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ABSTRACT

Diffusion models have been well-investigated for solving ill-posed inverse prob-
lems to yield excellent performance. However, their application to highly ill-posed
inverse problems remains challenging. In this work, we propose zero-shot diffu-
sion model for large and complex kernels, dubbed Dilack, incorporating novel
data fidelity terms. Based on our analyses on the ill-posedness for challenging
inverse problems, we propose regularized fidelity called pseudo-inverse anchor for
constraining (PiAC) fidelity loss. Inspired by locally acting classical regularizers,
we also propose to incorporate masked fidelity within PiAC loss that can interact
with globally acting diffusion models, which adaptively enforces spatially and step-
wisely local fidelity via masks. Our proposed scheme effectively reduces erratic
behavior and inherent artifacts in diffusion models, thereby improving restoration
quality including perceptual aspects and outperforming prior arts on both synthetic
and real-world datasets for modern lensless imaging and large motion deblurring.

1 INTRODUCTION

Image restoration (IR) is a fundamental low-level vision task that solves ill-posed inverse prob-
lems (Lim et al., 2017; Kupyn et al., 2019; Larsson et al., 2016; Song et al., 2021; Sriram et al.,
2020). IR attempts to reconstruct the original image x ∈ Rn from the degraded and/or undersampled
measurement y ∈ Rm by exploiting the forward model for imaging:

y = Ax+ n (1)

where n denotes a measurement noise and A is an m × n measurement matrix. This operator A,
often a kernel matrix, encapsulates the effects of forward imaging processes in various low-level
vision tasks (Liang et al., 2021b; Luo et al., 2022; Xu et al., 2017; Quan et al., 2021). A typical
formulation to solve the inverse problem based on Eq. (1) or to recover x from y involves minimizing
a cost function expressed as:

x̂ = argmin
x

L(x;y) + λR(x) (2)

where L(x;y) represents a data-fidelity term, R(x) denotes a prior term for regularization, λ is a
parameter balancing regularization with fidelity, and x̂ is the estimated image.

There are a number of approaches to formulate and solve Eq. (2). A classical approach uses
regularizers such as sparsity or low-rankness for R(x) (Krishnan & Fergus, 2009; Dong et al., 2018;
Tirer & Giryes, 2020). This approach works well with diverse imaging problems by modifying A
and n while using the same R(x), but it lacks perceptual priors (Boyd et al., 2011; Beck & Teboulle,
2009). Eq. (2) usually yields an iterative algorithm, but often leads to a closed form solution for some
cases. Deep learning-based approach solves Eq. (2) by training deep neural networks (DNNs) to
directly map from the measurement to the estimated image x̂ = D(y) (Lee et al., 2023; Zeng & Lam,
2021; Khan et al., 2019; Wan et al., 2023; Li et al., 2023b; Zhong et al., 2023). While this approach
has yielded excellent image quality, it often struggles due to their reliance on scarce, high-quality
datasets and limited generalizability to new data variations (Song et al., 2021).

One promising approach to formulate and solve Eq. (2) is a hybrid form to use both the data fidelity
term in the classical approach and the regularization term R(x) by exploiting DNNs so that DNNs
can be decoupled with the forward model. This zero-shot (ZS) approach for IR can utilize pre-trained
models such as generic denoisers (Metzler et al., 2017; Zhang et al., 2019; Ryu et al., 2019; Zhang
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Figure 1: Dilack leverages total variation (TV)-regularized optimization to identify local inconsisten-
cies and mask-guide sparse iterations, ensuring global consistency and quality. Unlike (a) existing
zero-shot diffusion methods using LLS (Eq. 9) or LPi (Eq. 10) guidance, (b) Dilack effectively
tackles severe ill-posed problems, such as those found in lensless camera raw and large motion blur.

et al., 2021) or generative models (Bora et al., 2017). Recently, there have been significant advances
in diffusion models (DMs), yielding state-of-the-art performance in diverse IR tasks (Dhariwal &
Nichol, 2021; Song et al., 2020), enhancing reconstruction performance (Tang et al., 2024; Song et al.,
2022; Mardani et al., 2023; Garber & Tirer, 2024) and boosting sampling efficiency (Chung et al.,
2022b; Avrahami et al., 2023; Wang et al., 2024; Yang et al., 2024). Latent diffusion models (LDMs)
have been proposed that operate in a lower-dimensional latent space instead of high-dimensional
pixel space, satisfying both performance and computational cost (Rout et al., 2024; Song et al., 2024).

While existing zero-shot diffusion models (ZS DMs) effectively handle various standard degradation
scenarios (Kawar et al., 2021; 2022; Wang et al., 2022) by leveraging the fidelity-prior framework
in Eq. (2), these models have not been well-adopted to highly ill-posed inverse problems since they
struggle with them in real-world applications such as modern lensless imaging and large motion
deblurring unlike classical methods. Here we argue that generative models such as DMs interact with
data fidelity term globally so that they may not be as effective as locally acting classical regularizers
for highly ill-posed inverse problems. In fact, Bora et al. (2017) showed that using both generative
model and classical regularizer helped to improve performance for less measurements (i.e., more
ill-posed) while classical regularizer did not help much for sufficient measurements.

Here we investigate the behavior of DMs interacting with data fidelity and then we propose ZS DM
with masked fidelity that adaptively enforces spatially and step-wisely local fidelity for highly ill-posed
restoration problems such as modern lensless imaging and large motion deblurring. Surprisingly, for
these challenging problems, we demonstrate that ZS DMs often yielded poor results over classical
methods (Boyd et al., 2011; Beck & Teboulle, 2009) even with model mismatch and calibration
errors (Monakhova et al., 2019; Rego et al., 2021; Poudel & Nakarmi, 2024). Our masked data
fidelity term enforces spatially and step-wisely local interactions with DMs by minimizing outlier
generations in DMs for stability while maintaining enough global interaction.

Our contributions: (1) Analyzing the behaviors of current ZS DMs for solving highly ill-posed
inverse problems with large and complex kernels. (2) Proposing a novel zero-shot Diffusion model
for large and complex kernels, dubbed Dilack, with our novel fidelity that utilizes region-of-interest
(ROI)-based spatially masked fidelity to dynamically toggle for emphasizing local consistency as
well as step-wisely masked fidelity over iterations. Moreover, our regularized data fidelity term, PiAC
(Pseudo-inverse Anchor for Constraining) loss, replaces the pseudo-inverse (Pi) with a more robust
approximation tailored for highly ill-posed tasks. (3) Demonstrating that Dilack outperforms existing
ZS DMs and classical methods in highly ill-posed IR tasks encountered in modern imaging systems
with large and complex kernel degradations, across both synthetic and real-world datasets.

2 BACKGROUND

Diffusion models. We utilize a task-agnostic diffusion model capable of generating images, trained on
numerous images. Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019), particularly
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those under the variance-preserving framework such as DDPM (Ho et al., 2020), transform data
distributions into Gaussian through a linear stochastic differential equation (SDE) (Song et al., 2020).
This forward process incrementally adds noise over finite steps:

dx = −β(t)
2

xdt+
√
β(t)dw (3)

where β(t) denotes the variance schedule, and w is standard Brownian motion. As the forward
process evolves, the data distribution, initially x(0) ∼ pdata, gradually reaches a Gaussian state at
x(1). The reverse process restores the original data distribution by reversing the noising SDE via
applying denoising score matching techniques to reduce noise levels progressively:

dx =

[
−β(t)

2
x− β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄ (4)

where t is the DM sampling iteration that goes from T to 0. In Eq. (4), ∇xt log pt(xt) can be
approximated by the pre-trained score function sθ(xt, t).

Zero-shot diffusion models for IR. In ZS DMs for solving low-level vision tasks where singular
value decomposition (SVD)-based methods (Kawar et al., 2021; 2022; Wang et al., 2022; Cao et al.,
2024) are impractical, recent studies (Chung et al., 2023b;a; Tang et al., 2024; Yang et al., 2024;
Mardani et al., 2023; Zhu et al., 2023; Song et al., 2022; Garber & Tirer, 2024; Rout et al., 2024)
have proposed to replace the score function in Eq. (4) with Bayesian framework. In this framework,
p(x) acts as the prior, with updates from the posterior p(x|y) computed using:

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt). (5)

In Eq. 5, after replacing ∇xt log pt(xt) with the score estimate sθ∗(xt, t), the posterior mean from
p(x0|xt) can be approximated by factorizing pt(y|xt) using Tweedie’s formula (Efron, 2011):

x̂0|t ≃
1√
ᾱ(t)

(xt + (1− ᾱ(t))sθ∗(xt, t)). (6)

This leads to the following equation for solving Eq. (1), approximated errors using the Jensen
gap (Gao et al., 2017; Chung et al., 2023b):

∇xt
log p(y|xt) ≃ ∇xt

log p(y|x̂0|t) (7)

where x̂0|t is the posterior mean of p(x0|xt) obtained during the DDPM reverse diffusion sampling
process starting from time step 0. By differentiating p(y|xt) with respect to x, we can obtain the
final sampling process for IR (Chung et al., 2022a; 2023b):

∇xt
log pt(xt|y) ≃ sθ(xt, t)− ρ∇xt

L(x;y), ρ ≜ 1/σ2 = step size. (8)

Here, sθ(xt, t) serves as the regularization term R(x), while L(x;y) is the fidelity term in Eq. 2.

The existing ZS DMs guide the diffusion process using the approximation of L(x;y). Most ZS DM
methods (Chung et al., 2023b;a; Tang et al., 2024; Yang et al., 2024; Mardani et al., 2023; Rout et al.,
2024; Song et al., 2024) utilizing least-squares (LS) fidelity in Eq. (8) solve general image inverse
problems:

L(x̂0|t;y) := LLS = ∥y −Ax̂0|t∥22. (9)
Some of recent methods (Zhu et al., 2023; Song et al., 2022; Garber & Tirer, 2024) integrate a Wiener
deconvolution (Wiener, 1949) as a pseudo-inverse operator A† to enhance performance of Eq. (8):

L(x̂0|t;y) := LPi = ∥A†y −A†Ax̂0|t∥22. (10)

DiffPIR (Zhu et al., 2023) enhances performance in deblurring by using LPi and ΠGDM (Song et al.,
2022) integrates LPi with the vector-Jacobian product to enhance consistency between measurements
and results. DDPG (Garber & Tirer, 2024) utilizes both LPi (10) and LLS (9), achieving significant
improvements in balancing fidelity and perceptual quality. Note that the prevalent text-conditioned
ZS DMs (Radford et al., 2021; Couairon et al., 2023; Luo et al., 2023; Yu et al., 2024) are not suitable
for our tasks as they require decipherable measurements for reliable text extraction.

