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Unveiling Structural Memorization: Structural Membership
Inference Attack for Text-to-Image Diffusion Models
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ABSTRACT
With the rapid advancements of large-scale text-to-image diffusion
models, various practical applications have emerged, bringing sig-
nificant convenience to society. However, model developers may
misuse the unauthorized data to train diffusion models. These data
are at risk of being memorized by the models, thus potentially vio-
lating citizens’ privacy rights. Therefore, in order to judge whether
a specific image is utilized as a member of a model’s training set,
Membership Inference Attack (MIA) is proposed to serve as a tool
for privacy protection. Current MIA methods predominantly uti-
lize pixel-wise comparisons as distinguishing clues, considering
the pixel-level memorization characteristic of diffusion models.
However, it is practically impossible for text-to-image models to
memorize all the pixel-level information in massive training sets.
Therefore, we move to the more advanced structure-level mem-
orization. Observations on the diffusion process show that the
structures of members are better preserved compared to those of
nonmembers, indicating that diffusion models possess the capabil-
ity to remember the structures of member images from training sets.
Drawing on these insights, we propose a simple yet effective MIA
method tailored for text-to-image diffusion models. Extensive ex-
perimental results validate the efficacy of our approach. Compared
to current pixel-level baselines, our approach not only achieves
state-of-the-art performance but also demonstrates remarkable ro-
bustness against various distortions.

CCS CONCEPTS
• Security and privacy→ Privacy protections; • Computing
methodologies→ Computer vision.

KEYWORDS
Privacy protections, Membership Inference Attack, Text-to-image
diffusion models

1 INTRODUCTION
In recent years, large models, especially diffusionmodels [14, 42, 44]
have shown superior generative performance and found exten-
sive application across various fields. Moreover, the advent of the
text-to-image diffusion models [30] has facilitated the creation of
high-quality, diverse text-conditional images. These models have
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Figure 1: Throughout the diffusion process, in the initial
stage, diffusion models tend to corrupt the detailed features,
whereas the overall image structure is preserved. The models
continue to corrupt the image structure in the later stage.

significantly propelled the advancements of Artificial Intelligence
Generated Content (AIGC).

Nevertheless, the wide adoption of large models has raised vari-
ous legal and ethical concerns, notably copyright issues [1], con-
sent [8, 10] and ethics [17, 27]. One of the pressing concerns is the
unauthorized use of images for training models. This not only risks
compromising the privacy of image owners but also poses copyright
infringements, as models can realistically replicate copyrighted art-
works based on training data. This is attributed to models’ capacity
for memorization, which means models can remember certain ele-
ments or even reproduce almost identical images from their training
datasets. Under such circumstances, Membership Inference Attack
(MIA) [16] serves as an approach to tackle the issue. Given a specific
unauthorized image, the goal of MIA is to determine whether it is
a member of the training set of a target model. The core of MIA
is to ingeniously exploit the models’ memorization of members to
distinguish them from non-members.

Recently, numerousMembership Inference Attack (MIA)method-
ologies [7, 19, 24] have been introduced for diffusion models. These
methodologies, which rely on pixel-wise noise comparison, are
designed to assess models’ verbatim memorization of member im-
ages. However, we argue that it is practically impossible for large-
scale text-to-image models to memorize all the pixel information,
given that their training sets usually contain billions of images.
For instance, the Stable Diffusion-v1-1 is trained on the LAION2B-
en dataset, which contains around 2.32 billion text-image pairs.
Hence, we attempt to capture more advanced memorization capa-
bilities of large text-to-image diffusion models, specifically at the
structure-level. To investigate the structure-level memorization,
we first examine how a specific image is corrupted during the uni-
directional diffusion process for better comprehension of image

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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structural variations, and then explore whether this correlates with
models’ memorization.

As illustrated in Figure 1, we iteratively employ noise to corrupt
a specific image throughout the diffusion process. We then select
various pairs of noisy images and compute the residuals between
each pair. These residuals capture the change in image’s corrupted
parts. Our key observation is that diffusion models tend to corrupt
the detailed features within the image in the initial diffusion stages,
whereas the image structure is mostly preserved. Following this,
the corruption extends to the overall structure of the image in the
later diffusion stages. For instance, in Figure 1, the model primarily
focuses on the detailed patterns of the hat in the very early stages.
As the diffusion progresses, it then begins to address the structural
aspects of the cat’s fur. As for textual prompts in the text-to-image
models, they primarily influence the overall structure and context of
images in the later stages, while havingminimal impacts in the early
phases. Based on these findings, we delve deeper into the differences
in structural corruption between members and nonmembers. We
reveal that the structures of members are better preserved than
those of nonmembers in the initial diffusion stages, as the diffusion
models have memorized the structures of the members during
training phases.

