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Abstract

Dialogue State Tracking (DST) is essential for
task-oriented dialogue systems to track user
goals, but zero-shot adaptation to unseen do-
mains poses significant challenges. This pa-
per proposes an innovative approach to en-
hance small LLMs for zero-shot cross-domain
DST using reinforcement learning (RL) with
verifiable rewards. We introduce two novel
techniques: a Dynamic Difficulty Sampling
Pipeline, which adaptively selects training ex-
amples to optimize learning efficiency, and
a Difficulty-Weighted Fuzzy Match Reward
Function, which provides granular feedback
to address sparse rewards and prioritize dif-
ficult slots. Employing the Group Relative
Policy Optimization (GRPO) algorithm, our
method boosts the reasoning capabilities of
small LL.Ms, enabling robust generalization
to new domains without further training. Ex-
periments on MultiWOZ 2.1 and 2.4 show
our approach achieves state-of-the-art perfor-
mance among small models and rivals larger
ones, while being computationally efficient.
This work demonstrates the effect of RL-based
post-training for compact LLMs, paving the
way for scalable, resource-efficient dialogue
systems. Our code and model is available
at (https://anonymous.4open.science/t/DSTRL-
769B).

1 Introduction

Dialogue State Tracking (DST) is the process of
maintaining a structured representation of user
goals, often as slot-value pairs, to support effec-
tive dialogue management (Budzianowski et al.,
2018). This paper investigates the application
of reinforcement learning (RL) with verifiable re-
wards (Shao et al., 2024) to small large language
models (LLMs) specifically for zero-shot cross-
domain DST (Williams et al., 2016), enabling the
handling of unseen domains without additional
training. By leveraging RL, we aim to enhance

the reasoning capabilities of small LLMs, improv-
ing their ability to interpret and track user goals
throughout a dialogue. These small LLMs are
beneficed for their efficiency and deployability in
resource-constrained environments.

Traditionally DST research mostly focused on
specialized architectures to capture dialogue con-
text (Wu et al., 2019a; Heck et al., 2020; Hosseini-
Asl et al., 2020; Jacqmin et al., 2022), while re-
cent efforts have shifted toward leveraging LLMs
with techniques like synthetic data generation and
knowledge distillation to develop small, efficient
models (Dong et al., 2024a; Finch and Choi, 2024;
Hu et al., 2022; Wu et al., 2023). Supervised
fine-tuning (SFT) has been the dominant approach,
aligning predicted dialogue states with ground-
truth annotations. While SFT has driven significant
progress, recent RL studies show LLMs can im-
prove complex task performance via test-time scal-
ing (OpenAl, 2024; Muennighoff et al., 2025; Snell
et al., 2024; Shao et al., 2024). Similarly, small
LLMs works well in domains like mathematics and
coding when optimized with RL (Zeng et al., 2025;
Pan et al., 2025). Despite these advances, the use of
RL to tackle DST’s unique challenges, particularly
for small LLMs, remains largely unexplored.

Applying RL to DST introduces distinct chal-
lenges. First, DST datasets, such as Multi-
WOZ (Eric et al., 2020), exhibit an imbalanced
difficulty distribution ( i.e. with most dialogues be-
ing straightforward, a minority being complex due
to multi-domain interactions, ambiguous inputs, or
intricate slot dependencies). This imbalance af-
fect the ability of RL models to generalize across
varying dialogue complexities. Second, the stan-
dard DST evaluation metric, Joint Goal Accuracy
(JGA) (Budzianowski et al., 2018), enforces a strict
requirement of exact slot-value predictions across
multiple turns, offering no partial credit. This re-
sults in sparse rewards, complicating RL training
especially for small LLMs with limited capacity to



learn from infrequent feedback.
To address these challenges, we propose two so-
lutions to enhance RL-based DST for small LLMs:

Dynamic Difficulty Sampling to integrate diffi-
culty assessment with real-time, reward-
driven Gaussian sampling to dynamically se-
lect training examples that match the model’s
current ability. By focusing on moderately
challenging dialogues, this approach improves
learning efficiency and ensures balanced train-
ing across difficulty levels.

Weighted Fuzzy Match Reward Function to
combine slot-level fuzzy matching with
difficulty-based weighting to provide granular
feedback. Unlike the exact-match JGA, it
rewards accurate slot predictions with higher
emphasis on difficult slots, and generates
partial reward for imperfect match.

In conclusion, our contributions are in three-
fold:

1. We address the distinct challenges of applying
verifiable RL to DST and propose an effective
solution.

2. We introduce an RL pipeline tailored for
zero-shot cross-domain DST, enhancing the
model’s reasoning capabilities in unfamiliar
domains.

3. Our experiments demonstrate that the pro-
posed solution achieves state-of-the-art per-
formance in small LLMs settings.

2 Preliminary

2.1 Dialogue State Tracking (DST)

DST maintains a structured representation of user
goals in task-oriented dialogue systems, typically
as slot-value pairs (e.g., restaurant name, cui-
sine type). At turn ¢ the dialogue state by =
{(81, 1}1), (82, 212), ceey (Sk, Uk)} where s; is slot
and v; is value. The dialogue history is h; =
[u1, 71, u2, 72, ..., u, ¢ with u; as the user’s ut-
terance and r; as the system’s response at turn <.
The DST model, parameterized by 6, predicts the
state::

be = fo(he),
For LLMs with test-time scaling capabilities, the
output includes both the predicted state and inter-
mediate reasoning:

{think‘t, Bt} = 0t = f@(ht)a

where o, is the complete output, and think; repre-
sents the reasoning content.