Highly ill-posed real-world inverse problems with large and complex kernel degradations.
(i) Lensless imaging: Mask-based lensless cameras utilize phase or amplitude masks close to the
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sensor instead of lenses in conventional cameras, achieving low-cost and compact designs based
on compressive sensing techniques (Antipa et al., 2018; Asif et al., 2016; Boominathan et al.,
2022). To accomplish miniaturization and multiplexed imaging, these cameras feature large and
complex patterned point spread functions (PSFs) with a large aperture that match the size of the
measurements, as shown in Fig. 2 and 3. Moreover, these measurements are limited (i.e., cropped)
due to the physical constraints of the sensor size (Poudel & Nakarmi, 2024). Also, they are affected
by an overly idealized shift-invariance assumption, shooting environment, and sensor intrinsic noise,
resulting in significant ill-posed problems that require a thorough approach for raw measurement
reconstruction (Boominathan et al., 2022). Note that in this paper, the term “lensless imaging”
is restricted to mask-based lensless camera raw reconstruction. Appendix E provides a detailed
explanation of mask-based cameras, their measurements, and the need for zero-shot lensless imaging.

(ii) Large motion deblurring: As modern cameras aim for ultra-high resolution and image quality,
managing motion blur becomes more difficult. The finer details captured by these cameras magnify
the effects of motion blur, particularly when zoomed in. Higher pixel density makes images more
sensitive to even slight camera shake or movement. Moreover, capturing high-resolution images often
requires more light, and in low-light conditions, slower shutter speeds increase motion blur, further
exacerbated by higher ISO settings. The scenario with large motion blur kernels, such as Fig. 2 and
3, highlights these issues, emphasizing the need for innovative solutions.

3 ANALYSES ON DIFFUSION MODELS FOR HIGHLY ILL-POSED RESTORATION

We investigated two diffusion methods for image restoration, DPS (Chung et al., 2023b) and Diff-
PIR (Zhu et al., 2023), with the different existing data fidelity terms LLS in Eq. (9) and LPi in
Eq. (10), respectively, for highly ill-posed inverse problems of large motion deblurring and modern
lensless imaging to observe the behaviors of them with challenging large and complex kernels.

Challenge 1: Large motion deblurring. We assess the influence of large and complex kernel by
simulating a motion blur kernel, focusing on its size and complexity as shown in Figure 2(a). In
the first row of Figure 2, when utilizing a 642 kernel with an intensity of 0.5 that are equivalent
settings in DPS (Chung et al., 2023b) and DiffPIR (Zhu et al., 2023), both methods achieved excellent
results that are close to the ground truth (GT). However, increasing the kernel size to 2562 results in
notable performance drop for DPS while much less performance drop for DiffPIR. In the second row
of Figure 2, the kernel size is set to 2562, and the intensity is increased to 1.0, simulating a larger
kernel with increased nonlinearity, DPS exhibited a notable loss in consistency with the GT, while
DiffPIR, guided by A† (i.e., Wiener deconvolution in Appendix B), achieved much better restoration,
even though it lost some fidelity as compared to the cases with smaller motion. To analyze these
empirical results, we examine the sensitivity and stability issues caused by high condition numbers

Figure 2: Analysis on (a) motion blur kernels and (b) lensless camera PSFs of varying sizes and
complexity. As the kernel size increases, the non-uniformity of A’s singular values increases, leading
to deteriorated image reconstruction performance. Using LLS show a notable decline in performance.
In more complex kernel patterns (b) with kernel size 2562, using LPi also severely underperforms.
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and non-uniform singular values (Golub & Kahan, 1965; Brand, 2006; Karras et al., 2019), as shown
in the ‘Singular values of A’ column in Figure 2.

Challenge 2: Modern lensless imaging. We now analyze the effectiveness of A† on the point spread
functions (PSFs) from real lensless cameras, which have much more complex features compared to
large motion blur. Our analysis compares ideal measurements obtained by convolution with the kernel
(third row) to more realistic simulations involving a 12.1% crop in each dimension (fourth row). As
shown in Figure 2(b), DPS with LLS fidelity faces significant challenges with the lensless kernel A,
resulting in poor performance under both ideal and realistic conditions, worsening as the PSF size
increases. In contrast, while DiffPIR using A† performs better than DPS with normal PSF sizes, it
still produces completely incorrect reconstruction outputs for large PSF sizes. This performance drop
is due to the poor quality of the pseudo-inverse in high condition number scenarios.

Analysis 1: LS fidelity vs. Pi fidelity. The condition number of A ∈ Rm×n is defined as κ(A) =
σmax

σmin
, where σmax and σmin are the largest and smallest singular values, respectively. When large

kernels cause significant non-uniformity in the singular values as shown in the graphs of Fig 2, the
condition number increases, reducing the effective rank, rankη(A), defined as the number of singular
values above a threshold η. For the (a) motion blur kernel, the condition number increases from 1.21
to 4.80 as the first row kernel size increases from 64 to 256. Similarly, for the (b) lensless camera
PSF, it increases from 7.43 to 15.11, demonstrating that larger and more complex kernels result in
higher condition numbers. A high condition number implies greater sensitivity to perturbations, as
expressed in the inequality below (see Appendix A for details):

∥∆x∥ ≤ ∥A−1∥∥y∥(δ + ϵκ(A)). (11)
Therefore, the fidelity LLS in Eq. (9) yields unstable data fidelity at each iteration, affecting quality.
A suitable pseudo-inverse A† (e.g., Wiener deconvolution) significantly aids in solving image inverse
problems (Tirer & Giryes, 2020; Garber & Tirer, 2024). If A is imperfect with the error δA,
the solution with the fidelity LPi in Eq. (10) will be perturbed as x + δx ≈ (A† − A†δAA† +
O(∥δA∥2))y. Focusing on first-order terms, the change in x due to δA is δx ≈ −A†δAA†y. This
illustrates how the pseudo-inverse A† mediates the impact of A with high conditional number by
removing the direct influence of the conditional number in the upper bound. While the Pi fidelity
with Eq. (10) seems to work well even for the forward models with high conditional number, it is
important to ensure if we can obtain a reliable pseudo-inverse A†.

These comparisons seem consistent with the prior work on two fidelity terms of LS and Pi guidance in
the setting of image restoration with classical regularizers. For the forward model A with all singular
values less than 1, (Tirer & Giryes, 2020; Garber & Tirer, 2024) reported that LPi tends to exhibit
smaller bias but higher variance compared to LLS in both noiseless and moderately noisy cases.
Consequently, LPi generally achieves a smaller mean squared error (MSE) than LLS . Therefore, as
shown in Figure 2, regardless of different kernel sizes and non-uniform singular values, LPi generally
exhibits better restoration performance than LLS , as shown in DiffPIR original paper.
Remark 1. LPi fidelity in Eq. (10), which leverages the pseudo-inverse, generally outperforms LLS
fidelity in Eq. (9). The latter is effective in noiseless or moderately noisy cases under reasonable
conditions reasonable conditions regarding the non-uniformity of A’s singular values of the forward
model.

Analysis 2: Fidelity vs. global regularizer. Here we have tackled highly ill-posed inverse problems
with very high condition numbers, so it is reasonable to start our investigation from the Pi fidelity
LPi rather than the LS fidelity LLS . Here we focus on the relationship between the fidelity term
and the regularization term in Eq. (2). For classical regularization such as total variation with the Pi
fidelity, the loss function becomes

∥A†y −A†Ax∥22 + λ∥∇x∥22 =
∑
j{[A†y −A†Ax]2j + λ[∇x]2j} (12)

where [·]j is the jth element of an input vector. Then, the trade-off between the fidelity and the
regularizer will be controlled locally. In other words, for some j indices, the fidelity term is minimized
while for other j indices, the regularizer term will be minimized simultaneously. In the meanwhile,
for diffusion model prior R(x) with the Pi fidelity such as∑

j{[A†y −A†Ax]2j}+ λR(x), (13)

the trade-off between the fidelity and the regularizer is not controlled locally, but controlled globally.
This particular relationship may not be favorable for highly ill-posed inverse problems where there
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may be usually very high errors for some indices j since these errors can be considered as a structure
in an image for a generative model like DMs, leading to completely different images as illustrated in
Figure 2, especially for large and complex kernels. This argument seems consistent with the results in
(Bora et al., 2017) where using a hybrid regularizer with (global) generative prior and (local) classical
regularizer was advantageous in performance for the cases with challenging small measurements.

4 PROPOSED METHOD: DILACK

Based on the analysis in Sec. 3, we introduce Dilack, a zero-shot diffusion model for large and
complex kernel degradations, providing solutions beyond the reach of existing methods.

4.1 REGULARIZED FIDELITY: PSEUDO-INVERSE ANCHOR FOR CONSTRAINING (PIAC)

Consider LPi in Eq. 10, ∥A†y−A†Ax̂0|t∥22, where A†y represents an analytic solution like Wiener
deconvolution, and A†A projects onto the subspace spanned by A†y. For well-posed problems, A†
is equivalent to the exact inverse A−1, making A†y the true estimate x and A†A the identity matrix.
However, for highly ill-posed problems, these terms fail to preserve fidelity effectively. To address
this, we propose a new fidelity term to approximate LPi under such conditions.

Pseudo-inverse anchor. The first term, A†y, serves as an anchor to enforce fidelity to the measure-
ment y. However, for highly ill-posed problems, the pseudo-inverse solution A†y is insufficient. We
replace it with a regularized solution x̃∗, selecting a total variation (TV)-regularized solution (Rudin
et al., 1992) obtained via Alternating Direction Method of Multipliers (ADMM) (Beck & Teboulle,
2009; Boyd et al., 2011; Yang et al., 2013) (Appendix C). This leads to the approximate fidelity
term ∥x̃∗ −A†Ax̂0|t∥22. The optimization starts with an initial point of 0 for the first x̃∗, updated
G− 1 times using normalized intermediate sampling outputs, where G is the number of initializa-
tions. The TV regularizer weight λt decreases over re-initialization steps, starting at λT−1 = 10−7

(Appendix G.6). If G = 1, the initial x̃∗ is reused without updates.

For well-posed problems, A†A acts as an exact identity, and for mildly ill-posed problems, it
approximates the identity. In highly ill-posed cases, however, A†A loses significant information,
making it unsuitable as a fidelity term. To address this, we approximate A†A as the identity, leading
to the simplified fidelity term ∥x̃∗ − x̂∥22 in posterior sampling, where x becomes xt. This enables
applying DPS Theorem 1, resulting in ||x̃∗ − x̂0|t||2.

The difference between LPi and LPiAC lies in two aspects: LPi uses A†y as a minimum norm
solution, while LPiAC employs a TV-regularized solution. Additionally, LPi directly applies A†A,
whereas LPiAC approximates it as the identity. As a result, LPi evaluates fidelity within the projected
space, while LPiAC accounts for the entire space, including the null space filled by TV regularization.
Our Dilack sacrifices the aspect of measuring in the projected spaces for highly ill-posed inverse
problems, but instead we approximate it by comparing the values in the null space that was filled by
TV regularization.