In light of the aforementioned observations, we introduce a
straightforward yet effective MIA approach for text-to-image dif-
fusion models by comparing the structural similarity between the
original image and its corrupted version. Overall, the merits of
our approach mainly contain three aspects: 1) Structural difference
between members and nonmembers reveals the diffusion models’
memorization at the skeletal level, which is preferred by large mod-
els. 2) Comparing differences at the image level is more robust
to various distortions, particularly additional noise, than methods
that rely on noise comparison. 3) Our method exhibits robustness
to textual prompts, rendering it highly effective for membership
inference tasks on images which lack training textual prompts in
real-world scenarios.

We conduct a series of comprehensive experiments on both the
Latent Diffusion Model and the Stable Diffusion under varying
image resolutions. These experiments demonstrate the superior
performance of our proposed method. Furthermore, we evaluate
the robustness of our method under a range of practical distortions.
Our findings confirm the resilience of our method. In addition, we
examine the effect of diverse textual inputs on the efficacy of our
method, as we can not obtain the ground-truth texts of images
in training. Our results confirm that our method’s performance is
robust to changes in textual inputs, providing valuable insights to
the practical application of MIA.

We summarize the contributions of this paper as follows:

• Instead of pixel-level memorization, we delve into the ad-
vanced memorization capabilities of large diffusion models
at the structure-level. Furthermore, we investigate the dif-
ferences in the preservation of image structures between
members and nonmembers during the diffusion process.

• Drawing upon our findings, we propose a straightforward
yet effective MIA method for text-to-image diffusion models
by comparing the structural difference, which is more robust
to various distortions.

• We further verify that our method exhibits robustness to vari-
ations in textual prompts, enabling its application to images
lacking training textual prompts in real-world scenarios.

• Experimental results show that our method substantially out-
performs existing MIA methods for text-to-image diffusion
models, demonstrating its effectiveness.

2 RELATEDWORK
2.1 Membership Inference Attack
As proposed by Shokri [37], Membership Inference Attack (MIA)
aims to infer whether a specific sample is a member of a target
model’s training set. MIA is categorized into two main tasks: white-
box attack and black-box attack.White-box attack [25, 29] presumes
access to the internal structure and parameters of the target model,
enabling a comprehensive analysis of the model’s vulnerabilities.
Conversely, black-box attack [32, 38, 41] operates solely through
the model’s observable inputs and outputs, posing a challenging
yet more realistic scenario.

Primarily, MIA is specifically targeted at classification models
[5, 23, 34, 45]. Subsequently, with the rapid development of genera-
tive models, an increasing number of MIA methods have begun to
explore the vulnerabilities of such models, including VAE [18] and
GAN [9]. For instance, LOGAN [11] is the first to adopt MIA to GAN
in both white-box and black-box settings. It utilizes the outputs
from the discriminator for inference in white-box scenario, while
training a shadow GAN model in black-box scenario. Hilprecht et
al. [12] proposes the Monte Carlo score and reconstruction loss,
which can be used for attacking VAE. GAN-Leaks [3] also uses the
Monte Carlo score for attacking GAN in black-box scenario.
MIA for diffusion models. Recently, several MIA methods target-
ing diffusion models have emerged. The Naive Loss method [24]
and PIA [19] both use the training loss of diffusion models as a met-
ric for membership inference, specifically by comparing the added
noise with the predicted noise. The key difference is that Naive
Loss method employs random Gaussian noise, whereas PIA utilizes
the diffusion model’s output at time t=0 as the noise. SecMI [7]
compares the distance between two adjacent noisy images, which
are generated through the diffusion process and the denoising pro-
cess respectively. Nevertheless, these methods all rely on pixel-wise
noise prediction, which are suboptimal in larger models and are
vulnerable to real-world perturbations.

2.2 Diffusion Models
Starting from Denoising Diffusion Probabilistic Model (DDPM)
[14, 39], generative diffusion models have gained significant atten-
tion in recent times and achieved remarkable breakthrough across
diverse applications [6, 22, 28, 31, 33]. The training goal of diffusion
models is to learn the reverse denoising process of gradually trans-
forming Gaussian noise into signal. Score-based generative models
train a neural network to forecast the score function, enabling the
generation of samples through Langevin Dynamics [42–44]. The
sampling process can either be a Markov process like DDPM, or a
non-Markov process, such as DDIM [40]. Non-Markov process like
DDIM can be used to accelerate the generating process.