2.2 Group Relative Policy Optimization
(GRPO)

GRPO (Shao et al., 2024) is an advanced reinforce-
ment learning algorithm that enhances the reason-
ing capabilities of LLMs by evaluating groups of
generated responses relative to one another. Its
efficiency, demonstrated in models like DeepSeek
R1, stems from eliminating the need for a separate
value model, unlike Proximal Policy Optimization
(PPO) (Schulman et al., 2017).

In the context of DST, each dialogue turn is
treated as a question-answer pair (hy, b;), where
h; is the dialogue history and b; is the true dia-
logue state. The policy 7y, generates a group of
G candidate responses { (b;, think;)}& ,, or equiv-
alently {0;}%,. A reward function evaluates
each predicted state, producing rewards {r; =
reward(b;, b;)}&_, donate as {R;}% . The advan-
tage for each response is computed relative to the
group mean:

Ay = ri — mean({Ri}Zy)

Recent studies have identified limitations in stan-
dard GRPO (Liu et al., 2025), including response-
level length bias, where longer responses may be
favored, and question-level difficulty bias, where
performance varies with task complexity. Addition-
ally, in our experiments, for small LLMs (<3B) the
KL divergence term in GRPO’s objective can limit
exploration and optimization. To address these
issues, we adopt a modified GRPO variant that re-
moves these biases and omits the KL divergence
term, enhancing its suitability for small LLMs in
DST tasks. The policy is updated by maximizing
the following objective:
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While DST and GRPO provide a foundational
framework, applying RL to DST presents unique
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challenges, including imbalanced difficulty distri-
butions and sparse rewards. In the following sec-
tions, we address these challenges through a novel
RL pipeline and innovative sampling and reward
strategies.

3 Proposed Method

3.1 A Novel Framework for Cross-domain
DST Post-training

To tackle challenges such as difficulty imbal-
ance and limited generalization in zero-shot cross-
domain DST, we propose a comprehensive three-
stage pipeline that leverages RL to optimize small
LLMs with fewer than 3 billion parameters. This
framework as shown in Figure 1 systematically im-
proves the DST performance of small LLMs by
enhancing their reasoning and adaptability across
diverse new and unseen dialogue domains.

Stage 1: Chain-of-Thought (CoT) Generation
and Distillation. We begin by employing a large
LLM to generate high-quality CoT reasoning for
DST within a single known domain. The CoT out-
puts, which include multi-slot value predictions,
are distilled into a small LLM via SFT. Our experi-
ments show that small LLMs struggle to generate
correctly formatted CoT reasoning and DST out-
puts when relying solely on instructions. Addition-
ally, excessive SFT can impair their generalization
capabilities. Thus, this stage leverages the reason-
ing capability of the large LLMs to initialize the
small model’s performance effectively, laying a
strong foundation for subsequent stages.

Stage 2: Difficulty Evaluation and Data
Preparation. Next, we evaluate the difficulty of
the multi-domain dataset to facilitate RL optimiza-
tion. Using k-fold evaluation with a small SFT
model, we ensure a robust and unbiased assessment
of dialogue difficulty across the dataset. Difficulty
is quantified as the per-turn Average Goal Accu-
racy (AGA) (Rastogi et al., 2020), the ratio of cor-
rectly predicted slots to total slots. These difficulty
annotations inform the Dynamic Difficulty Sam-
pling strategy (Section 3.2) and Weighted Fuzzy
Match Reward Function (Section 3.3), addressing
the imbalanced difficulty distribution in datasets
like MultiWwOZ and enhancing the RL process.

Stage 3: Reinforcement Learning with GRPO
Finally, we apply the modified GRPO algorithm
(Section 2.2) for RL across all known domains.
Building on the difficulty annotations from Stage
2 and overcoming the single-domain limitation of

Stage 1. This RL phase enables the small LLM
to learn generalized patterns, significantly enhanc-
ing its zero-shot performance on unseen domains.
The result is an optimized DST system capable of
handling new domains effectively.

3.2 Dynamic Difficulty Sampling

In rule-based verifiable RL methods like GRPO, op-
timization relies on group-level advantages derived
from multiple generated responses. However, DST
datasets with imbalanced difficulty distributions
skew uniform sampling towards easier examples
with weaker optimization signals or less benefit
from overly difficult samples. We assess the degree
pf difficulty using k-fold evaluation, measuring per-
turn AGA. Figure 2 illustrates this imbalance in the
MultiWOZ dataset.

While static filtering of mid-difficulty samples
can initially enhance optimization, as the model’s
proficiency evolves it introduces bias, since the fil-
ter doesn’t adapt to the model’s changing capabili-
ties. The proposed Dynamic Difficulty Sampling
strategy adjusts to the model’s ability by selecting
samples via a Gaussian distribution centered on a
target difficulty (©) with a range (o):
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where d; is the sample’s difficulty. We adjust
w and o periodically based on the average reward,
shifting the focus to harder or easier samples as
performance changes. To ensure multi-domain
balance, we apply stratified sampling, maintain-
ing proportional domain representation. This dy-
namic, balanced approach enhances optimization
for DST’s imbalance difficulty.

