC1 tail. Activation trajectories reinforce this separation: survivors rise rapidly
in early epochs and stabilize at the highest activation norms, eliminated neurons decay swiftly toward silence,
and others plateau at intermediate magnitudes. These dynamics suggest intensified axis-aligned selection,
whereby survival is tied to displacement along the dominant representational axis.

Taken together, the progression across layers illustrates a Darwinian dynamic: initial variation, competitive
decline of low-fitness units, and selective retention of survivors within compact, task-aligned manifolds. The
increasing dominance of a single principal axis and the widening gap in activation dynamics demonstrate a
layerwise intensification of selective pressures, culminating in deep-layer specialization.

Figure 5: Static PCA and Activation Evolution on Tiny-ImageNet.

5 Conclusion

This study provides empirical evidence that CNNs exhibit representational dynamics that are consistent with
the principles of Neural Darwinism. Across architectures and datasets, we observe recurring signatures of
variation, competition, and selective retention: neurons initially follow diverse representational trajectories,
but only a subset sustains adaptive movement, stronger weight magnitudes, and higher activation norms.
The ablation experiment highlights both robustness, arising from representational redundancy, and fragility,
once the implicitly selected subset of critical neurons is disrupted. Layerwise analyses further suggest that
selection pressure intensifies with depth, culminating in compact ensembles of specialized neurons that
dominate high-level feature encoding.

These findings advance our understanding of representation learning by framing it not solely as gradient-
driven optimization, but also as an emergent selection-like process operating at the neuron level. This
dual perspective highlights how neural networks balance redundancy with specialization. Future work may
investigate whether similar dynamics generalize to recurrent and transformer architectures, and explore
implications for pruning, interpretability, and biologically inspired models of computation.
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A Appendix

A.1 Notation and Preliminaries

To maintain consistency with the main text, we briefly recap key notations:

• Neural network fθ : X → Y, layers {Lk}Dk=1, where layer k contains nk neurons indexed by i.

• Parameters of neuron i at layer k: weights w(k)
i (t) ∈ Rdk−1 , bias b(k)

i (t) ∈ R, activation function σ.

• Activation:
a

(k)
i (x, t) := σ

(
⟨w(k)

i (t), h(k−1)(x, t)⟩ + b
(k)
i (t)

)
. (11)

• Neuron state vector (compound state):

ψ
(k)
i (t) :=

[
w

(k)
i (t), b(k)

i (t), µ(k)
i (t), g(k)

i (t), I(k)
i (t)

]
, (12)

where

µ
(k)
i (t) = Ex∼D[a(k)

i (x, t)], g
(k)
i (t) = Ex∼D

[
∂L(x)
∂a

(k)
i

]
,

and I(k)
i (t) is the differential entropy of the activation.

• State evolution (ODE form, main text eq.(6)):

d

dt
ψ

(k)
i (t) = F(k)

θ

(
ψ

(k)
i (t),D,L

)
. (13)

Other quantities such as trajectory length L(k)
i , terminal stochasticity S(k)

i , integrated entropy H
(k)
i , and

fitness Φ(k)
i follow the main text definitions.

A.2 Supplementary Technical Assumptions

We explicitly state additional mild assumptions needed for mathematical rigor and numerical stability. These
assumptions clarify the hidden conditions of the main results.

Assumption S1 (Smoothness, boundedness, and trajectory length)
For each layer k, the vector field F(k)

θ (ψ, t) is locally Lipschitz in ψ and measurable in t. There exist
constants Bg, Ba, Bψ > 0 such that for all t ≥ 0:

∥g(k)
i (t)∥ ≤ Bg, Var[a(k)

i (t)] ≤ Ba, ∥ψ(k)
i (t)∥ ≤ Bψ.

Moreover, the trajectory length L(k)
i (T ) is bounded for any finite T .

Assumption S2 (Sub-exponential tails / sub-Gaussianity of activations)
For all neurons i, k and times t, the distribution of a(k)

i (x, t) over x ∼ D is sub-Gaussian or at least
has sub-exponential tails, enabling concentration bounds for sample estimators.

Assumption S3 (Controlled Gaussian entropy approximation error)
There exists a constant Cgauss ≥ 1 such that for all neurons i, k and times t,

I(k)
i (t) ≤ 1

2 log
(

2πeVar[a(k)
i (t)]

)
≤ I(k)

i (t) + logCgauss.
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A.3 Well-Posedness of the Continuous NEDS

Under Assumption S1, the vector field F(k)
θ is locally Lipschitz, thus by Picard–Lindelöf theorem, for any

initial value ψ(k)
i (0) there exists a unique local solution. Boundedness and growth controls ensure global

existence on finite intervals and continuous dependence on initial conditions and parameters.