Except for unconditional generation from pure noise, diffusion
models have also been explored for conditional generation, such
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as text-guided image generation. The text-to-image model [30]
incorporates an image encoder-decoder framework to efficiently
conduct the diffusion and denoising process within a latent space.
The encoder compresses the input sample into a latent representa-
tion, while the decoder reconstructs the latent sample back to pixel
space. Classifier guidance [6] and classifier-free guidance [13] are
both proposed for high-quality image generation conditioned on
various textual prompts.

2.3 Prior of Diffusion Generation Process
Although diffusion models have demonstrated superior generation
performance, elucidating the generation process poses significant
challenges. Until now, several researches have tried to explore and
analyze the generation process. Choi et al [4] have conducted ex-
periments on measuring the LPIPS distance of two different images
under various time steps. They conclude that diffusion models learn
coarse features and structures when the Signal-to-Noise Ratio (SNR)
is low, whereas they learn more subtle and imperceptible features
as the SNR becomes higher. Based on their observations, Wang et
al. [46] design an encoder to provide comparatively strong condi-
tions for the diffusion model when the SNR is below 5𝑒−2 in the
super-resolution image generation task. Likewise, Kwon et al. [20]
also verify that modification of the generation process in the early
denoising stage can achieve larger high-level semantic changes.
Furthermore, Park et al. [26] conduct exponential sampling to carry
out an analysis of the generation process. They conclude that in
the early denoising stage, the diffusion models establish spatial
information representing semantic structure, and then widen to
the regional details of the elements in the later stage.

3 METHOD
Given an image 𝑥0, our goal is to infer whether 𝑥0 belongs to the
training set of a diffusion model 𝜖𝜃 . Current methods mainly lever-
age pixel-level memorization. We argue that for large-scale model,
its memory mechanism is beyond pixel-level to structure-level. To
demonstrate this, we first explore the structural changes through-
out the diffusion process. We find that the structural information is
largely maintained in the initial steps, and the members’ structures
are better preserved as the diffusion models have seen the struc-
tures of members during the training process (Section 3.2). Based
on this observation, we design a structure-level MIA for text-to-
image diffusion models (Section 3.3). The overview of our proposed
method is shown in Figure 3.

3.1 Preliminaries
Text-to-Image Diffusion Models. Distinct from other traditional
generative models, diffusion models contain two processes: the
diffusion (forward) process and the denoising (backward) process.
During the diffusion process, diffusion models iteratively introduce
Gaussian noise to the original image 𝑥0 with a total steps of T:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) (1)

where:
𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I) (2)

and the variance schedule 𝛽1, ..., 𝛽𝑇 is predefined. As t approaches
T, 𝛽𝑡 becomes closer to 1.

During the denoising process, diffusion models generate image
through multiple denoising steps starting from Gaussian noise:

𝑝 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) (3)

where:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (4)

and Σ𝜃 (𝑥𝑡 , 𝑡) is a constant depending on 𝛽𝑡 , 𝜇𝜃 (𝑥𝑡 , 𝑡) is predicted
by a neural network 𝜖𝜃 as:

𝜇𝜃 (𝑥𝑡 , 𝑡) =
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)

(5)

Under this formulation, in text-to-image diffusion models, we
use classifier-free guidance [15] to guide the image generation by
textual prompts y. The degree of text influence is controlled by
adopting Eq.6 and adjusting the unconditional guidance scale 𝛾 .

𝜖𝜃 (𝑥𝑡 |𝑦) = 𝜖𝜃 (𝑥𝑡 |∅) + 𝛾 · (𝜖𝜃 (𝑥𝑡 |𝑦) − 𝜖𝜃 (𝑥𝑡 |∅)) (6)

DDIM Inversion. To expedite the denoising process and ensure a
unique output, deterministic DDIM sampling [40] has been intro-
duced, thereby enabling a skip-step strategy. Then for the diffusion
process, a simple inversion technique, named DDIM inversion, has
been suggested for the DDIM sampling. Such inversion process
in Eq.7 provides a deterministic transformation between an input
image and its corrupted version.

𝑥𝑡+1 =
√
𝛼𝑡+1

(
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡)√

𝛼𝑡

)
+
√

1 − 𝛼𝑡+1𝜖𝜃 (𝑥𝑡 , 𝑡) (7)

We also give more mathematical details in Supplementary Materials.

