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Abstract

Following rapid advancements in text and image generation, research has increasingly shifted
towards 3D generation. Unlike the well-established pixel-based representation in images,
3D representations remain diverse and fragmented, encompassing a wide variety of ap-
proaches such as voxel grids, neural radiance fields, signed distance functions, point clouds,
or octrees, each offering distinct advantages and limitations. In this work, we present a
unified evaluation framework designed to assess the performance of 3D representations
in reconstruction and generation. We compare these representations based on multiple
criteria: quality, computational efficiency, and generalization performance. Beyond stan-
dard model benchmarking, our experiments aim to derive best practices over all steps in-
volved in the 3D generation pipeline, including preprocessing, mesh reconstruction, com-
pression with autoencoders, and generation. Our findings highlight that reconstruction
errors significantly impact overall performance, underscoring the need to evaluate genera-
tion and reconstruction jointly. We provide insights that can inform the selection of suit-
able 3D models for various applications, facilitating the development of more robust and
application-specific solutions in 3D generation. The code for our framework is available at
https://anonymous.4open.science/r/unifi3d-39CD.

1 Introduction

Recent advancements in generative image synthesis architectures, such as Generative Adversarial Networks
(GANs) and Diffusion Models, have driven significant progress in the field of 3D generation (Gezawa et al.,
2020; Li et al., 2024; Zhao and Larsen, 2024; Liu et al., 2024a; Jiang, 2024). While image generation has
reached a stage of maturity, mainly standardizing around pixel-based representations (Crowson et al., 2024),
the landscape for 3D representations remains fragmented and varied. A wide range of 3D representations,
including Voxel Grids (Ren et al., 2024), Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021), Signed
Distance functions (SDFs) (Park et al., 2019), Point Clouds (PC) (Nichol et al., 2022), and Octrees (Wang
et al., 2022b), have been proposed, each suited to different applications and tasks. These methods vary
not only in the way they encode geometry but also in how they handle the trade-offs between quality,
computational efficiency, memory requirements, and the ability to generalize to novel objects and scenes (Liu
et al., 2024a; Peng et al., 2020; Wang et al., 2024a).

While recent advances in 3D generative models can be attributed to various factors — such as the availability
of improved datasets (Deitke et al., 2023), optimized sampling techniques for diffusion models (Ren et al.,
2024), and enhanced generative architectures (Zhang et al., 2024) — the choice of the underlying represen-
tation remains a key factor. It dictates the information loss prior to encoding, influences the models used
for compression and generation, and defines the computational resources for reconstructing a mesh from a
generated sample. Therefore, assessing the suitability of different 3D representations for reconstruction and
generation is of paramount importance.

However, objectively comparing 3D representations based on existing literature poses a significant challenge.
While the representation is a core component, it is deeply embedded within complex 3D generative pipelines
that utilize various models, loss functions, and datasets. On top of that, a wide variety of pre- and post-
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Figure 1: Overview of the steps involved in a standard 3D generation pipeline: a) the mesh is transformed
into a suitable representation, b) an encoder Eφ is pre-trained to compress it into a latent vector, c) a
diffusion model is then trained to denoise the latent, d) the latent is finally decompressed into a target
representation using a pre-trained decoder Dψ and turned back into a mesh using a dedicated algorithm
such as marching-cubes. (PC: point cloud, SDF: signed distance field)

processing techniques is applied, significantly affecting the results. For instance, handling non-watertight
meshes is often not well-documented, which tends to create inconsistencies across studies (Zhang et al., 2024).
Another key issue lies in the difficulty of evaluating 3D object quality. Traditional metrics such as Chamfer
Distance (CD) are commonly used to assess geometric accuracy, but they fall short in capturing perceptual
quality and finer details (Mescheder et al., 2019; Wu et al., 2020). In turn, user studies can provide valuable
qualitative insights, but they are labor-intensive and time-consuming. As a result, many papers resort to
presenting qualitative results or cherry-picking favorable examples, which undermines objective evaluation
and hinders progress in the field (Zhao and Larsen, 2024).

This paper introduces a unified evaluation protocol designed to benchmark 3D representations. We have
developed a standardized pipeline that integrates all components of the generative process — from data
preprocessing to mesh encoding, generation and mesh reconstruction — into a common framework, as il-
lustrated in Figure 1. This design allows for the interchangeable use of 3D representations, ensuring that
any observed performance differences are inherent to the representations themselves. In contrast to model
benchmarking, we aim to generate insights into the strengths and weaknesses of each representation while
controlling for confounding factors like the diffusion model. Unlike traditional review papers that primarily
offer qualitative overviews of existing methods (Li et al., 2024; Gezawa et al., 2020; Liu et al., 2024a), our
work emphasizes quantitative assessments grounded in empirical evidence. We make our entire pipeline
open source to ensure the repeatability of our results and their generalization to different representations
or experimental conditions. This allows rapid prototyping of novel 3D generative methods or 3D repre-
sentations while ensuring adherence to best practices, such as proper preprocessing and hyper-parameter
optimization. Our codebase also introduces previously unavailable open-source components, including a
novel Dual-Octrees-based generative approach, training code for Shap-E, and transformer-based occupancy
network generation. Summarized, the contributions of this paper are:

• Standardized generation pipeline: We implement a generation pipeline with plug-and-play
functionality to test 3D representations (voxel grids, SDFs, point clouds, octrees, triplanes, and
NeRFs) in a latent diffusion setting as the most common approach for 3D generation.