3.3 Weighted Fuzzy Match Reward Function

In rule-based RL, reward functions guide models
toward optimal performance. For DST, a conven-
tional rewards rely on exact matches between pre-
dicted state d and ground-truth state d, defined as:

Rd.d) =1 ifd=d
" 10 otherwise

However, this approach is inadequate for DST
tasks. Predicted states in DST comprise multiple
slot-value pairs, and partial correctness is common.
The exact match reward function assigns a positive
reward only when all slot-value pairs are perfectly
matched, thereby disregarding any partial progress
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Figure 1: Proposed three-stage RL framework for zero-shot cross-domain DST post-training, featuring CoT
distillation, difficulty evaluation, and RL optimization with GRPO.
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Figure 2: AGA distribution in MultiWOZ, showing
difficulty imbalance

achieved by the model. Furthermore, this approach
encounters difficulties with non-categorical slots,
which lack a predefined set of values and allow
for open-ended responses. In such cases, semanti-
cally equivalent but textually distinct expressions
(e.g., "Saint Thomas Hospital" versus "St. Thomas
Hospital") are incorrectly penalized due to the re-
quirement for exact string matching. Additionally,
slots vary in prediction difficulty, often due to fac-
tors such as ambiguity or contextual dependency,
yet the exact match reward function treats all slots
uniformly, failing to account for these differences.

Our Weighted Fuzzy Match Reward Function
addresses these issues by refining the reward calcu-
lation in three ways:

* Fuzzy Matching for Partial Credit: We com-
pute a fuzzy match ratio for each slot-value
pair. If it exceeds a threshold 7, a partial re-
ward § < 1 is assigned, enhancing feedback
beyond binary matches.

* Difficulty-Based Slot Weighting: Leverag-
ing the difficulty evaluation from pipeline

Stage 2, we assign weights to each slot based
on its error rate. Slots with higher difficulty re-
ceive greater weights, directing the model’s at-
tention to areas needing refinement and boost-
ing overall robustness.

* Per-turn Reward Aggregation: For each
slot, we first calculate its individual reward:
a full reward of 1 for an exact match, a dis-
counted reward of ¢ if the fuzzy match ratio
meets or exceeds 7, or 0 otherwise. Next,
each slot reward is multiplied by its difficulty
weight. These weighted rewards are then aver-
aged across all slots in the turn to produce
a single turn-level reward. If not all slots
achieve exact matches, we apply a discount
factor v < 1 to this average, balancing recog-
nition of progress with the goal of achieving
complete accuracy.

Formally, the turn-level reward R; for slots

81,89, ...,8k 1s:

[t ifd=d
t= 5 - (% Zi?:l w; - ri) otherwise

where w; is the difficulty weight for slot s;, and r;
is:

1 if exact match
T = 1)

0 otherwise

if fuzzy match ratio > 7

As shown in Figure 3, this approach provides
nuanced feedback, rewarding partial matches and
prioritizing difficult slots, enhancing DST perfor-
mance in RL frameworks.



Method Model Parms Attraction Hotel Restaurant Taxi Train Average
JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA
TRADE ELMo 93.6M 19.9/55.5 13.7/65.3 11.5/534 60.6/73.9 224/49.3 25.6/59.5
TSDST TS5 60.5M 33.1/- 21.2/- 21.7 /- 64.6/- 354/- 352/-
TransferQA TS5 770M 31.2/60.6 22.7/77.8 263/81.7 619/865 36.7/87.2 358/78.8
Prompter PPTOD 60.5M 35.8/- 19.2/- 26.0/- 66.3/- 39.0/- 37.3/-
D3ST TS5 220M 56.4/- 21.8/- 38.2/- 78.4 /- 37.71/- 46.5/ -
CAPID TS5 2204+460.5M 409/69.0 31.1/72.6 31.6/69.1 65.4/83.8 343/659 40.7/72.1
CAPID TS5 2204220M  333/644 43.5/833 37.1/752 87.1/920 49.5/73.4 50.1/77.7
Ours Qwen2.5 494M 65.4/81.9 54.2/90.1 52.7/854 84.1/949 485/834 61.0/87.1
DOT TS5 11B 61.1/- 27.6/- 64.3/- 46.9/ - 49.7/ - 499/ -
DOT Llama2 13B 66.6 /- -/- 67.2/- 48.8 /- 66.5/ - 58.5/-
FNCTOD Llama2 13B 62.2/- 46.8/ - 60.3/- 67.5/- 60.9/ - 59.5/-
SDT T5 11B 74.4/ - 339/- 72.0/ - 86.4 /- 62.9/- 65.9/-
LDST Llama2 7B 75.6/ - 63.3/- 7371 - 91.5/- 75.0/- 75.8 /-
CAPID T5+Llama2 7B+220M 83.6/92.6 71.6/94.2 77.5/953 91.2/96.0 90.0/97.8 82.8/95.2
Ours Qwen2.5 3B 753/89.7 64.7/93.0 75.6/955 865/93.6 78.7/957 76.1/93.5
IC-DST Codex >100B 62.1/- 53.2/- 549/ - 71.9/- 514/- 58.7/-
FNCTOD GPT-4 >100B 58.8/- 45.1/- 63.2/- 76.4/ - 69.5/- 62.6/-
RefPyDST  Codex >100B 62.1/- 56.6/ - 68.2/- 71.9/- 76.1/ - 68.8 /-
Table 1: Evaluation Results on MultiwOZ 2.1 dataset
Attraction Hotel Restaurant Taxi Train Average
Method Model Parms <G ATAGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA JGA/AGA