Pseudo-inverse anchor for constraining fidelity. Therefore, the proposed Pseudo-inverse Anchor
for Constraining (PiAC) fidelity loss is:

LPiAC = ∥x̃∗ − x̂0|t∥22 (14)

where x̂0|t is the posterior mean Ep(x0|xt)[x0] by Eq. (6) as defined in Eq (7). Then, we reformulate
the gradient of the log likelihood from Eq. (5) as follows:

∇xt log pt(xt|y) ≃ sθ∗(xt, t)− ρ∇xtLPiAC (15)

where ρ ≜ 1/σ2 functions as guidance weight and LPiAC acts as an approximate ∇xt log pt(y|xt).
LPiAC addresses the shortcomings of traditional fidelity measures by incorporating them into the log
likelihood gradient, ensuring adherence to both observed measurements and the non-linear estimate,
effectively filling gaps in data fidelity. Particularly useful when Wiener deconvolution fails with large
and complex kernel degradations, it guarantees consistency in reconstruction performance. Note that
while other ZS DMs (Chung et al., 2023b; Zhu et al., 2023; Garber & Tirer, 2024) adjust ρ for each
dataset and task, we standardize ρ = 1 across all cases, making our approach more generalizable.
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Figure 3: Qualitative results of our zero-shot diffusion model, Dilack, on ImageNet.

4.2 MASKED FIDELITY: REGION-OF-INTEREST (ROI) MASK FOR LOCALIZED PIAC

Dynamic ROI mask design. Model-based optimization approaches in PiAC fidelity (Boyd et al.,
2011; Beck & Teboulle, 2009) enhance or reduce fidelity point-wise across regions. Integrating
diffusion priors adds complexity, as their global application during sampling may overfit noise and
artifacts in x̃∗, degrading realism. This occurs because x̃∗ is sparsely updated G− 1 times or remains
static when G = 1. To address this, we introduced ROI masking to selectively control these effects,
balancing fidelity and perceptual quality while leveraging the generative strengths of the diffusion
model. To compute the ROI and adaptively mitigate the local effects of LPiAC , we construct a
2D binary mask Mt, which is dynamically updated at each iteration t. Let the TV-regularized
solution x̃∗ and the current sampled image x̂0|t, each with dimensions H ×W , be divided into ψ×ψ
non-overlapping patches. In our implementation, we set ψ = 32, resulting in N = H ×W/ψ2 = 64
patches for H = W = 256. Define the indices of the patches on the image grid as i, j, where
i, j ∈ {1, . . . ,H/ψ}. Let P (i,j) denote the patch located at the (i, j)-th position of the image
grid. The binary mask for each patch at iteration t, denoted as M(i,j)

t , is determined based on the
differences between the corresponding patches in x̃∗ and x̂0|t. Specifically, M(i,j)

t is defined as:

M(i,j)
t =

{
1, if D(i,j)

sum (x̃∗, x̂0|t) ≥ Ων
[
Dsum(x̃

∗, x̂0|t)
]
,

0, otherwise,
(16)

where D(i,j)
sum (x̃∗, x̂0|t) computes the sum of L1-norm differences for all pixel values within the patch

P (i,j), and Ων [·] represents the ν-th percentile of all D(i,j)
sum values across the entire image grid.

Algorithm 1 Dilack
Require: A, y, λT−1, ρ, T , C,G, sθ(·, t), and {σ̃t}Tt=1

1: xT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x̂0 ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: z ∼ N (0, I)

6: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0|t + σ̃tz

7: if t ∈ C then
8: x̃∗ ∈ argmin

x
∥y −Ax∥22 + λtTV(x) // Classical

TV-regularized optimization starts with initial values of 0 and is
re-initializedG− 1 times using intermediate sampling outputs.

9: xt−1 ← x′
t−1 − ρMt · ∇xt∥x̃

∗ − x̂0|t∥22
10: else
11: xt−1 ← x′

t−1

12: end if
13: end for
14: return x̂0|t

The complete binary mask for iteration t, Mt,
is then obtained by combining all patch-wise bi-
nary masks Mt =

⋃H/ψ
i=1

⋃W/ψ
j=1 M(i,j)

t , where

M(i,j)
t ∈ {0, 1} for all i, j. We set a patch size

of 32 × 32 with an 80th percentile threshold for
lensless imaging and a 30th percentile threshold
for large motion deblurring, which yields optimal
performance (Appendix F.1). For regions where
the mask value is 1, LPiAC effectively maintains
spatial consistency. This prevents the generation
of random eccentric images from the pre-trained
diffusion model. Conversely, in regions where the
mask value is 0, it exclusively modulates benefi-
cial local elements for IR. It utilizes the diffusion
prior sθ∗(xt, t) without LPiAC.
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Table 1: Quantitative results of the zero-shot IR methods on ImageNet(top) and FFHQ(bottom),
including lensless imaging and large motion deblurring. Note that large motion blur uses relatively
simple kernel features, allowing existing methods using A† to perform well, but Dilack shows
comparable results and our mask-guided approach outperforms pure ADMMTV in all aspects.

ImageNet Lensless Imaging (w/ Voronoi) Lensless Imaging (w/ Turing) Large Motion Deblurring
Method PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓

A†y (Wiener, 1949) 13.17 / 0.274 / 241.33 / 0.606 13.12 / 0.288 / 252.38 / 0.589 15.80 / 0.421 / 170.4 / 0.616
ADMMTV (Boyd et al., 2011) 19.74 / 0.574 / 36.45 / 0.299 20.57 / 0.575 / 34.84 / 0.293 19.90 / 0.528 / 120.07 / 0.492

DPS (Chung et al., 2023b) 8.13 / 0.268 / 130.77 / 0.666 8.15 / 0.265 / 128.12 / 0.666 17.46 / 0.488 / 38.17 / 0.364
DiffPIR (Zhu et al., 2023) 11.22 / 0.448 / 153.97 / 0.479 10.66 / 0.248 / 152.84 / 0.576 21.04 / 0.511 / 61.97 / 0.414

DDPG (Garber & Tirer, 2024) 19.55 / 0.658 / 91.33 / 0.385 19.54 / 0.653 / 91.90 / 0.391 22.30 / 0.593 / 92.64 / 0.449
Dilack(ours) 22.88 / 0.773 / 41.54 / 0.250 24.94 / 0.798 / 35.61 / 0.225 20.99 / 0.612 / 77.46 / 0.420

FFHQ Lenssless Imaging (w/ Voronoi) Lensless Imaging (w/ Turing) Large Motion Deblurring
Method PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓

A†y (Wiener, 1949) 12.89 / 0.228 / 345.41 / 0.679 12.98 / 0.241 / 398.2 / 0.662 16.76 / 0.547 / 183.58 / 0.565
ADMMTV (Boyd et al., 2011) 19.63 / 0.491 / 54.89 / 0.367 20.28 / 0.488 / 54.98 / 0.362 21.32 / 0.620 / 125.02 / 0.459

DPS (Chung et al., 2023b) 9.98 / 0.362 / 76.55 / 0.564 9.96 / 0.361 / 71.52 / 0.561 17.46 / 0.488 / 38.17 / 0.364
DiffPIR (Zhu et al., 2023) 12.78 / 0.534 / 132.76 / 0.453 13.68 / 0.559 / 112.97 / 0.429 23.85 / 0.664 / 32.90 / 0.271

DDPG (Garber & Tirer, 2024) 13.68 / 0.535 / 135.72 / 0.441 13.85 / 0.539 / 130.12 / 0.440 26.15 / 0.763 / 69.36 / 0.288
Dilack(ours) 23.83 / 0.836 / 34.55 / 0.179 26.24 / 0.860 / 28.69 / 0.156 23.15 / 0.745 / 59.60 / 0.313

Figure 4: Qualitative results of the synthetic lensless imaging with real Voronoi PSF.

Total loss design. By utilizing ROI masks to selectively activate the PiAC fidelity term locally, Dilack
enhances consistency by emphasizing areas with large differences. It also generates realistic global
content using the generative capabilities of the pre-trained diffusion model.

In conclusion, the loss design of Dilack strategically integrates multiple components to balance
fidelity and perceptual quality in the reconstructed images. By integrating the dynamic ROI mask
strategy with Eq. (15), the final posterior p(x|y) is expressed in Eq. (17), with the detailed process
outlined in Algorithm 1:

∇xt log pt(xt|y) ≃ sθ∗(xt, t)− ρMt

[
∇xt∥x̃∗ − x̂0|t∥22

]
. (17)

Additional considerations. Firstly, the fixed size of Mt can cause artifacts at patch boundaries in
the reconstruction output due to its limited ability to fully capture the entire local area. To address
this, we adopted the shifted window partition strategy from the Swin Transformer (Liu et al., 2021;
Liang et al., 2021a), which overcomes the limitations of non-overlapping patch partitioning and
reduces overall artifacts (Appendix D). Secondly, we applied skip step guidance C (Ding et al., 2023;
Song et al., 2024) during the initial sampling phase to loosely align with Dilack fidelity, alleviating
the large scalar disparity between LPiAC and sθ∗(xt, t), which caused local artifacts in some restored
images (Appendix D).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In our study, we evaluated the performances of Dilack on two datasets, ImageNet (Deng et al., 2009)
and FFHQ (Karras et al., 2019), both at 2562 resolution, with a validation set of 1,000 images from
each dataset. For ImageNet, we used a task-agnostic pre-trained diffusion model from (Dhariwal &
Nichol, 2021), and for FFHQ, the pre-trained model from (Chung et al., 2023b).

Degradation models included: (i) Synthetic lensless camera measurements are simulated by convolv-
ing zero-padded ground truth images (5122) with real lensless camera PSFs of size 5122 in Fourier
space. This is followed by cropping to 4502, achieving a cropping rate of 12.1% in each dimension,
and re-padding to 5122 to mimic a real lensless camera system. We then utilize the central area of
2562 as a diffusion sampling input. (ii) Large motion blur degradation was simulated using 2562
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Figure 6: Qualitative results of real-world mask-based lensless camera raw restoration.

kernels with an intensity of 1.0, sourced from an open-source repository1, scaling up from prior
studies’ 612 sized kernels and doubling the intensity, thereby intensifying the challenge in severe
motion blur scenarios. A small amount of Gaussian noise is added to the measurement in each task.

We benchmarked our method against classical methods including the Wiener deconvolution
(A†y) (Wiener, 1949) and ADMMTV (Boyd et al., 2011), alongside state-of-the-art ZS DMs for IR,
such as DPS (Chung et al., 2023b), DiffPIR (Zhu et al., 2023), and DDPG (Garber & Tirer, 2024).
To evaluate image fidelity, we computed metrics PSNR and SSIM, and for perceptual quality, we
utilized FID and LPIPS. Details of experimental setting are in Appendix F.

5.2 EXPERIMENTAL RESULTS

Lensless imaging. In mask-based camera raw reconstruction, Dilack outperforms both conventional
model-based methods and leading zero-shot diffusion approaches in lensless imaging, as shown in
Tab. 1 and Figs. 3, 4, and 5. Dilack excels by preserving fidelity and mitigating severe artifacts
common in classical methods through its generative capabilities. This success is due to integrating
diffusion priors with skip-step guided LPiAC and our mask-guided locality, which enhances spatial
consistency, reduces erratic outputs from sθ, and improves local details vital for effective image
reconstruction. This demonstrates Dilack’s strong performance in severely ill-posed problems.

Figure 5: Results of lensless imaging on FFHQ.

Large motion deblurring. In the
large motion deblurring task, Dilack
shows comparable performance, as
shown in Tab. 1 and Fig. 3. It is
noteworthy that motion blur kernels,
compared to lensless camera PSFs,
have relatively simpler kernel struc-
tures in their features. This results
in fewer instances of the explod-
ing phenomena observed with exist-
ing DM methods in lensless imag-
ing. Consequently, the Wiener filter-
based pseudo-inverse A† proves to be somewhat effective. This underscores the significant impact of
kernel complexity, not merely size, on the performance of image inverse problems, as discussed in
Sec. 3. Nonetheless, in the large motion deblurring task, Dilack shows comparable results, and our
mask-guided approach outperforms ADMMTV in all aspects.

