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Abstract001

Dialogue State Tracking (DST) is essential for002
task-oriented dialogue systems to track user003
goals, but zero-shot adaptation to unseen do-004
mains poses significant challenges. This pa-005
per proposes an innovative approach to en-006
hance small LLMs for zero-shot cross-domain007
DST using reinforcement learning (RL) with008
verifiable rewards. We introduce two novel009
techniques: a Dynamic Difficulty Sampling010
Pipeline, which adaptively selects training ex-011
amples to optimize learning efficiency, and012
a Difficulty-Weighted Fuzzy Match Reward013
Function, which provides granular feedback014
to address sparse rewards and prioritize dif-015
ficult slots. Employing the Group Relative016
Policy Optimization (GRPO) algorithm, our017
method boosts the reasoning capabilities of018
small LLMs, enabling robust generalization019
to new domains without further training. Ex-020
periments on MultiWOZ 2.1 and 2.4 show021
our approach achieves state-of-the-art perfor-022
mance among small models and rivals larger023
ones, while being computationally efficient.024
This work demonstrates the effect of RL-based025
post-training for compact LLMs, paving the026
way for scalable, resource-efficient dialogue027
systems. Our code and model is available028
at (https://anonymous.4open.science/r/DSTRL-029
769B).030

1 Introduction031

Dialogue State Tracking (DST) is the process of032

maintaining a structured representation of user033

goals, often as slot-value pairs, to support effec-034

tive dialogue management (Budzianowski et al.,035

2018). This paper investigates the application036

of reinforcement learning (RL) with verifiable re-037

wards (Shao et al., 2024) to small large language038

models (LLMs) specifically for zero-shot cross-039

domain DST (Williams et al., 2016), enabling the040

handling of unseen domains without additional041

training. By leveraging RL, we aim to enhance042

the reasoning capabilities of small LLMs, improv- 043

ing their ability to interpret and track user goals 044

throughout a dialogue. These small LLMs are 045

beneficed for their efficiency and deployability in 046

resource-constrained environments. 047

Traditionally DST research mostly focused on 048

specialized architectures to capture dialogue con- 049

text (Wu et al., 2019a; Heck et al., 2020; Hosseini- 050

Asl et al., 2020; Jacqmin et al., 2022), while re- 051

cent efforts have shifted toward leveraging LLMs 052

with techniques like synthetic data generation and 053

knowledge distillation to develop small, efficient 054

models (Dong et al., 2024a; Finch and Choi, 2024; 055

Hu et al., 2022; Wu et al., 2023). Supervised 056

fine-tuning (SFT) has been the dominant approach, 057

aligning predicted dialogue states with ground- 058

truth annotations. While SFT has driven significant 059

progress, recent RL studies show LLMs can im- 060

prove complex task performance via test-time scal- 061

ing (OpenAI, 2024; Muennighoff et al., 2025; Snell 062

et al., 2024; Shao et al., 2024). Similarly, small 063

LLMs works well in domains like mathematics and 064

coding when optimized with RL (Zeng et al., 2025; 065

Pan et al., 2025). Despite these advances, the use of 066

RL to tackle DST’s unique challenges, particularly 067

for small LLMs, remains largely unexplored. 068

Applying RL to DST introduces distinct chal- 069

lenges. First, DST datasets, such as Multi- 070

WOZ (Eric et al., 2020), exhibit an imbalanced 071

difficulty distribution ( i.e. with most dialogues be- 072

ing straightforward, a minority being complex due 073

to multi-domain interactions, ambiguous inputs, or 074

intricate slot dependencies). This imbalance af- 075

fect the ability of RL models to generalize across 076

varying dialogue complexities. Second, the stan- 077

dard DST evaluation metric, Joint Goal Accuracy 078

(JGA) (Budzianowski et al., 2018), enforces a strict 079

requirement of exact slot-value predictions across 080

multiple turns, offering no partial credit. This re- 081

sults in sparse rewards, complicating RL training 082

especially for small LLMs with limited capacity to 083
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learn from infrequent feedback.084

