EXPLORING THE LINK BETWEEN
OUT-OF-DISTRIBUTION DETECTION AND CONFORMAL
PREDICTION WITH ILLUSTRATIONS OF ITS BENEFITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Research on Out-Of-Distribution (OOD) detection focuses mainly on building
scores that efficiently distinguish OOD data from In Distribution (ID) data. On the
other hand, Conformal Prediction (CP) uses non-conformity scores to construct
prediction sets with probabilistic coverage guarantees. In other words, the former
designs scores, while the latter designs probabilistic guarantees based on scores.
Therefore, we claim that these two fields might be naturally intertwined. This
work advocates for cross-fertilization between OOD and CP by formalizing their
link and emphasizing two benefits of using them jointly. First, we show that in
standard OOD benchmark settings, evaluation metrics can be overly optimistic due
to the test dataset’s finite sample size. Based on the work of Bates et al.| (2022),
we define new conformal AUROC and conformal FPR@TPR95 metrics, which are
corrections that provide probabilistic conservativeness guarantees on the variability
of these metrics.We show the effect of these corrections on two reference OOD and
anomaly detection benchmarks, OpenOOD |Yang et al.| (2022) and ADBench Han
et al.| (2022). Second, we explore using OOD scores as non-conformity scores and
show that they can improve the efficiency of the prediction sets obtained with CP.

1 INTRODUCTION

Even though current Machine Learning (ML) and Deep Learning (DL) models are able to perform
several complex tasks that previously only human beings could, we are still a step away from their
widespread adoption in safety-critical applications. Indeed, it is difficult to certify an ML component,
mainly due to the poor control of the circumstances that may provoke such a ML component to
fail. Out-of-Distribution (OOD) detection tries to tackle this problem by identifying data that differs
significantly from the data used to train the model at runtime. Besides being recognized as an essential
step in the certification of ML systems by multiple certification authorities (see, e.g., Sections 5.3
and 8.4 of [Balduzzi et al.|(2021) or Section 5.1 of EASA & Daedalean|(2024)), OOD detection is a
very active branch in machine learning research.

Current OOD detection strategies rely on constructing an OOD score s, a function that assigns a
scalar to each input example. This score discriminates between in-distribution (ID) data and OOD
data by assigning lower scores to the former and higher scores to the latter.

When OOD detection is used in a machine learning pipeline to identify examples that differ from
the data the model has been trained on, there is a natural qualitative interpretation of OOD detection
in terms of model uncertainty. For instance, an example with a low OOD score should be one for
which the model can predict with low uncertainty, while an example with a high OOD score should
be linked to a highly uncertain prediction.

Conformal Prediction (CP) is a family of post-hoc methods for Uncertainty Quantification and
Uncertainty Representation (Caprio et al.|(2024), that work as wrappers over machine learning models,
transforming point predictions into prediction sets with rigorous probabilistic guarantees based on
so-called nonconformity scores. The user pre-specifies a risk level o, and the constructed prediction
set is guaranteed to contain the ground truth value with a probability of at least 1 — .. Since CP is
a way of providing rigorous uncertainty quantification guarantees built upon scores, it is natural to
apply it to the scores used in OOD detection. The main purpose of our work is to dig into the



Conformal Prediction interpretation of OOD detection scores and show some of its advantages
for both Conformal Prediction and OOD detection.

To that end, we first follow the work of |Bates et al.|(2022) on outlier detection and apply their ideas
to OOD detection. Bates et al.|(2022) cast the OOD detection problem into the statistical framework
of hypothesis testing. They show that the p-values, built with a calibration dataset, are provably
marginally valid but depend on the choice of the calibration dataset, and so is the False Positive
Rate (FPR) derived from these p-values. One of the main contributions of our work is to explore the
consequences of this effect for OOD detection and to propose alternative conformal AUROC and
conformal FPR@TPR95 metrics.

The relevance of the new metrics we propose is best appreciated in the context of safety-critical
applications, or in an eventual certification process of an OOD detection component. The true AUROC
or FPR metrics are inaccessible for a given OOD score, and we can only provide an approximation
obtained from a finite dataset. However, this can introduce fluctuations in our approximation, thus
overestimating or underestimating the true metrics. In a certification process, we are mainly interested
in guaranteeing that our estimations are conservative with high probability, at the expense of losing
some approximation precision [EASA/ (2023), which is precisely what Conformal AUROC and
Conformal FPR do. We show the effect of these new metrics on two large reference benchmarks,
the OOD benchmark OpenOOD |Yang et al.|(2022)), and the anomaly detection benchmark Han et al.
(2022).

Second, we show that not only can CP contribute to OOD detection, but research in OOD detection can
also help CP. Indeed, CP has traditionally focused on constructing prediction sets from nonconformity
scores. Still, the scores used are usually simple functions of the softmax scores for classification tasks
or classical distances in Euclidean space for regression tasks. Here, we draw inspiration from the
OOD detection literature to build more involved nonconformity scores and compare their performance
to the traditional nonconformity scores of CP. For the task of classification, we build prediction sets
based on multiple different OOD scores and find that some of them, notably Mahalanobis |Leys et al.
(2018) or KNN [Sun et al.|(2022), are good candidates as nonconformity scores.

Ultimately, one of the key messages of this work is that since OOD is concerned with designing scores
and conformal prediction with interpreting these scores, the two fields may be inherently intertwined.
Highlighting this relationship might offer significant potential for cross-fertilization.

Our contributions can be summarized as follows:

* We cast the OOD detection problem into the framework of statistical hypothesis testing and
apply the ideas of Bates et al.|(2022)) to correct OOD scores and propose new conformal
AUROC and conformal FPR @TPR95 metrics, which are provably conservative with high
probability.

* We show the effect of conformal AUROC and conformal FPR in the reference benchmarks
OpenOOD |Yang et al.| (2022)) and ADBench Han et al.|(2022).

* We build new nonconformity scores for CP based on OOD and perform a comparison
between the scores. We find that the Mahalanobis score outperforms the classical CP score.

* We point out that OOD and CP are two domains that have much to contribute to each other
and advocate for further research exploring this link.

2 BACKGROUND

Out-of-Distribution Detection Given n examples, {x1,...,z,} sampled from a probability
distribution P;4 on a space X, and a new data point &, 1, the task of Out-of-Distribution (OOD)
detection consists in assessing if &, was sampled from P;4 - in which case it is considered
In-Distribution (ID) - or not - thus considered OOD.

The most common procedure for OOD detection is to construct a score s : X — R and a threshold 7
such that:

{wnﬂ is declared OOD if s(xy41) > T )

@nv1 isdeclared IDif s(xp11) < T
We call s an OOD score.



Task-based OOD This is the most common approach in the literature regarding OOD detection for
neural networks. It also encompasses Open-Set Recognition. Let’s consider that &; can be assigned a
label y; so that we can construct a dataset {(1,41), ..., (€n, yn)} defining some supervised deep
learning task. In that case, P;q := Prrqin. Task-based OOD uses representations built by the neural
network f throughout its training to design s. Many sophisticated methods follow this approach|Yang
et al.[(2021). A simple example is to take the negative maximum of the output of f (after the softmax)
Hendrycks & Gimpel (2018) as an OOD score (s(#,,41) = — max (f (,,41)) where max(x) is the
highest component of the vector . Another simple idea is to find the distance to the nearest neighbor
in some intermediate layer of f|Sun et al|(2022).

Task-agnostic OOD This approach encompasses One-Class Classification and Anomaly/Outlier
Detection. Let’s consider a dataset {x1, ..., ®,} in a fully unsupervised way. There is no notion of
labels, so we have to approximate P;4 somehow or some related quantities from scratch. Examples
are GANs or VAEs with s defined as reconstruction error. See |Yang et al.|(2021)) for a thorough
review.

Conformal Prediction Few Machine Learning and Deep Learning models provide a notion of
uncertainty related to their predictions. Even the models trained for classification tasks providing
softmax outputs, which can be interpreted as the probabilities for the input belonging to the different
classes, are usually ill-calibrated and overconfident, making the softmax output an incorrect proxy
of the true uncertainty of the prediction. [Pearce et al.| (2021). Conformal Prediction (CP) Vovk
et al.| (2005); Angelopoulos & Bates| (2022)) is a series of post-processing uncertainty quantification
techniques that are model-agnostic and provide finite-sample guarantees on the model predictions.
One of the simplest CP techniques, the split CP, works as a wrapper on a trained model f. It requires
a calibration dataset {(€n+1, Yn+1)s - - - s (Tntney Yntney ) | independent of the training data, and a
risk (or error rate) « that the user can tolerate. Based on so-called nonconformity scores computed on
the calibration dataset, it builds a prediction set C (€14 n,,+1) for a new test sample &, 4, +1 With
the following finite sample guarantee

P (y7z+nwl+1 S C(, (xn+ncul+1)) > 1—a. (2)

To obtain the guarantee equation (2), the only assumption required is that the calibration and test data
form an exchangeable sequence (a condition weaker than, and therefore automatically satisfied by
independence and identical distribution)Shafer & Vovk](2008)) and that they are independent of the
training data. It is essential to know that the guarantee equation (2) is marginal, i.e. holds in average
over both the calibration dataset and the test sample choice. As we shall emphasize, there might be
fluctuations due to the finite sample size of the calibration dataset.