3.2 Structure Evolution in Diffusion Process
To better capture the structure-level memorization of diffusion
model, we first explore the changes in structure information through-
out the diffusion process. Current arts [4, 20, 26, 46] show that
during image generation, diffusion models focus more on impercep-
tible details when the noise levels are minimal, while concentrating
on high-level context when faced with high noise levels. Similarly,
but more carefully, we especially focus on the changes in structural
information of both members and non-members throughout the
unidirectional diffusion process. We leverage the structural sim-
ilarity (SSIM) [47] as a metric. During the diffusion process, the
original image 𝑥0 is gradually corrupted by noise. A lower SSIM
between 𝑥0 and its corrupted version 𝑥𝑡 indicates greater structural
loss. We first explore the decrease rate (𝑣) of SSIM throughout the
whole diffusion process for both members and nonmembers:

𝑣 (𝑡) = 𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡+△𝑡 ) − 𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡 )
△𝑡 (8)

Figure 2 (a) depicts the average decrease rate over 500 members
and 500 nonmembers. It can be noted that the rate of decrease
in SSIM between original images and its corrupted version is ob-
served to initially increase and then decrease. More significantly,
the decrease rates for members and nonmembers exhibit distinct
behaviors. Nonmembers exhibit a higher rate of decrease when
the diffusion timestep t ranges from 0 to approximately 100. This
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(a) Rate of decrease (b) Structural similarity
difference

Figure 2: (a) The decrease rate of structural similarity for the
member set and the hold-out set. The structural similarity
exhibits a steeper decline for images belonging to the hold-
out set during the initial diffusion stage. (b) The average
difference in the structural similarity between the member
set and the hold-out set. The structural similarity for the
member set surpasses that for the hold-out set during the
first 800 diffusion steps, peaking at around step 100.

suggests that, for images that have been exposed to the diffusion
models during training, their structures are more apt to be main-
tained in the early diffusion steps compared to images that are not
included in the training set. However, as the images are further
corrupted, the structural information is diluted by noise. The rate of
decrease in structural similarity for members is even greater than
that for non-members.

Given the difference in decrease rate among members and non-
members, we further assess the average SSIM difference (△𝑆𝑆𝐼𝑀)
between the member set 𝐷𝑚 and the hold-out set 𝐷ℎ :

△𝑆𝑆𝐼𝑀 (𝑡) = 1
|𝑋𝑚 |

∑︁
𝑥0∈𝑋𝑚

𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡 ) −
1

|𝑋ℎ |
∑︁

𝑥0∈𝑋ℎ

𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡 )

(9)
where 𝑋𝑚∼𝐷𝑚 , 𝑋ℎ∼𝐷ℎ . Figure 2 (b) depicts the average SSIM dif-
ference over 500 members and 500 nonmembers. The structural
similarity for the member set is larger than that for the hold-out set
in the first 800 diffusion steps. Besides, the difference in structural
similarity between the member set and the hold-out set gradually
increases during the first 100 diffusion steps, reaching a maximum
at around step 100, which serves as an important clue for dividing
member set images and hold-out set images. These findings offer a
foundation for our proposed straightforward MIA strategy.

3.3 Structure-Based Membership Inference
Attack

Following the intuition above, we introduce a simple yet effective
membership inference attack method for text-to-diffusion models,
centered on the structure similarity between the original image and
its corrupted version.

As shown in Figure 3, we input an image 𝑥0 into the encoder of
the text-to-image diffusion model, thereby obtaining its latent repre-
sentation 𝑧0. We also adopt the BLIP [21] model to extract a caption
from image as textual prompt, since in practical applications, it
is difficult to obtain the training-time texts corresponding to the
images. Then we follow Eq. 7 to perform DDIM inversion to 𝑧0 in

Encoder

Decoder

Member

   Non
Member

SSIM

��

��

��

��

U-Net

U-Net

Diffusion
 Process

Figure 3: An overview of our proposed method. Given an
input image, we first utilize the encoder of the text-to-image
diffusion model to transform it to its latent representation
𝑧0. Then we conduct DDIM inversion in the diffusion process,
and get the noisy latent 𝑧𝑡 . Next, we leverage the decoder of
the diffusion model to transform 𝑧𝑡 back to the pixel space,
thereby obtaining the output image. Finally, we compare the
structural similarity between the input and the output to
determine whether the input image belongs to the training
set of the diffusion model.

the latent space, and get the corrupted latent 𝑧𝑡 . Subsequently, we
utilize the decoder of the text-to-image diffusionmodel to transform
𝑧𝑡 back to the pixel space and get 𝑥𝑡 . The ingenious application of
the encoder and decoder in the text-to-image model enables image-
level comparison, facilitating the extraction of intricate structures
without noise interference. By computing the structural similarity
(SSIM) between 𝑥0 and 𝑥𝑡 , we obtain a membership score for 𝑥0
and predict its membership as the following:

𝑥0 =

{
member, if 𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡 ) > 𝜏

nonmember, if 𝑆𝑆𝐼𝑀 (𝑥0, 𝑥𝑡 ) ≤ 𝜏
(10)

This indicates that we consider an image is a member of the training
set of the target model 𝜃 if SSIM(𝑥0, 𝑥𝑡 ) is larger than a threshold 𝜏 .

