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Abstract

Most work in online reinforcement learning (RL) tunes hyperparameters in an1

offline phase without accounting for the interaction. This empirical methodology2

is reasonable to assess how well algorithms can perform, but is limited when3

evaluating algorithms for practical deployment in the real world. In many applica-4

tions, the environment is not compatible with exhaustive hyperparameter searches,5

and typical evaluations do not characterize how much data is required for such6

searches. In this work, we explore online tuning, where the agent must select7

hyperparameters during online interaction. Hyperparameter tuning is part of the8

agent rather than done in a separate (hidden) tuning phase. We layer sequential9

Bayesian optimization on standard RL algorithms and assess behavior when tuning10

hyperparameters online. We show the expected result - this strategy’s success11

depends on the environment and algorithm. In an attempt to address this issue, we12

introduce a "naive" smart way of tuning online, which mitigates wasteful reset-13

ting and shows that it can achieve comparable results, highlighting the benefits of14

smarter online tuning approaches.15

1 Introduction16

In this paper we consider the online reinforcement learning (RL) setting. The agent does not have17

access to a simulator, so it cannot learn in parallel on multiple copies of the environment nor reset18

arbitrarily. Further, as this is online RL, we evaluate the accumulated reward from the beginning19

of learning, preferring agents that learn quickly and start performing well early, as opposed to only20

caring about producing an optimal policy at the end of training. The online RL setting reflects many21

real-world deployment scenarios, such as recommendation systems or process control (Luo et al.,22

2022; Janjua et al., 2023; Lawrence et al., 2024).23

One of the largest barriers to deploying online RL in the real world is dealing with hyperparameters.24

Most RL algorithms have a variety of hyperparameters, including stepsizes, target network refresh rate,25

and exploration parameters, to name a few. How should a practitioner select these hyperparameters?26

One option is to use the defaults from publicly available packages. But, there is absolutely no27

guarantee that these hyperparameters will perform well for the practitioner’s problem. Those default28

hyperparameters were likely tuned for a popular RL benchmark, like Mujoco (Todorov et al., 2012) or29

Atari (Bellemare et al., 2013), which may not look anything like the practitioner problem. Radically30

different hyperparameters are required for different benchmark problems (Patterson et al., 2023).31

Ideally, the practitioner would tune the hyperparameters to their problem, but in general, this is not32

possible or at least very time-consuming. Consider tuning the stepsize for an RL agent controlling the33

flow rate for cleaning a filter in a water treatment plant. Testing different stepsizes requires restarting34

the RL agent’s learning for each stepsize and letting it run for potentially multiple days for each35

value. During that time, the RL agent may encounter stepsize value that is not performing that well,36
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thus doing a poor job of cleaning the filter - or even worse, may damage the equipment. Further, the37

practitioner may need to constantly babysit this agent, monitoring what it is doing and deciding when38

to stop or what hyperparameter to test next.39

A natural conclusion is that hyperparameter tuning should be part of the agent, essentially automating40

what a practitioner might do. Even better is if the RL agent can be more sample efficient so that the41

agent can start controlling the system effectively right away, receiving as much reward as possible.42

Though an obvious idea, online tuning is currently not the standard practice - we do not design agents43

for this setting. Instead, most work tunes the hyperparameters in a separate non-observable phase; this44

phase is not reported nor accounted for in performance curves. Such hidden tuning is an acceptable45

empirical practice if the goal is to understand how well our algorithms can perform in a near best-case46

scenario.47

There are, however, several inadvertent consequences of this hidden tuning in the online setting.48