CAPID TS5 2204+60.5M 479/743 38.7/77.1 294/679 733/882 479/744 474/764
CAPID T5 2204220M  22.8/59.3 31.3/79.0 39.1/78.7 89.3/93.8 56.7/769 47.9/717.5
Ours(SFT only) Qwen2.5 494M 24.9/60.1 284/675 31.5/737 632/767 354/74.1 36.7/70.4
Ours(SFT with CoT) Qwen2.5 494M 18.0/58.1 21.7/570 273/632 675/79.2 28.7/723 32.6/66.0
Ours Qwen2.5 494M 69.7/84.5 54.4/90.1 54.0/89.5 855/952 49.4/83.0 62.6/88.5
DOT T5 11B 68.1/- 32.0/- 723/ - 50.6/ - 55.8/- 55.717-
DOT Llama2 13B 76.8/ - 56.4/- 78.8 /- 547/ - 76.1/ - 68.6/ -
CAPID T5+Llama2 7B+220M 84.4/93.1 71.3/945 79.1/954 91.6/96.0 89.6/97.6 83.2/953
Ours Qwen2.5 3B 79.2/945 652/952 754/959 852/941 794/955 76.9/95.0
IC-DST Gpt Codex >100B 60.0/- 46.7/ - 5731/- 71.3/- 494/ - 56.9/-
ParsingDST Gpt-3.5 >100B 65.6/- 46.8/ - 67.7/ - 80.6 /- 62.6/ - 64.7 / -
RefPyDST Gpt Codex  >100B 709/ - 51.2/- 65.6/- 67.1/- 69.2 /- 64.7 / -

Table 2: Evaluation Results on MultiWwOZ 2.4 dataset
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Figure 3: Comparison of reward distributions for exact
and fuzzy match functions

4 Experiment

4.1 Evaluation Dataset and Metrics

To evaluate our zero-shot cross-domain
DST RL approach, we use the MultiwOZ
dataset (Budzianowski et al., 2018). We adopt
MultiwOZ 2.1 (Eric et al., 2020) and MultiwOZ

2.4 (Ye et al., 2022), with the latter providing
refined annotations for better evaluation relia-
bility. We assess performance using Joint Goal
Accuracy (JGA) (Budzianowski et al., 2018),
which requires all slot-value pairs to match ground
truth for correctness, and Average Goal Accuracy
(AGA) (Rastogi et al., 2020), which measures
individual slot prediction accuracy, offering
insights into partial correctness and slot-level
adaptability.

4.2 Evaluation Baseline

Our approach is benchmarked against existing
cross-domain zero-shot methodologies. And we
adopt the standard evaluation protocol for cross-
domain zero-shot DST: training models on the Mul-
tiWOZ dataset with one domain excluded and test-
ing on the held-out domain.

For a fair comparison, we categorize the base-
line methods into three groups based on model
parameter sizes: models with fewer than 1B pa-



rameters, models with 1B to 100B parameters, and
close-souce Large LLMs (>100B). In the <1B cate-
gory, we compare our approach with ELMo-based
TRADE (Wu et al., 2019b), T5-based T5DST (Lin
et al., 2021b), TransferQA (Lin et al., 2021a),
Prompter (Aksu et al., 2023), D3ST (Zhao et al.,
2022), and CAPID (Dong et al., 2024b). For the 1B
to 100B range, we evaluate against T5-11B-based
DOT (Finch and Choi, 2024) and SDT (Gupta et al.,
2022), as well as LLaMA-based FNCTOD (Li
et al., 2024) and LDST (Feng et al., 2023). In
the >100B category, we benchmark against IC-
DST (Hu et al., 2022), RefPyDST (King and Flani-
gan, 2023), and ParsingDST (Wu et al., 2023). No-
tably, >100B models are often closed-source large
LLMs that cannot undergo SFT, so these methods
typically employ a few-shot strategy during evalua-
tion.

4.3 Implementation Details

We selected the Qwen2.5-0.5B and Qwen2.5-3B
models (Yang et al., 2024) as our base small LLMs
due to their efficiency in low-resource environ-
ments, offering a practical alternative to larger 7B
models used in prior studies. For CoT distillation,
we employed the QwQ-32B model (QwenTeam,
2025) to generate CoT reasoning for the hotel and
train domains, distilling 2,000 samples per domain.
The small LLMs were then trained via SFT to in-
herit this reasoning capability. We assessed the
MultiWOZ dataset’s difficulty using 2-fold vali-
dation with a fine-tuned Qwen?2.5-0.5B model to
calculate initial difficulty scores.