Table 2: Quantitative results and ablation
studies on the real lensless camera dataset.

MirFlickr-lensless Real Lensless Imaging
Method PSNR↑/SSIM↑/FID↓/LPIPS↓

A†y (Wiener, 1949) 12.29 / 0.175 / 322.79 / 0.666
ADMMTV (Boyd et al., 2011) 13.05 / 0.225 / 312.09 / 0.629

DPS (Chung et al., 2023b) 6.97/ 0.182 / 273.02 / 0.739
DiffPIR (Zhu et al., 2023) 8.30 / 0.276 / 302.02 / 0.716

DDPG (Garber & Tirer, 2024) 10.45 / 0.221 / 293.78 / 0.655
PiAC 12.80 / 0.304 / 299.56 / 0.603

PiAC w/ random mask 12.87 / 0.323 / 295.04 / 0.593
PiAC w/ ROI mask(Dilack) 13.47 / 0.326 / 290.54 / 0.584

To sum up the synthetic experimental results in lensless
imaging and large motion deblurring, our mask-guided
approach performs better as the ill-posedness becomes
more severe. More comparative qualitative outputs of
two tasks are in Appendix G.18 and G.16.

5.3 FURTHER EXPERIMENTS

Real-world lensless imaging. We utilized a custom-
built mask-based lensless camera with a Voronoi pattern

1https://github.com/LeviBorodenko/motionblur
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hardware mask to capture real lensless measurements, demonstrating our approach’s robustness and
generalization capabilities. We displayed images from the MirFlickr (Huiskes & Lew, 2008) dataset
on a screen and captured them, fitting the results to the ground truth for evaluation. Experimental
results show that Dilack outperforms other methods in real lensless imaging, as presented in Tab. 2
and Fig. 6, marking the first application of ZS DMs to real lensless imaging. We will soon release
this lensless raw dataset, dubbed ‘MirFlickr-lensless’ publicly. Note that real motion blur kernels do
not naturally exist, making experiments with actual data impractical. Details on the lensless camera
and real measurements are in Appendix E, with more qualitative outputs in Appendix G.18.

Additional studies on latent diffusion models. We extended our experiments to evaluate the
effectiveness of Dilack in highly ill-posed kernel degradation settings, using SOTA LDM methods
LDPS (Rout et al., 2024) and ReSample (Song et al., 2024) on lensless imaging (Turing PSF). Due
to the absence of pre-trained unconditional LDMs on ImageNet, the experiments were conducted
on the FFHQ dataset. In Tab. 3, ReSample-Dilack, which applies Dilack to ReSample, replaces the
original gradient descent optimization of ẑ0 using LLS with optimization based on LPiAC and Mt.

Table 3: Additional results of latent diffusion models with
Dilack on the FFHQ dataset.

FFHQ Lensless Imaging Large Motion Deblurring
Method PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓

LDPS (Rout et al., 2024) 12.80 / 0.341 / 319.75 / 0.610 18.72 / 0.469 / 152.29 / 0.456
ReSample (Song et al., 2024) 12.22 / 0.336 / 408.17 / 0.620 24.09 / 0.686 / 98.38 / 0.319

(Dilack in Tab. 1) 26.24 / 0.860 / 28.69 / 0.156 23.15 / 0.745 / 59.60 / 0.313
ReSample-Dilack 22.91 / 0.770 / 77.49 / 0.239 21.69 / 0.699 / 140.09 / 0.366

As shown in Tab. 3 and Fig. 5 (pink-
colored methods), LDPS (Rout et al.,
2024) and ReSample (Song et al., 2024)
produce irregular results in the lensless
imaging task, consistent with our expec-
tations due to use of the LLS in loss func-
tions, as discussed in Sec. 3. In Tab. 3,
ReSample-Dilack mitigates this issue by
using LPiAC and Mt, but it still performs worse across all metrics compared to the original Dilack
(third row of Tab.3). This is due to the decoder’s nonlinearity and nonconvexity in LDMs, com-
plicating pixel-space solvers (Song et al., 2024). Similarly, in the large motion deblurring task,
the original Dilack outperformed ReSample-Dilack on all metrics except PSNR. The algorithm for
ReSample-Dilack is detailed in Appendix G.7. Note that additional experiments on LDMs, including
ReSample-Dilack, under the lighter (normal) degradation settings are provided in Appendix G.2.

5.4 DISCUSSION

Ablation studies. i) The bottom three rows of Tab. 2 demonstrate the effectiveness of our ROI mask
design by comparing PiAC fidelity without the ROI mask and with a random mask. Detailed results
on synthetic datasets and qualitative comparisons of the ROI mask effectiveness are provided in
Appendix G.1. Further studies on ii) masking ratio settings (Appendix G.3), iii) guidance scale adjust-
ments (Appendix G.4), iv) skip step guidance settings (Appendix G.5), v) effect of re-initialization
of x̃∗ (Appendix G.6), vi) comparisons in lighter (normal) kernel cases (Appendix G.2), vii) effect
of replacing PiAC with other denoisers (Appendix G.8), viii) comparisons with other PnP methods
(Appendix G.9), ix) experiments on various optimization methods for x̃∗ (Appendix G.11, G.12), and
x) effect of the number of iterations in optimization (Appendix G.14) are in Appendix.

Limitation. Dilack employs a model-based algorithm iteration and ROI mask calculation, resulting in
slightly slower processing times (DPS: 340 seconds vs. Dilack: 390 seconds), despite its demonstrated
effectiveness (Appendix F.1). Nonetheless, we challenge the assumption that the latest diffusion
models are universally optimal for most image inverse problems. In the context of modern imaging
systems, their limitations are evident. As the first study to explore zero-shot diffusion models in this
domain, our work offers a fresh perspective. Addressing efficiency concerns will be a focus of future
work. Next-generation ultra-high-definition camera technology, capable of operating without a lens
or under large motion blur effects, remains largely unexplored. Our research serves as a foundational
study, laying the groundwork for future advancements in this field.

6 CONCLUSION

Existing zero-shot diffusion models for IR struggle with large and complex kernel degradations. To
address these challenges, we propose Dilack, which revisits classical optimization and introduces
a novel masked data fidelity with skip step-guided, ROI masked PiAC loss. This approach ensures
localized regularization, improves local fidelity in each iteration, and thus delivers robust, realistic
image restoration results in modern lensless imaging and large motion deblurring.
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Appendix

A PROOF OF SENSITIVITY TO PERTURBATIONS IN HIGH CONDITION NUMBER
SYSTEMS

We begin by recalling fundamental linear algebra concepts for systems of equations. Consider the
solution x to the linear system:

Ax = y,

where A is invertible. This solution can be expressed as:

x = A−1y.

Now, introduce perturbations ∆A to the matrix A and ∆y to the vector y, leading to the perturbed
system:

(A+∆A)(x+∆x) = y +∆y.

where ∆A is a small perturbation to A, and ∆y is a small perturbation to y. Expanding and
rearranging, and noting that Ax = y, we get:

A∆x+∆Ax+∆A∆x ≃ ∆y.

Neglecting the higher-order term ∆A∆x, we simplify to:

A∆x+∆Ax ≃ ∆y.

Assuming A is non-singular (invertible), we solve for ∆x:

∆x ≃ A−1(∆y −∆Ax).

Taking norms on both sides and applying the triangle inequality, we obtain:

∥∆x∥ ≤ ∥A−1∥(∥∆y∥+ ∥∆Ax∥).

Using the sub-multiplicative property of norms, the term ∥∆Ax∥ can be bounded as:

∥∆Ax∥ ≤ ∥∆A∥∥x∥.

Thus, we have:
∥∆x∥ ≤ ∥A−1∥(∥∆y∥+ ∥∆A∥∥x∥).

Substituting ∥∆y∥ ≤ δ∥y∥ and ∥∆A∥ ≤ ϵ∥A∥, where ∆ and ϵ are small constants representing the
relative perturbation magnitudes, gives:

∥∆x∥ ≤ ∥A−1∥(δ∥y∥+ ϵ∥A∥∥x∥).

Recalling that x = A−1y, this simplifies to:

∥∆x∥ ≤ ∥A−1∥∥y∥(δ + ϵ∥A∥∥A−1∥).

Recognizing that ∥A∥∥A−1∥ = κ(A), where κ(A) is the condition number, we conclude:

∥∆x∥ ≤ ∥A−1∥∥y∥(δ + ϵκ(A)).

Finally, normalizing by ∥x∥ gives:

∥∆x∥
∥x∥

≤ κ(A)

(
ϵ+ δ

∥A∥
∥y∥

)
.

Thus, the relative change in the solution x is proportional to the condition number κ(A), demonstrat-
ing the sensitivity of the solution to perturbations in systems with a high condition number.
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B FORMULATION OF THE WIENER DECONVOLUTION

In image inverse problems, the forward model can be formulated as (1). The goal of Wiener
deconvolution is to estimate the original image x by minimizing the overall mean square error in the
presence of noise. Wiener deconvolution accomplishes this by applying the Wiener filter, which is
designed to minimize the mean square error between the estimated image and the original image.

The Wiener filter is calculated as:

W (f) =
|H(f)|2

|H(f)|2 + Sn(f)
Sx(f)

,

where H(f) is the Fourier transform of A, Sn(f) is the power spectral density of the noise, and
Sx(f) is the power spectral density of the original image.

The Wiener filter in the context of linear algebra can be represented as:

A† = (ATA+ λI)−1AT ,

where λ is a regularization parameter.

Using the singular value decomposition (SVD) of ATA, we have:

ATA = V Σ2V T ,

where V and U are orthogonal matrices, and Σ is a diagonal matrix containing the singular values σi.

Thus,
(ATA+ λI)−1 = V (Σ2 + λI)−1V T .

The Wiener filter can then be expressed as:

A† = V (Σ2 + λI)−1ΣUT .

Applying this filter to the observed image vector y, we get the estimate of the original image:

x∗ = A†y = V (Σ2 + λI)−1ΣUTy.

It is important to note the effect of the singular values σi on the filter. When the singular values
σi are very small, the term (Σ2 + λI)−1 becomes very large. This indicates that the filter is highly
sensitive to noise for small singular values, which can amplify the noise in the recovered image. The
regularization parameter λ helps to mitigate this effect by preventing the amplification of noise, thus
stabilizing the inversion process.

In summary, the Wiener deconvolution leverages the Wiener filter to recover the original image from
a blurred and noisy observation by optimally balancing the noise reduction and image deblurring in
the frequency domain. This process, grounded in minimizing the mean square error, is fundamental
in restoring degraded images effectively.

C ADMM WITH TOTAL VARIATION (TV) REGULARIZATION

The Alternating Direction Method of Multipliers (ADMM) breaks down complex optimization
problems into simpler subproblems, speeding up solutions and enhancing flexibility. By incorporating
Total Variation (TV) regularization, ADMM becomes adept at tasks like image deblurring and
denoising, where preserving edges and reducing noise are critical. With TV regularization, ADMM
promotes sparsity in image gradients, thus maintaining sharp edges by penalizing total image
variation.