The main issue is that hidden tuning allows the researcher to avoid developing algorithms that are49

easy to deploy - it can even encourage using hyperparameters because adding more hyperparameters50

improves performance at no cost. However, these algorithms with more hyperparameters become51

even more difficult to use online. Further, hidden tuning obscures the fact that simpler algorithms52

may perform better than these methods with more hyperparameters when we take into account the53

true cost in terms of rewards lost during tuning. Hidden tuning obscures how much data is needed to54

get high performance with the new algorithms, making it hard to use results from the literature to55

decide which algorithms may be effective in real-world problems. Standard empirical results end up56

being less pertinent to a practitioner.57

In online tuning, all interactions count, and agents are evaluated based on how quickly they begin to58

perform well without a separate hidden tuning phase. An agent could perform better quicker than59

another agent for a variety of reasons. One agent may have fewer hyperparameters to tune and can60

settle on a performant setting of those hyperparameters faster. If an agent has no hyperparameters,61

even better! It can focus exclusively on learning right away. An agent might have less sensitivity62

to its hyperparameters, making identifying a reasonable setting easier. Related to this, the agent63

might leverage meta-learning strategies, relying on meta-hyperparameters that could be easier to tune64

(Sutton, 1992; White & White, 2016; Xu et al., 2018). An algorithm might reuse prior data, like one65

gathered under different hyperparameter configurations, to better infer what hyperparameters to try66

next. Moving to the online tuning setting opens up many avenues for algorithm development.67

In this work, we investigate online tuning in reinforcement learning. We start by motivating the use68

of standard Bayesian optimization to easily convert any RL algorithm with hyperparameters into69

one that tunes its own hyperparameters online. Though this naive layering is clearly a suboptimal70

approach, it provides a default strategy to test algorithms in this new setting. This approach is critical71

to facilitate new algorithm development for this online setting by enabling comparisons to previous72

algorithms in a budgeted way. We show the behavior of Soft Actor-critic (SAC) (Haarnoja et al.,73

2018) and Proximal Policy Optimization (PPO) (Schulman et al., 2017) in several classic control74

and Mujoco environments. We find that given small enough ranges and hyperparameter trials, SAC75

can start performing as good as or sometimes better than the performance we get when using the76

default hyperparameters, while PPO struggles to find a good set of hyperparameter values within the77

same budget, suggesting that more hyperparameters make it harder to find a performant solution. We78

then provide a "smarter" way to do online tuning that avoids resetting and reuses prior data from the79

sequential search. The approach is simple but is a first step towards designing for the online tuning80

setting. With this approach, we find that with SAC, one can achieve the same performance levels81

as the ones tuned offline. Even though they get similar performances, these results open up a new82

avenue of algorithms that will make this tuning approach more sample-efficient and performant than83

the one we propose here.84

2 Related Work85

One of the biggest challenges to tuning hyperparameters in RL is the inherent non-stationarity. Eimer86

et al. (2022) shows that hyperparameters are highly environment-dependent and seed dependent87

(Eimer et al., 2023) and changing the values of hyperparameters can have a significant impact on the88

performance (Obando-Ceron et al., 2023). A lot of work has been done to address the hyperparameter89

optimization (HPO) issues in RL. Most of the techniques are designed and used by the Automated90
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Reinforcement Learning (AutoRL) community, which looks into how to automate expensive and91

potentially even error-prone choices of RL algorithms without human intervention (Parker-Holder92

et al., 2022). AutoRL is the contributor of many packages (Lindauer et al., 2021) on sequential tuning93

with Bayesian optimization, as introduced by Snoek et al. (2012). There is a line of work showing94

the benefits of using BO as a sequential hyperparameter tuner. It can be robust to noise (Hertel et al.,95

2020) and can be combined with artificial neural networks (Springenberg et al., 2016) to scale to high96

dimensions and many function evaluations. BO approaches are sequential: they use a single numeric97

score (Nguyen et al., 2020; Klein et al., 2017) to approximate the underlying function or follow some98

termination criterion (Makarova et al., 2021) to stop the tuning at some point.99

Another set of HPO methods is population-based evolutionary approaches, namely Population-based100

Training (PBT) algorithms (Jaderberg et al., 2017; Parker-Holder et al., 2020, 2021; Wan et al.,101