4 EXPERIMENTS
4.1 Experimental Setup
Target Models and Datasets.We utilize two prominent text-to-
image diffusion models: the Latent Diffusion Model and the Stable
Diffusion-v1-1, trained on the LAION-400M [36] and LAION2B-
en [35] datasets, respectively. We conduct experiments on the two
models without further fine-tuning or other modifications. For
the datasets, the LAION-400M dataset comprises 400 million text-
image pairs, while LAION2B-en, a subset of LAION-5B, contains
approximately 2.32 billion English text-image pairs. These datasets
are crawled from the Internet which are general and diversified.
Additionally, we employ the COCO2017-Val dataset, which includes
5,000 images and is commonly adopted for model evaluation.
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Table 1: Performance of our proposed method and baseline methods on the Latent Diffusion Model, with resolutions 512 and
256. ↑ represents that the higher the metric, the better the performance. Bold denotes the best result for each metric.

512×512 256×256
Method AUC↑ ASR↑ Precision↑ Recall↑ AUC↑ ASR↑ Precision↑ Recall↑
SecMI 0.759 0.699 0.749 0.620 0.732 0.680 0.754 0.557
PIA 0.656 0.655 0.789 0.420 0.725 0.695 0.822 0.505

NaivelLoss 0.789 0.740 0.830 0.605 0.737 0.709 0.815 0.553
Ours 0.930 0.860 0.880 0.839 0.841 0.763 0.799 0.720

Table 2: Performance of our proposed method and baseline methods on the Stable Diffusion, with resolutions 512 and 256. ↑
represents that the higher the metric, the better the performance. Bold denotes the best result for each metric.

512×512 256×256
Method AUC↑ ASR↑ Precision↑ Recall↑ AUC↑ ASR↑ Precision↑ Recall↑
SecMI 0.712 0.671 0.725 0.552 0.681 0.643 0.728 0.479
PIA 0.623 0.636 0.816 0.357 0.725 0.678 0.814 0.464

NaivelLoss 0.766 0.717 0.816 0.571 0.738 0.693 0.799 0.523
Ours 0.920 0.852 0.872 0.826 0.811 0.750 0.800 0.670

(a) ROC on 512*512 (b) ROC on 256*256 (c) Log-scaled ROC on 512*512 (d) Log-scaled ROC on 256*256

Figure 4: The ROC and log-scaled ROC curves on the Latent Diffusion Model, with resolutions 512 and 256. The ROC and
log-scaled ROC indicate that our method is significantly more effective on the Latent Diffusion Model compared to baselines.

(a) ROC on 512*512 (b) ROC on 256*256 (c) Log-scaled ROC on 512*512 (d) Log-scaled ROC on 256*256

Figure 5: The ROC and log-scaled ROC curves on the Stable Diffusion, with resolutions 512 and 256. The ROC and log-scaled
ROC indicate that our method is significantly more effective on the Stable Diffusion Model compared to baselines.

Implementation Details. For the two target models, we both use
the 5000 images in COCO2017-Val as the hold-out set. As for mem-
ber set selection, we randomly sample 5000 images from the LAION-
400M dataset as the member set for the Latent Diffusion Model;
and we also randomly sample 5000 images from the LAION2B-en
dataset as the member set for the Stable-Diffusion-v1-1. Our exper-
iments are conducted across two image resolutions: 256x256 pixels

and 512x512 pixels. Besides, we adopt DDIM inversion (Eq. 7) with
an interval of 50 and incorporate noise addition twice during the
forward diffusion process.
Evaluation Metrics. In order to evaluate the performance of our
proposed method, we adopt the widely used metrics [16]: Attack
Success Rate (ASR), Area-Under-the-ROC-curve (AUC), Precision
and Recall. We also follow the metrics used in [2], including the
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True Positive Rate (TPR) when the False Positive Rate (FPR) is 1%
(TPR@1%), and the True Positive Rate when the False Positive Rate
is 0.1% (TPR@0.1%). (More details about experimental setups can
be found in Supplementary Materials)

Table 3: The TPR at low FPR of our method and baselines on
the Latent Diffusion Model, with resolutions 512 and 256.