To address these challenges, we propose two so-085

lutions to enhance RL-based DST for small LLMs:086

Dynamic Difficulty Sampling to integrate diffi-087

culty assessment with real-time, reward-088

driven Gaussian sampling to dynamically se-089

lect training examples that match the model’s090

current ability. By focusing on moderately091

challenging dialogues, this approach improves092

learning efficiency and ensures balanced train-093

ing across difficulty levels.094

Weighted Fuzzy Match Reward Function to095

combine slot-level fuzzy matching with096

difficulty-based weighting to provide granular097

feedback. Unlike the exact-match JGA, it098

rewards accurate slot predictions with higher099

emphasis on difficult slots, and generates100

partial reward for imperfect match.101

In conclusion, our contributions are in three-102

fold:103

1. We address the distinct challenges of applying104

verifiable RL to DST and propose an effective105

solution.106

2. We introduce an RL pipeline tailored for107

zero-shot cross-domain DST, enhancing the108

model’s reasoning capabilities in unfamiliar109

domains.110

3. Our experiments demonstrate that the pro-111

posed solution achieves state-of-the-art per-112

formance in small LLMs settings.113

2 Preliminary114

2.1 Dialogue State Tracking (DST)115

DST maintains a structured representation of user116

goals in task-oriented dialogue systems, typically117

as slot-value pairs (e.g., restaurant name, cui-118

sine type). At turn t the dialogue state bt =119

{(s1, v1), (s2, v2), . . . , (sk, vk)} where si is slot120

and vi is value. The dialogue history is ht =121

[u1, r1, u2, r2, . . . , ut, rt] with ui as the user’s ut-122

terance and ri as the system’s response at turn i.123

The DST model, parameterized by θ, predicts the124

state::125

b̂t = fθ(ht),126

For LLMs with test-time scaling capabilities, the127

output includes both the predicted state and inter-128

mediate reasoning:129

{thinkt, b̂t} = ot = fθ(ht),130

where ot is the complete output, and thinkt repre- 131

sents the reasoning content. 132

2.2 Group Relative Policy Optimization 133

(GRPO) 134

GRPO (Shao et al., 2024) is an advanced reinforce- 135

ment learning algorithm that enhances the reason- 136

ing capabilities of LLMs by evaluating groups of 137

generated responses relative to one another. Its 138

efficiency, demonstrated in models like DeepSeek 139

R1, stems from eliminating the need for a separate 140

value model, unlike Proximal Policy Optimization 141

(PPO) (Schulman et al., 2017). 142

In the context of DST, each dialogue turn is 143

treated as a question-answer pair (ht, bt), where 144

ht is the dialogue history and bt is the true dia- 145

logue state. The policy πθold generates a group of 146

G candidate responses {(b̂i, thinki)}Gi=1, or equiv- 147

alently {oi}Gi=1. A reward function evaluates 148

each predicted state, producing rewards {ri = 149

reward(b̂i, bi)}Gi=1 donate as {Ri}Gi=1. The advan- 150

tage for each response is computed relative to the 151

group mean: 152

Ai,t = ri −mean({Ri}Gi=1) 153

Recent studies have identified limitations in stan- 154

dard GRPO (Liu et al., 2025), including response- 155

level length bias, where longer responses may be 156

favored, and question-level difficulty bias, where 157

performance varies with task complexity. Addition- 158

ally, in our experiments, for small LLMs (<3B) the 159

KL divergence term in GRPO’s objective can limit 160

exploration and optimization. To address these 161

issues, we adopt a modified GRPO variant that re- 162

moves these biases and omits the KL divergence 163

term, enhancing its suitability for small LLMs in 164

DST tasks. The policy is updated by maximizing 165

the following objective: 166

JGRPO(θ) = E (h,b)∼D,

{oi}Gi=1∼πθold (·|h)

 1

G

G∑
i=1

|oi|∑
t=1

Li,t(θ)

 , 167

where Li,t(θ) is: 168

Li,t(θ) = min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
, 169

and 170

ri,t(θ) =
πθ(oi,t|h, oi,<t)

πθold(oi,t|h, oi,<t)
. 171

While DST and GRPO provide a foundational 172

framework, applying RL to DST presents unique 173
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challenges, including imbalanced difficulty distri-174