• Jointly evaluating reconstruction and generation: We analyze the relation between recon-
struction and generation capability. Reconstruction errors are as high as 20% of the generation
error, proving their significance.

• Best practices: We provide insights for common problems and derive best practices, such as
the effects of different data preprocessing methods and the choice of meaningful sample sizes for
evaluation.
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• Open-Source Modular Codebase: We provide an open-source codebase with a structured, mod-
ular architecture (see Figure 1) for rapid development and evaluation of new methods with various
generation models and 3D representations.

2 Benchmarking 3D Representations and Generative Algorithms

We put forward a framework for comparing tensorial representations of 3D objects. To ensure a fair and
meaningful comparison, the following assumptions and requirements are established:

• Meshes as ground truth: The target representation in this study are meshes, due to their fun-
damental role in 3D computer graphics. They facilitate rapid rendering and are highly efficient in
terms of space. Prominent datasets, such as ShapeNet (Chang et al., 2015) and Objaverse (Deitke
et al., 2023), also provide objects as meshes.

• Modularity: The pipeline should be modular, allowing for the integration of different representa-
tions while controlling other components.

• Coverage of related work: The framework is designed to align with state-of-the-art methods in
the field, accommodating the most significant representations utilized in recent research.

Based on these features, we propose a unified pipeline that captures the essential elements of contemporary
3D generation methods. As depicted in Figure 1, our multi-stage generation pipeline involves the following
stages:

1. Representation Conversion: Transforming a 3D mesh into a suitable representation such as a voxel
grid, SDF, or point cloud. This step often employs algorithmic transformations without requiring
training.

2. Representation Compression: Utilizing an autoencoder to compress the high-dimensional represen-
tation into a lower-dimensional latent space using architectures like Autoencoder (AE) (Kim et al.,
2023), a Variational Autoencoder (VAE) (Luo and Hu, 2021; Ren et al., 2024), or a Vector Quantized
Variational Autoencoder (VQ-VAE) (Cheng et al., 2023).

3. Latent Generation: Training a generative model, typically a diffusion model (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Lyu et al., 2021; Zhou et al., 2021), to produce latent vectors that the decoder
can reconstruct. If the representation is tokenizable, autoregressive models (Yan et al., 2022; Mittal
et al., 2022; Siddiqui et al., 2023) may be employed instead.

4. Mesh Reconstruction: Reconstructing the final 3D mesh from the decoded representation, often
using algorithms like Marching Cubes (Lorensen and Cline, 1987).

To support the claim that this pipeline is representative for most of the influential direct 3D generation
approaches published over the past years, we list related work and their instantiations of representation,
compressor and generator in Table 1. For instance, SDFusion Cheng et al. (2023) compresses an SDF-
grid with a VQ-VAE and denoises the latent with a U-Net-based diffusion model; XCube Ren et al. (2024)
encodes a voxel grid with a VAE and uses a multi-resolution U-Net diffusion; and Point-E Nichol et al. (2022)
compresses a point cloud and denoises it via a Diffusion Transformer (DiT). For an in-depth discussion of
related work, we refer to Appendix B.

2.1 Diffusion models

A suitable tensorial representation of 3D objects is part of any deep learning generative approach, whether
it employs GANs, diffusion or autoregressive generation. Given their widespread use in the field, we opt
for diffusion in our experiments; however, the main findings and identified shortcomings of certain represen-
tations are generic. We implement two diffusion models: a Diffusion Transformer (DiT) (Peebles and Xie,
2023) and a U-Net diffusion model (Rombach et al., 2022; Cheng et al., 2023). DiTs are adept at handling
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Table 1: Overview of representations, autoencoders and generators used in influential contemporary research
on 3D generation (PC: Point cloud). Optimization-based methods are not included since they follow a differ-
ent structure. Some methods do not compress the representation and directly denoise on the representation.