2022). They parallelize the computation of hyperparameters by running different configurations102

simultaneously for some interval, rank the agents according to their performances, and replace the103

worst ones with copies of the best ones with perturbed hyperparameters. After some time, these104

methods converge to a set of good hyperparameter configurations. Faster variations of the PBT105

method (Li et al., 2018; Falkner et al., 2018), treat HPO as a random search, and use early stopping to106

allocate resources to try more hyperparameters. Others use probabilistic models to guide the search107

(Parker-Holder et al., 2020), while in Franke et al. (2020) they share the collected experience replay108

data between the population leading to sample efficient tuning.109

Other works explore the idea of using offline interactions to tune the hyperparameters online (Letham110

& Bakshy). Here they use offline data and BO to tune live systems. Other works keep a model of the111

environment learned from offline or online data to tune the agent (Wang et al., 2022; Zhang et al.,112

2021) or use data seen so far to efficiently tune the hyperparameters (Paul et al., 2019). A promising113

avenue of HPO methods are the meta-learning approaches (Zahavy et al., 2021) that tune a subset of114

their hyperparameters while learning in the environment.115

3 Problem Formulation116

We consider a standard online learning setting, where the agent is evaluated as it learns in the117

environment. The agent interacts with the environment, seeing observation ot ∈ O, taking actions118

at ∈ A, seeing new observation ot+1 ∈ O, and receiving reward rt+1. It has a total budget of119

interaction T (global step count), generating a trajectory τ of interaction over this lifetime, and is120

evaluated based on some performance measure g(τ) over the entire lifetime. For the continuing121

setting, a typical measure of performance is the average reward g(τ) = 1
T

∑T
t=1 rt. In the episodic122

setting, a typical measure of performance is the average return per step. Namely, if at time step123

t, the agent is currently in episode i with (discounted) return Returni for that episode, then we set124

gt = Returni and obtain performance g(τ) = 1
T

∑T
t=1 gt.125

Figure 1: Contrasting the typical hidden tuning setting (left) versus the proposed online tuning setting
(right). The online tuning setting requires that tuning is a part of the agent, as it must tune the
hyperparameters online, during interaction. Hidden tuning layers optimize the hyperparameteers
outside of the agent-environment interaction, allowing a separate search to be performed.
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The additional nuance for the online-tuning setting is that the hyperparameter tuning phase is explicitly126

part of the overall agent interaction with the environment. We are not allowed to use any additional127

interaction with the environment. We depict the difference between online and hidden tuning in128

Fig. 1. This online-tuning setting (intentionally) blurs the line between tuning and learning. Once129

tuning is part of the learning phase, it can naturally be considered part of the agent. The ultimate goal130

of this problem setting is to encourage the development of hyperparameter-free agents, or ones that131

can quickly learn and adapt their hyperparameters.132

As yet, though, we do not have such hyperparameter-free algorithms. In the interim, our algorithms133

have hyperparameters, and often many of them. To start investigating the online-tuning phase, we134

need generic online hyperparameter tuning approaches that can be layered on existing algorithms.135

This allows us to both assess the state-of-the-field and understand just how sensitive our algorithms136

are for online tuning, while also providing a baseline approach for smarter online-tuning algorithms.137

The goal of this paper is to provide such a simple generic approach and begin to assess the state of138

the field.139

We assume that the algorithm has a set of hyperparameters H and that it picks an h ∈ H during140

interaction, like the stepsize, to do updates. Assume we run the agent with hyperparameters h ∈ H141

and let G(h)
.
= g(τ) be a stochastic sample of the performance of that hyperparameter, which142

is random because the trajectory generated by one lifetime of interaction is stochastic due to the143

environment or the agent, or both. This online tuning can be done in many ways; the remainder of144

this paper outlines basic, generic approaches that can be layered on top of many RL algorithms.145