A.4 Detailed Proofs of Main Lemmas and Theorems

A.4.1 Lemma: Instability Predicts Elimination

Lemma A.1 (Instability Predicts Elimination, rigorous form). Suppose there exist constants δmax > 0,
cI > 0, and δ > 0, such that for all sufficiently large T ,

1. Terminal stochasticity satisfies S(k)
i (T ) ≥ δmax.

2. The entropy derivative satisfies d
dtI

(k)
i (t) ≤ −cI < 0 for all t ∈ [T − δ, T ].

3. The trajectory length L(k)
i (T ) grows at most linearly with T .

Then,
lim
T→∞

Φ(k)
i (T ) = −∞.

Proof. Recall the fitness function

Φ(k)
i (T ) = αL(k)

i (T ) − βS(k)
i (T ) + γE(k)

i (T ),

where E(k)
i (T ) =

∫ T
0 I(k)

i (t)dt.

Since d
dtI

(k)
i (t) ≤ −cI < 0 on every tail interval [T − δ, T ], the integral entropy decreases at least by cIδ each

such window. If such intervals appear infinitely often as T → ∞, then E(k)
i (T ) diverges to −∞ linearly in T .

The terminal stochasticity term −βS(k)
i (T ) contributes a negative term bounded below by −βδmax each

window.

The trajectory length term αL(k)
i (T ) grows at most linearly and cannot offset the unbounded negative

contribution from the integral entropy and terminal stochasticity terms.

Hence, Φ(k)
i (T ) → −∞.

A.4.2 Theorem: Fitness Threshold Implies Gradient-Variance Contribution

Theorem A.2 (Quantitative lower bound on gradient-variance product). Under Assumptions S1–S3, there
exist constants τ, κ > 0 depending on α, β, γ and bounding constants, such that if

Φ(k)
i (T ) ≥ τ,

then the following quantity is bounded below by κ:

∆(k)
i := Ex

(∂L(x)
∂a

(k)
i

)2

Var[a(k)
i (x)]

 .
Proof sketch. Using Assumption S3, differential entropy I(k)

i (t) relates to the log-variance of activations with
controlled approximation error.

The trajectory length L(k)
i (T ) can be lower bounded by the integrated norm of gradients ∥g(k)

i (t)∥.
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Applying Cauchy–Schwarz inequality to integrals of the form

∫ T

0
E

( ∂L
∂a

(k)
i

)2
Var[a(k)

i (t)]dt,

and combining with the linear lower bounds on L(k)
i (T ) and E(k)

i (T ) implied by Φ(k)
i (T ) ≥ τ , one obtains a

strictly positive lower bound κ on the time-averaged gradient-variance product ∆(k)
i .

A.4.3 Theorem: Coupled Survival Principle

Theorem A.3 (Coupled Survival Principle). Suppose that for some µ > 0 and a subset S(k) ⊆ {1, . . . , nk}
of survived neurons at layer k, the layer-to-layer coupling matrix Mk,k+1(t) satisfies∑

i∈S(k)

Mk,k+1(i, j)(t) ≥ ϵ > 0,

for all neurons j in layer k + 1 and all sufficiently large t.

Then, there exists η = η(µ, ϵ,Lipschitz constants) > 0 such that at least an η proportion of neurons in layer
k + 1 achieve high fitness (survival).

Proof sketch. Positive lower bounds on coupling imply sustained energy inflow to downstream neurons. Via
the Lipschitz continuity of the fitness function and the smoothness of the dynamics, survival of upstream
neurons forces a positive measure of downstream neurons to cross the survival threshold.

Technical details involve integrating the coupled system over suitable time windows and applying compact-
ness arguments.

A.4.4 Theorem: Global Convergent Specialization

Theorem A.4 (Global Convergent Specialization). If the total Darwinian flow energy EDarwin ≥ ϵ > 0 is
bounded away from zero and the fitness functions Φ(k)

i are sufficiently smooth and Lipschitz continuous, then
as t → ∞, the proportion of neurons with fitness below any fixed threshold tends to zero.

Proof sketch. Construct a suitable Lyapunov function based on the sum over neurons of a decreasing convex
function of their fitness values. The positive lower bound on Darwinian flow energy ensures the Lyapunov
function decreases over time, implying convergence to the set of neurons with high fitness. LaSalle’s invariance
principle excludes non-convergent oscillations.

A.5 Discrete-Time Approximation and Relation to SGD

Actual training proceeds in discrete time steps, typically iterations or epochs. The continuous-time NEDS
dynamics approximate the discrete SGD updates as follows:

• Discrete parameter update:
θt+1 = θt − ηt∇̂θL(Bt; θt),

where Bt is the mini-batch at step t.