Paper Representation Compression Generation
gDNA (Chen et al., 2022) Occupancy Field - GAN
BlockGAN (Nguyen-Phuoc et al., 2020) Voxel Grid - GAN
XCube (Ren et al., 2024) Voxel Grid VAE Sparse UNet diff.
Neuralfield-LDM (Kim et al., 2023) Voxel AE (CNN) Hierarchical diff.
Trellis (Xiang et al., 2024) Voxel / SparseFlex Transformer VAE Rectified Flow
LAS-Diffusion (Zheng et al., 2023) Voxel / SDF - Diffusion UNet
One-2-3-45++ (Liu et al., 2023a) Voxel / SDF - Diffusion UNet
Diffusion-SDF (Li et al., 2023) Voxelized SDF Patch-VAE Diffusion UNet
LDM (Xie et al., 2024) Voxelized SDF - Transformer
SDFusion (Cheng et al., 2023) Voxelized SDF VQ-VAE Diffusion UNet
DualOctreeGNN (Wang et al., 2022a) Octree / SDF AE
Make-A-Shape (Hui et al., 2024) SDF Wavelet features Diffusion ViT
Cannonical mapping (Cheng et al., 2022) PC VAE Autoregressive
DPM (Luo and Hu, 2021) PC VAE Diffusion
PVD (Zhou et al., 2021) Voxel / PC - Diffusion CNN
r-GAN / l-GAN (Achlioptas et al., 2018) PC AE GAN
SoftFlow (Kim et al., 2020) PC AE Normalizing Flow
DPF-Net (Klokov et al., 2020) PC AE Normalizing Flow
Shape-GF (Cai et al., 2020) PC / Density Field AE GAN
PointFlow (Yang et al., 2019) PC VAE Normalizing Flow
PointGrow (Sun et al., 2020) PC MLP Autoregressive
3dAAE (Zamorski et al., 2020) PC VAE AAE
tree-GAN (Shu et al., 2019) PC - GAN
Point-E (Nichol et al., 2022) PC Coordinates DiT
3DShape2VecSet (Zhang et al., 2023) PC / SDF Transformer DiT
CLAY (Zhang et al., 2024) PC / SDF Transformer DiT
Michelangelo (Zhao et al., 2023) PC / Occupancy VAE Diffusion UNet
SparseFlex (He et al., 2025) PC / SparseFlex Transformer VAE Rectified Flow
AutoSDF (Mittal et al., 2022) SDF VQ-VAE Autoregressive
SurfGen (Luo et al., 2021) SDF - GAN
3D-LDM (Nam et al., 2022) SDF MLP Diffusion (MLP)
TripoSG (Li et al., 2025) SDF Transformer VAE Rectified Flow
SDM-NET (Gao et al., 2019) Mesh - VAE
PolyGen (Nash et al., 2020) Mesh Coordinates Autoregressive
MeshGPT (Siddiqui et al., 2023) Mesh (face tokens) GraphAE Autoregressive
MeshXL (Chen et al., 2024b) Mesh Coordinates Autoregressive
GIRAFFE (Fu et al., 2022) NeRF - GAN
HoloDiffusion (Karnewar et al., 2023) NeRF ResNet Diffusion
Shape-E (Jun and Nichol, 2023) NeRF / SDF Transformer DiT
SSDNeRF (Chen et al., 2023a) NeRF / Triplane MLP DiT
EG3D (Chan et al., 2022) Triplane - GAN
3DGen (Gupta et al., 2023) Triplane PointNet/Unet Diffusion UNet
Direct3D (Wu et al., 2024a) PC / Triplane - DiT
Get3D (Gao et al., 2022) Triplane+DMTet - StyleGAN
TriFlow (Wizadwongsa et al., 2024) Triplane MLP DiT
ShapeFormer (Yan et al., 2022) PC / VQDIF Transformer Autoregressive

high-dimensional data by utilizing self-attention mechanisms and can be applied to any representation with
an appropriate tokenization scheme, making them suitable for representations like point clouds and meshes.
Conversely, U-Net architectures excel with grid-based representations such as voxel grids and SDFs, where
the data can be organized into 2D or 3D tensors. For a detailed technical introduction to diffusion processes
and for implementation details, see Appendix C.
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2.2 Selected representations and architectures

The experiments in this study are conducted using a carefully selected set of 3D representations, chosen
for several key reasons. First, we prioritized representations that are widely used in the field, ensuring the
relevance of our analysis and alignment with existing literature. Second, we aimed to include a diverse range
of representations, such as point clouds used as intermediate representation in the training process, and
implicit representations like density fields and SDFs, which we use as the output representation to facilitate
conversion to meshes for all methods. Third, scalability to large datasets and compatibility with diffusion
models was a critical consideration, as this ensures that each representation can be effectively integrated
with modern generative techniques. The encoders and decoders for each representation are trained through
a reconstruction task on the same dataset used for the generative task. To ensure normally distributed latents,
which is a crucial prerequisite for the diffusion process, the AE encoder always implements LayerNorm as
its final layer. We implemented our representations, encoders, and diffusion models within a standardized
training pipeline utilizing the hydra and accelerate libraries.