4 Tuning Hyperparameters Online146

In this section, we outline first how to use standard Bayesian optimization approaches, often used for147

hyperparameter optimization approaches, in the online tuning setting.148

4.1 Sequential BO for Online Tuning with Resetting149

The key question for applying BO to the online tuning setting is how much interaction do we use for150

tuning. When searching for hyperparameters in hidden tuning, this trade-off does not arise, because151

all online interaction is done with the hyperparameter found during the hidden tuning. But, in the152

online setting, the agent or agent designer has to select (a) how long each hyperparameter is tested153

before resetting the agent and testing a new hyperparameter and (b) the maximum percentage of the154

lifetime that can be used to test different hyperparameters. BO can stop earlier than this maximum155

time with smart early stopping approaches, though, for simplicity, we use a fixed length of time. We156

summarize this generic approach, BO for Online Tuning with Resetting, in Algorithm 2.157

Algorithm 1 BO Agent for Online Tuning with Resetting
Input: RL Algorithm Alg, hyperparameter set H, number evaluation steps M , max tuning
iterations
Initialize Bayesian Optimizer (e.g., using package like Optuna), max-perf = −∞, best-h = None
for i = 1 to max tuning iterations do

Get next h ∈ H from Bayesian Optimizer
Run Alg with h for M steps to get performance G, send G to Bayesian Optimizer
If max-perf < G, then set best-h = h and max-perf = G
Reset Alg (reinitialize weights, clear buffer, etc.)

end for
Run Alg with best-h for the remaining steps

Let us consider an example. An agent will be deployed for 3 million steps, and has 5 hyperparameters158

to tune. The agent designer specifies the ranges for these hyperparameters and decides to test each159

setting for 200k steps for 2 million steps. This allows for 10 hyperparameter settings to be tested,160

which is unlikely to find the optimal choice when there are 5 hyperparameters to set. Doing a grid161

search on a cross-product of even 2 choices per hyperparameter would already take testing 25 = 32162

hyperparameter settings. But, with correlations between hyperparameters, the agent designer can163

hope testing 10 hyperparameter settings will be enough to find reasonable hyperparameters.164
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We visualize such an experiment in Figure 2, showing how much learning time is spent testing165

hyperparameters the agent. We also visualize the sequence of stepsizes tested in each run. It is worth166

noting how much the chosen stepsize can vary between runs. Unlike hidden tuning, there is not one167

stepsize chosen; rather, each run may have a unique stepsize. Details for this experiment are given in168

Section 5.169

Figure 2: SAC in HalfCheetah using default hyperparameters versus online tuning of the stepsize
using BO with resetting, with mean performance over 20 independent runs. The leftmost figure
depicts the average performance of the SAC agent with the default hyperparameters provided in the
literature. The middle one is an example of our proposed online tuning strategy, where we have 3M
steps as a provided budget. We stop tuning the hyperparameters after the 2M mark (the dotted line)
and use the last million steps to evaluate the best hyperparameter configuration found. The last plot
shows the stepsizes chosen by the optimizer in the first 2M steps for each of the individual runs of the
second plot. The dark line shows the chosen values for one seed and the yellow star points to the best
stepsize picked. The shaded area is a 95% bootstrapped confidence interval.

4.2 Sequential BO for Online Tuning without Resetting170

From the above figure, it is clear how much data is wasted when doing a hyperparameter search. In171

the online setting, such data inefficiency is not acceptable - we want the agent to continually improve172

by adapting its hyperparameters. In this section, we provide a basic strategy using the same BO173

approaches but now without resetting. The approach is simple, and absolutely not optimal, but we174

hope for it to provide a starting point going forward in the online setting.175

The idea is simple: the agent is not reset after each hyperparameter setting and continues to learn176

with the given weights and buffer. In the pseudocode above, this would involve removing the line that177

resets the agent while also removing the maximum number of tuning iterations. Instead, because the178

agent is learning, without resetting, the hyperparameters can also be continually adapted, hopefully179

being continually improved.180

However, there is an important issue with this naive extension: some hyperparameters may result in181

poor performance. By allowing BO to test potentially speculative hyperparameters, it is even likely182

that at some point the weights will become bad. It may be difficult to learn continuing from these bad183

weights for a new hyperparameter setting, both preventing the agent from further improvement and184

also not providing a fair assessment of the new hyperparameter setting.185

The small modification involves reverting back to the previous weights if the new hyperparameter186

setting causes a drop in performance. On the first step, the agent selects hyperparameters and runs for187