C.1 ALGORITHMIC FRAMEWORK

The algorithmic framework for ADMM with TV regularization involves the following steps:

Variable splitting. To separate the fidelity term from TV regularization, an auxiliary variable is
introduced, allowing independent updates.

Updates. Iterative updates proceed through three main steps:
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• x-update. Minimization of the fidelity term with respect to the original variable, often
employing linear inversion or gradient descent.

• z-update. Application of TV regularization to the auxiliary variable, typically solved using
a proximal operator enforcing the TV constraint.

• Dual update. Adjustment of the dual variable to align solutions of decomposed subproblems,
ensuring consistency across splits.

C.2 MATHEMATICAL FORMULATION

We revisit a generalized cost function in a classical image restoration approach in Eq. (2). For ADMM
with TV regularization, minimizing the cost function in Eq. (2) is expressed as:

x̃ = argmin
x

1

2
∥Ax− y∥22 + λTV(x) (S1)

where ∥Ax − y∥22 represents a data-fidelity term, and TV(x) represents a regularization prior
promoting sparsity in image gradients.

The optimized estimate at each step for Eq. (S1) is:

x̃k+1 = Dσ
(
T(x̃k,y,A)

)
(S2)

where Dσ is the proximal operator, and T is the update function specific to the non-linear optimization
estimation.

The detailed proximal operator formulation of ADMM with TV regularization is:

xk+1 = argmin
x

(
∥Ax− y∥22 + ρ∥x− zk + uk∥22

)
, (S3)

zk+1 = argmin
z

(
λTV(z) + ρ∥xk+1 − z+ uk∥22

)
, (S4)

uk+1 = uk + xk+1 − zk+1. (S5)

Here, λ is the regularization parameter controlling the strength of the TV term, and ρ is the penalty
parameter for constraint violations.

TV regularization allows precise control over the smoothness and sparsity in image gradients,
significantly boosting edge preservation crucial for high-quality visual applications. Additionally,
it improves noise reduction without compromising image structure, offering a clear advantage over
traditional methods. Furthermore, integrating TV regularization extends ADMM’s scalability and
flexibility, making it well-suited for large-scale problems across various imaging modalities.

D ADDITIONAL CONSIDERATIONS IN METHOD

Shifted window partition. Due to the initial fixed location of M(i,j)
t , there is a slight limitation in

that the local fidelity attention proceeds only within the patch boundary. Therefore, we adopt a shifted
window partition to reduce discontinuities at patch edges and overall artifacts. Detailed algorithm for
shifted window partition setting follows as:

M(i,j)
t (r) =

{
1 if D(i+r,j+r)

sum.
(
x̃∗, x̂0|t

)
≥ Ων

[
D(i+r,j+r)

sum.
(
x̃∗, x̂0|t

)]
0 otherwise

where r = t− 16

⌊
t

16

⌋
Here, D(i,j)

sum. (·) represents the sum of differences between the pixel values within each patch located at
(i, j), and Pν is the top percentage threshold. The shift amount r is the pixel-wise index, empirically
calculated as t mod 16.
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Skip step guidance. As mentioned in the main paper, we implement skip step guidance C during the
initial sampling phase to loosely follow PiAC fidelity. The large scalar disparity between LPiAC and
sθ∗(xt, t) caused local artifacts in some degraded images during the initial sampling. We empirically
set the skip step guidance to C = 2 for the first half of the initial reverse sampling steps and C = 1
for the second half, fully applying our mask guidance (Appendix G.5). In other words, steps for
unconditional generation and our PiAC with Mt proceed alternately in the half of initial phase.
Detailed algorithm for skip step guidance setting follows as:

xt−1 ≃


xt + sθ∗(xt, t), if t ≥ 500 and t is odd,
xt + sθ∗(xt, t)− ρMt

[
∇xt

∥x̃∗ − x̂0|t∥22
]
, if t ≥ 500 and t is even,

xt + sθ∗(xt, t)− ρMt

[
∇xt∥x̃∗ − x̂0|t∥22

]
, if t < 500.

(S6)

E REAL-WORLD LENSLESS CAMERA AND ITS MEASUREMENTS

Mask-based lensless camera. A lensless camera is a new class of compact and low-cost imaging
devices based on computational image reconstruction. Instead of using a lens, a lensless camera
uses a phase mask placed in front of an image sensor, achieving ultra-thin designs by reducing
the thickness of the lens and the focal length of the imaging system. Because the mask randomly
modulates the incident light from the scene, the encoded intensity information of the scene should be
recovered through computational processing of the raw measurement that is otherwise unidentifiable.
Additionally, lensless imaging with 2D PSFs decouples the one-to-one mapping between each position
in the scene and the sensor pixels, enabling single-shot multiplexed measurements without using
superpixels. Along with their miniaturization and multiplexing capabilities, various applications
based on lensless imaging have been widely explored recently, including depth imaging(Antipa
et al., 2018; Adams et al., 2022), hyperspectral imaging(Monakhova et al., 2020; Kim et al., 2023),
high-speed imaging(Chan et al., 2023), polarization imaging (Baek et al., 2022), and wavefront
sensing(Wu et al., 2024).

Advantages: lens camera vs. lensless camera. Lensless cameras are typically smaller and lighter,
making them suitable for applications where space and weight are critical. Without the need for
expensive lens assemblies, lensless cameras can be more cost-effective to produce. They can naturally
have a very wide field of view without the distortion issues often associated with wide-angle lenses in
traditional cameras. With fewer moving parts and no glass lenses, lensless cameras are more robust
and less susceptible to damage. Furthermore, lensless cameras can utilize advanced computational
algorithms to reconstruct images, potentially leading to new imaging capabilities and applications.
They are crucial in the development of next-generation technologies, such as ultra-thin sensors and
integration into compact electronic devices (Zeng & Lam, 2021; Boominathan et al., 2022; Lee et al.,
2023).

Design and fabrication of custom-built lensless camera. Here, we utilize a designed phase mask
that exhibits a sharper and higher contrast point spread function (PSF) to validate our approach
with real measurements. We employ a 2D random pattern generation algorithm such as Voronoi
constellation to generate a target PSF, which exhibits uniform directionality and high contrast with a
given specific density. Then, the height profile (h) of the phase mask with a given target pattern is
designed with the following optimization problem, where the smoothness constraints are additionally
utilized to compensate for the fabrication resolution. Revisiting Eq. (2) in the main paper:

argmin
h

||v̂ − v0||22 + λ||∆h||22, (S7)

where v̂ and v0 denote the estimated and measured PSFs, respectively, ∆ is a Laplacian operator, and
λ is the weight parameter for smoothness constraint. Following the fabrication protocol in (Lee et al.,
2023), we fabricated customized phase masks for a lensless camera, sized 1.5 mm x 1.5 mm with
a 1.4 mm focal length, exhibiting a Voronoi-patterned PSF (Fig. S2 (a)). We then built customized
lensless cameras by combining the fabricated phase masks with a 3D-printed aperture (Fig. S1 (b)
and (c)).

Camera setting for data generation. The dataset is captured by displaying scenes on an OLED
screen 20 cm in front of the lensless camera with a color sensor (IMX 219), using auto exposure to
maximize the raw images’ SNR (Fig. S1 (d)). The target FOV is 70◦ in both horizontal and vertical
directions, with a camera resolution of 0.42◦ per pixel.
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3D Printed Aperture
+ Phase Mask

Focal length 
( f < 1 mm)

Image Sensor

(a) (c)(b)
Display Lensless camera

(d)

Ground truth Captured image

Working distance 
(20 cm)

Figure S1: Schematic of lensless camera and setup for dataset generation. (a) Example of custom
designed phase mask with Voronoi patterned PSF. (b) Photograph of the lensless camera for real
experiments and (c) its side-view schematic. (d) Real dataset generation setup with display.

(a) (c)(b)

Figure S2: Example of PSF of (a) Voronoi pattern and (b) Turing pattern. (c) Example of raw
measurement captured with our lensless camera and its reconstruction results.

Dataset description for experiment with real measurements. A total of 100 MirFlickr (Huiskes
& Lew, 2008) dataset images is captured with the lensless camera with a Voronoi-shaped PSF (Fig.
S2 (a)). After the raw measurement is cropped to 2400 × 2400 pixels for preprocessing, the raw
measurement is reconstructed by solving the optimization problem formulated in Sec. B and C,
obtaining reconstructed images (Fig. S2 (c)).

Dataset pre-processing for diffusion sampling inputs in our experiments. Real measurement and
real point spread function (PSF), initially sized at 2464 × 3280, are processed by performing a center
cropping to a dimension of 2400 × 2400. Subsequently, these cropped images are downscaled to
a resolution of 512 × 512 through bicubic interpolation. The resulting measurement and PSF are
then utilized to construct PiAC fidelity. Note that for fair evaluation for the restoration outputs, we
cropped approximately 5 percent of the outputs to measure performance metrics, aiming to mitigate
the mismatch between the ground truth (GT) and the restoration outputs caused by sensor hardware
limitations and shooting conditions, as we discussed before.

Need for zero-shot lensless imaging models. Data-driven lensless camera raw reconstruction
enhances perceptual quality using paired datasets from specific cameras (Lee et al., 2023; Poudel &
Nakarmi, 2024; Li et al., 2023a; Rego et al., 2021; Zeng & Lam, 2021), but our zero-shot learning
approach requires no additional training. Lensless cameras, designed for various applications such
as privacy-preserving imaging, need reconstruction algorithms that generalize well across out-of-
distribution datasets, and our method meets this requirement. This zero-shot model accelerates
product development for various applications without the need for sensitive training data. While
ADMM-TV offers reasonable reconstructions, it suffers from quality degradation that depends on
scene and FOV, especially with increased crop factors. Le-ADMM (Monakhova et al., 2019) uses
U-net architectures for enhancement but tends to overfit specific hardware datasets. In contrast, our
Dilack method manages locally varying degradation using masked fidelity without additional training,
making it adaptable to various lensless cameras.
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F EXPERIMENTAL DETAILS

F.1 IMPLEMENTATION DETAILS.

ρ for LPiAC settings. We observe that setting ρ, the guidance scale for LPiAC, to a constant value
yields stable results. It is important to note that other zero-shot diffusion methods (Chung et al.,
2023b; Zhu et al., 2023; Garber & Tirer, 2024) set ρ differently for each dataset and task. However,
we standardize ρ to 1 for all cases, making our approach more generalizable: ρ = 1/∥x̃∗ − x̂0|t∥.

ν for MROI settings. We also observe that taking ν, which is percentage of guided by LPiAC for
Mt, set to constant, yields stable results. We list the ν values used in our Dilack algorithm for each
problem setting as defined in Eq. 16.

• FFHQ
– lensless imaging: ν = 80th percentile
– Large motion deblurring: ν = 80th percentile

• ImageNet
– lensless imaging: ν = 80th percentile
– Large motion deblurring: ν = 30th percentile

• Real mask-based camera raw dataset (i.e., MirFlickr-lensless)
– Real lensless imaging: ν = 70th percentile

Compute time. All experiments were conducted on an RTX 3090 GPU. On a single GPU, processing
each image takes about 390 seconds, including the ADMM algorithm iterations and mask calculation
process. Note that DPS (also based on DDPM) takes 340 seconds, indicating that the Dilack process
does not significantly increase processing time as much as one might expect.