Voxel and SDF Grid Encoding Voxel grids offer an intuitive and explicit encoding for 3D objects.
While used predominantly in early research (Wu et al., 2015; Maturana and Scherer, 2015; Choy et al.,
2016; Wu et al., 2016; Brock et al., 2016; Dai et al., 2018), they are still used in SOTA work (Ren et al.,
2024; Zheng et al., 2023; Liu et al., 2023a). Instead of binary occupancy indicators, some works fill the grid
cells with sampled SDF values (Cheng et al., 2023; Mittal et al., 2022) to increase the expressiveness. We
implement both approaches: a standard voxel grid where each cell holds a binary occupancy value and an
SDF grid where each cell contains the signed distance to the nearest point on the mesh surface, sampled
from a truncated SDF with a cutoff of 0.2. Meshes were converted to 3D grids of resolution 643 by ray
casting and closest point queries. For encoding, we implemented a 3D CNN following Cheng et al. (2023).
For example, a grid of resolution 643 is transformed into a latent tensor of shape 3×16×16×16. This latent
representation is typically diffused using a 3D U-Net (Cheng et al., 2023). Here, we additionally introduce
a transformer-based approach, where the latent tensor is tokenized by dividing it into 3D patches of size 43,
analogous to patch-based tokenization used in vision transformers. This results in a total of 12 potential
generative approaches: Voxel / SDF grid, each combined with AE / VAE / VQ-VAE, and denoised with
DiT or U-Net.

3DShape2VecSet Encoding Occupancy Networks (Mescheder et al., 2019) and their extensions (Peng
et al., 2020; Atzmon and Lipman, 2020; Zhang et al., 2023) use implicit representations to sample density or
occupancy at any spatial point, enabling detailed surface generation beyond grid limitations. This method
has recently been leveraged for conditional 3D generation, achieving remarkable results (Zhang et al., 2024;
Yang et al., 2024; Li et al., 2025). Our implementation, based on the 3DShape2VecSet model (Zhang et al.,
2023), transforms meshes into point clouds X and sub-samples them (X̂). The positional embeddings of the
points are processed through cross-attention between X and X̂, resulting in a set of k-dimensional latent
vectors. The decoder passes the vector set through multiple self-attention layers, with cross-attention applied
between the outputs and embedded query points. Following Zhang et al. (2023), latent generation employs
a DiT.

Dual Octree Graph Encoding To efficiently capture high-resolution geometric details while maintaining
computational scalability, we implemented the dual octree graph representation proposed by Wang et al.
(2022b). This method leverages the hierarchical structure of octrees combined with graph neural networks
(GNNs) to effectively represent complex 3D geometries. The dual octree graph network takes a set of point
clouds as input, builds a dual octree graph, and outputs an adaptive feature volume via a graph-CNN-based
encoder-decoder network structure. In all experiments, we use a tree depth of 6 and force the octree to be
full when depth d ≤ 2. During decoding, the encoded Octree-features are converted to a signed distance
field via a multilevel neural partition-of-unity (Neural MPU) module to construct a surface. Our approach
extended this AE structure to VAE and VQ-VAE and trained a simple two-layer 3D U-Net diffusion model
for generation. To the best of our knowledge, this is the first generative approach based on Dual Octrees.
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Triplanes Triplane representations efficiently encode 3D scenes in a hybrid explicit-implicit manner Wang
et al. (2024a), utilizing three orthogonal 2D feature planes Peng et al. (2020). From these planes, a lightweight
MLP occupancy network can perform volumetric rendering. We employ the autoencoder architecture pro-
posed in Peng et al. (2020) to generate triplane latents from point clouds sampled on the mesh. Following
Wu et al. (2024b), latent generation employs a UNet with 3D-aware convolution layers to better capture the
unique properties of the triplane latents.

NeRFs Neural radiance field (NeRF) is another implicit representation that was first proposed for novel
view synthesis Mildenhall et al. (2021), parameterizing the color and density at each point by a neural
network. To render the 3D object from novel views, a differentiable volumetric ray casting approach is
utilized. The vast majority of generative methods using a NeRF representation are optimization-based,
iteratively updating the parameters of the neural network to maximize the likelihood of rendered images
under an image generation model Poole et al. (2022); Lin et al. (2023); Liu et al. (2023b); Wang et al.
(2024b). Therefore, in this work, we adopt instead the NeRF representation used in Shap-E Jun and Nichol
(2023), which falls into the framework illustrated in Figure 1. Each mesh is converted into a point cloud
and multi-view RGB images, which are encoded into a latent vector using point convolution, cross attention,
and a Transformer. To ensure that the latent vector behaves well, it is input into a tanh activation function,
and noise is added; however, to be consistent with the other representations, we replace this step with layer
normalization. During decoding, the latent vector is projected to the parameters of the NeRF’s neural
network. The autoencoder is trained on a combination of RGB and transmittance reconstruction losses on
multi-view renderings. In the original paper, the latent vector is also projected to the parameters of a signed
texture field, and the autoencoder is fine-tuned with SDF and color distillation losses. However, we exclude
this step to have a fair comparison of NeRF with the other representations. As in the original paper, we
leverage DiT for generation. For both reconstruction and generation, meshes are obtained from the NeRF
by applying Marching Cubes to its density function.