3 RELATED WORKS

In this work, we study the potential of using Conformal Prediction as a statistical framework for
interpreting OOD scores. This idea of casting OOD in a statistical framework has already been
attempted in different settings.

Selective Inference and Testing Selective Inference works on top of an ML predictor by using
an additional decision function to decide for each example whether the original model’s prediction
should be considered. A score equivalent to an OOD score is used to define this decision function.
Several approaches exist, for instance, through building a statistical test [Haroush et al.|(2022) or by
training a neural network with an appropriate loss |Geifman & El-Yaniv|(2017;2019). However, the
framework of Conformal Prediction appears better suited to our goal since it applies to scores in a
post-processing manner, does not require assumptions or modifications on the model, and benefits
from dynamic development in the ML community.

Conformal OOD and AD Conformal Prediction has been previously applied to Out-of-Distribution
and Anomaly Detection. For instance, Liang et al.| (2022) have proposed a method based on CP
for OOD with labeled outliers, and Kaur et al.| (2022)) propose to use conformal p-values. CP
is one of several frameworks that allow obtaining statistical guarantees for OOD detection. One
of the first methods for Anomaly Detection was introduced by [Vovk et al.| (2003). Since then,
several other methods have been proposed by |Laxhammar & Falkman!(2011); \Laxhammar| (2014);



Balasubramanian et al.|(2014), as well as more recently |Angelopoulos & Bates| (2022)); (Guan &
Tibshirani| (2022), where the lengths of the prediction sets as OOD scores. These works all use the
standard CP setting, in which basic marginal guarantees are obtained. We go further on this approach
by using CP as a probabilistic tool to refine the interpretation and, hence, the usefulness of any OOD
score.

Finding Efficient Scores for Conformal Prediction We also investigate the benefits of using OOD
scores as non-conformity scores in CP. Common ways to build prediction sets for classification, such
as LAC |Sadinle et al.[|(2019) or APS Romano et al.|(2020) and RAPS |Angelopoulos et al.| (2020)
are based on the softmax output of classifiers. However, non-conformity scores also exist for other
predictors Vovk et al.| (2005), for instance, based on nearest neighbor distance Shafer & Vovk! (2008).
In this work, we suggest interpreting any OOD score as a potential general replacement for scores
in CP, opening a large avenue for CP score crafting. This idea could apply to any ML task, but we
demonstrate that on a classification task, to be consistent with the standard OOD benchmark settings
we follow in the present paper.

4 OOD SCORES THROUGH THE LENS OF CP

Let us begin by describing the typical benchmark setup for evaluating an OOD score. First,
an OOD detector is fit on Df-g“i" = {x1,...,z,}. Then, the OOD score is evaluated on
DI = {@pi1,- - Togng t and Doog = {Z1,...,&n,, }, Where Dyoq is a dataset sampled
from a different distribution P,,q # Piq (typically, another dataset). We apply s to obtain
{8(Z1),...,8(Tn), $(®nt1),---,8(Tniny,)}- Then, we assess the discriminative power of s by
evaluating metrics depending on a threshold 7. By considering ID samples as negative and OOD as
positive, we can compute:

* The Area Under the Receiver Operating Characteristic (AUROC): we compute the False
Positive Rate (FPR) and the True Positive Rate (TPR) for 7; = s(y44), ¢ € {1,...,nya},
and compute the area under the curve with FPR as x-axis and TPR as y-axis.

* FPR@TPRY95: The value of the False Positive Rate (FPR) when 7 is selected among
Tly..+yTn, SO that the True Positive Rate (TPR) is 0.95. It can be generalized to
FPR@TPR}J, for any 3 € (0,1).

A crucial step in any of these metrics is to compute the FPR. The FPR and its empirical estimation
FPR(7) are defined as follows:

FPR(7) = Pop, (s(2) 2 7),  FPR(T) = 37 Liaysr ®

i=1,...,Nval

4.1 OOD DETECTION AND P-VALUES

Let us now rewrite the problem of OOD detection using the framework of statistical hypothesis
testing. This framework allows us to reason in terms of p-values, which have multiple benefits:
they have a rigorous mathematical definition and probabilistic interpretation, they can be interpreted
equivalently for any score, and used for comparison of different scores. Given a test example T,
we wish to test for @ ~ Pjq, i.6. we wish to test the null hypothesis H : @ s ~ Piq against the
alternate hypothesis Hj : @iest 7% Pig. The value Ppp,,(s(2) > s(@es)) is an exact p-value for the
null hypothesis 7. Note that this p-value corresponds to FPR(s(@s)) as defined in equation (3).
Hence, the values FPR(7;) = FPR(s(@p41)), - .. ,F/PT{(TP) = F/PTQ(S(:I:WF%I)) used in every OOD
detection benchmark to compute the AUROC and FPR@TPR/3 can be considered as approximate
p-values. The relationship between the FPR and the p-values emphasizes the link between OOD
detection evaluation and hypothesis testing.

4.2 FLUCTUATIONS OF THE P-VALUE

This is where the framework of Conformal Prediction comes into play. Since we do not have access
to the distribution P;4, we approximate the FPRs (so the p-values) by using the validation dataset



Dy4!, which allows using two results from CP to improve the evaluation of the FPR. Note that DY!
can be related to the calibration dataset used in CP.

4.2.1 MARGINAL VALIDITY OF THE FPR

The first point that CP teaches us is that fluctuations in the scores of the validation dataset can lead
to over-confident estimations of the p-value. In order to avoid that, we have to use the correction
proposed by Bates et al.| (2022) (which can be originally traced to [Papadopoulos et al.| (2002)):

P e) = 1+an1< + 2 sw1>>sw>> “)

i=1... Ny

With this correction, if the &; are i.i.d and the distribution of s(x) under the ID law is continuous, we
obtain marginally valid p-values, that is, p-values that satisfy

Pyop,, (0™(x) < t) <t, forall 0<t<1. (5)

By marginally, we are pointing out that the probability in the above formula integrates over both the
validation set ijl and the test point x. This correction directly translates in terms of FPR. We can
correct equation (3) to obtain a new estimation that enjoys this property:

FPR(7) =

1+ nal (” > L >>r>- ©)

1=1... 1

However, the work of [Bates et al.| (2022)) tells us that the FPR may still be overly confident. We
discuss this point in the next section.

4.3 FLUCTUATIONS OF THE FPR

In this part, we mainly explain the work of Bates et al.| (2022) that emphasizes that the FPR fluctuates
depending on ijl. We illustrate this phenomenon in the context of OOD detection and adapt the
corrections proposed in [Bates et al.| (2022) to this field by defining new conformal AUROC and
conformal FPR@TPR}.

Note first that the FPR can also be defined using a threshold ¢ applied to the p-values as:
FPR(t, D) = Pyup,, (0™ (x) < t| D), @)

where ¢ € [0, 1]. The authors point out that due to the empirical estimation of ™2 (), the quantity
Pprp,, (U™¢(z) < t|Dyg') is a random variable that depends on DY

As a practical consequence, the FPR will fluctuate depending on which dataset ch‘;l it is evaluated.

The random variable FPR (¢, D¥%!) follows a distribution that is known: it is a Beta distribution that
depends on the parameters 7y, and ¢:

FPR(t, DY%) ~ Beta(l, nyy + 1 — £), (8)
where ¢ = | (nyy + 1)t] (cf. Bates et al.| (2022)) or|Vovk|(2012)) for a proof of the result).

4.3.1 ILLUSTRATION ON SVHN

To illustrate why this phenomenon matters in OOD detection, we leverage the fact that SVHN dataset
provides an additional set of 530000 extra test images. It allows the simulation of 53 draws of the
random variable F'(t; DZ’-’C‘;Z), by splitting the over 530000 examples in the svhn_extra dataset into 53
different folds of 10000 examples each. For each fold, the 10000 examples are used to constitute the
calibration dataset ng‘;l, whereas the remaining over 520000 examples are used to approximate the

computation of F, i.e., given a calibration dataset D}’;l,

- 1
val val
F(t; D) = F(t: Dy ) = 520000 E 1gmae () <t- ©
=1...520000




Due to the large number of points used in the
approximating sum, the 53 values obtained are

faithful approximations of the random variables 160 | — %0, = 2001
Pt Dii) g
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true p-value, the value of F(t; D%!) would be Y ppey

equal to 7, but as we can see from the theoretical

result and the experiment above, F° (t; Dif Nisa g gure 1: Histogram of F/(0.1; D¢4!) for different
random variable that fluctuates around its mean  ¢jibration sets. The histogram is obtained by split-
value 7. Thls phenqmepon can be detrimental t(,) ting the dataset svhn_extra into disjoint calibration
safety-critical applications, which are the appli-  ¢os of 10000 points each, and approximating the

cations of c.hoice for OOD detection. Indeed, it value of F' for each calibration set by integrating
may result in underestimating the FPR, whereas  yer the remaining 521131 examples.

we would like the FPR to be conservative.