Code availability. Dilack is based on DPS (Chung et al., 2023b), and the sampling code along with
sample data are submitted as supplementary materials. This code is an experiment for a real-world
mask-based lensless camera task.

F.2 INVERSE PROBLEM SETUP.

Our two tasks: 1) Lensless imaging (i.e., mask-based camera raw reconstruction) and 2) Large motion
deblurring both involve deblurring kernels, so they share the same forward model. The measurement
operator A ∈ Rn×n (with m = n) is a convolution with some blur kernel k, i.e., Ax = x ∗ k. The
only difference is the source of the measured kernel: one is from a mask-based camera (PSF), and the
other is generated from open-source data as mentioned in the main text.

Assuming A is a circulant matrix, it can be diagonalized by the discrete Fourier transform (DFT).
Thus, convolution can be computed as element-wise multiplication in the discrete Fourier domain,
efficiently implemented via Fast Fourier Transform (FFT). Specifically, for z ∈ Rn, the convo-
lution is Az = F−1 (F(k)F(z)), where F denotes the FFT. Similarly, convolution with the
flipped k, represented by AT , is applied as AT z = F−1

(
F(k)F(z)

)
. Finally, the operation

AT
(
AAT + ηIn

)−1
z can be computed efficiently as:

AT
(
AAT + ηIn

)−1
z = F−1

(
F(k)F(z)

|F(k)|2 + η

)
. (S8)

F.3 COMPARISON METHODS SETUP.

We utilize Wiener deconvolution and ADMM-TV with specific hyperparameters for each method.
For DPS, DiffPIR, DDPG, and our method Dilack, we use the same weights from the pre-trained
diffusion model.

A†y (Wiener deconvolution). We set the parameter α of the Wiener filter to 0.0 for the lensless
imaging task and to 0.01 for the motion deblurring task.
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ADMMTV . We configured the parameters of ADMM-TV differently for our tasks. The number of
optimization iterations was empirically fixed at 1,000. In Eq. (S1), we set initial λT−1 to 10−7 for all
the synthetic and real tasks in both lensless imaging and motion blur tasks. Note that the remaining
parameters are the same as those used for PiAC fidelity in each task. We assumed zero-gradient
boundary conditions (Neumann conditions) at the solution space boundaries.

DPS. We set the step size of DPS as ζi = 1/∥y −A(x̂0(xi))∥ for all tasks. In previous research, the
step size was optimized for each specific task. However, for the new tasks proposed in our study,
optimal parameters have not yet been established, leading us to configure the same parameters across
all tasks.

DiffPIR. We set the same parameter settings as those proposed for the 100 NFEs in DifPIR. The
performance varies significantly depending on the given image noise level. In the case of the (large)
motion deblur task, injecting the actual noise level of 0.0005 tends to produce artifacts. Therefore,
the noise level set in the algorithm was adjusted to 0.025.

DDPG. We used the same settings as those used in the motion deblurring task in DDPG. Specifically,
using the hyper-parameters for the motion deblur task with σe = 0.05, we applied γ = 6, ζ = 0.6,
and η = 0.7 across all tasks.

While SVD-based methods like DDRM (Kawar et al., 2022), DDNM (Wang et al., 2022), and
DeqIR (Cao et al., 2024) are effective for separable kernels, they struggle with highly ill-posed
kernels, making them impractical for 2D image experiments involving complex non-linearity or
asymmetry. For instance, DDRM works for Gaussian deblurring but fails with more complex tasks
like motion deblurring. This is why the DPS authors did not test DDRM for motion blur restoration.
In contrast, our method overcomes these limitations, offering a more flexible solution for complex
kernel degradations. As noted in Sec. 2, we propose replacing the score function in Eq. 4 with a
Bayesian framework to tackle more challenging tasks.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EFFECT OF ROI MASK.

Table S1: Ablation study of ROI mask on the synthetic datasets. For real lensless dataset, see Tab. 2
in the main paper. Note that PiAC fidelity is also one of our proposed methods.

Ablation studies Lensless Imaging (ImageNet) Lensless Imaging (FFHQ) Large Motion Deblur (ImageNet)Large Motion Delbur (FFHQ)
Guidance PSNR↑/SSIM↑/FID↓/LPIPS↓PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓

ADMMTV 20.57 / 0.575 / 34.84 / 0.293 20.28 / 0.488 / 54.98 / 0.362 19.90 / 0.528 / 120.07 / 0.492 21.32 / 0.625 / 125.02 / 0.459
sθ + LPiAC 25.26 / 0.818 / 33.77 / 0.205 26.55 / 0.872 / 27.92 / 0.143 20.61 / 0.593 / 109.88 / 0.448 22.63 / 0.725 / 104.27 / 0.366

sθ +Mrandom [LPiAC] 23.74 / 0.727 / 49.29 / 0.295 25.62 / 0.828 / 35.83 / 0.191 20.99 / 0.616 / 84.38 / 0.421 23.04 / 0.738 / 55.86 / 0.320
sθ +MROI [LPiAC] 24.94 / 0.798 / 35.61 / 0.225 26.24 / 0.860 / 28.69 / 0.156 20.99 / 0.612 / 77.46 / 0.420 23.15 / 0.745 / 59.6 / 0.313

Without ROI mask. From the ablation studies indicated in Tab. 2 and S1, without the ROI mask,
using pure LPiAC leads to poor outputs due to x̃∗’s inherent noise and artifacts. Additionally, alone
also struggles to capture local details. The ROI mask helps capture details such as small text, fingers,
textures, patterns, and facial features (see Fig. S3 and S5). These issues are more pronounced in real
lensless measurements, which are noisier and blurrier with less accurate local details.

With random mask. From Tab. 2 and S1, using an ROI mask leads to better performance than a
random mask. This improvement is due to the ROI mask’s ability to calculate local ROI differences
between iterations, maintaining continuity, focusing more on local details, and enhancing restoration.
This validates our ROI mask design. Qualitative results are in Fig. S4.
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Figure S3: The qualitative comparisons for the effectiveness of the ROI mask in ‘real’ lensless
camera dataset. ‘w/o Mask’ refers to sθ + LPiAC, while ‘with Mask’, which is Dilack, refers to
sθ +MROI [LPiAC].

Figure S4: Qualitative comparisons for PiAC with Random mask or ROI mask.

Figure S5: Qualitative comparisons for PiAC with or without Mask. Note that real lensless compar-
isons are in Fig. S3 above.

Figure S6: Qualitative comparison in lighter (normal) kernel degradation cases. First row: lensless
imaging, kernel size = 642; second row: motion blur, kernel size = 612, intensity = 0.5.
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G.2 COMPARISONS IN lighter (NORMAL) KERNEL DEGRADATION CASES

Table S2: Additional experiments: the comparisons in lighter (normal) kernel degradation cases.

Lighter cases Lensless Img. w/ kernel 64 (ImageNet)Lensless Img. w/ kernel 64 (FFHQ) Motion Deblur (ImageNet) Motion Deblur (FFHQ)
Method PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓ PSNR↑/SSIM↑/FID↓/LPIPS↓PSNR↑/SSIM↑/FID↓/LPIPS↓

ADMMTV 31.76 / 0.897 / 18.13 / 0.092 31.55 / 0.879 / 33.46 / 0.111 27.89 / 0.894 / 41.20 / 0.135 29.96 / 0.914 / 46.34 / 0.123
DPS 18.82 / 0.548 / 142.94 / 0.409 13.39 / 0.691 / 79.60 / 0.261 18.03 / 0.413 / 172.14 / 0.442 23.32 / 0.728 / 65.55 / 0.218

DiffPIR 29.20 / 0.875 / 13.78 / 0.087 25.76 / 0.711 / 54.95 / 0.227 32.83 / 0.922 / 16.65 / 0.068 28.89 / 0.813 / 48.61 / 0.163
DDPG 26.75 / 0.748 / 144.16 / 0.317 31.50 / 0.903 / 27.50 / 0.114 35.42 / 0.947 / 30.63 / 0.065 34.40 / 0.934 / 33.29 / 0.080

Dilack(ours) 31.94 / 0.877 / 49.74 / 0.158 35.17 / 0.943 / 34.90 / 0.081 24.78 / 0.703 / 94.82 / 0.317 28.63 / 0.858 / 62.78 / 0.178
LDPS — 17.76 / 0.482 / 264.39 / 0.512 — 22.07 / 0.608 / 119.15 / 0.352

ReSample — 25.44 / 0.763 / 123.12 / 0.281 — 27.16 / 0.800 / 57.36 / 0.179
ReSample-Dilack — 27.37 / 0.867 / 49.67 / 0.130 — 23.94 / 0.770 / 101.37 / 0.277

As shown in Tab. S2 and Fig. S6, Dilack performs well in lighter cases. However, our main focus is on
addressing the limitations of existing methods in challenging scenarios like lensless imaging and large
motion deblurring, using the first 100 images (indexes 0–99) from the ImageNet and FFHQ datasets.
While we respect zero-shot methods for standard tasks, our work targets real-world challenges like
lensless imaging and severe motion blur, where current methods fail. Dilack addresses these gaps.
In lensless imaging, reducing the PSF size from 256 to 64 improves performance, and for motion
blur, decreasing the kernel size (256 to 61) and intensity (1.0 to 0.5) proves effective. The lighter
motion blur setting aligns with that used in the original DPS paper. Note that the pre-trained weights
of latent diffusion models are only available for those trained on FFHQ, so experiments on ImageNet
could not be conducted.

G.3 EFFECT OF MASKING RATIO

As shown in Fig. S7, there is a trade-off between structural consistency and perceptual quality of the
restored image depending on the ROI masking ratio. Empirically, we set the synthetic ROI masking
ratio to 0.8 for synthetic tasks and 0.7 for real lensless imaging, as detailed in Sec. F.1.

Figure S7: Effectiveness of masking ratio (νth percentile) on the ImageNet dataset with synthetic
lensless task: (a) quantitative results and (b) qualitative results.

G.4 EFFECT OF GUIDANCE SCALE

The guidance scale for LPiAC is important hyper-parameter since it is given to approximation of
likelihood (i.e. data consistency) of the inverse problem. In Fig. S8, we show the tendency of
consistency control according to the intensity of guidance ρ. The lower the guidance scale ρ is, we
get results that are not consistent with the original image and get blurry. We empirically set the ρ
value 1 for best results in consistency.
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Figure S8: Effectiveness of guidance scale ρ for LPiAC on the ImageNet dataset with synthetic lensless
task: (a) quantitative results and (b) qualitative results.

G.5 EFFECT OF SKIP STEP GUIDANCE

As mentioned in the main paper Sec. 4.2 Additional considerations and detailed in Appendix D,
we conducted an ablation study on the skip step guidance C, which defines the steps in the sampling
iteration where Dilack guidance (PiAC guidance with ROI mask) are applied. To quickly assess the
trend, we tested on 30 images (indices 0–29) from ImageNet in the lensless imaging task with a
Turing PSF. Setting C = 2 during the initial diffusion sampling iterations and C = 1 in the latter half
resulted in the best time-performance efficiency.