2.3 Evaluation protocol: Joint evaluation of reconstruction and generation

The ability to transform a mesh to and from latent space upper-bounds a representation’s generation ca-
pabilities, as generated vectors must ultimately be converted into meshes. Thus, we advocate for jointly
benchmarking reconstruction and generation to understand how reconstruction errors limit generation. Re-
construction error comprises representation-inherent errors, like information loss in voxel grids and compres-
sion errors due to the encoder. Additionally, an encoder trained on limited data may struggle with novel
objects, necessitating an assessment of out-of-distribution (OOD) performance. Consequently, we propose
the following evaluation protocol:

1. Assess reconstruction (mesh → representation → mesh)

2. Benchmark compression performance (mesh → representation → latent vector → representation →
mesh).

3. Test the encoder’s generalization in OOD tasks

4. Measure generation performance quantitatively and qualitatively.

3 Experimental setup

We benchmarked the selected methods on a subset of categories of the ShapeNet dataset (Chang et al.,
2015), specifically car, airplane, and chair, following Ren et al. (2024). The dataset was split into training,
validation, and test sets according to the official division1. We evaluated reconstruction performance on the
full test dataset (806 objects for airplane, 703 for car, and 1,163 for chair). Following Peng et al. (2020), we
assessed reconstruction quality using Chamfer Distance (CD), F-Score, and Normal Consistency (NC). For
precise definitions, please refer to Appendix D. The selected metrics can be directly computed on the meshes

1http://shapenet.cs.stanford.edu/shapenet/obj-zip/SHREC16/all.csv
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and, unlike metrics like Intersection over Union (IoU), do not assume meshes being manifold, watertight, or
convertible to grid representations — assumptions that do not hold for many meshes in the dataset.

Quantitatively evaluating generative models for 3D shapes is challenging due to the diversity of tasks and
metrics in related work, such as single-image or multi-view reconstruction, text-to-3D synthesis, or uncondi-
tional generation. To ensure a fair comparison and to avoid adding complexity to our benchmarking pipeline,
we opted to evaluate the models in an unconditional generation setting. This approach tests the ability of the
representations to generate objects that are both similar to the training set and diverse. Following previous
work (Gao et al., 2022; Lei et al., 2023; Yang et al., 2019), we implemented three distributional metrics:
Coverage (COV), Minimum Matching Distance (MMD), and 1-Nearest Neighbor Accuracy (1-NNA). All
these metrics are based on the pairwise CD between a set of generated samples Sg and a reference dataset
Sr, which is a subset of the test data. Coverage measures the fraction of Sr within a certain distance of Sg,
reflecting the diversity of the generated samples (higher is better). MMD computes the average minimum
distance from samples in Sr to those in Sg, indicating the quality of the generated samples (lower is better).
The 1-NNA metric assesses the overfitting of the model by measuring the accuracy of classifying samples
into Sr and Sg based on their distances. An ideal model achieves a 1-NNA of 0.5, indicating that generated
samples are indistinguishable from real data. For formal definitions of these metrics, see Appendix D. In
Figure 2, we measure the stability of these metrics by computing them on random subsets of ShapeNet,
imitating a perfect generative model. The meaningfulness of the metrics strongly depends on the chosen set
size for Sr and Sg, making it difficult to compare numbers in the literature. For instance, the MMD metric
decreases with larger set sizes as the pool of meshes to find the closest neighbor increases. We also observe
a large spread of values for small set sizes and recommend that the set size should be larger than 200 for the
metrics to converge.

To evaluate the subjective mesh quality, we conduct a user study. In each question, two meshes generated by
different approaches are presented to the user, who is asked to indicate which is preferable based on object
complexity and surface quality. Overall, we collect a dataset of 575 preferences from 24 users. To obtain
scores for each approach, we model the preferences using the Bradley-Terry statistical model (Bradley and
Terry, 1952) (see Appendix I for details).
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Figure 2: We select 100 random subsets of different sizes of the train and test split of the ShapeNet airplane
category and compute the COV, MMD, and 1-NNA metrics. Small set sizes result in a large spread of
values. We further observe that the Coverage (COV) is not close to the optimal value 1.0 and the 1-Nearest
Neighbor Accuracy (1-NNA) is above the optimal value 0.5, indicating that learning from the training set
may lead to biases.