butions and sparse rewards. In the following sec-175

tions, we address these challenges through a novel176

RL pipeline and innovative sampling and reward177

strategies.178

3 Proposed Method179

3.1 A Novel Framework for Cross-domain180

DST Post-training181

To tackle challenges such as difficulty imbal-182

ance and limited generalization in zero-shot cross-183

domain DST, we propose a comprehensive three-184

stage pipeline that leverages RL to optimize small185

LLMs with fewer than 3 billion parameters. This186

framework as shown in Figure 1 systematically im-187

proves the DST performance of small LLMs by188

enhancing their reasoning and adaptability across189

diverse new and unseen dialogue domains.190

Stage 1: Chain-of-Thought (CoT) Generation191

and Distillation. We begin by employing a large192

LLM to generate high-quality CoT reasoning for193

DST within a single known domain. The CoT out-194

puts, which include multi-slot value predictions,195

are distilled into a small LLM via SFT. Our experi-196

ments show that small LLMs struggle to generate197

correctly formatted CoT reasoning and DST out-198

puts when relying solely on instructions. Addition-199

ally, excessive SFT can impair their generalization200

capabilities. Thus, this stage leverages the reason-201

ing capability of the large LLMs to initialize the202

small model’s performance effectively, laying a203

strong foundation for subsequent stages.204

Stage 2: Difficulty Evaluation and Data205

Preparation. Next, we evaluate the difficulty of206

the multi-domain dataset to facilitate RL optimiza-207

tion. Using k-fold evaluation with a small SFT208

model, we ensure a robust and unbiased assessment209

of dialogue difficulty across the dataset. Difficulty210

is quantified as the per-turn Average Goal Accu-211

racy (AGA) (Rastogi et al., 2020), the ratio of cor-212

rectly predicted slots to total slots. These difficulty213

annotations inform the Dynamic Difficulty Sam-214

pling strategy (Section 3.2) and Weighted Fuzzy215

Match Reward Function (Section 3.3), addressing216

the imbalanced difficulty distribution in datasets217

like MultiWOZ and enhancing the RL process.218

Stage 3: Reinforcement Learning with GRPO219

Finally, we apply the modified GRPO algorithm220

(Section 2.2) for RL across all known domains.221

Building on the difficulty annotations from Stage222

2 and overcoming the single-domain limitation of223

Stage 1. This RL phase enables the small LLM 224

to learn generalized patterns, significantly enhanc- 225

ing its zero-shot performance on unseen domains. 226

The result is an optimized DST system capable of 227

handling new domains effectively. 228

3.2 Dynamic Difficulty Sampling 229

In rule-based verifiable RL methods like GRPO, op- 230

timization relies on group-level advantages derived 231

from multiple generated responses. However, DST 232

datasets with imbalanced difficulty distributions 233

skew uniform sampling towards easier examples 234

with weaker optimization signals or less benefit 235

from overly difficult samples. We assess the degree 236

pf difficulty using k-fold evaluation, measuring per- 237

turn AGA. Figure 2 illustrates this imbalance in the 238

MultiWOZ dataset. 239

While static filtering of mid-difficulty samples 240

can initially enhance optimization, as the model’s 241

proficiency evolves it introduces bias, since the fil- 242

ter doesn’t adapt to the model’s changing capabili- 243

ties. The proposed Dynamic Difficulty Sampling 244

strategy adjusts to the model’s ability by selecting 245

samples via a Gaussian distribution centered on a 246

target difficulty (µ) with a range (σ): 247

pi =
1√
2πσ2

exp

(
−(di − µ)2

2σ2

)
, 248

where di is the sample’s difficulty. We adjust 249

µ and σ periodically based on the average reward, 250

shifting the focus to harder or easier samples as 251

performance changes. To ensure multi-domain 252

balance, we apply stratified sampling, maintain- 253

ing proportional domain representation. This dy- 254

namic, balanced approach enhances optimization 255

for DST’s imbalance difficulty. 256

3.3 Weighted Fuzzy Match Reward Function 257

In rule-based RL, reward functions guide models 258

toward optimal performance. For DST, a conven- 259

tional rewards rely on exact matches between pre- 260

dicted state d̂ and ground-truth state d, defined as: 261

R(d̂, d) =

{
1 if d̂ = d

0 otherwise
262

However, this approach is inadequate for DST 263

tasks. Predicted states in DST comprise multiple 264

slot-value pairs, and partial correctness is common. 265

The exact match reward function assigns a positive 266

reward only when all slot-value pairs are perfectly 267

matched, thereby disregarding any partial progress 268
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Figure 1: Proposed three-stage RL framework for zero-shot cross-domain DST post-training, featuring CoT
distillation, difficulty evaluation, and RL optimization with GRPO.
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Figure 2: AGA distribution in MultiWOZ, showing
difficulty imbalance

achieved by the model. Furthermore, this approach269

encounters difficulties with non-categorical slots,270

which lack a predefined set of values and allow271

for open-ended responses. In such cases, semanti-272

cally equivalent but textually distinct expressions273

(e.g., "Saint Thomas Hospital" versus "St. Thomas274

Hospital") are incorrectly penalized due to the re-275

quirement for exact string matching. Additionally,276

slots vary in prediction difficulty, often due to fac-277

tors such as ambiguity or contextual dependency,278

yet the exact match reward function treats all slots279

uniformly, failing to account for these differences.280

Our Weighted Fuzzy Match Reward Function281

addresses these issues by refining the reward calcu-282

lation in three ways:283

• Fuzzy Matching for Partial Credit: We com-284

pute a fuzzy match ratio for each slot-value285

pair. If it exceeds a threshold τ , a partial re-286

ward δ < 1 is assigned, enhancing feedback287

beyond binary matches.288

• Difficulty-Based Slot Weighting: Leverag-289

ing the difficulty evaluation from pipeline290

Stage 2, we assign weights to each slot based 291

on its error rate. Slots with higher difficulty re- 292

ceive greater weights, directing the model’s at- 293

tention to areas needing refinement and boost- 294

ing overall robustness. 295

• Per-turn Reward Aggregation: For each 296

slot, we first calculate its individual reward: 297

a full reward of 1 for an exact match, a dis- 298

counted reward of δ if the fuzzy match ratio 299

meets or exceeds τ , or 0 otherwise. Next, 300

each slot reward is multiplied by its difficulty 301

weight. These weighted rewards are then aver- 302

aged across all slots in the turn to produce 303

a single turn-level reward. If not all slots 304

achieve exact matches, we apply a discount 305

factor γ < 1 to this average, balancing recog- 306

nition of progress with the goal of achieving 307

complete accuracy. 308

Formally, the turn-level reward Rt for slots 309

s1, s2, . . . , sk is: 310

Rt =

{
1 if d̂ = d

γ ·
(
1
k

∑k
i=1wi · ri

)
otherwise

311

where wi is the difficulty weight for slot si, and ri 312

is: 313

ri =


1 if exact match
δ if fuzzy match ratio ≥ τ

0 otherwise

314

As shown in Figure 3, this approach provides 315

nuanced feedback, rewarding partial matches and 316

prioritizing difficult slots, enhancing DST perfor- 317

mance in RL frameworks. 318
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Method Model Parms
Attraction Hotel Restaurant Taxi Train Average

JGA / AGA JGA / AGA JGA / AGA JGA / AGA JGA / AGA JGA / AGA
TRADE ELMo 93.6M 19.9 / 55.5 13.7 / 65.3 11.5 / 53.4 60.6 / 73.9 22.4 / 49.3 25.6 / 59.5
T5DST T5 60.5M 33.1 / - 21.2 / - 21.7 / - 64.6 / - 35.4 / - 35.2 / -
TransferQA T5 770M 31.2 / 60.6 22.7 / 77.8 26.3 / 81.7 61.9 / 86.5 36.7 / 87.2 35.8 / 78.8
Prompter PPTOD 60.5M 35.8 / - 19.2 / - 26.0 / - 66.3 / - 39.0 / - 37.3 / -
D3ST T5 220M 56.4 / - 21.8 / - 38.2 / - 78.4 / - 37.7 / - 46.5 / -
CAPID T5 220+60.5M 40.9 / 69.0 31.1 / 72.6 31.6 / 69.1 65.4 / 83.8 34.3 / 65.9 40.7 / 72.1
CAPID T5 220+220M 33.3 / 64.4 43.5 / 83.3 37.1 / 75.2 87.1 / 92.0 49.5 / 73.4 50.1 / 77.7
Ours Qwen2.5 494M 65.4 / 81.9 54.2 / 90.1 52.7 / 85.4 84.1 / 94.9 48.5 / 83.4 61.0 / 87.1
D0T T5 11B 61.1 / - 27.6 / - 64.3 / - 46.9 / - 49.7 / - 49.9 / -
D0T Llama2 13B 66.6 / - - / - 67.2 / - 48.8 / - 66.5 / - 58.5 / -
FNCTOD Llama2 13B 62.2 / - 46.8 / - 60.3 / - 67.5 / - 60.9 / - 59.5 / -
SDT T5 11B 74.4 / - 33.9 / - 72.0 / - 86.4 / - 62.9 / - 65.9 / -
LDST Llama2 7B 75.6 / - 63.3 / - 73.7 / - 91.5 / - 75.0 / - 75.8 / -
CAPID T5+Llama2 7B+220M 83.6 / 92.6 71.6 / 94.2 77.5 / 95.3 91.2 / 96.0 90.0 / 97.8 82.8 / 95.2
Ours Qwen2.5 3B 75.3 / 89.7 64.7 / 93.0 75.6 / 95.5 86.5 / 93.6 78.7 / 95.7 76.1 / 93.5
IC-DST Codex >100B 62.1 / - 53.2 / - 54.9 / - 71.9 / - 51.4 / - 58.7 / -
FNCTOD GPT-4 >100B 58.8 / - 45.1 / - 63.2 / - 76.4 / - 69.5 / - 62.6 / -
RefPyDST Codex >100B 62.1 / - 56.6 / - 68.2 / - 71.9 / - 76.1 / - 68.8 / -