M steps, getting back a performance estimate. If this performance is below an acceptable threshold188

for the problem, the agent reinitializes the weights and the buffer. Otherwise, it continues from189

these weights and buffer and selects a new hyperparameter setting. If, after running again for M190

steps, the agent obtains a performance estimate lower than the previous one by some threshold (e.g.,191

10% worse), then it reverts back to those previous weights and buffer. The role of the threshold is192

to avoid resetting simply due to some stochasticity. Further, in early learning, it is unlikely for the193

performance of a reasonable hyperparameter setting to be worse than the previous one as it gets to194

learn starting from a better initial point (policy, buffer, weights). This modification is not perfectly195

robust to resetting the agent’s state back to a set of weights and buffers that make learning hard. But,196

again, our goal here is not to provide an optimal algorithm, but a simple default to facilitate future197

development of smarter algorithms for this online tuning setting.198
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Algorithm 2 BO Agent for Online Tuning without Resetting
Input: RL Algorithm Alg, hyperparameter set H, number evaluation steps M
Initialize Bayesian Optimizer, RL internal state B, max-perf = −∞
while Interacting with the environment do

Get next h ∈ H from Bayesian Optimizer
Run Alg starting from B with h for M steps to get performance G and new RL internal state B′
Send G to Bayesian Optimizer
If G > 0.9 ∗ max-perf then set B = B′, max-perf = G

end while

5 Experiments using Bayesian Optimization with Resets199

In this section, we evaluate BO for online tuning with resetting in five Mujoco environments, for200

SAC and PPO. We use the package Optuna (Akiba et al., 2019) to do sequential BO. As we are in201

the online setting, PPO is not run with parallel copies of the environment; it is run single-stream, by202

interacting with just one environment. We give an overall budget of 3 million online steps, M = 200k203

evaluation steps for each hyperparameter setting and use two different stopping conditions: after 1204

million steps, and after 2 million steps. In other words, in the first setting, the agent is able to test 5205

hyperparameter settings and in the second it tests 10. We also compare to an agent using the default206

hyperparameter settings.207

We additionally consider the effect of the number of hyperparameters that are tuned. For SAC, we208

test two scenarios: tuning only the stepsize (one hyperparameter) and tuning five hyperparameters.209

When tuning only the stepsize, we leave the remaining hyperparameters at the SAC defaults. PPO on210

the other hand has 7 hyperparameters to tune. For details on the hyperparameter ranges and additional211

experiment details, including agent and Optuna details, see the Appendix A.212

Figure 3: SAC in HalfCheetah and Walker2D using two different stopping conditions while tuning
one or many hyperparameters. In all the plots, each agent had an overall 3 million steps budget,
and each hyperparameter had a 200K evaluation period. The gray dotted line depicts the timestep
when the agent stops testing different hyperparameters and deploys best configuration found. The
blue line corresponds to the agents that had to tune one hyperparameter, while the red line shows the
performance of agents with many hyperparameters. Note that SAC with default hyperparameters
reaches a scores of approximately 2000 and 800 in HalfCheetah and Walker2D respectively.

We first examine the effect of tuning one hyperparameter versus many for SAC on two environments,213

shown in Fig. 3. We selected these two from our five Mujoco environments to highlight a case where214

tuning more hyperparameters was slightly better and a case where it was notably worse. In some215

cases, the flexibility to tune more hyperparameters can improve performance because the agent is not216

stuck at the defaults; however, this tuning has to be feasible within the allocated time online. If the217

agent needs to test many hyperparameter settings to find a good one, then the increased flexibility218

can be harmful. We see in HalfCheetah that there is a slight performance improvement even when219

tuning for 1 million steps, and this effect is even larger when tuning for 2 million steps. The further220

improvement makes sense, given the agent can test 2x as many configurations, getting even more221

performance gains. In Walker2D, on the other hand, the increased flexibility is clearly detrimental.222