4 Results and Discussion

Figure 3 summarizes the results, demonstrating that the SDF-encoder achieves the best reconstruction
performance, but our DualOctree diffusion model excels in generation. In the following, the results will be
discussed step-by-step.
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Figure 3: Rankings of 3D rep-
resentations based on genera-
tion and reconstruction metrics.
The outer circle indicates the
top rank. This chart compares
reconstruction metrics (CD, F-
score, NC), reconstruction gen-
eralization on an OOD task, and
reconstruction efficiency (mem-
ory footprint, encoding size, and
inference time) as well as the
metrics for unconditional gen-
eration performance with user
study rankings (1-NNA, MMD,
COV, surface-to-volume ratio
(S2VR), Human Preference).

4.1 Benchmarking generation performance

The comparison of the best generative approaches, one per representation, is shown in Table 2. Surprisingly,
the novel DualOctree-based diffusion model achieves best performance in all metrics, followed by SDF and
Shape2VecSet. For ablation studies on encoders and diffusion models, see Appendix F. However, the user
study (see Figure 3) paints a different picture, ranking SDF (score 0.25), Shape2vecset (-0.122) and Triplane
(-0.140) above DualOctree (-0.178). This shows the necessity to run a user study when aiming to assess
human-perceived object quality.

Table 2: Performance of representations in unconditional generation setting.

Method COV ↑ MMD ↓ 1-NNA → 0.5
DualOctree VAE UNet 0.365 0.031 0.824
SDF AE DiT 0.357 0.032 0.860
Shape2VecSet 0.344 0.033 0.864
Triplane AE UNet 0.297 0.036 0.921
Voxel AE DiT 0.319 0.040 0.937

One reason for the users’ preference for SDF-generated objects may be the tendency of SDF-grids to generate
smooth surfaces. Figure 4 provides qualitative results for the generative approaches. On the other hand, we
found that DualOctree generates more complex – but potentially imperfect – assets, measured in terms of the
surface-to-volume ratio. Appendix H expands on the analysis of complexity and provides further evidence
that SDF tends to smoothen surfaces whereas Shape2VecSet and DualOctree are more prone to creating
artifacts.

4.2 Reconstruction performance

Table 3 provides the reconstruction quality in terms of CD, F-Score, and NC. The best-vectorized rep-
resentations are the voxel and SDF grid encodings using AE and VAE, with an average F-score of 88%.
NeRF-encoding performs worst, probably due to modifications in our implementation for the sake of compa-
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Figure 4: Qualitative results for mesh generation
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Table 3: Reconstruction quality in terms of CD, F-score and NC.

Trained & tested on Airplane / Car / Chair OOD (trained on Chair, tested on Airplane)
Method F-score (0.0125) ↑ CD (*1e-4) ↓ NC ↑ F-score (0.0125) ↑ CD (*1e-4) ↓ NC ↑
DualOctree VAE 76.122 ± 13.44 0.02 ± 0.01 0.766 ± 0.07 48.38 ± 11.39 0.047 ± 0.02 0.677 ± 0.08
NeRF AE 58.44 ± 13.22 0.034 ± 0.02 0.723 ± 0.07 26.229 ± 11.64 0.107 ± 0.04 0.589 ± 0.05
SDF AE 88.434 ± 6.58 0.012 ± 0.0 0.827 ± 0.06 91.123 ± 6.02 0.01 ± 0.01 0.843 ± 0.05
Shape2VecSet AE 79.37 ± 17.04 0.023 ± 0.02 0.776 ± 0.07 75.338 ± 8.87 0.022 ± 0.01 0.717 ± 0.07
Triplane AE 66.445 ± 16.06 0.028 ± 0.02 0.759 ± 0.08 41.69 ± 11.57 0.073 ± 0.03 0.688 ± 0.07
Voxel AE 85.666 ± 10.54 0.016 ± 0.01 0.787 ± 0.06 85.602 ± 9.48 0.017 ± 0.01 0.8 ± 0.05

rability (see section 2.2), and NeRF-based generation did not reach comparable generation performance and
we thus only analyze its reconstruction performance. Ablation studies with respect to the encoder model
(AE / VAE / VQ-VAE) are provided in Appendix E.

Furthermore, we hypothesized that larger latent representations reduce the information loss during com-
pression but come along with longer runtimes. Figure 5 shows the trade-off between reconstruction loss,
reconstruction runtime, and the size of the latent vector (in terms of the number of elements of the tensor).
For the six tested representations, the compression ratio – specifically, the size of the latent space – does not
significantly affect the results. Similarly, methods with longer reconstruction runtime do not generally yield
better results.