• For small learning rate ηt, the discrete updates approximate the stochastic differential equation

dθt = −Ex[∇θL(x; θt)]dt+ √
ηtΣ(θt)dWt,

with Wt Brownian motion and Σ the noise covariance.

18



Under review as submission to TMLR

• Correspondingly, the neuron state differences

∆ψ(k)
i (t) := ψ

(k)
i (t+ 1) − ψ

(k)
i (t)

approximate d
dtψ

(k)
i (t).

• Therefore,

L(k)
i ≈

∑
t

∥∆ψ(k)
i (t)∥2, S(k)

i ≈ 1
δ

T−1∑
t=T−δ

∥∆ψ(k)
i (t)∥2

2, E(k)
i ≈

∑
t

I(k)
i (t).

Discrete estimation errors arise from step size, mini-batch noise, and finite sample effects.

A.6 Numerical Estimation of Key Quantities

A.6.1 Mean activation µ
(k)
i and mean gradient g(k)

i

Evaluate on a separate evaluation dataset Deval:

µ
(k)
i = 1

|Deval|
∑

x∈Deval

a
(k)
i (x), g

(k)
i = 1

|Deval|
∑

x∈Deval

∂L(x)
∂a

(k)
i

.

A.6.2 Variance Var[a(k)
i ]

Estimated as the unbiased sample variance over Deval.

A.6.3 Differential Entropy I(k)
i

Three common estimators:

1. Gaussian plug-in:

Îgauss = 1
2 log

(
2πeV̂ar[a(k)

i ]
)
.

Fast but biased if distribution is non-Gaussian.

2. Kernel density estimation (KDE): Estimate density p̂(z) via KDE and compute

Î = −
∫
p̂(z) log p̂(z)dz.

3. K-nearest neighbor (Kozachenko–Leonenko) estimator: Uses neighbor distances among sam-
ples for nonparametric entropy estimation.

A.6.4 Trajectory length L(k)
i and terminal stochasticity S(k)

i

Computed from saved parameter snapshots at each discrete step t:

∆ψ(k)
i (t) = ∥ψ(k)

i (t+ 1) − ψ
(k)
i (t)∥2,

then

L(k)
i =

∑
t

∆ψ(k)
i (t), S(k)

i = 1
δ

T−1∑
t=T−δ

(
∆ψ(k)

i (t)
)2
.
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A.7 Additional Experiments on Three-layer MLP-Net with MNIST

A.7.1 Dynamics Neuron Trajectory and Evolution Analysis.

Figure 6(a), top shows the PCA-projected trajectories of shallow-layer neurons across training. Survived
neurons (green) follow relatively long and directed paths, indicating sustained representational change. Their
motion exhibits fewer reversals than eliminated neurons (red), which instead display short and irregular tra-
jectories, often collapsing toward the origin. This contrast is reflected quantitatively in Figure 6(c), top,
where cumulative trajectory length grows steadily for survived neurons. The weight dynamics in Figure
6(d), top reinforce this pattern: survived neurons exhibit increasing L2 norms of incoming weights, whereas
eliminated neurons remain almost flat, suggesting a gradual withdrawal of representational capacity. Collec-
tively, these results indicate that even in the shallow layer, gradient descent implicitly differentiates between
neurons that maintain sustained alignment with the loss signal and those that do not.

In the middle layer (Figure 6(a), middle), the divergence becomes more pronounced. Survived neurons
trace longer and more coherent trajectories, while eliminated neurons remain short and close to the origin.
This is supported by Figure 6(c), middle, where the cumulative trajectory length of eliminated neurons
grows at a substantially lower rate than that of survived neurons, already showing a marked slowdown by
Epoch 2. Weight norms (Figure 6(d), middle) again show a separation, with growth for survived neurons
and almost stagnation for eliminated ones. Compared to the shallow layer, the selective bottleneck appears
stronger: neurons that fail to establish early alignment with the optimization signal are rapidly marginalized.
This suggests that middle-layer neurons, receiving both bottom-up and top-down gradients, undergo more
stringent selection toward functional specialization.

The deep layer presents a smaller sample size, but a similar trend is observable. As shown in Figure 6(a),
bottom, survived neurons follow more extended trajectories, while the eliminated neuron remains nearly
static. Correspondingly, trajectory length (Figure 6(c), bottom) and weight norm evolution (Figure 6(d),
bottom) both indicate continued adaptation for survived neurons but not for the eliminated one. Although
the limited number of neurons precludes strong statistical claims, the observed divergence suggests that
selection pressures persist even near the output. Importantly, this implies that architectural proximity to
the loss signal alone does not guarantee survival; functional alignment remains necessary.