Table S3: Inference time and performance results for Dilack with various skip step guidance.

Method Skip Step Guidance Inference Time PSNR↑/SSIM↑/FID↓/LPIPS↓
Dilack(ours) 1 6:58 24.48 / 0.791 / 79.90 / 0.245

2 (first half) + 1 (latter half) 6:14 24.66 / 0.788 / 80.99 / 0.247
1 (first half) + 2 (latter half) 6:19 23.05 / 0.712 / 119.79 / 0.320

2 6:07 22.72 / 0.702 / 125.59 / 0.330
5 5:32 21.36 / 0.604 / 150.63 / 0.411

10 5:11 19.56 / 0.529 / 175.15 / 0.478

G.6 EFFECT OF TOTAL NUMBERS FOR UPDATING TV-REGULARIZED OPTIMIZATION SOLUTION
x̃∗

As shown in Algorithm 1 of the main paper, classical TV-regularized optimization starts with initial
values of zero and is re-initialized G− 1 times using intermediate sampling outputs x̂0|t. By using
an appropriate initialization point x̂0|t, the optimization converges faster and helps prevent the model
from getting stuck in local minima.

We conducted an ablation study on G, which specifies the total number of updates for the TV-
regularized optimization solution x̃∗. The study was performed on 30 images (indices 0–29) from
the synthetic lensless imaging dataset, using the same implementation settings as in Sec. G.5.
Additionally, we iteratively updated x̃∗ and reduced the regularizer’s hyperparameter τ during
optimization, allowing traditional regularizers like TV to interact locally with the fidelity term.

The initial λt value, λT−1, was initially set to 10−7 and then decreased based on the total initialization
count (G). Specifically, λt decreases as:

λt = 10−7 × {1− (current ADMM update iteration/total ADMM updates)} (S9)

at every t = 1, 000/G iteration step when the sampling iteration t ∈ T is at an initialization point.

Increasing G resulted in a modest increase in PSNR, a pixel-based quality metric, but only slight
improvements in perceptual quality metrics like LPIPS and FID, while significantly increasing
inference time. Therefore, to balance inference time and performance metrics, we set G = 1 in our
experiments, meaning no re-initialization was performed. This approach has the added advantage of
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performing optimization once before entering the for-loop in Algorithm 1, allowing for continuous
use of the initial x̃∗, simplifying the implementation.

Table S4: Inference time and performance results for Dilack with various total numbers of optimiza-
tion re-initializations.

Method Num. of Updating of x̃∗ Inference Time PSNR↑/SSIM↑/FID↓/LPIPS↓
Dilack(ours) 1 (no further updates after the first optim.) 6:14 24.66 / 0.788 / 80.99 / 0.247

5 (re-init. every 200 iter.) 6:58 24.97 / 0.791 / 78.80 / 0.243
10 (re-init. every 100 iter.) 7:24 25.08 / 0.792 / 78.81 / 0.242
50 (re-init. every 20 iter.) 10:06 25.55 / 0.793 / 78.87 / 0.240

G.7 EXPERIMENTAL SETUP FOR APPLYING DILACK TO Latent DIFFUSION MODELS

Algorithm 2 ReSample-Dilack
Require: A, y, λT−1, ρ, T , C, G, sθ(·, t), {σ̃t}Tt=1, Encoder E(·),

DecoderD(·), Pretrained LDM Parameters βt, αt, η, δ, and Hyper-
parameter γ to control σ2

t

1: zT ∼ N (0, I)
2: for t = T − 1, . . . , 0 do
3: ϵ1 ∼ N (0, I)
4: ϵ̂t+1 = sθ(zt+1, t+ 1)

5: ẑ0(zt+1) = 1√
ᾱt+1

(zt+1 −
√

1− ᾱt+1ϵ̂t+1)

6: z′
t =
√
ᾱtẑ0 +

√
1− ᾱt − ηδ2ϵ̂t+1 + ηδϵ1

7: if t ∈ C then
8: x̃∗ ∈ argminx∥y − Ax∥22 + λtTV(x) // Classical

TV-regularized optimization starts with initial values of 0 and is re-
initializedG− 1 times using intermediate sampling outputs.

9: ẑ0(x̃
∗) ∈ argminzMROI · ∥x̃∗ −D(z)∥22

10: zt = StochasticResample(ẑ0(x̃
∗), z′

t, γ)

11: else
12: zt = z′

t // Unconditional sampling.
13: end if
14: end for
15: returnD(z0)

As discussed in Sec. 5.3 of the main paper,
diffusion models in pixel space perform better
under our highly ill-posed kernel degradation
setting. To investigate whether our Dilack
fidelity can produce similar results in latent
diffusion models, we conducted additional ex-
periments. Algorithm 2 presents the applica-
tion of our proposed Dilack approach to the
original state-of-the-art latent diffusion model
ReSample (Song et al., 2024).

The main differences between the original Re-
Sample and ReSample-Dilack are: i) the use
of latent diffusion models leveraging z, ii) Re-
Sample employs least square guidance LLS ,
and iii) ReSample optimizes ẑ0 using a gradi-
ent descent method.

While all other settings remain unchanged
from the original ReSample paper, the optimization step (highlighted in purple) varies, leading
to significantly different results under highly ill-posed kernel degradation settings, as shown in Fig. 5.
This demonstrates the effectiveness of our Dilack fidelity in challenging scenarios, even when applied
to existing latent diffusion methods.

G.8 REPLACING PIAC (PSEUDO-INVERSE ANCHOR FOR CONTRAINING) WITH OTHER
DENOISING TECHNIQUES

BM3D (Dabov et al., 2007) is one of the denoising methods and can be applied to pseudo-inverse
anchor. To evaluate the effectiveness of our PiAC guidance, we replaced PiAC with BM3D while
preserving all other components of the framework. To quickly assess the trend, we tested on 3 images
(indices 0–2) from FFHQ in the lensless imaging task with a Turing PSF and large motion deblurring
task. As demonstrated in Fig. S9, BM3D fails to provide effective guidance as it performs denoising
without incorporating the kernel, making it unsuitable for highly ill-posed problems involving large
and complex kernels.

G.9 COMPARISON WITH OTHER PLUG-AND-PLAY METHODS

Since our Dilack algorithm can be regarded as a Plug-and-Play (PnP) method that combines a
total variation (TV)-regularized solution and a diffusion prior, we conducted additional experiments
comparing its results with DPIR (Zhang et al., 2021), a representative PnP approach utilizing a CNN-
based pre-trained denoiser. Because the pre-trained weights of DPIR are designed for 128 × 128
resolution, we resized our inputs accordingly and evaluated our lensless turing kernel based imaging
task on the ImageNet dataset. We employed a pre-trained diffusion model prior on 128× 128 inputs
to match the resolution used in these experiments. As demonstrated in Fig. S10 and Tab. S5, due
to the limitations of the Wiener process and the use of a CNN-based pre-trained denoiser as a prior
instead of a diffusion prior, DPIR’s performance was inferior to that of Dilack.
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Figure S9: Qualitative results for the synthetic lensless imaging task showing the impact of pseudo-
inverse anchor variations in our method. BM3D-Dilack indicates that our method uses BM3D as the
pseudo-inverse anchor instead of ADMMTV .

Figure S10: Additional qualitative results of the synthetic lensless imaging task using the Turing
kernel on the ImageNet dataset under Plug-and-Play algorithms.
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Table S5: Performance comparison of Dilack and DPIR for lensless turing kernel imaging task on the
ImageNet dataset.

Task Dataset Method PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Lensless Imaging (w/ Turing) ImageNet DPIR 9.28 / 0.265 / 236.07 / 0.552
Dilack(ours) 24.88 / 0.796 / 92.89 / 0.208

G.10 DPS PERFORMANCE ACROSS VARIOUS STEP-SIZE ADJUSTMENTS

DPS (Chung et al., 2023b) is a zero-shot diffusion model designed to address restoration tasks,
including super-resolution and motion deblurring. However, as shown in Fig. 2, DPS exhibited
degraded image reconstruction performance, as LLS provides insufficient guidance for highly ill-
posed problems involving large and complex kernels. To evaluate whether step-size optimization
could improve DPS’s performance, we conducted additional experiments using our two tasks on 100
sample images (indices 0–99) from the FFHQ dataset. We found that even when optimized, it fails to
resolve the challenges posed by lensless imaging and large motion deblurring, as shown in Tab. S6.

Table S6: Performance comparison of DPS across different step-sizes for lensless imaging and large
motion deblurring tasks. Regardless of the step-size setting, DPS consistently demonstrates poor
performance on our tasks, as reflected in the evaluation metrics.

Task Dataset Step-size PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Lensless Imaging (w/ Turing) FFHQ

0.25 11.20 / 0.385 / 120.83 / 0.514
0.50 10.71 / 0.382 / 134.62 / 0.528
0.75 10.34 / 0.376 / 136.65 / 0.541
1.00 9.95 / 0.369 / 150.88 / 0.558

Large Motion Deblurring FFHQ

0.25 17.70 / 0.502 / 94.48 / 0.364
0.50 17.99 / 0.514 / 91.80 / 0.348
0.75 17.87 / 0.512 / 96.66 / 0.347
1.00 17.85 / 0.511 / 99.10 / 0.349

G.11 COMPARISON WITH OTHER SPLITTING-BASED ITERATIVE OPTIMIZATION METHODS

As discussed in Sec. C, we use ADMMTV , as an anchor to enhance the performance of Dilack.
To validate the effectiveness of using ADMMTV as the primary anchor in our Dilack algorithm,
we conducted additional experiments. We compared our method with ADMM -L1, ADMM -L2,
FISTA (Fast Iterative Soft-Thresholding Algorithm, as an alternative optimization method), and HQS
(a proximal splitting algorithm similar to ADMMTV ). FISTA employed L1 regularization, while
HQS used Total Variation (TV), like ADMMTV . Each approach was applied to LPiAC guidance and
integrated with the diffusion prior in our Dilack framework. These experiments were conducted on
the lensless turing kernel imaging task using the FFHQ dataset, with a sample size of 100 images
(indices 0–99). The quantitative results are summarized below. As shown in Fig. S11 and Tab. S7,
ADMMTV consistently outperformed others, demonstrating its effectiveness and suitability for
integration into our Dilack algorithm.

Table S7: Quantitative comparison of Dilack and its variants with different regularizers and optimiza-
tion algorithms.

Task Dataset Method PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Lensless Imaging (w/ Turing) FFHQ

FISTA-Dilack 19.30 / 0.745 / 98.06 / 0.249
HQS-Dilack 12.51 / 0.341 / 363.52 / 0.637

ADMML1-Dilack 16.11 / 0.672 / 126.69 / 0.301
ADMML2-Dilack 22.69 / 0.817 / 64.25 / 0.183

Dilack(ours) 26.23 / 0.863 / 54.84 / 0.149
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Figure S11: Additional qualitative analysis of the synthetic lensless imaging task on the FFHQ dataset
comparing Dilack and its variants with different regularizers and optimization algorithms.