In the RL stage, we utilized Dynamic Difficulty
Sampling with initial parameters ;1 = 0.75 and
o = 0.15. Reward thresholds were set at 0.7 for
the 0.5B model and 0.75 for the 3B model, with
step sizes of us = 0.05 and o5 = 0.01. To prevent
over-sampling, we enforced minimum values of
Pmin = 0.3 and oy, = 0.05. For the weighted
fuzzy matching function, both the fuzzy and partial
matching ratios were set to 0.8. Experiments were
conducted using Llama-factory (Zheng et al., 2024)
for SFT and Verl (Sheng et al., 2024) for RL, with
detailed hyperparameters provided in the appendix
B.

4.4 Experiment Results

To evaluate our zero-shot cross-domain DST ap-
proach, we first address the choice of query strat-
egy. Prior methods use either per-domain or per-
slot queries. While per-slot queries simplify the

task and improve accuracy (e.g., in LDST (Feng
et al., 2023), DOT (Finch and Choi, 2024), and
CAPID (Dong et al., 2024b)), they incur high com-
putational costs. For instance, in a 12-turn hotel
domain dialogue with 10 slots, per-slot queries re-
quire 60 queries versus 6 for per-domain. We adopt
the per-domain strategy for its efficiency, despite
its complexity. More details are discussed in Ap-
pendix C.

Our results on MultiwOZ 2.1 and 2.4 are shown
in Table 1 and Table 2. For models with fewer than
1B parameters, our Qwen2.5-0.5B (494M) model
achieves state-of-the-art performance, with an aver-
age JGA of 61.0% on MultiWwOZ 2.1 (vs. CAPID’s
50.1%) and 62.6% on MultiWwOZ 2.4 (vs. CAPID’s
47.9%). This reflects superior accuracy and adapt-
ability in lightweight settings. For the 1B to 100B
range, our Qwen2.5-3B model scores 76.1% JGA
on MultiWOZ 2.1 and 77.7% JGA on MultiWwOZ
2.4, closely rivaling CAPID’s 7B model, matching
top baselines with half parameters.

We also compare our RL-based approach with
SFT and CoT distillation on the Qwen2.5-0.5B
model. Table 2 shows SFT alone achieves 36.7%
JGA, and SFT with CoT only reaches 32.6% JGA,
both well below our RL method. CoT distillation
particularly struggles in unknown domains, high-
lighting small LLMs difficult to learn CoT from
large LLMs. These results demonstrate that RL
with test-time scaling outperforms traditional meth-
ods, leveraging small LLMs’ reasoning potential
more effectively for cross-domain DST.

5 Ablation Study

5.1 Handing Imbalance Difficulty and Sparse
Reward

To assess the effectiveness of sampling strategies in
RL-based DST post-training, we used the Qwen2.5-
0.5B model and the MultiWOZ 2.4 dataset. We
conducted zero-shot testing, where the model gen-
eralizes to unseen domains without prior training,
on the hotel and train domains. For evaluation, we
used per-turn JGA, which measures the correctness
of all slot-value predictions at each dialogue turn.
We compared three sampling strategies: (1) ran-
dom sampling (baseline), (2) static moderate dif-
ficulty sampling (selecting 8,000 data points with
difficulty scores between 0.1 and 0.8), and (3) our
proposed dynamic difficulty sampling. Figure 4
shows that our dynamic method converged faster
(at 200 steps) and achieved higher JGA than the



JGA (per turn)

—s— Random Sampling

—=-- Moderate Difficulty Sampling
Dynamic Difficulty Sampling
Max (Random): 0.72
Max (Moderate): 0.72
Max (Dynamic): 0.74

150
Step

Figure 4: Comparison of Average convergence speed
and JGA across different sampling strategies on hotel
and train domain

Reward Function JGA (turn level) Steps
JGA (Exact Match) 0.45 500+
AGA (turn-level) 0.68 320
+ fuzzy matching 0.65 240
+ weighted slot 0.71 180
+ partial factor (ours) 0.74 200

Table 3: Comparison of different reward function, AGA
refers to turn-level partial match

alternatives. Static sampling outperformed random
sampling, confirming the importance of address-
ing imbalanced difficulty in DST datasets. How-
ever, it risked overfitting due to its fixed data pool,
while our adaptive approach adjusted to the model’s
progress, proving more effective.

Next, we explored reward functions’ impact on
RL-based DST performance, using the same model,
dataset, and dynamic sampling. Table 3 summa-
rizes the results after a maximum of 500 train-
ing steps. Using JGA directly as the reward led
to slow convergence, with gains continuing past
500 steps. Turn-level AGA, which rewards slot-
level correctness, markedly improved performance.
Adding fuzzy matching—rewarding semantically
similar predictions speed up convergence further.
Incorporating weighted slots (emphasizing harder
slots) and partial credit (for partially correct predic-
tions) resulted in the highest JGA of 0.74 at 200
steps. These enhancements, combined in our Fuzzy
Match Reward function, boost both efficiency and
accuracy.

Our approach tackles the challenges of imbal-
anced difficulty and sparse rewards, enhancing
zero-shot cross-domain DST with small language
models like Qwen2.5-0.5B.
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Figure 5: Comparison of reasoning length and JGA
between models with and without initial SFT.