512×512 256×256
Method TPR@1%↑ TPR@0.1%↑ TPR@1%↑ TPR@0.1%↑
SecMI 0.227 0.134 0.215 0.081
PIA 0.243 0.126 0.267 0.126

NaivelLoss 0.338 0.231 0.263 0.103
Ours 0.575 0.245 0.368 0.173

Table 4: The TPR at low FPR of our method and baselines on
the Stable Diffusion, with resolutions 512 and 256.

512×512 256×256
Method TPR@1%↑ TPR@0.1%↑ TPR@1%↑ TPR@0.1%↑
SecMI 0.138 0.067 0.108 0.003
PIA 0.219 0.152 0.247 0.147

NaivelLoss 0.310 0.215 0.250 0.114
Ours 0.512 0.234 0.302 0.107

4.2 Comparison to Baselines
We compare our method with three current MIA methods for dif-
fusion models, including PIA [19], SecMI [7], and Naive Loss [24].
We leave the details of baselines in the Supplementary Materials.
Evaluation on Latent DiffusionModel. Table 1 shows the results
on the Latent Diffusion Model. Compared to baselines, our method
exhibits remarkable performance enhancements, particularly for
images with resolution 512, where it surpasses all baselines in AUC,
ASR, Precision, and Recall metrics. Notably, it achieves a 14.1%
increase in AUC and a 12.2% increase in ASR compared to the next
best method. For images with resolution 256, our method still out-
performs baselines in AUC, ASR, and Recall, albeit with a marginal
decrease in Precision. The ROC curve and log-scaled ROC curve
is depicted in Figure 4. We also consider the TPR at very low FPR,
i.e. 1% and 0.1% FPR, as shown in Table 3. Our method consistently
outperforms in all assessments, underscoring its superiority in MIA
performance. Particularly, its effectiveness significantly increases
for images with resolution 512. This reveals large-scale model’s
structure-level memorization and highlights the potential of our
method for more precise MIA on high-resolution images.
Evaluation on Stable Diffusion. Table 2 shows the results on the
Stable-Diffusion-v1-1. Our method significantly exceeds baselines
in AUC, ASR, and Recall. For images with resolution 512, it shows
a 15.4% improvement in AUC and a 13.2% improvement in ASR
over the nearest competitor. For images with resolution 256, our
approach maintains a 7.3% higher AUC and a 5.5% higher ASR than
the second-best method, despite a slight 1.4% reduction in Precision.
Besides, the ROC curve and log-scaled ROC curve is depicted in
Figure 5. The TPR at 1% FPR and 0.1% FPR is illustrated in Table
4. The results consistently demonstrate our method’s ability to

Table 5: The performance of our proposed method with dif-
ferent total timesteps on the Latent Diffusion Model, with
resolution 512.

Total Timestep AUC↑ ASR↑ Precision↑ Recall↑
50 0.923 0.854 0.867 0.837
100 0.930 0.860 0.88 0.839
200 0.929 0.861 0.913 0.803
300 0.900 0.836 0.884 0.776
400 0.850 0.781 0.854 0.684
600 0.723 0.676 0.809 0.466
800 0.487 0.503 0.589 0.083

Table 6: The performance of our proposed method with vari-
ous sampling intervals on the Latent Diffusion Model, with
resolution 512.

Interval AUC↑ ASR↑ Precision↑ Recall↑
1 0.933 0.863 0.911 0.806
10 0.934 0.864 0.885 0.838
20 0.933 0.864 0.897 0.824
50 0.930 0.860 0.880 0.839
100 0.924 0.855 0.881 0.835

produce high-confidence predictions across the Stable Diffusion by
leveraging large-scale model’s structure-level memorization.

4.3 Analysis of Total Timestep and Interval
Total Timestep. To evaluate the impact of the hyper-parameter
total diffusion timestep T, we vary T from 50 to 800, with a fixed
interval (𝑡𝑖=50). For instance, setting T=200 involves adding noise
from t=0 to t=200 in 50-step increments, totaling 4 query times.
Experiments are conducted using the Latent Diffusion Model on
images with resolutions 512 and 256. Results are shown in Table
5. AUC and ASR metrics remain stable between T=50 and T=200,
then begin to decrease from T=300, continuing to drop with fur-
ther increases in T. Notably, at T=800, AUC falls below 50%. The
outcomes align with our findings outlined in Section 3.2. With
total diffusion timesteps under 300, the model maintains the struc-
tural integrity of member images more effectively, distinguishing
them from non-member images. As T increases over 300, noise
accumulation adversely affects the structures of both member and
non-member images, thus reducing the attack effectiveness.
Interval. To investigate the influence of the hyper-parameter in-
terval 𝑡𝑖 , we fixed the total timestep at 100 and varied 𝑡𝑖 from 1 to
100. Using the Latent Diffusion Model, we conducted experiments
on images with resolutions 512 and 256. As demonstrated in Ta-
ble 6, there is minimal variation in AUC and ASR across different
𝑡𝑖 settings, possibly due to our method’s reliance on a determin-
istic diffusion process that eliminates random noise in each step.
Thus, changes in 𝑡𝑖 do not significantly affect the image’s struc-
tural information. Nonetheless, a higher 𝑡𝑖 value within the fixed
total timestep implies more queries and higher computational costs.
Therefore, we opt for 𝑡𝑖=50 as a practical compromise.
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Table 7: Performance of our method and baselines under distortions on the Latent Diffusion Model, with resolution 512.