Table 1: Evaluation Results on MultiWOZ 2.1 dataset

Method Model Parms
Attraction Hotel Restaurant Taxi Train Average

JGA / AGA JGA / AGA JGA / AGA JGA / AGA JGA / AGA JGA / AGA
CAPID T5 220+60.5M 47.9 / 74.3 38.7 / 77.1 29.4 / 67.9 73.3 / 88.2 47.9 / 74.4 47.4 / 76.4
CAPID T5 220+220M 22.8 / 59.3 31.3 / 79.0 39.1 / 78.7 89.3 / 93.8 56.7 / 76.9 47.9 / 77.5
Ours(SFT only) Qwen2.5 494M 24.9 / 60.1 28.4 / 67.5 31.5 / 73.7 63.2 / 76.7 35.4 / 74.1 36.7 / 70.4
Ours(SFT with CoT) Qwen2.5 494M 18.0 / 58.1 21.7 / 57.0 27.3 / 63.2 67.5 / 79.2 28.7 / 72.3 32.6 / 66.0
Ours Qwen2.5 494M 69.7 / 84.5 54.4 / 90.1 54.0 / 89.5 85.5 / 95.2 49.4 / 83.0 62.6 / 88.5
D0T T5 11B 68.1 / - 32.0 / - 72.3 / - 50.6 / - 55.8 / - 55.7 / -
D0T Llama2 13B 76.8 / - 56.4 / - 78.8 / - 54.7 / - 76.1 / - 68.6 / -
CAPID T5+Llama2 7B+220M 84.4 / 93.1 71.3 / 94.5 79.1 / 95.4 91.6 / 96.0 89.6 / 97.6 83.2 / 95.3
Ours Qwen2.5 3B 79.2 / 94.5 65.2 / 95.2 75.4 / 95.9 85.2 / 94.1 79.4 / 95.5 76.9 / 95.0
IC-DST Gpt Codex >100B 60.0 / - 46.7 / - 57.3 / - 71.3 / - 49.4 / - 56.9 / -
ParsingDST Gpt-3.5 >100B 65.6 / - 46.8 / - 67.7 / - 80.6 / - 62.6 / - 64.7 / -
RefPyDST Gpt Codex >100B 70.9 / - 51.2 / - 65.6 / - 67.1 / - 69.2 / - 64.7 / -

Table 2: Evaluation Results on MultiWOZ 2.4 dataset
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Figure 3: Comparison of reward distributions for exact
and fuzzy match functions

4 Experiment319

4.1 Evaluation Dataset and Metrics320

To evaluate our zero-shot cross-domain321

DST RL approach, we use the MultiWOZ322

dataset (Budzianowski et al., 2018). We adopt323

MultiWOZ 2.1 (Eric et al., 2020) and MultiWOZ324

2.4 (Ye et al., 2022), with the latter providing 325

refined annotations for better evaluation relia- 326

bility. We assess performance using Joint Goal 327

Accuracy (JGA) (Budzianowski et al., 2018), 328

which requires all slot-value pairs to match ground 329

truth for correctness, and Average Goal Accuracy 330

(AGA) (Rastogi et al., 2020), which measures 331

individual slot prediction accuracy, offering 332

insights into partial correctness and slot-level 333

adaptability. 334

4.2 Evaluation Baseline 335

Our approach is benchmarked against existing 336

cross-domain zero-shot methodologies. And we 337

adopt the standard evaluation protocol for cross- 338

domain zero-shot DST: training models on the Mul- 339

tiWOZ dataset with one domain excluded and test- 340

ing on the held-out domain. 341

For a fair comparison, we categorize the base- 342

line methods into three groups based on model 343

parameter sizes: models with fewer than 1B pa- 344
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rameters, models with 1B to 100B parameters, and345