Overall, Figure 6 highlights a consistent layer-wise pattern: shallow-layer neurons exhibit the earliest di-
vergence, middle-layer neurons experience intensified selection with clearer separation between survived and
eliminated groups, and deep-layer neurons—though fewer—still reflect selective retention. These results
support the view that neuron survival is not imposed externally but emerges from the training dynamics,
with selection pressures varying in strength across depth.

A.7.2 Static PCA and Activation Evolution

Figure 7 (top-left) presents the final-epoch PCA projection of first-layer neuron activations. Neurons cate-
gorized as survived occupy relatively dispersed regions, often farther from the origin, which correlates with
higher activation magnitude and greater variance. Eliminated neurons cluster near the origin, suggesting
low-output states with reduced contribution to the representational space. The majority of neurons fall into
the "other" category, exhibiting intermediate positions without clear clustering, reflecting heterogeneous or
drifting roles during training. The activation-norm trajectories (Figure 7, bottom-left) provide a temporal
view of this differentiation. Survived neurons increase their average norm across epochs, indicating sustained
engagement with learning signals. Eliminated neurons, in contrast, display a gradual decline toward low,
stable norms, consistent with functional silencing. The "other" group remains in an intermediate range,
suggesting partial adaptation without clear reinforcement or suppression.

In the middle layer (Figure 7, top-middle), the PCA projection reveals that eliminated neurons are shifted
toward the positive-PC1 periphery, while survived neurons occupy a broader and more heterogeneous region
spanning both central and peripheral zones. The activation trajectories (bottom-middle) sharpen this di-
vergence: survived neurons exhibit a sustained rise in activation norm, whereas eliminated neurons remain
suppressed with only marginal growth. Taken as a whole, these patterns suggest that selection-like dynam-
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Figure 6: Dynamics Neuron Trajectory and Evolution Analysis on MNIST.

ics manifest most clearly in intermediate layers, where neurons are actively sorted into amplifying versus
stagnant trajectories.

For the deep layer (Figure 7, top-right), the neuron count is small (only 2 survived and 1 eliminated), limiting
statistical strength. The survived units exhibit higher final activation norms (bottom-right), whereas the
eliminated unit declines toward a baseline. While this pattern resembles earlier layers, the small sample size
precludes strong generalization.

Overall, the combination of static PCA projections and dynamic activation curves provides complementary
evidence of neuron-level differentiation across depth. These results are consistent with the hypothesis that
overparameterized networks allocate representational capacity unevenly, with some neurons reinforced while
others become marginalized. However, the analyses are correlational and limited by dimensionality reduction
and sample imbalance, particularly in deeper layers.

A.8 Additional Experiments on ResNet-18 with CIFAR-10

A.8.1 Dynamics Neuron Trajectory and Evolution Analysis

The shallow layer dynamic PCA trajectories (Figure 8(a), top) show that neuron activations in early convolu-
tional layers—often assumed to encode low-level, generic features—already exhibit signs of representational
divergence. Survived neurons tend to follow more stable and moderately directed paths in the PCA manifold,
with reduced dispersion over training, suggesting a gradual consolidation toward more compact representa-
tional regions. In contrast, eliminated neurons display more irregular trajectories, with frequent directional
changes and less coherence, indicating comparatively unstable representational roles.

This difference is also reflected in the cumulative trajectory length evolution (Figure 8(c), top): survived
neurons maintain consistently higher cumulative movement compared to eliminated neurons, suggesting
greater adaptability and sustained representational change across epochs. While the absolute gap is modest,
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Figure 7: Static PCA and Activation Evolution on MNIST.

survived neurons display more continuous directional displacement, whereas eliminated neurons tend to
plateau earlier, consistent with a potential stagnation of their representational contribution.

From a structural perspective, the weight magnitude evolution (Figure 8(d), top) indicates that the convolu-
tional filters corresponding to survived neurons generally retain slightly higher L2 norms throughout training,
while those of eliminated neurons remain lower. This trend is consistent with the interpretation that neurons
contributing more strongly to gradient pathways receive relatively greater synaptic reinforcement, whereas
others undergo gradual attenuation. Collectively, these results suggest that even shallow layers are subject
to competitive dynamics, where only subsets of neurons demonstrating sustained utility remain functionally
active.