4.3.2 PROBABILISTIC GUARANTEES FOR P-VALUES AND THE FPR

To solve this problem, [Bates et al.|(2022) further corrects the marginal p-values, thus obtaining
calibration-conditional p-values. Given a user-predefined risk level 4, the calibration-conditional
p-values u°° will satisfy

]P’(IP’(UA“(:C) <t|Du) <t, Vite (0, 1)) >1-4, (10)

where the probability inside is taken over  ~ P,4, and the probability outside over the choice of
ijl. Thus, with a probability of at least 1 — &, we can be confident that we have a good calibration
set, meaning that our p-values will be conservative.

Likewise, we can correct the FPR directly. Bates et al.| (2022) propose a correction of the empirical
FPR that satisfies the following:

P [FPR(7) < FPR (r),¥r e R| > 1 -4, (11)

where FPR (7) is a correction version of the empirical Fﬁ(’]’) The corrected FPR is obtained by
_— —

applying a correction function h to the empirical FPR, i.e. FPR (7) = h o FPR(7). In the following,

we refer to the quantity FPR " (1) = h o FPR(7) as conformal FPR.

Four different correction functions h are proposed by Bates et al.| (2022), the Simes, DKWM,
Asymptotic and Monte Carlo corrections. The Simes, DKWM and Monte Carlo corrections all
provide the finite sample guarantees of equation (I0) and equation (TI), while the Asymptotic
correction provides only an asymptotic guarantee, that is, when the number of calibration points goes
to infinity. Between the three corrections providing the finite sample guarantee, we find the Monte
Carlo one to give tighter bounds (please see Appendix [A]for more details on how the Simes and
Monte Carlo corrections are defined).

4.4 CONFORMAL METRICS FOR OOD

Based on the previously defined conformal FPR (already defined in Bates et al.| (2022)), we define
conformal AUROC and conformal FPR@TPROS5. These two quantities are obtained similarly as their
classical versions, but using the conformal FPR:

* Conformal AUROC: we compute the conformal FPR for 7; = s(@y+i),1 € {1,...,nya}
and the True Positive Rate (TPR) for each of these values. We then compute the area under
the curve with conformal FPR as x-axis and TPR as y-axis.
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Figure 2: Different zoom levels of the ROC curves. The TPR is calculated by using all the points in
the "Cifar10" dataset for the three curves. As for the TPR, the blue curve is obtained by using all
data points in the "svhn_extra" dataset, the orange curve is an approximation of the blue curve using
1000 calibration points, whereas the green curve is obtained by correcting the FPR via the conformal
AUROC method.

* Conformal FPR@TPR95: We select 7 among 71, . .., T,,, so that the True Positive Rate
(TPR) is 0.95. We then compute the corresponding conformal FPR. It can be generalized to
FPR@TPR}, for any 3 € (0, 1).

The computations are performed by considering the ID validation dataset as the calibration dataset.
We would like to insist on the fact that Conformal FPR, AUROC, and FPR @TPR95 are not necessarily
better approximations of the real FPR, AUROC and FPR@TPR95 values. Nonetheless, they are
guaranteed to use conservative estimates of the FPR with a user-defined miscalibration tolerance 4,
which is an essential property in many safety-critical applications or certification processes Sellke
et al| (2001). The effect of the correction on the ROC curve is illustrated in Figure [2using the SVHN
dataset as ID and Cifar-10 as OOD.

Remark 4.1 (Conformal metrics do not require extra validation data). Computing the conformal FPR
only requires a correction to the estimated FPR. It does not require extra validation data. This is not
like in CP, where we need a calibration dataset to find a threshold based on nonconformity scores
obtained on calibration data, which is subsequently used to provide CP confidence intervals. Here,
there are no confidence prediction intervals; we only use CP theory to obtain probabilistic guarantees
of the FPR.

4.5 SAFER BENCHMARKS FOR OOD

AUROC and (to a lesser extent) FPR@TPR95 are two metrics that OOD and AD practitioners
intensively use to benchmark and evaluate the performances of different OOD detection algorithms.
However, as we saw in the previous sections, the evaluation can be overly optimistic, which can
be detrimental to algorithms designed for safety-critical applications. In this section, we reevaluate
various OOD baselines included in the very furnished OpenOOD |Yang et al.|(2022), and ADBench
Han et al.[(2022) benchmarks and illustrate the trade-off between performances and probabilistic
guarantees. All our experiments can be easily carried out on a standard laptop CPU.

4.5.1 OPENOOD

OpenOOD |Yang et al.| (2022) is an extensive benchmark for task-based OOD, i.e. for OOD methods
that assess if some test data resembles some trained backbone’s training data. Usually, backbones
trained on CIFAR-10, CIFAR-100, Imagenet200, and Imagenet are considered. In our case, we
consider a ResNet18 trained on the first three datasets only since we are not evaluating a new baseline
but only investigating a new metric for the benchmark. We evaluate the AUROC of several baselines
with various OOD datasets gathered into two groups, Near OOD and Far OOD, following OpenOOD’s
guidelines. We then compute the correction for the AUROC, with § = 0.01. The results are displayed
in Table|1] We also run the benchmark for § = 0.05 and FPR-95, which we defer to Appendix

Table 1| shows that after the correction, the conformal AUROC is lower than the classical AUROC,
by often more than 1 percent. On the one hand, this is significant, especially for such benchmarks
where the State-of-the-art often holds by a fraction of a percentage. On the other hand, the correction
is not so severe, and the best baselines still get very good AUROC despite the correction. In other



| CIFAR-10 | CIFAR-100 [ ImageNet-200

OOD type Near OOD Far OOD Near OOD Far OOD Near OOD Far OOD
class. conf. class. conf. | class. conf. class. conf. | class. conf. class. conf.
OpenMax t 87.2 8595 89.53 883 | 76.66 7495 79.12 77.52 | 804 78.82 9041 88.77
MSP 87.68 86.56 91.0 89.98 | 80.42 7893 7758 76.0 | 833 81.85 90.2 88.83
TempScale|Guo et al.| 87.65 86.55 91.27 903 | 80.98 79.51 7851 76.95 | 83.66 8221 9091 89.53
ODIN [Liang et al.| 80.25 79.04 87.21 86.26 | 79.8 783 79.44 77.92 | 80.32 78.85 91.89 90.59
MDS [Lee et al.|(2018] 86.72 8549 90.2 89.09 | 58.79 56.85 70.06 68.31 | 62.51 60.68 7494 73.09
MDSEns|Lee et al. [(2018] 60.46 58.69 74.07 72.72 | 4598 4397 66.03 6443 | 5458 5276 70.08 68.35
Gram|Sastry & Oore|(2020] 52.63 50.69 69.74 68.11 | 50.69 48.69 7397 72.63 | 68.36 66.74 70.94 69.3
EBO w_l 8693 859 91.74 909 | 80.84 79.36 79.71 78.19 | 82.57 81.1 91.12 89.71
GradNorm|Huang et al. |( 5377 5192 5855 56.76 | 69.73 68.11 68.82 67.19 | 73.33 71.85 8529 83.99
ReAct|S 86.47 8541 91.02 90.12 | 80.7 7923 79.84 7832 | 8048 79.0 93.1 9179
MLS Emm 86.86 8581 91.61 90.74 | 81.04 79.58 79.6 78.07 | 8296 81.5 9134 89.94
KLI a ) 788 77.58 8276 81.63 | 769 7538 76.03 74.52 | 80.69 79.14 8841 86.74
VIM |Wang et al.| 88.51 87.42 93.14 92.25 | 74.83 73.17 82.11 80.69 | 78.81 77.2 91.52 90.05
KNN|Sun et al.| 90.7 89.69 93.1 92.19 | 80.25 78.79 8232 8093 | 81.75 80.27 9347 92.25
DICESun & Li| ) 7779 7644 8541 8437 | 79.15 77.61 79.84 7833 | 81.97 80.5 91.19 89.84
RankFeat|Song et al.| 7633 7476 70.15 6839 | 6222 60.33 67.74 659 | 58.57 57.0 3897 37.09

ASH|Djurisic et al.|2027} 7411 7271 7836 77.02 | 7839 7689 797 7823 | 82.12 80.72 9423 93.11
al. 80.84 79.64 8655 8555|7872 77.18 7735 758 | 8046 79.0 9048 89.17

Table 1: Classical AUROC (class.) vs Conformal AUROC (conf.) obtained with the Monte Carlo
method and § = 0.01 for several baselines from OpenOOD benchmark.

words, the correction is large enough to manifest its importance but low enough to still be useable in
practice: it costs only roughly 1 or 2 percent in AUROC to be 99% sure that the FPR involved in
the AUROC calculation is not overestimated.