close-souce Large LLMs (>100B). In the <1B cate-346

gory, we compare our approach with ELMo-based347

TRADE (Wu et al., 2019b), T5-based T5DST (Lin348

et al., 2021b), TransferQA (Lin et al., 2021a),349

Prompter (Aksu et al., 2023), D3ST (Zhao et al.,350

2022), and CAPID (Dong et al., 2024b). For the 1B351

to 100B range, we evaluate against T5-11B-based352

D0T (Finch and Choi, 2024) and SDT (Gupta et al.,353

2022), as well as LLaMA-based FNCTOD (Li354

et al., 2024) and LDST (Feng et al., 2023). In355

the >100B category, we benchmark against IC-356

DST (Hu et al., 2022), RefPyDST (King and Flani-357

gan, 2023), and ParsingDST (Wu et al., 2023). No-358

tably, >100B models are often closed-source large359

LLMs that cannot undergo SFT, so these methods360

typically employ a few-shot strategy during evalua-361

tion.362

4.3 Implementation Details363

We selected the Qwen2.5-0.5B and Qwen2.5-3B364

models (Yang et al., 2024) as our base small LLMs365

due to their efficiency in low-resource environ-366

ments, offering a practical alternative to larger 7B367

models used in prior studies. For CoT distillation,368

we employed the QwQ-32B model (QwenTeam,369

2025) to generate CoT reasoning for the hotel and370

train domains, distilling 2,000 samples per domain.371

The small LLMs were then trained via SFT to in-372

herit this reasoning capability. We assessed the373

MultiWOZ dataset’s difficulty using 2-fold vali-374

dation with a fine-tuned Qwen2.5-0.5B model to375

calculate initial difficulty scores.376

In the RL stage, we utilized Dynamic Difficulty377

Sampling with initial parameters µ = 0.75 and378

σ = 0.15. Reward thresholds were set at 0.7 for379

the 0.5B model and 0.75 for the 3B model, with380

step sizes of µs = 0.05 and σs = 0.01. To prevent381

over-sampling, we enforced minimum values of382

µmin = 0.3 and σmin = 0.05. For the weighted383

fuzzy matching function, both the fuzzy and partial384

matching ratios were set to 0.8. Experiments were385

conducted using Llama-factory (Zheng et al., 2024)386

for SFT and Verl (Sheng et al., 2024) for RL, with387

detailed hyperparameters provided in the appendix388

B.389

4.4 Experiment Results390

To evaluate our zero-shot cross-domain DST ap-391

proach, we first address the choice of query strat-392

egy. Prior methods use either per-domain or per-393

slot queries. While per-slot queries simplify the394

task and improve accuracy (e.g., in LDST (Feng 395

et al., 2023), DOT (Finch and Choi, 2024), and 396

CAPID (Dong et al., 2024b)), they incur high com- 397

putational costs. For instance, in a 12-turn hotel 398

domain dialogue with 10 slots, per-slot queries re- 399

quire 60 queries versus 6 for per-domain. We adopt 400

the per-domain strategy for its efficiency, despite 401

its complexity. More details are discussed in Ap- 402

pendix C. 403

Our results on MultiWOZ 2.1 and 2.4 are shown 404

in Table 1 and Table 2. For models with fewer than 405

1B parameters, our Qwen2.5-0.5B (494M) model 406

achieves state-of-the-art performance, with an aver- 407

age JGA of 61.0% on MultiWOZ 2.1 (vs. CAPID’s 408

50.1%) and 62.6% on MultiWOZ 2.4 (vs. CAPID’s 409

47.9%). This reflects superior accuracy and adapt- 410

ability in lightweight settings. For the 1B to 100B 411

range, our Qwen2.5-3B model scores 76.1% JGA 412

on MultiWOZ 2.1 and 77.7% JGA on MultiWOZ 413

2.4, closely rivaling CAPID’s 7B model, matching 414

top baselines with half parameters. 415

We also compare our RL-based approach with 416

SFT and CoT distillation on the Qwen2.5-0.5B 417

model. Table 2 shows SFT alone achieves 36.7% 418

JGA, and SFT with CoT only reaches 32.6% JGA, 419

both well below our RL method. CoT distillation 420

particularly struggles in unknown domains, high- 421

lighting small LLMs difficult to learn CoT from 422

large LLMs. These results demonstrate that RL 423

with test-time scaling outperforms traditional meth- 424

ods, leveraging small LLMs’ reasoning potential 425

more effectively for cross-domain DST. 426

5 Ablation Study 427

5.1 Handing Imbalance Difficulty and Sparse 428

Reward 429

To assess the effectiveness of sampling strategies in 430

RL-based DST post-training, we used the Qwen2.5- 431

0.5B model and the MultiWOZ 2.4 dataset. We 432

conducted zero-shot testing, where the model gen- 433

eralizes to unseen domains without prior training, 434

on the hotel and train domains. For evaluation, we 435

used per-turn JGA, which measures the correctness 436

of all slot-value predictions at each dialogue turn. 437

We compared three sampling strategies: (1) ran- 438

dom sampling (baseline), (2) static moderate dif- 439

ficulty sampling (selecting 8,000 data points with 440

difficulty scores between 0.1 and 0.8), and (3) our 441

proposed dynamic difficulty sampling. Figure 4 442

shows that our dynamic method converged faster 443

(at 200 steps) and achieved higher JGA than the 444
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Figure 4: Comparison of Average convergence speed
and JGA across different sampling strategies on hotel
and train domain

Reward Function JGA (turn level) Steps
JGA (Exact Match) 0.45 500+
AGA (turn-level) 0.68 320
+ fuzzy matching 0.65 240
+ weighted slot 0.71 180
+ partial factor (ours) 0.74 200

Table 3: Comparison of different reward function, AGA
refers to turn-level partial match

alternatives. Static sampling outperformed random445

sampling, confirming the importance of address-446

ing imbalanced difficulty in DST datasets. How-447

ever, it risked overfitting due to its fixed data pool,448

while our adaptive approach adjusted to the model’s449

progress, proving more effective.450

Next, we explored reward functions’ impact on451

RL-based DST performance, using the same model,452

dataset, and dynamic sampling. Table 3 summa-453

rizes the results after a maximum of 500 train-454

ing steps. Using JGA directly as the reward led455

to slow convergence, with gains continuing past456

500 steps. Turn-level AGA, which rewards slot-457

level correctness, markedly improved performance.458

Adding fuzzy matching—rewarding semantically459

similar predictions speed up convergence further.460

Incorporating weighted slots (emphasizing harder461

slots) and partial credit (for partially correct predic-462

tions) resulted in the highest JGA of 0.74 at 200463

steps. These enhancements, combined in our Fuzzy464

Match Reward function, boost both efficiency and465

accuracy.466

Our approach tackles the challenges of imbal-467

anced difficulty and sparse rewards, enhancing468

zero-shot cross-domain DST with small language469

models like Qwen2.5-0.5B.470
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Figure 5: Comparison of reasoning length and JGA
between models with and without initial SFT.