Next we investigate the performance of both PPO and SAC, in all five Mujoco environments. The223

results are qualitatively similar for stopping at 1 million and 2 million steps, so we include only 1224

million in the main body in Fig. 4 and the result for stopping at 2 million steps in the appendix, in225

Fig. 7. It is apparent that it is generally more difficult to tune the hyperparameters for PPO online,226
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and it often performs substantially worse than SAC. When only tuning the stepsize, the performance227

is more comparable to SAC, but when we tune seven hyperparameters, PPO’s performance drops228

significantly. SAC appears to be less sensitive to its hyperparameters than PPO, and this online tuning229

regime makes this advantage apparent. Hidden tuning, on the other hand, might mask this difference230

and potentially even give preference to PPO which exposes more hyperparameters to tune during a231

hidden tuning phase.232

Figure 4: SAC (red) and PPO (blue) algorithms in a variety of Mujoco environments. In the
first column, we have the performance of the algorithms with the default hyperparameters. The
second and third columns show the algorithms’ performances within the 3 million budget, where
we stop hyperparameter optimization after 1M steps with the difference of tuning one and many
hyperparameters. The dotted line depicts the timestep that the agent started evaluation of the best
hyperparameters it has seen.

6 Experiments using Bayesian Optimization without Resets233

We now test the behavior of the BO algorithm that does not reset the agent’s state. We hypothesize234

that avoiding resetting should allow the agent to obtain comparable or better performance overall.235

Our goal is to understand the benefits of starting to tailor algorithms for the online tuning setting,236

moving from the naive application of BO to one more specifically designed for the online setting. We237

use the same environments and experimental details as in the previous section.238

We first examine the difference in the performance of agents that use BO with resetting (Algorithm 1)239

and BO without resetting (Algorithm 2), which carefully considers the weights and buffer to use for240
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the next hyperparameter configuration in the Fig. 5. We also include a naive variant of BO without241

resetting, which simply shares all the data from hyperparameter configuration to configuration. This242

naive variant essentially corresponds to Algorithm 1, but by removing the resetting line and tuning243

continually (not using the max tuning iterations). We can see that BO without resetting significantly244

outperforms BO with resetting, steadily improving with time because it is not constantly reset.245

However, this algorithm does need to recognize if a hyperparameter choice has led to poor weights to246

continue from an early set of weights. We can see the naive variant fails at 500k steps and does not247

recover.248

Figure 5: SAC in HalfCheetah with three different online tuning strategies: BO with resetting
(Algorithm 1), a naive variant of BO without resetting, and BO without resetting (Algorithm 2). The
shaded area is a 95% bootstrapped confidence interval over 20 different run.

Figure 6: Box plots of the total AUC for the 3M evaluation budget for SAC tuning 5 hyperparameters
in four different settings for all the Mujoco environments shwoing the results for resetting with 1M
and 2M stopping conditions (first 2 box plots) and the smart sharing of the agent’s state of each
hyperparameter configuration.

We next present SAC’s performance for all five Mujoco environments in Fig. 6. For this plot, we show249

the total area under the curve (AUC) over 3 million steps for BO with resetting when stopping after250

1 million steps and after 2 million steps, and BO without resetting. To make the AUC comparable251

across the environments, we normalize all the AUCs between 0 and 1.252

Figure 6 shows that using the "smart" tuning proposed above gets comparable overall performance as253

both resetting evaluation settings we tried in section 5 in all environments for 3M steps tried. The254

box plots for the final performance of all three agents are presented in Fig. 10. Overall, SAC agents255

that don’t reset with even the most naive augmentation on top increase their performance as they256

live on and can perform comparably to the performance of the default hyperparameters. However,257

PPO, as presented in the Fig. 9 in the appendix, doesn’t take advantage of this sharing mechanism,258

leading to comparable performances for both sharing and naive-sharing cases. This is an interesting259

phenomenon worth further investigation.260
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7 Conclusions and future work261