4.5.2 ADBENCH

We perform the same procedure as OpenOOD with ADBench (2022), which gathers many
task-agnostic OOD baselines — considered Anomaly Detection (AD), hence the benchmark’s name.
We conduct the experiments with "unsupervised AD" baselines, i.e. baselines that do not leverage
labeled anomalies. We apply the correction with 6 = 0.05 and summarize the results in Figure[3] The
complete results are deferred to Appendix [D]
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Figure 3: Results for ADBench benchmark. (left) Scatter plot with mean classical AUROC and mean
AUROC correction over different methods for each dataset as y-axis and x-axis, respectively. (right)
Mean AUROC and AUROC correction over different datasets for each AD method.

Figure [3] (left) shows a scatter plot with mean classical AUROC and mean AUROC correction over
different methods for each dataset as y-axis and x-axis, respectively. The variability and magnitude
of the correction are higher than for OpenOOD since the number of points in the test set changes
depending on the dataset and is generally way lower. This observation is important because it
illustrates the brittleness of the conclusions that can be drawn from AD benchmarks and
supports the increasingly commonly accepted fact that no method is provably better than others
in AD - one of the key conclusions of ADBench’s paper itself (2022). Figure 3] (right)
shows the mean classical and conformal AUROC for each baseline over the datasets. The correction
is more stable, demonstrating that the correction affects all baselines similarly.



5 OOD SCORES AS NONCONFORMITY SCORES FOR CP

In the previous sections, we have mostly emphasized that practitioners of OOD detection should look
at CP as an additional building block for correctly interpreting the scores that all the OOD methods
rely on. In this section, we advocate that the link between OOD and CP goes even deeper and that
both fields could benefit from each other.

| LAC | APS | RAPS
@ | 0.005 0.01 0.05 | 0.005 0.01 0.05 | 0.005 0.01 0.05
Cifar10
Gram 9.57 834 1.89 | 9.60+0.10 1.93+£0.06 8.66+0.13 | 9.56+0.13 8.7+ 0.16 1.89 £0.03
ReAct 3.75 1.98 1.03 | 4.47+0.16 1.97+0.09 3.62+0.17 | 446+0.15 3.67+0.19 2.02+0.09
ODIN 7.15 582 1.14 | 742+£0.17 1.53+0.06 5.144+0.08 | 7.45+0.16 5.14+0.10 1.57 £0.08
KNN 257 148 1.01 | 3.62+0.15 1.09+0.03 2.71+0.11 3.69+0.11 2.774+0.09 1.084+0.02

Mahalanobis 1.85 147 1.04 | 1.89+0.07 1.04£0.01 1.49 +0.04 1.92 +0.05 1.49 £ 0.05 1.04 £ 0.01
CP (Softmax) | 244 1.73 1.03 | 3.92+0.26 1.1+£0.01 216+0.13 | 3.81+£024 217+0.11 1.09 £+ 0.01

Cifar100

ReAct 52.41 29.77 10.06 | 53.02+0.27 32.024+0.11 10.45+0.15 | 53.12+£0.26 32.12+£0.13 10.43+£0.15
ODIN 66.54 4525 16.25 | 65.46+0.3 45.56+0.14 17.49+0.13 | 65.61 £0.25 45.51+0.27 17.6+0.14
KNN 41.64 27.74 862 | 39.45+0.35 29.814+0.24 9.80+0.11 | 39.634+0.21 29.744+0.29 9.81 £0.10

Mahalanobis | 31.29 24.76 7.57 | 31.07 £0.07 24.77+0.20 8.47+0.29 | 31.15+0.07 24.82+0.19 848+0.21
CP (Softmax) | 31.96 27.21 5.73 | 46.55+1.47 36.82+0.39 17.59+0.41 | 45.64+1.19 36.83+£0.79 17.12+0.74

Table 2: Efficiency (mean =+ std. dev. for APS and RAPS) of the prediction sets for different scores
for CP classification on CIFAR-10 and CIFAR-100. The best is bolded, the second is underlined.

So far, we have shown how OOD can use CP, but we argue that CP could also use OOD. Indeed, CP
is about interpreting scores to provide probabilistic results. But CP works regardless of the given
score. Indeed, all scores will have the same guarantee, but better scores will give tighter prediction
sets, and worse scores will give very large and uninformative prediction sets. For CP to provide
powerful probabilistic guarantees, the scores have to be informative, hence the common practice of
relying on scores derived from the softmax values of a neural network Sadinle et al.[|(2019). It turns
out that the maximum softmax is also a score used in OOD detection [Hendrycks & Gimpel| (2018)),
which suggests that OOD scores and CP scores might be related in some way. In this section, we
explore using different OOD scores to perform CP. We consider two ResNet18 trained on CIFAR-10
and CIFAR-100 and build conformal prediction sets following the procedure described in section 2]
To build these prediction sets, we use scores based on ReAct|Sun et al.|(2021), Gram Sastry & Oore
(2020), KNN [Sun et al.|(2022), Mahalanobis Lee et al.|(2018)), and ODIN |Liang et al.|(2018)). Note
that we had to adapt those scores to make them class-dependent since the score used in CP is defined
as sep(, y). We did so following a procedure that we describe in detail in Appendix B} Then, given
the OOD score s(x, y;), we construct softmax-like scores 5(x,y;) = exp s(x, y:)/ >_; exp s(x,y;),
and use it for CP.

For each defined score, we perform the calibration step on n.,; = 2000 points following the
classical Least-Ambiguous set classifiers (LAC) procedure |Sadinle et al.[(2019), and the more recent
Adaptive Prediction Set (APS)Romano et al.|(2020) and Regularized Adaptive Prediction Set (RAPS)
Angelopoulos et al.| (2020) methods. For all methods, we construct the prediction sets for each
of the remaining 7,41 — Ncqr = 8000 points, and for coverages 1 — o € {0.005,0.01,0.05}. We
assess the mean efficiency of the prediction sets for each score, including LAC, APS, and RAPS
based on softmax, as classically done in CP in Table[5). Since APS and RAPS involve sampling a
uniform random variable, we report the mean and the standard deviation of the mean efficiency for
10 evaluations.

Table 5] shows that all OOD scores are inefficient for CP. For example, Gram performs very poorly
(hence, we only run it on CIFAR-10). However, in some instances, some scores, like KNN or
Mahalanobis, perform better than classical CP scores. This suggests that OOD scores may be good
candidates as nonconformity scores.

6 LIMITATIONS

While we believe that OOD detection and CP have much to gain from each other, we acknowledge
that our paper has limitations: Data availability. Computing conformal AUROC and conformal



FPR requires an extra calibration dataset, which might be a drawback in applications with low data
availability. Extra compute resources. The extra calibration step requires additional calibration
resources. However, these resources are negligible compared to those needed for training and
fine-tuning a neural network.

7 CONCLUSION & DISCUSSION

In conclusion, our work highlights the inherent randomness of OOD metrics and demonstrates how
Conformal Prediction (CP) can effectively correct these metrics. We have also shown that recent
advancements in CP allow for uniform conservativeness guarantees on OOD metrics, providing more
reliable evaluations. Furthermore, our analysis reveals that the correction introduced by CP does not
significantly impact the performance of the best OOD baselines. On the other hand, we also showed
that we could use OOD to improve existing CP techniques by using OOD scores as nonconformity
scores. We found that some of them, especially Mahalanobis and KNN, are good candidates for
nonconformity scores, unlocking a whole avenue for crafting CP nonconformity scores based on the
plethora of existing post-hoc OOD scores.

By integrating CP with OOD, we have demonstrated the fruitful synergy between the two fields. OOD
detection focuses on developing scores that accurately discriminate between OOD and ID, while CP
specializes in interpreting scores to provide probabilistic guarantees. This interplay between OOD
and CP presents opportunities for mutual advancement: advancements in CP research can enhance
OOD by offering more refined probabilistic interpretations of OOD scores, which is particularly
crucial in safety-critical applications. Conversely, progress in OOD research can benefit CP by
providing scores that improve the efficiency of prediction sets. This suggests that further exploration
and collaboration between the two fields hold great potential.

In summary, our findings underscore the intertwined nature of OOD and CP, emphasizing the need
for continued investigation and cross-fertilization to advance both disciplines.
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A APPENDIX: SIMES AND MONTE CARLO CORRECTIONS

In our work we use two of the corrections proposed by Bates et al.[(2022), Simes and Monte Carlo
Correction. In this section, we introduce these corrections for the sake of completeness, as well as
two other corrections that we do not use for reasons to be detailed.