Noise Rotation Saturation Brightness
Method AUC↑ ASR↑ AUC↑ ASR↑ AUC↑ ASR↑ AUC↑ ASR↑
SecMI 0.566 0.565 0.607 0.596 0.703 0.670 0.709 0.667
PIA 0.399 0.517 0.542 0.600 0.621 0.644 0.629 0.620

NaivelLoss 0.517 0.559 0.710 0.678 0.776 0.722 0.810 0.747
Ours 0.710 0.694 0.899 0.823 0.883 0.815 0.840 0.774

Table 8: The TPR at low FPR of our method and baselines under distortions on the Latent Diffusion Model, with resolution 512.

Noise Rotation Saturation Brightness
Method TPR@1%↑ TPR@0.1%↑ TPR@1%↑ TPR@0.1%↑ TPR@1%↑ TPR@0.1%↑ TPR@1%↑ TPR@0.1%↑
SecMI 0.067 0.020 0.135 0.070 0.185 0.098 0.185 0.026
PIA 0.036 0.015 0.156 0.077 0.212 0.134 0.151 0.022

NaivelLoss 0.056 0.022 0.206 0.072 0.308 0.193 0.180 0.015
Ours 0.205 0.025 0.420 0.121 0.443 0.123 0.182 0.049

4.4 Robustness Evaluation
In real-world scenarios, images undergo various distortions, like
noise and brightness fluctuations, during transmission. Addition-
ally, augmentation techniques are often applied to modify training
data for large-scale diffusion models, leading to the discrepancies
between training images and their originals. This necessitates the
robustness of our method to such variations.

We evaluate our method’s robustness using the Latent Diffusion
Model on images with resolution 512. Four degradation techniques
are applied to images:

• Additional noise. Salt and Pepper Noise, which randomly
corrupts 10% of the pixels in each image, is added to images.

• Rotation. Images are rotated by 10 degrees counterclock-
wise around the geometric midpoint.

• Saturation. The saturation levels of images are adjusted,
either increased or decreased by 50%, with equal probability.

• Brightness. The saturation levels of images are altered, ei-
ther increased or decreased by 50%, with equal probability.

Results are shown in Table 7 and Table 8. It is evident that our
methods achieve the highest results in ASR, AUC and TPR at 1%
FPR across all four types of distortions. Notably, our structure-level
approach exhibits exceptional resilience against additional noise,
whereas other baseline methods experience a significant decline
in performance. This is attributed to their reliance on noise-level
comparison, which renders them vulnerable to such disturbances.
Collectively, these experimental results underscore the superior
stability and robust nature of our methods in effectively handling
diverse distortions.

4.5 Comparison to Backward Reconstruction
All the baseline MIA methods for diffusion models involve both the
forward diffusion process for noise introduction, and the backward
denoising process for noise prediction. On the contrary, our method
only leverages the forward diffusion process. We argue that during
the initial diffusion process, as the structures of nonmember images
are more severely corrupted than those of members, the structural

Table 9: The performance of backward reconstruction and
forward diffusion (ours) on the Latent Diffusion Model, with
resolutions 512 and 256.

512×512
Method AUC↑ ASR↑ TPR@1%↑ TPR@0.1%↑

Backward Reconstruction 0.907 0.834 0.398 0.147
Forward Diffusion 0.930 0.863 0.575 0.245

256×256
Method AUC↑ ASR↑ TPR@1%↑ TPR@0.1%↑

Backward Reconstruction 0.824 0.753 0.276 0.109
Forward Diffusion 0.841 0.769 0.368 0.173

differences between members and nonmembers have widened sig-
nificantly. Conversely, the denoising process, which acts as the
inverse of the diffusion process, reconstructs both the corrupted
member images and nonmember images to their original states,
which leads to the reduction in the image structural differences
between members and nonmembers.