In this paper, we introduce a novel evaluation paradigm that eliminates the hidden hyperparameter262

tuning phase typically used in reinforcement learning. Instead, we tune the agent’s hyperparameters263

online within a given budget, dynamically adjusting them as the process unfolds. We use Bayesian264

Optimization as a meta-learner to provide the RL algorithm with hyperparameter configurations to try265

out sequentially. We found that, even with periodic resets, our approach achieves results comparable266

to the default settings in multiple Mujoco environments. However, our results also show that267

hyperparameters depend on the environment, the ranges we define, the number of hyperparameters,268

and the trial counts, thus, algorithms with more hyperparameters to tune, like PPO, struggled in this269

paradigm. Lastly, we propose a basic methodology for not resetting, which achieves performance270

levels similar to resetting approaches, marking a step towards effective data utilization in scenarios271

where learning is done in a single lifetime.272

Even though we showcase that the proposed online paradigm is a great starting point, this is still the273

beginning of using hyperparameter tuning as part of online evaluation. The non-resetting approach274

we propose does not perform better than the resetting ones, opening up an avenue to try and make275

better algorithms that will outperform the current approach. Addiitonally, the Bayesian Optimization276

algorithms are not designed for non-stationary cases, and as we add more non-stationarity by sharing277

the weights and buffer, this raises the need to develop sequential decision-making algorithms that278

account for the changes in the state. With this methodology, we also want to contribute to fairness in279

evaluation, and using budgets as a reporting mechanism should be a step towards better empirical280

practices.281
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A Design choices and hyperparameters used in the experiments370

All the hyperparameter ranges and values for all algorithms in all environments can be seen in table371

1. In this paper, we consider 3 different RL algorithms - SAC, PPO, and DDQN. SAC is used372

with continuous action spaces, but we extended it to work with discrete action spaces using the373

modifications proposed in Zhou et al. (2023). All the hyperparameter ranges listed below are chosen374

according to the standard values used in hyperparameter sweeping, like not too big of a stepsize or375

small discount factor γ. We applied log-uniform scaling to γ and stepsize values for the tuner to376

prefer values at the edges of the given ranges more.377

We tune only a subset of all the hyperparameters as we separate algorithm-specific and compute-378

specific hyperparameters. We let the buffer size or the network architecture stay the same as this379

hyperparameter usually depends on the budget of the experimenter, which in turn makes the no-380

resetting pipeline easier to handle. Meanwhile, depending on the environment, the algorithm-specific381

values may change - like the amount of gradient clipping in PPO - so we tune the ones the experimenter382

may not have enough intuition about.383

Table 1: Hyperparameter values and ranges for SAC, PPO and DDQN.

Parameter Value Ranges

Shared
optimizer Adam (Kingma & Ba, 2014)
nonlinearity ReLU
stepsize 1e− 2/ 3 · 10−4 log([1e− 6, 0.1])
discount (γ) 0.99 log([0.9, 1])
number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 64

SAC
target smoothing coefficient (τ ) 0.005 [1e− 4, 0.1]
target update interval 1
update frequency 1
reward scale 1 / 5 [1, 20]
entropy coefficient 0.2 [1e− 4, 0.3]
replay buffer size 106 / 103

start updates 500 / 103

normalize observations False
normalize rewards False

PPO
nonlinearity Tanh
GAE λ 0.8 / 0.95 [0.7, 1]
PPO clip ϵ 0.1 / 0.2 [0.1, 0.8]
value loss coefficient 0.5 [0.1, 1]
entropy coefficient 0.0 [0.0, 0.5]
gradient clip 0.5 [0.1, 1]
update epochs 4
rollout steps 256 / 2048
normalize observations True
normalize rewards True

DDQN
target smoothing coefficient (τ ) 0.005 [1e− 4, 0.1]
epsilon 0.05 [1e-4, 0.3]
update frequency 4
replay buffer size 103

start updates 500
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A.1 Details on the search methods384