Simes Correction Generally, we are interested in small p-values and the Simes correction focuses
on those, that is by adding a smaller correction to the smaller p-values than the larger ones.

. . 2/n
C s (eimn/24 1) -
mil_s=1—10 (n~-~(n—n/2—|—1) , i=1,...,n (12)

DKWM The former approach may be compared to the classical uniform concentration DKWM
result, where the b are defined as

b = min{(i/n) + /log(2/6)/2n, 1}; (13)

However, DKWM tends to provide much larger bounds than Simes.

Asymptotic Correction The previous approach brought finite sample guarantees but at the cost
of a large correction. In order to produce a tighter bound, for a more powerful test, we look into a
correction that is correct asymptotically.

cn(0) := (\/210g logn)i1 (—log[—log(1 — )] (14)

+2loglogn + (1/2) logloglogn — (1/2) log) .

N in—19) o
bimm{nJrc”((;)n\/ﬁ ,1}, i=1,...,n (15)

This bound is quite similar to Simes for small values, but quite tighter for the remaining ones.

Monte Carlo Correction The Monter Carlo Correction offers advantages of both the Simes and
Asymptotic methods. It provides a finite-sample guarantee, mimics Simes for small p-values and
remains closer to the asymptotic correction for larger ones.

h™(¢) = min {hs(t), pad (t)} , telo,1]. (16)
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B APPENDIX: DESIGNING CLASS-DEPENDENT OOD SCORES FOR CP

Let’s consider a classification task with a classifier f trained to fit a dataset {(x1,v1), ..., (Zn, Yn)},
where x; € X and y; € {1,...C'} forall ¢ € {1,...,n}. In OOD, the score function s : X — R,
whereas in CP, the non-conformity score s¢, : X x R — R. Hence, in order to construct a non-
conformity score out of s, we have to make it class-dependent. In this section, we describe how to
construct class-dependent OOD scores out of classical OOD scores for appropriate usage in CP.

B.1 REACT

ReAct method |Sun et al.| (2021) gets the quantiles of f’s penultimate layer’s activation values and
then clips the activation values for a new input data point. The output softmax are then used for OOD
scoring. Therefore, making the score class-dependent is straightforward: one only has to get the class
softmax.

B.2 ODIN

The idea of ODIN [Liang et al.| (2018]) is also to tweak the network so that the softmax becomes more
informative for OOD detection. Similarly to ReAct, one only has to get each class’s softmax to make
the score class-dependent.

B.3 KNN

For each {1, ..., ¢, } from the training set, consider H = {h(x1), ..., h(x,)} where h : X — RP
is defined such that h(x;) is the activation vector of x; of f’s penultimate layer. Let Ngr : RP — RP
be the nearest neighbor map such that N (h) is the nearest neighbor of h among H. KNN Sun et al.
(2022) builds the score s as

$(@n11) = |h(@ns1) — Ner(hl@ns)]).

To make this score class-dependent, one can build C' maps {Ng,,..., Ng.} where H, =
{h(z;)|f(x;) = k} and then define a new score

$@ni1,9) = [h(@ni1) = N, (W@

B.4 MAHALANOBIS

Let consider the map h as in KNN. For each k € {1, ..., C'}, Mahalanobis distance method [Lee et al.
(2018) computes X5, and piy, which are the empirical covariance matrix and mean vectors of each set
of points {A(%;) };|f(x,)=k- Then, the score s is computed as:

$(Tpi1) = \/ (Tnt1 = ff(@ar) " EH(@Tns1 = B (i)

oy Y. To make the score class-dependent, one simply has to define

,,,,,

s@ni1:) =\ @ns1 = )77 @1 — ),

B.5 GRrAM

Let f be a classifier of depth L. Gram method|Sastry & Oore|(2020) builds a statistic § : X — R’ that
outputs the channel-wise correlation of the activation maps for each layer. First, {§(x1),...,0(x,)}
are computed. Then, a multi-dimensional statistic {d x }ic{1,...,1},ke{1,...,c} is computed for each
layer after a class-wise aggregation.

geeey

For a new test point @,,1, 6(x,,+1) is computed, along with f(x,+1). The score is built out of a
weighted mean of the layer-wise deviation:

s@ni1) = Y wild(@ni1)i = di @),
1e{1,..,.L}
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where {w; } lef1,...,,} are some normalization weights computed with the training data. It is quite
straightforward to make this OOD score class-dependent by defining

s(@ni,y) = Y wil(@aga) — diyl.
le{1,...,.L}

C APPENDIX: COMPLEMENTARY RESULTS ON OPENOOD BENCHMARK

In this section, we present the full results of benchmarks on OpenOOD. The results displayed are
AUROC with § = 0.05 in Table 3] FPR@TPR95 with § = 0.05 in Table[5]and FPR@TPR95 with
§ = 0.01 in Table[d

‘ CIFAR-10 ‘ CIFAR-100 ‘ ImageNet-200
00D type ‘ Near Far Near Far Near Far

marg. conf. marg. conf. | marg. conf. marg. conf. | marg. conf. marg. conf.

OpenMax |Bendale & Boult/(2015) | 87.2 86.18 89.53 88.52 | 76.66 7526 79.12 77.81 | 804 79.2 9041 89.49
MSP Hendrycks & Gimpel|(2016) | 87.68 86.76 91.0 90.17 | 80.42 79.2 7758 7629 | 833 822 902 89.36
TempScale|Guo et al.|(2017) 87.65 86.75 9127 90.48 | 80.98 79.78 7851 77.24 | 83.66 82.58 90.91 90.11
ODIN |Liang et al.|(2018) 80.25 79.26 87.21 8643 | 79.8 7857 7944 782 | 8032 79.19 9189 91.17
MDS |Lee et al.|(2018) 86.72 8571 90.2 89.29 | 58.79 57.2 70.06 68.63 | 62.51 60.96 7494 73.6
MDSERns|Lee et al.[(2018) 60.46 59.01 7407 72.96 | 4598 44.34 66.03 64.72 | 5458 52.99 70.08 68.76
Gram/|Sastry & Oore|(2020) 52.63 51.04 69.74 68.41 | 50.69 49.06 7397 72.87 | 6836 67.0 70.94 69.69
EBO|Liu et al.|(2020) 86.93 86.08 91.74 91.05 | 80.84 79.63 79.71 78.47 | 82.57 8147 91.12 90.33
GradNorm|Huang et al.|(2021) 5377 5226 5855 57.09 | 69.73 68.41 68.82 67.48 | 73.33 7212 8529 84.45
ReAct|Sun et al.|(2021) 86.47 85.6 91.02 90.28 | 80.7 79.5 79.84 78.6 | 80.48 7935 93.1 92.4
MLS |Hendrycks et al.[(2022) 86.86 86.0 91.61 909 | 81.04 7984 79.6 7835|8296 81.88 9134 90.56
KLM|Hendrycks et al.|(2022) 788 778 8276 81.83 | 769 7565 76.03 748 | 80.69 79.54 8841 87.44
VIM Wang et al.|(2022) 88.51 87.62 93.14 9241 | 7483 7347 8211 80.95 | 7881 77.57 9152 90.7
KNN/Sun et al.|(2022) 90.7 89.87 93.1 9235 | 80.25 79.05 8232 81.19 | 81.75 80.63 9347 92.83
DICE |Sun & Li|(2022) 77719 76.68 8541 84.56 | 79.15 77.89 79.84 78.61 | 81.97 80.86 91.19 90.43
RankFeat|Song et al.[(2022) 76.33  75.05 70.15 68.71 | 6222 60.67 67.74 66.24 | 58.57 57.06 3897 37.43
ASH Dijurisic et al.|(2022) 7411 7296 7836 77.27 | 7839 7716 79.7 785 | 82.12 81.07 9423 93.66
SHE [Zhang et al.|(2023) 80.84 79.86 86.55 85.73 | 78.72 77.46 7735 76.08 | 80.46 79.34 90.48 89.72

Table 3: Classical AUROC (marg.) vs Conformal AUROC (conf.) obtained with the Monte Carlo
method and § = 0.05 for several baselines from OpenOOD benchmark.

| CIFAR-10 | CIFAR-100 | ImageNet-200

OOD type Near Far Near Far Near Far
marg. conf. marg. conf. | marg. conf. marg. conf. | marg. conf. marg. conf.