4.3 Generalization ability of the encoder

When encoding 3D meshes into low-dimensional vectors, there is a trade-off between the compression capacity
and the model’s capability to generalize to new representations. Since the generator aims to design new
objects, applicability beyond the training data is crucial. We quantified the generalization capability (see
Table 3 - right) where we test the encoders trained on the Chair category when applied to the Airplane
category. While most encoders show very high generalization performance, on par with category-specific
training, NeRFs and DualOctrees stand out as representations that struggle with OOD data. In the former,
the MLP-based latent may be prone to overfitting, while for the latter, the low dimensionality of the latent
could be problematic.
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Figure 5: Reconstruction quality by runtime for infer-
ence (decoding and mesh reconstruction), and by size
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4.4 Effect of preprocessing

For all methods — except those encoders operating directly on point clouds or meshes — preprocessing
meshes is essential. Non-watertight meshes introduce significant artifacts as they do not have a well defined
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inside or outside, which is crucial information for many methods, adversely affecting the quality of the
reconstructed shapes. Mesh manifoldization is an active research area, with various methods proposed like
the Manifold library (Huang et al., 2018), which thickens surfaces to ensure that every mesh component
forms a solid volume. While effective, this process can alter the original geometry by artificially expanding
thin structures. ManifoldPlus (Huang et al., 2020) extends Manifold but has been reported to produce
inconsistent results (Zhang et al., 2024). Wang et al. (2022b) uses a simple manifoldization (Mesh2SDF)
based on contouring the unsigned distance function, which also produces significant thickening artifacts or
requires high grid resolutions, resulting in high compute and memory requirements. The thickening of the
mesh helps to preserve thin structures but adds an irrevocable bias. To this end, we introduce a lean and
mean preprocessing step that transforms meshes to SDFs without thickening (see Appendix G for more
details). We compare the effects of manifoldization as a preprocessing step by converting meshes to a grid
SDF representation and back to the mesh representation in Figure 7.
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Figure 7: We compare different methods for converting a mesh to an SDF. Ours uses the flood fill approach
as outlined in subsection 4.4. Naive uses a simple raycasting approach to determine the sign. Mesh2SDF
from Wang et al. (2022a) creates a watertight mesh using the unsigned distance and suffers from artificial
thickening of the shape. This effect is reduced with increasing grid sizes.

4.5 Error decomposition

In alignment with the goal to evaluate reconstruction and generation jointly, we investigate the relation
between generation, compression, and reconstruction errors. Since MMD measures generation performance
as the mean CD between each sample in Sr and its best match in Sg, it can be compared to the CD at
the reconstruction or compression stage. While the generation of new shapes inevitably induces an MMD
> 0 (see Figure 2), the MMD is loosely lower bounded by the reconstruction and compression error in
terms of CD. To decompose the error, for each sample ρ ∈ Sr, we compare its MMD, its compression
error (e.g. encoding-decoding), and its mesh reconstruction error (e.g. marching cubes inaccuracies). The
reconstruction errors are taken from the analysis in Figure 7b while the compression errors correspond to
the sample-wise result from Table 3. It is worth noting that these errors are not simply additive; however, it
is interesting to investigate the size of the lower bounds (reconstruction and compression errors) in relation
to the absolute size of the generative error. Figure 6 shows that the reconstruction and compression errors
amount to 12.9% and 39.3% of the MMD, respectively, when averaging over all representations. The MMD
and the reconstruction CD correlate on average with a Pearson R correlation of 0.30 (p < 0.01). As expected,
there is also a positive correlation of r = 0.24 between compression and reconstruction error. This analysis
underlines the important role of 3D representations and their reconstruction performance, as reconstruction
errors can significantly reduce the quality of the generated samples.
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5 Conclusion

We have presented a systematic comparison of 3D representations for reconstruction and generation. Our
analysis leads us to recommend the following best practices:

• Evaluate reconstruction and generation jointly. Since generation quality is upper-bounded by the
reconstruction error, the errors resulting from mesh reconstruction and representation encoding alone
should be reported.

• Compute the errors with respect to the original mesh. Results should not be distorted by derivatives
obtained following the application of methods like Manifold, and avoid metrics that require additional
preprocessing.

• Include conversions of the output representation to meshes. Comparing only generated surface points
to the ground truth mesh may skew results.

• A sufficient number of samples is crucial when evaluating unconditional generation with metrics such
as MMD, 1-NNA, and Coverage. More than 200 samples are generally necessary to achieve robust
outcomes.