As a Bayesian optimizer, we chose Optuna as our main algorithm to try with different settings. We385

use the TPESampler with Hyperband Pruner to select the hyperparameters on each trial. We use386

these as they work with all types of hyperparameters - integers, floats, and categorical variables and387

the Hyperband pruner helps in more efficiently exploring the hyperparameter space by allocating388

resources dynamically to promising trials and stopping less promising trials early in the optimization389

process. The objective of the Bayesian optimizer is to maximize the overall performance of the agent,390

thus, we give it input the total AUC of the agent’s performance using the proposed hyperparameter391

configuration after running it for one trial. We let Optuna do no warmup trials - it starts with a random392

value in that given range and then starts the optimization process.393

B Results with resetting394

Figure 7: SAC (red) and PPO (blue) algorithms in a variety of Mujoco environments. In the first
column, we have the performance of the algorithms with default hyperparameters. The second and
third columns show the algorithms’ performances within the 3 million budget, where we stop hyper-
parameter optimization after 1M steps with the difference of tuning one and many hyperparameters.
The last two columns are the performance of the algorithms when we stop at 2M steps, letting it try
10 hyperparameter configurations instead of 5 as in the 1M stopping condition case. The dotted line
depicts the timestep that the agent started evaluation of the best hyperparameters it has seen. The
shaded area is a 95% bootstrapped confidence interval over 20 different runs.
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C Results without restting395

In this section, we present the plots for SAC and PPO algorithms in the smart sharing paradigm we396

introduced in the main paper. In Fig. 8, we show the results of the SAC agent to evaluate while tuning397

its hyperparameters at the same time, without resetting, for 5M global steps. As we can see from398

the plot, in almost all cases, the agent gets to good performance after 3M steps but keeps slowly399

increasing its performance. It is not comparable with the performance that one gets from the default400

hyperparameters, but after 5M steps, it gets to the same level of performance.401

Figure 8: Smart sharing results for the SAC algorithm in a variety of Mujoco environments. In the
red line, we show the performance of smart sharing agents for a 5M online interaction budget, while
the blue line is the performance of the naive sharing agents for the same budget. The plots in the first
row correspond to the setting where we only tune the stepsize, and the second row when we tune all
5 hyperparameters.

Even though smart sharing helps to make SAC perform better over time, the same results are not402

visible in PPO. Interestingly, in PPO, it seems like naive and smart sharing behave similarly. This can403

be the result of having a clipped surrogate objective that doesn’t let the parameters drift too far away404

from each other - even when we change the hyperparameters, the results are the same. But only in405

the Reacher environment, do we see a difference between the two approaches. If we look closely, the406

performance of the smart and the resetting with both one and many hyperparameters are similar in407

some environments, the only difference is that these agents don’t oscillate as much as in the resetting408

case. This once again proves that we can achieve the performance of default hyperparameters if409

we design better algorithms than this "naive" smart approach and that PPO may have a harder time410

tuning its many hyperparameters.411

Figure 9: Smart sharing results for the PPO algorithm in a variety of Mujoco environments. In the
red line, we show the performance of smart sharing agents for a 5M online interaction budget, while
the blue line is the performance of the naive sharing agents for the same budget. The plots in the first
row correspond to the setting where we only tune the stepsize, and the second row when we tune all 7
hyperparameters.
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D Total AUC and final performance results for SAC and PPO412

Here, we show the total AUC for SAC and PPO and their final performances in Mujoco environments.413

In all plots, we evaluate for 3M steps tuning 5 hyperparameters in SAC and 7 in PPO. The first 2 box414

plots are the performances for stopping at 1M (light pink) and 2M (blue) steps. The last (bright pink)415

boxplot is where we share the agent’s state while considering the performance of the previous agent.416

Figure 10: Box plots of the total AUC of the PPO algorithm for the 3M evaluation budget tuning 7
hyperparameters in three different settings for all the Mujoco environments.

Figure 11: Box plots of the final performances of the SAC (top) and PPO (bottom) algorithms for the
3M evaluation budget tuning 5 and 7 hyperparameters respectively in three different settings for all
the Mujoco environments testbeds.
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