OpenMax [Bendale & Boult|(2015) | 46.77 48.98 2948 31.48 | 5557 57.8 5477 57.0 | 6332 65.75 3229 3535
MSP Hendrycks & Gimpel|(2016) | 53.57 55.8 31.44 3345 | 5473 56.96 59.08 61.31 | 5525 57.69 3544 38.29
TempScale|Guo et al.|(2017) 56.85 59.08 3336 3538 | 5477 56.99 5824 6047 | 5503 575 3411 37.06
ODIN |Liang et al.|(2018) 84.55 86.78 609 6297 | 58.44 60.67 57.75 59.98 | 66.38 68.8 33.66 36.75
MDS |Lee et al.|(2018) 4622 4844 303 323 | 8275 8498 7046 72.68 | 7934 81.52 6126 63.81
MDSEns|Lee et al.[(2018) 92.06 9429 61.09 62.87 | 9584 98.07 6697 6885 | 91.69 938 8043 82.89
Gram|Sastry & Oore|(2020) 9352 9575 6929 7148 | 9248 94.71 63.1 65.2 | 8543 87.63 8495 87.44
EBO|Liu et al.|(2020) 67.54 69.77 40.55 42.58 | 5549 57.72 5641 58.64 | 59.46 61.93 340 37.07
GradNorm|Huang et al.|(2021) 9537 97.6 8934 91.52 | 86.13 88.36 8279 85.02 | 83.07 8533 66.78 69.67
ReAct|Sun et al.|(2021) 71.56 7378 4243 44.52 | 56.74 58.97 5632 5855|6537 678 2721 30.28
MLS [Hendrycks et al.[(2022) 67.54 69.77 40.53 42.56 | 55.48 57.71 56.53 5876 | 58.94 61.44 33.59 36.68
KLM|Hendrycks et al.|(2022) 86.41 88.63 7642 78.65 | 79.52 81.75 70.16 7239 | 69.42 7191 39.57 42.56
VIM Wang et al.[(2022) 48.07 5029 2577 27.65 | 62.96 65.19 49.72 5195 | 5991 62.32 26.86 29.81
KNN/Sun et al.|(2022) 3454 36.65 23.88 25.77 | 61.32 63.54 54.04 56.27 | 60.42 629 2649 29.66
DICE|Sun & Li|(2022) 80.15 82.38 5393 56.06 | 58.1 60.33 5595 58.17 | 60.98 63.46 3593 39.04
RankFeat|Song et al.[(2022) 67.38 69.61 6824 7047 | 7994 82.17 68.89 71.11 | 92.02 93.91 9848 99.58
ASH Dijurisic et al.|(2022) 89.03 91.26 76.66 78.89 | 66.14 6837 62.67 64.89 | 6595 68.44 2626 29.46
SHE [Zhang et al.|(2023) 84.49 86.72 6326 6541 | 59.32 61.54 6274 64.97 | 6592 6831 415 44.62

Table 4: Classical FPR@TPR95 (marg.) vs Conformal FPR@TPR95 (conf.) obtained with the Monte
Carlo method and § = 0.01 for several baselines from OpenOOD benchmark.
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CIFAR-10 | CIFAR-100 ImageNet-200

OOD type Near Far Near Far Near Far

marg. conf. marg. conf. | marg. conf. marg. conf. | marg. conf. marg. conf.
OpenMax Bendale & Boult|(2015) | 46.77 48.58 29.48 31.11 | 55.57 57.39 5477 56.59 | 63.32 65.14 3229 33.98
MSP Hendrycks & Gimpel|(2016) | 53.57 5539 31.44 33.08 | 54.73 56.55 59.08 60.9 | 5525 57.06 3544 37.16
TempScale|Guo et al.|(2017) 56.85 58.67 3336 35.01 | 5477 56.59 5824 60.06 | 55.03 56.85 34.11 35.8
ODIN/|Liang et al.|(2018) 84.55 86.37 609 62.59 | 5844 60.26 57.75 59.57 | 6638 68.2 33.66 3534
MDS [Lee et al.|(2018) 46.22 48.03 303 31.94 | 82.75 84.57 7046 7228 | 79.34 8116 61.26 63.08
MDSEns|Lee et al.|(2018) 92.06 93.88 61.09 62.54 | 9584 97.66 66.97 68.5 | 91.69 93.51 80.43 82.25
Gram |Sastry & Oore|(2020) 9352 9534 6929 71.08 | 9248 943  63.1 64.81 | 8543 87.25 8495 86.77
EBO|Liu et al.|(2020) 67.54 69.36 40.55 42.21 | 5549 5731 5641 5823 | 5946 61.28 340 357
GradNorm |Huang et al. |(2021) 9537 97.19 89.34 91.16 | 86.13 87.95 8279 84.61 | 83.07 84.89 66.78 68.6
ReAct|Sun et al. [(2021) 71.56 7338 4243 44.14 | 56.74 58.56 5632 58.14 | 6537 67.19 2721 2881
MLS [Hendrycks et al.[(2022) 67.54 6936 40.53 4219 | 5548 57.3 56.53 5835 | 5894 60.76 33.59 3528
KLM Hendrycks et al.|(2022) 86.41 8823 7642 7824|7952 8134 70.16 7198 | 69.42 71.24 39.57 413
VIM|Wang et al.|(2022) 48.07 49.88 25777 273 | 6296 64.78 49.72 51.54 | 5991 61.72 26.86 28.46
KNN/Sun et al.|(2022) 3454 3627 2388 2542 | 6132 63.14 5404 55.86 | 60.42 6223 2649 28.09
DICE|Sun & L1|(2022) 80.15 81.97 5393 55.67 | 58.1 59.92 5595 57.77 | 6098 62.8 3593 37.66
RankFeat|Song et al.|[(2022) 67.38  69.2 6824 70.06 | 7994 81.76 68.89 70.71 | 92.02 93.84 98.48 99.55
ASH Dijurisic et al.|(2022) 89.03 90.85 76.66 78.48 | 66.14 6796 62.67 6449 | 6595 67.77 2626 27.85
SHE [Zhang et al.|(2023) 84.49 8631 6326 65.02 | 59.32 61.14 6274 64.56 | 6592 67.74 415 43.27

Table 5: Classical FPR@TPR95 (marg.) vs Conformal FPR@TPR95 (conf.)

obtained with the Monte

Carlo method and § = 0.05 for several baselines from OpenOOD benchmark.

D APPENDIX: FULL RESULTS FOR ADBENCH

In this section, we present the full results of the ADBench benchmark. Table [6]displays classical
AUROC, Table[7|displays conformal AUROC, and Table[§]displays the difference between the two

(AUROC correction), all with § = 0.05.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM

cover 0.87 0.93 0.89 0.77 0.89 0.92 0.80 086 0.85 094 0.74 0.46 0.90
donors 0.78 0.72 0.62 0.71 0.82 0.89 0.78 082 059 083 0.56 0.36 0.71
fault 0.57 0.48 0.64 0.62 0.44 0.45 0.51 073 059 046 0.68 0.52 0.46
fraud 0.90 0.91 0.88 0.96 0.88 0.89 0.90 093 096 090 095 0.73 0.90
glass 0.77 0.35 0.83 0.72 0.72 0.66 0.77 082 0.69 0.66 0.73 0.47 0.76
Hepatitis 0.70 0.68 0.66 0.41 0.82 0.75 0.80 053 038 0.76 0.68 0.52 0.55
Ionosphere 0.84 0.76 091 0.87 0.79 0.73 0.62 088 091 079 0.86 0.51 0.73
landsat 0.48 0.36 0.64 0.53 0.42 0.36 0.55 0.58 0.54 036 0.60 0.63 0.44
ALOI 0.57 0.56 0.55 0.65 0.54 0.56 0.53 061 0.67 057 0.61 0.51 0.52
letter 0.61 0.46 0.76 0.80 0.54 0.56 0.60 0.86 0.84 050 0.84 0.56 0.50
20news 0 0.64 0.63 0.71 0.71 0.61 0.61 0.62 073 0.80 0.64 0.73 0.50 0.63
20news 1 0.51 0.53 0.52 0.58 0.52 0.54 0.53 0.57 0.61 054 0.58 0.48 0.54
20news 2 0.50 0.51 0.47 0.53 0.50 0.52 0.51 051 054 051 050 0.49 0.53
20news 3 0.75 0.72 0.83 0.81 0.75 0.75 0.74 0.79 071 0.73 0.70 0.67 0.54
20news 4 0.48 0.51 0.45 0.57 0.48 0.51 0.50 048 051 051 0.53 0.53 0.48
20news 5 0.52 0.49 0.47 0.50 0.48 0.46 0.49 048 055 048 048 0.49 0.54
Lymphography 1.00 1.00 1.00 0.91 0.99 1.00 0.99 056 0.90 1.00 0.73 0.34 0.72
magic.gamma 0.73 0.61 0.75 0.67 0.68 0.64 0.71 0.82  0.69 0.67 0.75 0.60 0.59
musk 1.00 0.81 1.00 0.39 0.94 0.95 1.00 070 041 1.00 0.74 0.56 0.77
PageBlocks 0.90 0.89 0.85 0.73 0.88 0.92 0.81 082 076 091 0.78 0.59 0.90
pendigits 0.95 0.94 0.90 0.45 091 0.93 0.93 073 048 094 0.66 0.42 0.64
Pima 0.73 0.67 0.71 0.61 0.69 0.63 0.71 0.73  0.66 0.71 0.61 0.51 0.56
annthyroid 0.82 0.57 0.62 0.66 0.77 0.79 0.60 072 0.70 0.66 0.77 0.77 0.57
satellite 0.70 0.59 0.71 0.55 0.63 0.58 0.75 0.65 0.56 0.60 0.64 0.55 0.62
satimage-2 0.99 0.97 1.00 0.57 0.97 0.96 0.98 093 047 098 0.83 0.49 0.96
shuttle 1.00 0.97 0.83 0.52 0.99 0.99 0.99 070 0.57 099 0.70 0.49 0.98
smtp 0.86 0.72 0.70 0.69 0.70 0.78 0.56 084 0.58 083 040 0.72 0.71
speech 0.51 0.50 0.51 0.56 0.53 0.51 0.51 0.51 052 051 0.56 0.54 0.53
Stamps 091 0.84 0.68 0.54 0.93 0.88 0.91 0.69 051 091 0.73 0.56 0.89
thyroid 0.98 0.88 0.95 0.91 0.94 0.98 0.96 096 0.87 096 093 0.49 0.80
vertebral 0.37 0.38 0.41 0.49 0.26 0.41 0.29 034 049 037 040 0.37 0.53
vowels 0.75 0.63 0.90 0.95 0.55 0.62 0.73 097 093 0.67 092 0.56 0.61
Waveform 0.71 0.56 0.72 0.73 0.75 0.62 0.69 074 073 0.65 0.69 0.56 0.49
WDBC 0.99 0.99 0.99 0.96 0.99 0.97 0.99 092 089 099 092 0.62 0.77
Wilt 0.42 0.31 0.33 0.50 0.33 0.36 0.32 048 051 020 0.53 0.46 0.37
wine 0.80 0.73 0.26 0.44 0.89 0.77 0.91 045 038 084 046 0.60 0.62
WPBC 0.47 0.45 0.45 0.46 0.49 0.47 0.51 047 041 046 051 0.50 0.48
yeast 0.38 0.41 0.45 0.44 0.37 0.44 0.40 039 045 041 042 0.48 0.41
campaign 0.73 0.67 0.64 0.58 0.78 0.77 0.79 073 059 073  0.69 0.53 0.58
cardio 0.93 0.94 0.90 0.71 0.92 0.94 0.85 0.77  0.66 096 0.73 0.58 0.75
Cardiotocography ~ 0.68 0.78 0.65 0.54 0.67 0.78 0.61 056 0.60 0.75 0.52 0.53 0.62
celeba 0.70 0.71 0.74 0.39 0.76 0.76 0.76 0.60 039 079 048 0.54 0.45
CIFAR100 0.73 0.68 0.70 0.70 0.69 0.70 0.70 074 074 070 0.71 0.56 0.53
CIFAR10 1 0.55 0.59 0.61 0.63 0.46 0.51 0.44 0.60 0.72 0.60 0.62 0.50 0.58
CIFAR10 2 0.56 0.58 0.58 0.61 0.56 0.57 0.54 0.60 0.65 058 0.59 0.58 0.51
CIFAR10 3 0.55 0.58 0.59 0.56 0.51 0.53 0.50 0.56 0.60 0.56 0.56 0.60 0.56
CIFAR10 5 0.50 0.58 0.58 0.57 0.47 0.52 0.47 054 0.60 057 0.54 0.46 0.59
CIFAR10 6 0.64 0.65 0.68 0.69 0.65 0.66 0.65 072 072 0.68 0.69 0.57 0.50
CIFAR10 7 0.54 0.59 0.56 0.57 0.52 0.55 0.50 054 0.60 057 0.56 0.62 0.61
agnews 0 0.50 0.47 0.54 0.61 0.49 0.47 0.48 0.58 0.63 047 0.56 0.35 0.48
agnews 1 0.58 0.54 0.58 0.71 0.51 0.54 0.55 062 074 055 0.61 0.37 0.56
agnews 2 0.65 0.61 0.71 0.73 0.61 0.59 0.61 075 079 0.61 0.73 0.50 0.53
agnews 3 0.54 0.55 0.57 0.70 0.51 0.53 0.51 062 0.70 055 0.61 0.50 0.51
amazon 0.56 0.54 0.58 0.58 0.57 0.54 0.56 059 056 054 0.58 0.45 0.51
imdb 0.50 0.45 0.50 0.49 0.50 0.45 0.48 048 049 046 0.50 0.52 0.42
yelp 0.61 0.59 0.64 0.68 0.60 0.57 0.59 0.68 0.66 0.59 0.66 0.50 0.55

Table 6: Full results for ADBench: classical AUROC.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM

cover 0.75 0.83 0.79 0.64 0.78 0.82 0.74 074 073 084 0.60 0.30 0.79
donors 0.72 0.66 0.54 0.64 0.77 0.85 0.72 0.76 053 0.78 0.50 0.31 0.65
fault 0.48 0.40 0.55 0.53 0.35 0.37 0.43 0.65 050 037 0.59 0.43 0.37
fraud 0.77 0.63 0.63 0.82 0.62 0.64 0.86 0.68 0.79 0.66 0.69 0.51 0.64
glass 0.65 0.31 0.73 0.60 0.60 0.53 0.64 072 058 054 0.63 0.38 0.66
Hepatitis 0.54 0.52 0.52 0.23 0.70 0.61 0.66 026 022 062 054 0.38 0.40
Ionosphere 0.77 0.68 0.85 0.80 0.70 0.63 0.50 083 0.85 071 0.80 0.38 0.64
landsat 0.42 0.30 0.58 0.48 0.35 0.30 0.49 052 048 030 0.54 0.58 0.39
ALOI 0.49 0.46 0.45 0.55 0.43 0.46 0.46 052 058 047 052 0.41 0.42
letter 0.44 0.30 0.61 0.66 0.36 0.39 0.42 074 072 033 0.71 0.40 0.35
20news 0 051 0.49 0.57 0.60 0.48 0.46 0.47 062 0.69 050 0.61 0.36 0.49
20news 1 0.36 0.39 0.37 0.44 0.37 0.39 0.37 044 047 039 044 0.33 0.39
20news 2 0.34 0.36 0.34 0.39 0.34 0.36 0.35 036 038 036 0.34 0.32 0.38
20news 3 0.65 0.61 0.73 0.71 0.63 0.64 0.64 0.69 058 0.62 0.59 0.54 0.45
20news 4 0.28 0.31 0.27 0.39 0.27 0.32 0.30 030 034 031 035 0.35 0.30
20news 5 0.34 0.32 0.29 0.30 0.30 0.31 0.32 029 035 032 028 0.31 0.35
Lymphography 0.95 0.95 0.95 0.83 0.95 0.95 0.95 045 081 096 0.62 0.25 0.62
magic.gamma 0.70 0.57 0.72 0.63 0.65 0.60 0.68 079 0.65 0.64 0.72 0.56 0.55
musk 0.57 0.65 0.22 0.21 0.83 0.85 0.58 053 022 032 0.59 0.42 0.64
PageBlocks 0.84 0.83 0.79 0.67 0.82 0.86 0.74 0.76  0.70 085 0.71 0.52 0.84
pendigits 0.87 0.86 0.82 0.33 0.82 0.85 0.85 060 035 086 0.53 0.29 0.52
Pima 0.63 0.57 0.62 0.51 0.59 0.54 0.62 0.64 055 061 052 0.40 0.45
annthyroid 0.76 0.49 0.55 0.59 0.70 0.72 0.53 065 0.63 059 0.71 0.71 0.49
satellite 0.67 0.55 0.67 0.50 0.59 0.54 0.71 0.61 051 056 0.59 0.50 0.58
satimage-2 0.51 0.71 0.45 0.41 0.74 0.80 0.77 079 034 070 0.68 0.31 0.84
shuttle 0.94 0.87 0.74 0.46 0.89 0.94 0.94 0.65 052 085 0.63 0.42 0.91
smtp 0.81 0.60 0.58 0.59 0.58 0.68 0.45 076 048 0.72 0.32 0.60 0.60
speech 0.31 0.31 0.31 0.37 0.34 0.32 0.31 031 033 032 035 0.34 0.34
Stamps 0.84 0.75 0.57 0.42 0.87 0.80 0.83 057 039 085 0.62 0.42 0.81
thyroid 0.90 0.77 0.86 0.81 0.86 0.90 0.92 0.87 0.77 0.88 0.84 0.33 0.69
vertebral 0.23 0.26 0.28 0.37 0.14 0.29 0.17 020 037 025 0.29 0.24 0.40
vowels 0.57 0.45 0.73 0.76 0.35 0.45 0.54 0.77 074 049 0.75 0.35 0.43
Waveform 0.56 0.42 0.59 0.58 0.60 0.47 0.53 059 059 050 0.54 0.39 0.34
WDBC 0.95 0.95 0.95 0.91 0.95 0.92 0.96 086 081 095 085 0.50 0.67
Wilt 0.29 0.20 0.21 0.37 0.20 0.24 0.19 035 038 012 042 0.34 0.26
wine 0.70 0.63 0.12 0.31 0.80 0.67 0.84 033 026 075 032 0.48 0.48
WPBC 0.33 0.32 0.32 0.33 0.36 0.33 0.38 032 029 033 0.39 0.38 0.35
yeast 0.29 0.31 0.35 0.35 0.28 0.34 0.31 030 036 031 032 0.38 0.31
campaign 0.68 0.62 0.59 0.52 0.74 0.72 0.75 0.68 0.53 0.68 0.64 0.48 0.52
cardio 0.84 0.85 0.80 0.60 0.83 0.84 0.75 0.67 053 086 0.62 0.47 0.64
Cardiotocography  0.59 0.70 0.57 0.45 0.58 0.70 0.52 048 051 0.66 0.43 0.45 0.53
celeba 0.64 0.65 0.69 0.30 0.70 0.71 0.71 028 030 0.74 0.38 0.48 0.37
CIFAR100 0.63 0.59 0.60 0.60 0.59 0.60 0.60 065 0.64 061 0.61 0.46 0.42
CIFAR10 1 0.43 0.48 0.50 0.52 0.35 0.39 0.33 049 062 049 051 0.39 0.48
CIFAR10 2 0.45 0.48 0.47 0.50 0.44 0.45 0.43 049 055 047 048 0.48 0.40
CIFAR10 3 0.44 0.48 0.49 0.46 0.40 0.42 0.39 047 050 046 046 0.49 0.45
CIFAR10 5 0.38 0.48 0.47 0.46 0.35 0.40 0.34 042 049 046 042 0.34 0.49
CIFAR10 6 0.54 0.55 0.58 0.59 0.54 0.55 0.54 0.61 0.62 058 0.59 0.47 0.39
CIFAR10 7 0.43 0.48 0.45 0.46 0.41 0.44 0.39 044 050 046 046 0.51 0.50
agnews 0 0.41 0.39 0.45 0.53 0.40 0.38 0.39 049 056 039 048 0.27 0.40
agnews 1 0.50 0.46 0.50 0.64 0.42 0.45 0.46 054 0.67 047 0.53 0.28 0.48
agnews 2 0.57 0.53 0.63 0.66 0.52 0.51 0.52 0.68 0.73 053 0.66 0.42 0.45
agnews 3 0.45 0.46 0.49 0.63 0.43 0.44 0.43 054 0.64 046 0.53 0.42 0.42
amazon 0.48 0.45 0.50 0.49 0.48 0.46 0.47 0.50 048 046 0.50 0.37 043
imdb 0.41 0.36 0.41 0.40 0.42 0.36 0.40 039 040 037 041 0.44 0.34
yelp 0.52 0.50 0.55 0.60 0.52 0.49 0.51 0.60 0.59 0.51 0.58 0.42 0.47