5.2 Direct RL Training without SFT for small 471

LLMs 472

While larger LLMs can benefit from direct RL train- 473

ing without initial SFT (Shao et al., 2024), the effec- 474

tiveness of this approach for small LLMs remains 475

underexplored. This section evaluates whether 476

small LLMs can achieve similar gains in DST tasks 477

when RL is applied directly to the base model. 478

We conducted experiments using the Qwen2.5- 479

0.5B and Qwen2.5-3B models within an 480

instruction-based, one-shot in-context learning 481

framework for RL post-training without SFT. 482

In this framework, the model receives a single 483

example (one-shot) within the input prompt to 484

guide its predictions during RL training. 485

Our results highlight significant limitations for 486

small LLMs without SFT. The Qwen2.5-0.5B 487

model struggled to generate meaningful learning 488

rewards, producing repetitive and nonsensical out- 489

puts. As a result, we do not report its results. The 490

Qwen2.5-3B model showed some learning capabil- 491

ity, achieving a JGA of 0.67, but this remained infe- 492

rior to the SFT-initialized model’s JGA of 0.79. As 493

illustrated in Figure 5, models with initial SFT pro- 494

duce longer, more accurate responses (averaging 495

420 tokens) compared to those trained with direct 496

RL alone, which exhibit limited reasoning (averag- 497

ing 120 tokens) and suboptimal performance. 498

These findings suggest that, unlike larger LLMs, 499

small models rely on initial SFT to build the reason- 500

ing capacity needed for effective DST reasoning. 501
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6 Related Work502

6.1 Zero-shot Cross-domain DST503

Traditionally, zero-shot cross-domain DST re-504

search focused on optimizing model architectures505

to enable generalization across dialogue domains506

without domain-specific training (Wu et al., 2019b;507

Lin et al., 2021a; Wang et al., 2021). The emer-508

gence of LLMs has shifted the paradigm due to509

their robust generalization capabilities. Recent510

studies have prioritized generating informative511

prompts or synthetic data to enhance zero-shot512

cross-domain DST performance, typically through513

SFT in an imitation learning framework. Hu et al.514

(2022) explored in-context learning for few-shot515

DST, which can be adapted to zero-shot settings by516

providing contextual examples. Dong et al. (2024b)517

introduced context-aware auto-prompting and con-518

trastive decoding to improve LLM performance in519

cross-domain DST. Finch and Choi (2024) gener-520

ated diverse synthetic data to make zero-shot DST521

more adaptable, further leveraging SFT to align522

models with task requirements. However, the ap-523

plication of RL to optimize test-time scaling and524

enhance reasoning during inference remain largely525

unexplored in DST. Our work addresses this gap526

by investigating RL-driven optimization for small527

LLMs in zero-shot cross-domain DST, aiming to528

balance performance and practicality.529

6.2 Verifiable Reinforcement Learning530

Reinforcement Learning from Human Feedback531

(RLHF) (Ouyang et al., 2022), particularly using532

Proximal Policy Optimization (PPO) (Schulman533

et al., 2017), has been shown to significantly im-534

prove LLMs’ generalization and output quality.535

Building on this, OpenAI (OpenAI, 2024) demon-536

strated that RL can enhance LLMs’ reasoning ca-537

pabilities, implementing test-time scaling to pro-538

duce more accurate responses. However, these539

methods require extensive human-annotated rea-540

soning data, which is costly and difficult to ob-541

tain, limiting their scalability. To address this542

challenge, recent research has introduced rule-543

based verifiable RL approaches such as ReMax (Li544

et al., 2023),RLOO (Ahmadian et al., 2024) and545

GRPO (Shao et al., 2024) that reduce reliance on546

external data. These methods enable base LLMs547

to self-generate high-quality reasoning tokens, sup-548

porting accurate outputs. Despite their success, ver-549

ifiable RL methods have rarely been applied to DST550

tasks, particularly with small LLMs. Our study551

fills this gap by applying GRPO to optimize small 552

LLMs for zero-shot cross-domain DST, demon- 553

strating a scalable and resource-efficient approach. 554

7 Conclusion 555

This study introduces an innovative verifiable RL- 556

based approach to improve zero-shot cross-domain 557

DST using small LLMs. By implementing Dy- 558

namic Difficulty Sampling and Difficulty-Weighted 559

Fuzzy Match Reward Function, we tackle issues 560

like imbalanced difficulty and sparse rewards in 561

DST datasets. Optimized with a modified GRPO al- 562

gorithm, our method achieves top-tier performance 563

among models under 1 billion parameters, rivaling 564

larger models on MultiWOZ 2.1 and 2.4. These 565

findings underscore the viability of small LLMs 566

for efficient, scalable dialogue systems. This work 567

bridges a gap in RL applications for DST and offers 568

a pathway to resource-efficient solutions, enhanc- 569

ing real-world deployment where computational 570

limits are critical. 571

Limitations 572

While effective, our approach has constraints. 573

small LLMs, though competitive, underperform 574

larger models in some domains. RL training de- 575

mands significant computational resources, poten- 576

tially limiting accessibility. The method’s reliance 577

on fine-tuned hyperparameters in sampling and re- 578

ward functions may hinder reproducibility across 579

different datasets. Additionally, its applicability be- 580

yond DST to other tasks requires further validation. 581
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Prompt for DST CoT distilling from large
LLMs:

You are an expert in Dialogue State Track-
ing (DST). Your task is to generate chain of
thought for solving provided DST tasks.
## Instructions:
- Generate your chain of thought that helps to
arrive at the provided dialogue state in target
domain.
- Pay more attention to the difficult and com-
plex dialogue states, and less attention to the
easy ones.
- If the dialogue is not related to the target
domain(the ground trues dialogue states are all
None), please indicate that in your CoT with
short explaination.
- The length of CoT should be in 100 to 500
words.
## Input:
- Target Domain:
{domain}
- Dialogue:
{dialogue}
- Related Slots and explanations:
{slots}
- The ground trues dialogue states:
{dialogue_state}
## Output Format:
- Generate answer in <think> tags. Example:
<think>Your CoT...</think>
Now, analyze the given content and generate
your chain of thought.

825

Prompt for small LLM generate both CoT
and DST results:

For the given dialogue, generate step-by-step
reasoning and determine the dialogue state for
the domain {domain}.
## Input:
- Target Domain:
{domain}
- Dialogue:
{dialogue}
- Related Slots and explanations:
{slots}
## Output Format:
Output your reasoning in <think> tag and the
dialogue state in <answer> tag using following
format:
<think>your reasoning..</think>
<answer>slot1:value1,slot2:value2</answer>
Now, analyze the given content and generate
your step-by-step reasoning and determine the
dialogue state:

826

B Detail Hyperparameter 827

In this appendix, we provide the detailed hyperpa- 828

rameter settings used in our experiments for both 829

Supervised Fine-Tuning (SFT) and Reinforcement 830

Learning (RL) tasks. All experiments were con- 831

ducted on a 4*H100 cluster. 832

B.1 Supervised Fine-Tuning (SFT) 833

For SFT tasks, we utilized the llama-factory tool as 834

our fine-tuning framework. The hyperparameters 835

are listed in Table 4. 836

Table 4: Hyperparameters for SFT tasks

Hyperparameter Value

per_device_train_batch_size 1
gradient_accumulation_steps 10
learning_rate 1.0e-5
num_train_epochs 3.0
lr_scheduler_type cosine
warmup_ratio 0.1

B.2 Reinforcement Learning (RL) 837

For RL tasks, we utilized the verl framework with 838

vLLM as the rollout tool. The hyperparameters are 839

listed in Table 5. 840

For more details, please refer to our code. 841
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Table 5: Hyperparameters for RL tasks

Hyperparameter Value

TRAIN_BATCH_SIZE 512
MAX_PROMPT_LENGTH 1280
MAX_RESPONSE_LENGTH 2048
LEARNING_RATE 1e-6
TEMPERATURE 1.0
ROLLOUT_N 5

C Efficiency Analysis of Per-Domain and842

Per-Slot Query Strategies843

In this section, we evaluate the efficiency of per-844

domain and per-slot query strategies with respect845

to computational resource utilization, focusing on846

token usage and the number of queries required. As847

outlined in Section 4.4, the per-slot query strategy,848

while simplifying the problem and potentially en-849

hancing accuracy, introduces a substantial compu-850

tational burden by necessitating individual queries851

for each slot at every turn. To assess this trade-off852

quantitatively, we compare a representative per-853

slot query method, LDST, with our proposed per-854

domain query model, which is built upon Qwen2.5-855

0.5B. Two variants of our model are examined: one856

employing SFT without CoT reasoning, and an-857

other incorporating RL post-training with CoT rea-858

soning. The evaluation is conducted using 100 ran-859

domly selected dialogues from the MultiWOZ2.4860

training set.861

The efficiency metrics, including the average862

number of tokens used for prompts, responses, to-863

tal tokens, and the average number of queries per864

dialogue, are summarized in Table 6 below.865

The results reveal a marked disparity in com-866

putational efficiency between the two strategies.867

The per-slot query approach, exemplified by LDST,868

consumes an average of 37510 total tokens and re-869

quires 77.5 queries per dialogue. In contrast, our870

per-domain query strategy without CoT reasoning871

utilizes only 4665.5 total tokens and 7.75 queries,872

reflecting reductions of approximately 87.6% in873

token usage and 90% in query count. Even when874

enhanced with CoT reasoning, which increases to-875

ken consumption due to the generation of reasoning876

steps, our per-domain model requires 7982.5 total877

tokens—still significantly lower than the per-slot878

strategy.879

D Example Result 880

In this section, we including some fail case from 881

Qwen2.5-0.5B CoT DST model in hotel domain. 882

The incorrect reasoning will be marked as red. 883
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Table 6: Efficiency comparison of query strategies in terms of token usage and query count

Query type Method Avg. Prompt Avg. Response Avg. total Avg. #Query

Per Slot LDST 36657.5 852.5 37510 77.5
Per Domain Ours (DST only) 3975.75 689.75 4665.5 7.75
Per Domain Ours (CoT) 4247 3735.5 7982.5 7.75