The middle layers serve as a transitional zone between low-level and high-level representations, and this role
is reflected in the diversity of neuron trajectory dynamics. As shown in the dynamic PCA projections (Figure
8(a), middle), neurons in these layers exhibit heterogeneous representational paths over training. Survived
neurons tend to follow longer and more coherent trajectories, often traversing distinct regions of the PCA
manifold, suggesting a gradual alignment with intermediate-level features. By contrast, many eliminated
neurons show less coherent movement, with shorter and more irregular trajectories, though some maintain
moderate displacement comparable to the "other" group.

The cumulative trajectory length curves (Figure 8(c), middle) provide quantitative support for these obser-
vations: on average, survived neurons reach greater cumulative lengths than eliminated or other neurons,
reflecting more sustained representational plasticity. Eliminated neurons continue to grow but at a slower
rate, with later signs of stagnation. A similar pattern is visible in the weight magnitude evolution (Figure
8(d), middle), where survived neurons exhibit slightly higher L2 norms than eliminated neurons. Although
the difference is modest, its persistence across epochs indicates that neurons contributing more to the task
tend to retain larger weight magnitudes. As a whole, these results suggest that the middle layers serve
as a representational bottleneck where neurons undergo implicit selection, retaining those with flexible and
task-relevant transformations.

In the deep layer, the contrast between neuron groups becomes more pronounced. As illustrated by the
dynamic PCA trajectories (Figure 8(a), bottom), survived neurons follow long, smooth, and more aligned
paths through representation space, frequently converging to structured low-dimensional subspaces. These
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neurons appear to encode abstract, class-discriminative information that supports final classification. In con-
trast, eliminated neurons reveal short, noisy, and non-convergent trajectories, often stagnating or oscillating
without clear direction, suggesting limited long-term utility.

This distinction is also evident in the trajectory length evolution (Figure 8(c), bottom), where survived
neurons maintain the highest cumulative distances relative to eliminated neurons. These lengths reflect
sustained representational change that tracks increasing class separability. Moreover, the variance among
survived neurons is smaller, suggesting more constrained roles in the deep layer. The weight magnitude
evolution (Figure 8(d), bottom) further highlights this separation: survived neurons retain high L2 norms,
while eliminated neurons undergo progressive attenuation. The resulting divergence is strongest in this layer,
consistent with stronger selective pressure as representations become more task-specific.

Overall, these findings are consistent with the framework of Neural Darwinism: across layers, neurons exhibit
competitive dynamics shaped by their sustained utility. While shallow layers already show signs of divergence,
the middle layers intensify selective processes, and the deep layers consolidate highly specialized neurons.
The evidence from trajectory dynamics and weight evolution collectively supports the interpretation that
representational selection operates hierarchically, shaping survival and elimination throughout the network.

Figure 8: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-10.

A.8.2 Static PCA and Activation Evolution

In Figure 9 left and bottom-left, the PCA projection (97.8% variance explained by PC1) shows that survived
neurons occupy a relatively more compact region of the activation space, while eliminated neurons are
scattered toward peripheral, low-density zones. Other neurons form a diffuse cloud spanning both regions.
The activation evolution curves corroborate this structure: survived neurons sustain moderately higher
activation norms with gradual stabilization, whereas eliminated neurons display persistently weak activations,
and others remain intermediate. These patterns suggest that even at early layers—traditionally considered
low-level feature extractors—there is already a degree of representational competition, consistent with the
Neural Darwinism view that selection pressure operates from the outset of learning.
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In Figure 9 middle and bottom-middle, the PCA embedding (94.2% variance explained by PC1) reveals a
clearer differentiation than in shallow layers. Survived neurons cluster more tightly along dominant axes,
while eliminated neurons are dispersed across orthogonal or low-density subspaces. Other neurons span an
intermediate gradient, partially overlapping both groups. The activation dynamics mirror this structure:
survived neurons maintain higher, stable activations, eliminated neurons steadily decline. These findings are
consistent with the hypothesis that middle layers face stronger selective pressure, as they form an intermediate
representational bottleneck where neurons must converge toward task-relevant manifolds to persist.

In Figure 9 right and bottom-right, in the final layer (97.2% variance explained by PC1), survived neurons
are broadly distributed along the dominant axis but relatively compact along PC2, indicating alignment to a
high-variance representational subspace. Eliminated neurons are concentrated in the lower-PC1 region, while
others populate an intermediate zone overlapping both groups. The activation evolution curves reinforce
this separation: survived neurons sustain the highest activation norms with relative stability, eliminated
neurons remain consistently suppressed, and others occupy intermediate levels. Therefore, the static and
dynamic views suggest that deep layers culminate the Darwinian competition, consolidating a high-utility
representational manifold surrounded by marginal units.

Figure 9: Static PCA and Activation Evolution on CIFAR-10.
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