5.2 Direct RL Training without SFT for small
LLMs

While larger LLMs can benefit from direct RL train-
ing without initial SFT (Shao et al., 2024), the effec-
tiveness of this approach for small LLMs remains
underexplored. This section evaluates whether
small LLMs can achieve similar gains in DST tasks
when RL is applied directly to the base model.

We conducted experiments using the Qwen2.5-
0.5B and Qwen2.5-3B models within an
instruction-based, one-shot in-context learning
framework for RL post-training without SFT.
In this framework, the model receives a single
example (one-shot) within the input prompt to
guide its predictions during RL training.

Our results highlight significant limitations for
small LLMs without SFT. The Qwen2.5-0.5B
model struggled to generate meaningful learning
rewards, producing repetitive and nonsensical out-
puts. As a result, we do not report its results. The
Qwen2.5-3B model showed some learning capabil-
ity, achieving a JGA of 0.67, but this remained infe-
rior to the SFT-initialized model’s JGA of 0.79. As
illustrated in Figure 5, models with initial SFT pro-
duce longer, more accurate responses (averaging
420 tokens) compared to those trained with direct
RL alone, which exhibit limited reasoning (averag-
ing 120 tokens) and suboptimal performance.

These findings suggest that, unlike larger LLMs,
small models rely on initial SFT to build the reason-
ing capacity needed for effective DST reasoning.



6 Related Work
6.1 Zero-shot Cross-domain DST

Traditionally, zero-shot cross-domain DST re-
search focused on optimizing model architectures
to enable generalization across dialogue domains
without domain-specific training (Wu et al., 2019b;
Lin et al., 2021a; Wang et al., 2021). The emer-
gence of LLMs has shifted the paradigm due to
their robust generalization capabilities. Recent
studies have prioritized generating informative
prompts or synthetic data to enhance zero-shot
cross-domain DST performance, typically through
SFT in an imitation learning framework. Hu et al.
(2022) explored in-context learning for few-shot
DST, which can be adapted to zero-shot settings by
providing contextual examples. Dong et al. (2024b)
introduced context-aware auto-prompting and con-
trastive decoding to improve LLM performance in
cross-domain DST. Finch and Choi (2024) gener-
ated diverse synthetic data to make zero-shot DST
more adaptable, further leveraging SFT to align
models with task requirements. However, the ap-
plication of RL to optimize test-time scaling and
enhance reasoning during inference remain largely
unexplored in DST. Our work addresses this gap
by investigating RL-driven optimization for small
LLMs in zero-shot cross-domain DST, aiming to
balance performance and practicality.

6.2 Verifiable Reinforcement Learning

Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022), particularly using
Proximal Policy Optimization (PPO) (Schulman
et al., 2017), has been shown to significantly im-
prove LLMs’ generalization and output quality.
Building on this, OpenAl (OpenAl, 2024) demon-
strated that RL can enhance LLMs’ reasoning ca-
pabilities, implementing test-time scaling to pro-
duce more accurate responses. However, these
methods require extensive human-annotated rea-
soning data, which is costly and difficult to ob-
tain, limiting their scalability. To address this
challenge, recent research has introduced rule-
based verifiable RL approaches such as ReMax (Li
et al., 2023),RLOO (Ahmadian et al., 2024) and
GRPO (Shao et al., 2024) that reduce reliance on
external data. These methods enable base LLMs
to self-generate high-quality reasoning tokens, sup-
porting accurate outputs. Despite their success, ver-
ifiable RL methods have rarely been applied to DST
tasks, particularly with small LLMs. Our study

fills this gap by applying GRPO to optimize small
LLMs for zero-shot cross-domain DST, demon-
strating a scalable and resource-efficient approach.

7 Conclusion

This study introduces an innovative verifiable RL-
based approach to improve zero-shot cross-domain
DST using small LLMs. By implementing Dy-
namic Difficulty Sampling and Difficulty-Weighted
Fuzzy Match Reward Function, we tackle issues
like imbalanced difficulty and sparse rewards in
DST datasets. Optimized with a modified GRPO al-
gorithm, our method achieves top-tier performance
among models under 1 billion parameters, rivaling
larger models on MultiWOZ 2.1 and 2.4. These
findings underscore the viability of small LLMs
for efficient, scalable dialogue systems. This work
bridges a gap in RL applications for DST and offers
a pathway to resource-efficient solutions, enhanc-
ing real-world deployment where computational
limits are critical.

Limitations

While effective, our approach has constraints.
small LLMs, though competitive, underperform
larger models in some domains. RL training de-
mands significant computational resources, poten-
tially limiting accessibility. The method’s reliance
on fine-tuned hyperparameters in sampling and re-
ward functions may hinder reproducibility across
different datasets. Additionally, its applicability be-
yond DST to other tasks requires further validation.
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A Prompt Template

In this
used

section, we list the prompt we
in our proposed DST RL strategy.
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Prompt for DST CoT distilling from large
LLMs:

You are an expert in Dialogue State Track-
ing (DST). Your task is to generate chain of
thought for solving provided DST tasks.

## Instructions:

- Generate your chain of thought that helps to
arrive at the provided dialogue state in target
domain.