To validate this findings, we utilize the comparison of the origi-
nal images and their backward reconstructed states for MIA, and
make a contrast with our method. We conducted experiments using
the Latent Diffusion Model on images with resolutions 512 and 256.
The results are illustrated in Table 9. We observe that employing
backward reconstruction results in a decrease in AUC and ASR by
roughly 3%, regardless of the image resolutions. The TPR at 1% and
0.1% FPR also decrease to a large extent when using backward re-
construction. This reveals the superiority of our method in utilizing
the unidirectional diffusion process for MIA, compared to other
bidirectional methods.

4.6 The Impact of Texts on Structural Similarity
To evaluate the influence of texts on our method’ performance, we
delve into the impact of the unconditional guidance scale 𝛾 using
the Latent Diffusion Model on images with resolutions 512 and 256.
We use classifier-free guidance to guide the image generation by
textual prompts. The degree of textual influence is controlled by
adopting Eq. 6 and adjusting 𝛾 . Specifically, setting 𝛾 to 0 renders
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Table 10: The performance of our method with different
unconditional guidance scale𝛾 on the LatentDiffusionModel,
with resolution 512.

Scale 𝛾 AUC↑ ASR↑ Precision↑ Recall↑
0.0 0.930 0.862 0.878 0.842
1.0 0.930 0.860 0.880 0.839
2.0 0.930 0.860 0.870 0.853
3.0 0.930 0.860 0.871 0.851
4.0 0.930 0.859 0.871 0.850
5.0 0.930 0.862 0.871 0.850

Original T = 200 T = 500 T = 800

(a) BLIP: "A watch with a white dial and a silver mesh strap"

Original T = 200 T = 500 T = 800

(b) Empty prompt

Original T = 200 T = 500 T = 800

(c) Unrelated prompt: "A dog is walking on the grass"

Figure 6: (a) Reconstruction results with a prompt extracted
by BLIP model. (b) Reconstruction results with an empty
prompt. (c) Reconstruction results with an unrelated prompt.

the model entirely unconditional, while a setting of 1 makes it
fully conditional, guided solely by text, forming the basis for our
experiments. As 𝛾 increases, the influence of textual information
is increasingly pronounced. Here we vary 𝛾 from 0 to 5. Results
are shown in Table 10. All four metrics remain virtually unchanged
across varying scale values, suggesting that textual information has
minimal impact on structural similarity during the initial diffusion
stage. Themodels preserve image structures well, irrespective of the
presence of textual information when the noise levels are minimal.

To further explain this result, we conduct the reconstruction
experiments, where we corrupt a image in the diffusion process to
a certain timestep T, and then restore it in the denoising process.
We compare the structural similarities between original images and
their reconstructions under three conditions: captions from the BLIP
model, empty prompts, and unrelated texts. One of the results is
shown in Figure 6 (a) (b) (c). Notably, at T=200 (the noise level is low),
reconstructions across all types of prompts are similar. However,

Figure 7: The variation curve of structural similarity between
the original image and the reconstruction image throughout
total diffusion step T.

as T increases to 500 and 800 (the noise levels are high), variations
in reconstruction outcomes become pronounced. This indicates
that textual impact on image structure is minimal at low noise
levels, where models prioritize detailed features. Conversely, when
faced with higher noise levels, where models focus more on overall
structure, unrelated texts significantly influence the reconstruction
results, underscoring the guiding role of textual information.

We also plot a trend curve depicting how structural similar-
ity between the original and reconstructed images changes with
the total diffusion step T. As shown in Figure 7, when T is be-
low 300, structural similarity remains consistent across different
prompts. However, as T increases, structural similarity experiences
the sharpest declines with an unrelated prompt. These results sug-
gest that the text impact on our method is minimal, since we only
assess structural similarity in the initial diffusion phase where the
noise levels are minimal.

5 CONCLUSION
In this paper, we explore the structure-level memorization of large-
scale text-to-image diffusion models. We primarily investigate the
corruption of images structures throughout the diffusion process.
We further demonstrate that the structures of member images in
training set are better preserved than those of nonmembers in the
initial diffusion stages, since models can memorize member images’
structures during training. Drawing on these insights, we introduce
a novel Membership Inference Attack (MIA) method for text-to-
image diffusion models to judge whether an unauthorized image
is utilized for training a diffusion model. Our proposed method is
to assess models’ structure-level memorization. We evaluate our
method on state-of-art text-to-image diffusion models, e.g., the
Latent Diffusion Model and the Stable Diffusion. Experimental
results show that our method achieves higher ASR, AUC, TPR @
1% FPR and TPR@ 0.1% FPR than all baselines. Besides, our method
also exhibits greater robustness against diverse distortions and
maintains efficacy across different textual prompts, underscoring
its applicability in more real-world contexts.
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