Figure S12: Additional qualitative results of the synthetic lensless imaging task using the Turing
kernel on the FFHQ dataset under standard L2 data-fidelity term based diffusion algorithms.

G.12 ADDITIONAL RESULTS OF TV REGULARIZATION ON EXISTING L2 DATA-FIDELITY

To verify whether TV regularization is effective in representative algorithms that combine the L2

data-fidelity term in Eq. (9) and Eq. (10) with a diffusion prior—namely, DPS (Chung et al., 2023b)
and DiffPIR (Zhu et al., 2023)—,we performed experiments on the FFHQ dataset with a sample
size of 100 images (indices 0–99) for the lensless Turing kernel deblurring task. Specifically, we
tested DPS augmented with a TV regularizer (DPSTV ) and DiffPIR augmented with a TV regularizer
(DiffPIRTV ). As shown in Fig. S12 and Tab. S8, adding TV regularization to Eq. (9) and Eq. (10)
results in a global smoothing effect, significantly degrading the fidelity of the sampling output. This
approach is insufficient for handling the highly ill-posed problems addressed by our method.
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Table S8: Performance results of DPS-TV and DiffPIR-TV for lensless turing kernel imaging task
on the FFHQ dataset. Consequently, it is evident that the absolute performance values across all
evaluation metrics are significantly low.

Task Dataset Method PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Lensless Imaging (w/ Turing) FFHQ DPSTV 9.81 / 0.366 / 149.41 / 0.560
DiffPIRTV 13.68 / 0.556 / 186.2 / 0.436

G.13 HYPERPARAMETER ANALYSIS ON real LENSLESS DATASET

We conducted additional experiments on the real lensless imaging task to evaluate how varying step
numbers in Algorithm 1 affects the results. The experimental setup was identical to Sec. 5.3, and
100 images (indices 0–99) were tested. The scenarios are as follows:

Case 1: Increasing the TV-regularized optimization steps from 1,000 to 2,000.

Case 2: Setting skip step guidance C = 1 for all sampling iterations.

Case 3: Increasing the re-initialization count from G = 1 to G = 50.

We varied these three settings, and their definitions are described in Sec. 4.2 and Algorithm 1. As
shown in Fig. S13 and Tab. S9, from Case 1 to Case 3, increasing the number of steps naturally
extended the diffusion sampling time per image. However, the performance of the reconstructed
images slightly deteriorated, likely due to saturation in the TV-regularized optimization process
or overly constrained LPiAC guidance. Although there is room for performance improvement, we
emphasize that real-world datasets are intrinsically challenging due to model mismatch and hardware-
induced noise. As our work is the first to address such highly ill-posed kernel degradation problems
using zero-shot diffusion models, we believe this study represents an important first step. Specifically,
in Case 3, increasing the re-initializing count G reduced fidelity in real-world problems, unlike in
synthetic conditions. This indicates that while adjusting G may be beneficial in Sec. G.6 on the
synthetic lensless imaging dataset, it poses challenges in more complex, real-world scenarios.

Figure S13: Additional qualitative results of real lensless imaging task on MirFlickr-lensless dataset
under various hyperparameters.
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Table S9: Performance comparison of various hyperparameters on the real lensless camera dataset.

Task Dataset Method Inference Time PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Real Lensless Imaging MirFlickr-lensless

Case 1 06:39 12.80 / 0.318 / 294.76 / 0.596
Case 2 06:30 12.81 / 0.318 / 295.86 / 0.597
Case 3 07:14 10.87 / 0.313 / 305.49 / 0.608

Dilack(ours) 10:30 13.47 / 0.326 / 290.54 / 0.584

G.14 IMPACT OF ADMM-TV OPTIMIZATION ITERATIONS

We employ ADMM-TV for pseudo-inverse guidance, with the optimization iteration serving as a
critical parameter. To evaluate its impact, we conducted experiments using iterations of 1, 10, and
1,000 on 30 images (indices 0–29) from FFHQ and ImageNet in the lensless imaging task with
a Turing PSF, as well as in the large motion deblurring task. As presented in Tab. S10, while 10
iterations achieve comparable performance, 1,000 iterations consistently deliver superior results
across various tasks and datasets.

Table S10: Performance comparison ofADMMTV optimization iterations for Dilack across different
tasks and datasets.

Task Dataset ADMMTV iter. num. of init. PSNR↑ / SSIM↑ / FID↓ / LPIPS↓

Lensless Imaging (w/ Turing)

FFHQ
1,000 1 26.08 / 0.861 / 65.95 / 0.152

1 1,000 16.23 / 0.601 / 267.89 / 0.428
1 1 16.73 / 0.608 / 313.32 / 0.425

ImageNet
1000 1 24.36 / 0.788 / 80.99 / 0.247

1 1000 15.68 / 0.523 / 235.04 / 0.465
1 1 15.41 / 0.518 / 258.07 / 0.478

Large Motion Deblurring

FFHQ
1000 1 22.97 / 0.732 / 197.59 / 0.365

1 1,000 14.88 / 0.489 / 259.68 / 0.581
1 1 14.72 / 0.474 / 330.15 / 0.596

ImageNet
1000 1 20.61 / 0.596 / 200.81 / 0.477

1 1,000 14.22 / 0.386 / 293.76 / 0.621
1 1 13.34 / 0.368 / 337.58 / 0.645

G.15 REGARDING THE POTENTIAL APPLICABILITY TO OTHER TASKS

For super-resolution (SR), the A matrix consists of a combination of blur kernels and downsampling
operations. As the degree of downsampling increases, the condition number becomes larger, present-
ing a challenging scenario where the strengths of our proposed method are expected to be effective.
However, highly ill-posed SR has not been well investigated in the field yet, so we believe that we
need to carefully validate one by one. Especially, the impact of downsampling operator is worth
investigating. Thus, at this moment, we can say that our Dilack can work for SR as compared to other
prior works, but there is still room for improvement due to the reasons mentioned. The qualitative
results of toy experiments for SR on the FFHQ dataset can be found in Fig. S14, which are the results
of our additional experiments with SR x4, x8.

For gaussian denoising, it may be difficult to expect the applicability of our Dilack since highly
ill-posed cases with high noise levels have different ill-posedness from other tasks with kernels. Full
investigation will be needed for these cases. Nonetheless, under Gaussian noise levels (σ = 0.05
to 0.1), our method performs comparable to DPS, though a more comprehensive investigation is
required for these cases as a future work. The qualitative results of toy experiments for denoising on
the FFHQ dataset can be found in Fig. S15, which are the results of our additional experiments.

G.16 ADDITIONAL EXPERIMENTS UNDER DIFFERENT SEED VALUES

We evaluated DPS (Chung et al., 2023b), DiffPIR (Zhu et al., 2023), and Dilack on three sample
images (indices 0–2) from the FFHQ and ImageNet datasets for lensless imaging with a Turing PSF
and large motion deblurring.

For lensless imaging (Fig. S16 and S17), DPS generates diverse but inaccurate images due to its
reliance on LLS , which struggles with this task. DiffPIR, based on LPi, produces closer results but
still shows notable errors. In contrast, our method generates consistently accurate images closely
aligned with the ground truth (GT). For large motion deblurring (Fig. S20 and S19), DiffPIR performs
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better but produces blurred outputs and inconsistent results across seeds. Our method, however,
maintains consistency, with only minor noise artifacts.

Figure S14: Qualitative comparison of the super-resolution task, as a preliminary evaluation of
Dilack’s potential extensibility to other applications.
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Figure S15: Qualitative comparison of the denoising task, as a preliminary evaluation of Dilack’s
potential extensibility to other applications.
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All methods, including DPS, DiffPIR, DDPG, ReSample, and LDPS, were evaluated with fixed-seed
sampling (i.e., one sample per measurement) for PSNR. While a single sample may not fully capture
performance for individual images, it provides reasonable aggregate results for the entire test dataset.

Figure S16: Additional qualitative results of the synthetic lensless imaging task using the Turing
kernel on the FFHQ dataset under varying seed conditions.
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Figure S17: Additional qualitative results of the synthetic lensless imaging task using the Turing
kernel on the ImageNet dataset under varying seed conditions.
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Figure S18: Additional qualitative results of large motion deblurring task on the FFHQ dataset under
varying seed conditions. Note that, as discussed earlier in the main paper, large motion blur uses
relatively simple kernel features, allowing existing methods using A† to perform well, but Dilack
shows comparable results and our mask-guided approach outperforms pure ADMMTV in all aspects.
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Figure S19: Additional qualitative results of large motion deblurring task on the ImageNet dataset
under varying seed conditions. Note that, as discussed earlier in the main paper, large motion blur
uses relatively simple kernel features, allowing existing methods using A† to perform well, but Dilack
shows comparable results and our mask-guided approach outperforms pure ADMMTV in all aspects.
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Figure S20: Diverse sampling outputs for the large motion deblurring task on the FFHQ dataset
with relaxed fidelity constraints in our guidance settings. While Dilack prioritizes high fidelity over
diversity, it remains fundamentally consistent with other zero-shot diffusion sampling methods.

G.17 SAMPLING DIVERSITY UNDER RELAXED FIDELITY CONSTRAINTS

Our Dilack leverages the regularized data fidelity term, PiAC (Pseudo-inverse Anchor for Con-
straining), to achieve robust guidance in highly ill-posed problems. While this approach ensures
high fidelity, it inherently results in lower output diversity. Nevertheless, our method remains
fundamentally a ”sampling” method, consistent with other zero-shot diffusion approaches.

To evaluate the diversity of outputs generated by our method, we adjusted the guidance scale ρ to
0.5 and the masking ratio ν to 0.9, demonstrating the trade-off between fidelity and diversity. For
this evaluation, we conducted experiments on the FFHQ dataset, testing with two randomly selected
images as references while varying the sampling seed to analyze the diversity of generated outputs.
As shown in Fig. S20, the outputs exhibit variations depending on the seed value, allowing for an
evaluation of diversity.
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G.18 FURTHER QUALITATIVE RESULTS

In what follows, we present more qualitative results for our tasks: lensless imaging, large motion
deblurring, and real lensless imaging. In severe ill-posed image inverse problems, and as the ill-
posedness becomes more severe, Dilack demonstrates robustness unlike existing diffusion models,
and provides more realistic results compared to classical methods. To the best of our knowledge, we
are the first to approach mask-based camera reconstruction using a zero-shot diffusion model.

Figure S21: An example of DPS (Chung et al., 2023b)’s intermediate outputs per 150 iteration.

Figure S22: Additional qualitative results of synthetic lensless imaging task with Voronoi kernel on
ImageNet dataset.
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Figure S23: Additional qualitative results of synthetic lensless imaging task with Voronoi kernel on
FFHQ dataset.
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Figure S24: Additional qualitative results of synthetic lensless imaging task with Turing kernel on
ImageNet dataset.
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Figure S25: Additional qualitative results of synthetic lensless imaging task with Turing kernel on
FFHQ dataset.
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Figure S26: Additional qualitative results of large motion deblurring task on ImageNet dataset.
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Figure S27: Additional qualitative results of large motion deblurring task on FFHQ dataset.
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Figure S28: Additional qualitative results of real lensless imaging task on MirFlickr-lensless dataset.
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