- Pay more attention to the difficult and com-
plex dialogue states, and less attention to the
easy ones.

- If the dialogue is not related to the target
domain(the ground trues dialogue states are all
None), please indicate that in your CoT with
short explaination.

- The length of CoT should be in 100 to 500
words.

## Input:

- Target Domain:

{domain}

- Dialogue:

{dialogue}

- Related Slots and explanations:

{slots}

- The ground trues dialogue states:
{dialogue_state}

## Output Format:

- Generate answer in <think> tags. Example:
<think>Your CoT...</think>

Now, analyze the given content and generate
your chain of thought.
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Prompt for small LLM generate both CoT
and DST results:

For the given dialogue, generate step-by-step
reasoning and determine the dialogue state for
the domain {domain}.

## Input:

- Target Domain:

{domain}

- Dialogue:

{dialogue}

- Related Slots and explanations:

{slots}

## Output Format:

Output your reasoning in <think> tag and the
dialogue state in <answer> tag using following
format:

<think>your reasoning..</think>
<answer>slot1:valuel,slot2:value2</answer>
Now, analyze the given content and generate
your step-by-step reasoning and determine the
dialogue state:

B Detail Hyperparameter

In this appendix, we provide the detailed hyperpa-

rameter settings used in our experiments for both
Supervised Fine-Tuning (SFT) and Reinforcement

Learning (RL) tasks. All experiments were con-

ducted on a 4*H100 cluster.

B.1 Supervised Fine-Tuning (SFT)

For SFT tasks, we utilized the llama-factory tool as
our fine-tuning framework. The hyperparameters
are listed in Table 4.

Table 4: Hyperparameters for SFT tasks

Hyperparameter Value

per_device_train_batch_size 1

gradient_accumulation_steps 10
learning_rate 1.0e-5
num_train_epochs 3.0
Ir_scheduler_type cosine
warmup_ratio 0.1

B.2 Reinforcement Learning (RL)

For RL tasks, we utilized the verl framework with

vLLM as the rollout tool. The hyperparameters are
listed in Table 5.
For more details, please refer to our code.



Table 5: Hyperparameters for RL tasks

Hyperparameter Value
TRAIN_BATCH_SIZE 512
MAX_PROMPT_LENGTH 1280
MAX_RESPONSE_LENGTH 2048
LEARNING_RATE le-6
TEMPERATURE 1.0
ROLLOUT_N 5

C Efficiency Analysis of Per-Domain and
Per-Slot Query Strategies

In this section, we evaluate the efficiency of per-
domain and per-slot query strategies with respect
to computational resource utilization, focusing on
token usage and the number of queries required. As
outlined in Section 4.4, the per-slot query strategy,
while simplifying the problem and potentially en-
hancing accuracy, introduces a substantial compu-
tational burden by necessitating individual queries
for each slot at every turn. To assess this trade-off
quantitatively, we compare a representative per-
slot query method, LDST, with our proposed per-
domain query model, which is built upon Qwen2.5-
0.5B. Two variants of our model are examined: one
employing SFT without CoT reasoning, and an-
other incorporating RL post-training with CoT rea-
soning. The evaluation is conducted using 100 ran-
domly selected dialogues from the MultiwOZ2.4
training set.

The efficiency metrics, including the average
number of tokens used for prompts, responses, to-
tal tokens, and the average number of queries per
dialogue, are summarized in Table 6 below.

The results reveal a marked disparity in com-
putational efficiency between the two strategies.
The per-slot query approach, exemplified by LDST,
consumes an average of 37510 total tokens and re-
quires 77.5 queries per dialogue. In contrast, our
per-domain query strategy without CoT reasoning
utilizes only 4665.5 total tokens and 7.75 queries,
reflecting reductions of approximately 87.6% in
token usage and 90% in query count. Even when
enhanced with CoT reasoning, which increases to-
ken consumption due to the generation of reasoning
steps, our per-domain model requires 7982.5 total
tokens—still significantly lower than the per-slot
strategy.
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D Example Result

In this section, we including some fail case from
Qwen2.5-0.5B CoT DST model in hotel domain.
The incorrect reasoning will be marked as red.



Table 6: Efficiency comparison of query strategies in terms of token usage and query count

Query type  Method Avg. Prompt Avg. Response Avg. total Avg. #Query
Per Slot LDST 36657.5 852.5 37510 71.5
Per Domain  Ours (DST only) 3975.75 689.75 4665.5 7.75
Per Domain Ours (CoT) 4247 3735.5 7982.5 7.75

LLM hallucination on no existing slots

<think>The dialogue revolves around the user requesting a place to stay (hotel) in the north side of
town, specifically asking for a hotel with a star of 4, free parking, and free wifi. Let’s break down the
dialogue to identify the relevant slots for the hotel domain.

1. Initial Request for Hotel: The user transitions from requesting a train to requesting a hotel. The
key statement is: "I would like a place to stay that is in the north side of town. [SYSTEM]: I can
certainly help you with that. There are many accommodations on the north side of town. Do you have

any preferences?" This explicitly sets the ‘hotel_area‘ to "north" and the _

The user specifies "north side of town," which directly sets the

2. Hotel Domain Establishment: The user explicitly states: "I would like a place with a star of 4 that
includes free parking and free wifi." This directly sets the ‘hotel_stars* to "4" and the ‘hotel_internet*
to "yes." The mention of "free parking" and "free wifi" clearly sets ‘hotel_parking‘ and ‘hotel_internet
to "yes."