LLM hallucination on no existing slots

<think>The dialogue revolves around the user requesting a place to stay (hotel) in the north side of
town, specifically asking for a hotel with a star of 4, free parking, and free wifi. Let’s break down the
dialogue to identify the relevant slots for the hotel domain.
1. Initial Request for Hotel: The user transitions from requesting a train to requesting a hotel. The
key statement is: "I would like a place to stay that is in the north side of town. [SYSTEM]: I can
certainly help you with that. There are many accommodations on the north side of town. Do you have
any preferences?" This explicitly sets the ‘hotel_area‘ to "north" and the ‘hotel_location‘ to "north" .
The user specifies "north side of town," which directly sets the ‘hotel_region‘ to "north."
2. Hotel Domain Establishment: The user explicitly states: "I would like a place with a star of 4 that
includes free parking and free wifi." This directly sets the ‘hotel_stars‘ to "4" and the ‘hotel_internet‘
to "yes." The mention of "free parking" and "free wifi" clearly sets ‘hotel_parking‘ and ‘hotel_internet‘
to "yes."
3. Hotel Domain Details: The user specifies "moderate hotel with free wifi and parking." This
sets ‘hotel_parking‘ to "yes" and ‘hotel_pricerange‘ to "moderate." The mention of "moderate hotel"
indicates a moderate price range, which is captured in ‘hotel_pricerange‘. The phrase "free wifi and
parking" directly sets ‘hotel_internet‘ to "yes" and ‘hotel_parking‘ to "yes."
4. Hotel Domain Validation: The user’s request for a hotel is explicitly confirmed by the system,
and no new slots are added. The user’s focus on hotel details (e.g., area, price, parking) is directly
mapped to the corresponding slots. The absence of any other slots (e.g., date, number of people, stay)
is checked, and all these slots are correctly filled based on the dialogue.
5. Conclusion: The dialogue state correctly reflects the user’s explicit requirements for the hotel
domain, including the slot values specified by the user. No ambiguities arise. The user’s request for a
hotel is directly addressed, and all relevant slots are properly populated based on the dialogue.</think>
<answer>hotel_area:north, hotel_book-day:NONE, hotel_book-
people:NONE, hotel_bookstay:NONE, hotel_internet:yes, ho-
tel_name:NONE, hotel_parking:yes, hotel_pricerange:moderate, hotel_stars:4,
hotel_type:guesthouse, hotel_destination:NONE, hotel_contact:NONE </answer>

884
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Misunderstanding on Yes, No and None option.

<think>The dialogue revolves around the user seeking a hotel in the centre of Cambridge for a cheap
price range. The target domain is "hotel", so we focus on the hotel-related slots.
1. Hotel Domain Analysis: The user’s query is strictly about a hotel, so the hotel-related slots
(hotel_name, hotel_parking, hotel_book-day, hotel_book-people, hotel_book-stay, hotel_area, ho-
tel_price, hotel_internet, hotel_star, hotel_type) are directly addressed. The user specifies "Alexander
Bed and Breakfast" as the hotel, so "hotel_name" is clearly "Alexander Bed and Breakfast".
2. Hotel Book-Day: The user selects "Sunday" for the hotel stay, so "hotel_book-day" is "sunday".
3. Hotel Book-People: The user confirms "2 people" for the hotel, so "hotel_book-people" is "2".
4. Hotel Book-Stay: The user specifies "2 nights" for the hotel, so "hotel_stay" is "2".
5. Hotel Price Range: The user specifies "cheap price range" for the hotel, so "hotel_pricerange" is
"cheap".
6. Hotel Area: The user mentions "centre" for the hotel, so "hotel_area" is "centre".
7. Hotel Internet: The user does not mention any internet service provision, so "hotel_internet" is "no".
The user’s query is strictly about a hotel, and the dialogue is exclusively about hotel booking. The
hotel slot is clearly addressed by the user, and all other slots are directly derived from the user’s
explicit specification. The absence of any other mentions or requirements related to the hotel (e.g.,
room type, schedule, or amenities) results in the dialogue state being straightforward.</think>
<answer>hotel_area:centre, hotel_book-day:sunday, hotel_book-people:2, hotel_book-stay:2,
hotel_internet:no, hotel_name:alexander bed and breakfast, hotel_parking:NONE, ho-
tel_pricerange:cheap, hotel_stars:NONE, hotel_type:NONE </answer>

885

LLM confused on hotel and guesthouse. the hotel is refer to domain hotel and also for a type of
hotel_type slot.

<think>The dialogue revolves around the user seeking a cheap hotel. The target domain is "hotel", so
we focus on the relevant slots.
1. **Hotel Domain Identification**: The user explicitly mentions "cheap guesthouse" and "cheap
hotel" as requirements. The system provides "Alexander Bed and Breakfast" as the hotel, and the
user’s query is about a cheap hotel. The domain is "hotel", so all slots related to the hotel are
addressed.
2. **Slot Analysis**: - **Hotel Name**: The user specifies "Alexander Bed and Breakfast" as
the hotel. This directly fills the ‘hotel_name‘ slot. - **Hotel Price Range**: The user specifies
"cheap" for the hotel, so ‘hotel_pricerange‘ is "cheap". - **Hotel Book-Day**: The user does not
mention a specific day for checking in. The guesthouse is booked for Friday, but the hotel is not
specified. The system’s response is about the guesthouse, not the hotel. - **Hotel Book-People**:

The user booked a guesthouse for 8 people, not a hotel . The hotel request is unrelated. - **Other

Slots**: The user’s query is about a hotel, not a guesthouse. The parking, restaurant, or other de-
tails are not mentioned in the hotel context.
3. **No Other Slots**: The user’s query is strictly about a hotel, and the system provides de-
tails about the hotel. There is no mention of the hotel’s area, booking day, or other parameters.
The guesthouse’s details (e.g., parking, WiFi) are unrelated to the hotel domain.

The dialogue is strictly about the user seeking a cheap hotel, and the relevant slots are directly
addressed. There is no overlap with the guesthouse’s details, so all slots related to the hotel
are properly populated.</think><answer>hotel_area:NONE,hotel_book-day:NONE,hotel_book-
people:NONE,hotel_book-stay:NONE,hotel_internet:NONE,hotel_name:NONE,hotel_parking:NONE,
hotel_pricerange:cheap,hotel_stars:NONE,hotel_type:NONE</answer>

886
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