Table 7: Full results for ADBench: conformal AUROC.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM

cover 0.12 0.10 011 013 0.1l 0.0 007 012 012 0.10 0.4 0.15 0.11
donors 0.06 0.07 008 007 005 004 006 006 006 005 006 0.05 0.06
fault 0.09 0.08 009 009 009 009 009 008 009 009 009 0.08 0.09
fraud 0.13 0.28 025 014 026 025 004 026 016 025 026 022 0.26
glass 0.12 0.05 010 012 012 013 013 010 011 0.3 0.10 0.09 0.10
Hepatitis 0.16 0.15 014 018 012 014 013 027 016 014 0.14 0.14 0.14
Tonosphere 0.08 0.08 006 007 009 010 012 005 005 008 006 0.13 0.09
landsat 0.06 0.06 005 005 006 006 006 006 005 006 005 0.05 0.05
ALOI 0.07 0.10 010 009 010 010 006 009 008 0.10 009 0.10 0.10
letter 0.17 0.16 015 014 019 017 018 013 0.3 0.17 0.3 0.15 0.15
20news 0 0.14 0.14 013 011 014 015 014 011 011 014 012 0.13 0.14
20news 1 0.15 0.15 015 014 015 015 016 0.3 014 015 0.14 0.14 0.15
20news 2 0.16 0.15 014 015 016 016 016 015 016 0.5 015 0.16 0.15
20news 3 0.10 0.11 010 010  0.11 011 010 010 013 011 0.2 0.13 0.09
20news 4 0.20 0.20 017 018 021 019 020 018 016 020 0.17 0.18 0.18
20news 5 0.17 0.17 018 020 018 015 017 019 020 016 020 0.18 0.19
Lymphography 0.05 0.05 005 008 004 005 005 011 009 004 011 0.09 0.11
magic.gamma 0.03 0.04 003 004 003 004 003 003 004 003 003 0.04 0.04
musk 0.43 0.15 078 018 0.1l 011 042 017 019 068 0.16 0.14 0.13
PageBlocks 0.06 0.06 006 006 006 006 007 006 006 006 0.07 0.06 0.05
pendigits 0.08 0.08 009 012 008 008 008 013 013 008 013 0.13 0.12
Pima 0.10 0.10 010 010 010 009 009 010 010 009 0.10 0.11 0.11
annthyroid 0.06 0.08 007 007 007 006 007 007 007 007 006 0.06 0.08
satellite 0.04 0.04 004 005 004 004 004 005 005 004 005 0.05 0.04
satimage-2 0.48 0.26 055 016 023 016 021 014 013 027 015 0.18 0.12
shuttle 0.06 0.10 009 006 010 005 005 004 005 0.3 006 0.07 0.07
smtp 0.05 0.12 012 010 012 01l 010 009 009 0.1 008 0.12 0.11
speech 0.19 0.19 019 019 019 019 019 020 019 0.19 021 021 0.18
Stamps 0.07 0.09 011 011 006 008 007 012 012 007 0.1l 0.14 0.07
thyroid 0.08 0.10 009 010 008 008 004 009 010 008 0.09 0.16 0.11
vertebral 0.14 0.12 013 012 012 012 012 014 013 0.2 0.l 0.12 0.13
vowels 0.19 0.18 017 020 020 017 020 020 019 0.8 0.17 021 0.19
Waveform 0.15 0.15 014 015 015 015 015 014 014 016 015 0.16 0.16
WDBC 0.04 0.04 004 006 004 005 004 006 008 004 007 0.12 0.10
Wil 0.13 0.11 012 012 013 012 014 013 013 008 0.I2 0.12 0.11
wine 0.10 0.10 014 014 009 011 008 012 011 0.10 015 0.11 0.13
WPBC 0.13 0.13 013 013 013 013 014 014 012 013 012 0.12 0.13
yeast 0.09 0.10 010 010 009 009 009 009 010 0.0 0.11 0.10 0.10
campaign 0.05 0.05 005 006 005 005 004 005 006 005 006 0.05 0.06
cardio 0.09 0.09 010 012 009 009 010 010 014 0.0 011 0.11 0.11
Cardiotocography ~ 0.09 0.08 008 009 009 008 008 008 009 009 008 0.08 0.09
celeba 0.06 0.06 005 009 005 005 005 031 009 005 0.10 0.06 0.08
CIFARI00 0.10 0.10 010 010 010 010 010 010 010 0.10 0.10 0.10 0.11
CIFARIO | 0.12 0.11 011 011 0.1l 012 011 011 010 0.1 0.0 0.10 0.11
CIFARI0 2 0.11 0.11 011 011 0.1l 011 011 011 011 011 011 0.10 0.11
CIFARI0 3 0.11 0.11 0.0 010 0.1 011 011 010 010 0.1 0.10 0.11 0.11
CIFARIO 5 0.12 0.10 011 011 012 012 012 012 011 011 012 0.12 0.10
CIFARI0 6 0.11 0.10 011 010 0.1 011 011 010 010 0.0 0.10 0.10 0.11
CIFARI0 7 0.11 0.11 0.0 010 0.1 011 011 010 010 0.0 0.10 0.11 0.11
agnews 0 0.09 0.09 008 008 009 009 009 008 008 009 008 0.09 0.09
agnews 1| 0.09 0.09 008 007 009 009 009 008 007 009 008 0.09 0.09
agnews 2 0.08 0.08 008 007 008 009 008 007 006 008 007 0.08 0.08
agnews 3 0.09 0.09 008 007 009 009 009 008 007 009 008 0.08 0.08
amazon 0.08 0.08 008 008 008 008 008 009 009 008 009 0.08 0.08
imdb 0.09 0.09 009 009 009 009 009 009 009 009 009 0.08 0.08
yelp 0.08 0.08 008 008 008 009 008 008 008 008 008 0.08 0.08

Table 8: Full results for ADBench: AUROC correction (difference between conformal and classical
AUROC).
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