3. Hotel Domain Details: The user specifies "moderate hotel with free wifi and parking." This
sets ‘hotel_parking‘ to "yes" and ‘hotel_pricerange‘ to "moderate.” The mention of "moderate hotel"
indicates a moderate price range, which is captured in ‘hotel_pricerange‘. The phrase "free wifi and
parking" directly sets ‘hotel_internet‘ to "yes" and ‘hotel_parking* to "yes."

4. Hotel Domain Validation: The user’s request for a hotel is explicitly confirmed by the system,
and no new slots are added. The user’s focus on hotel details (e.g., area, price, parking) is directly
mapped to the corresponding slots. The absence of any other slots (e.g., date, number of people, stay)
is checked, and all these slots are correctly filled based on the dialogue.

5. Conclusion: The dialogue state correctly reflects the user’s explicit requirements for the hotel
domain, including the slot values specified by the user. No ambiguities arise. The user’s request for a
hotel is directly addressed, and all relevant slots are properly populated based on the dialogue.</think>

<answer>hotel_area:north, hotel_book-day:NONE, hotel_book-

people:NONE, hotel_bookstay:NONE, hotel_internet:yes, ho-

tel_name:NONE, hotel_parking:yes, hotel_pricerange:moderate, hotel_stars:4,
</answer>
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Misunderstanding on Yes, No and None option.

<think>The dialogue revolves around the user seeking a hotel in the centre of Cambridge for a cheap
price range. The target domain is "hotel", so we focus on the hotel-related slots.

1. Hotel Domain Analysis: The user’s query is strictly about a hotel, so the hotel-related slots
(hotel_name, hotel_parking, hotel_book-day, hotel_book-people, hotel_book-stay, hotel_area, ho-
tel_price, hotel_internet, hotel_star, hotel_type) are directly addressed. The user specifies "Alexander
Bed and Breakfast" as the hotel, so "hotel_name" is clearly "Alexander Bed and Breakfast".

2. Hotel Book-Day: The user selects "Sunday" for the hotel stay, so "hotel_book-day" is "sunday".
3. Hotel Book-People: The user confirms "2 people" for the hotel, so "hotel_book-people" is "2".
4. Hotel Book-Stay: The user specifies "2 nights" for the hotel, so "hotel_stay" is "2".

5. Hotel Price Range: The user specifies "cheap price range" for the hotel, so "hotel_pricerange" is
"cheap".

6. Hotel Area: The user mentions "centre" for the hotel, so "hotel_area" is "centre".

7. Hotel Internet:

The user’s query is strictly about a hotel, and the dialogue is exclusively about hotel booking. The
hotel slot is clearly addressed by the user, and all other slots are directly derived from the user’s
explicit specification. The absence of any other mentions or requirements related to the hotel (e.g.,
room type, schedule, or amenities) results in the dialogue state being straightforward.</think>
<answer>hotel_area:centre, hotel_book-day:sunday, hotel_book-people:2, hotel_book-stay:2,
hotel_internet:no, hotel_name:alexander bed and breakfast, hotel_parking:NONE, ho-
tel_pricerange:cheap, hotel_stars:NONE, hotel_type:NONE </answer>

LLM confused on hotel and guesthouse. the hotel is refer to domain hotel and also for a type of
hotel_type slot.

<think>The dialogue revolves around the user seeking a cheap hotel. The target domain is "hotel", so
we focus on the relevant slots.

1. **Hotel Domain Identification**: The user explicitly mentions "cheap guesthouse" and "cheap
hotel" as requirements. The system provides "Alexander Bed and Breakfast" as the hotel, and the
user’s query is about a cheap hotel. The domain is "hotel", so all slots related to the hotel are
addressed.

2. **Slot Analysis**: - **Hotel Name**: The user specifies "Alexander Bed and Breakfast" as
the hotel. This directly fills the ‘hotel_name* slot. - **Hotel Price Range**: The user specifies
"cheap" for the hotel, so ‘hotel_pricerange® is "cheap". - **Hotel Book-Day**: The user does not
mention a specific day for checking in. The guesthouse is booked for Friday, but the hotel is not

tails are not mentioned in the hotel context.

3. **No Other Slots**: The user’s query is strictly about a hotel, and the system provides de-
tails about the hotel. There is no mention of the hotel’s area, booking day, or other parameters.
[ The guesthouse’s deails (e.g., parking, WiFi) are unrelated io the hotel domin |

The dialogue is strictly about the user seeking a cheap hotel, and the relevant slots are directly
addressed. There is no overlap with the guesthouse’s details, so all slots related to the hotel
are properly populated.</think><answer>hotel_area:NONE, hotel_book-day:NONE,hotel_book-
people:NONE  hotel_book-stay:NONE,hotel_internet: NONE ,hotel_name:NONE,hotel_parking:NONE,
hotel_pricerange:cheap,hotel_stars:NONE, hotel_type:NONE</answer>
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