Limitations This framework covers direct 3D generation, in contrast to optimization-based methods such
as Score Distillation Sampling (SDS) -based methods (Poole et al., 2022; Chen et al., 2023b; Lin et al., 2023;
Sun et al., 2023; Wang et al., 2024b; Shi et al., 2023b) or other approaches that use multi-view images for
inference Shi et al. (2023a); Liu et al. (2024c); Long et al. (2024). Despite the impressive results generated
with these techniques, recent developments have shifted the focus of the field back to direct 3D generation,
due to 1) high computational costs of inference-time optimization Li et al. (2024), 2) dependence of the
generation quality on the fidelity of the multi-view images Wu et al. (2024a), 3) preferability of explicit 3D
outputs for artists Yang et al. (2024), and 4) feasibility of training for direct generation due to large-scale 3D
datasets such as Objaverse Deitke et al. (2023) and ObjaverseXL Deitke et al. (2024). Furthermore, some
generative methods fit into our unified pipeline but remain unimplemented, such as autoregressive generation.
Our analysis focuses on the ShapeNet dataset, chosen for its suitability for systematic benchmarking over
the diverse Objaverse dataset. Consistent results across ShapeNet suggest similar outcomes would apply to
Objaverse.

Outlook There are several open challenges in the field, such as accounting for interior structure of objects,
transferring 3D object generation methods to a scene level Ren et al. (2024), or enabling model articula-
tion (Leboutet et al., 2024; Lei et al., 2023; Liu et al., 2024b). While our benchmark shows the general
ability of any representation to encode and generate high-resolution objects, it also shows the challenges
such as dealing with thin structures while retaining computational efficiency. With the presented pipeline
implemented in an open-source code base, we offer a unified framework to develop and benchmark novel 3D
representations for generation.
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A Appendix

B Representations and Algorithms in 3D Generative Modeling

Meshes are foundational in 3D computer graphics and vision, representing surfaces in terms of vertices, edges,
and faces to form polygonal approximations of objects. While meshes are extensively used across various
fields due to their broad compatibility with rendering pipelines and ability to depict complex geometries
with high fidelity, processing them within neural network architectures presents significant challenges. The
variable topology and connectivity inherent in meshes make them difficult to process using standard neural
architectures that expect regular input structures. Consequently, processing meshes often requires special-
ized neural networks, such as graph neural networks (Li et al., 2024), or autoregressive architectures (Yan
et al., 2022; Mittal et al., 2022; Siddiqui et al., 2023) which can be complex and computationally ineffi-
cient. Moreover, high-resolution meshes can have substantial memory footprints, raising concerns about the
scalability of the resulting learning pipelines. These limitations have led researchers to explore alternative
three-dimensional representations derived from meshes through algorithmic conversions that typically do
not require training to facilitate processing, learning, and rendering within deep neural frameworks Li et al.
(2024).

Voxel grids Voxel grids offer an intuitive and straightforward encoding for 3D objects analogous to pixel
representations in 2D images. Early research predominantly relied on dense voxel grids (Wu et al., 2015;
Maturana and Scherer, 2015; Choy et al., 2016; Wu et al., 2016; Brock et al., 2016; Dai et al., 2018). Despite
their convenience, voxel grids suffer from a large memory footprint, limiting the achievable resolution and
computational efficiency. Recent methods have revisited voxel grids to leverage their compatibility with
convolutional neural networks (CNNs). For instance, X-Cube (Ren et al., 2024) introduces a multi-resolution
approach involving denoising and decoding steps, while methods like LAS-Diffusion (Zheng et al., 2023) and
One-2-3-45++ (Liu et al., 2023a) utilize voxel grids in the initial stages of their generation pipelines. These
approaches demonstrate that voxel grids can still be effective when combined with modern techniques like
diffusion models. To mitigate memory constraints, sparse or hierarchical voxel grids have been proposed (Liu
et al., 2020; Fridovich-Keil et al., 2022; Sun et al., 2022). Notably, Instant Neural Graphics Primitives
(Instant-NGP) (Müller et al., 2022) use a multi-level voxel grid encoded via a hash function, enabling fast
optimization and rendering while maintaining a compact model size.

Implicit neural functions Implicit representations model 3D geometry as continuous functions, allowing
for high-resolution detail without the memory overhead of dense grids. Occupancy Networks (Mescheder
et al., 2019) introduced an implicit representation that predicts the occupancy probability of arbitrary points
in 3D space, conditioned on input data such as images or point clouds. This approach allows for smooth and
detailed surface representations. Extensions of this idea include Convolutional Occupancy Networks (Peng
et al., 2020) and Neural Implicit Surfaces (Atzmon and Lipman, 2020), which improve the ability to capture
fine geometric details. Recently, Zhang et al. (2023) proposed 3DShape2VecSet, employing a Transformer-
based encoder and decoder where occupancy at query points is predicted via cross-attention mechanisms.
This representation and follow-up work Chen et al. (2024a) have been used for conditional generation,
achieving remarkable results (Zhang et al., 2024; Yang et al., 2024; Li et al., 2025). In contrast to these
works, Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) jointly model geometry and texture using
implicit representations, enabling rendering from arbitrary views via volume ray casting. NeRFs are especially
popular for 3D generative methods that only rely on image data for supervision, such as DreamFusion (Poole
et al., 2022).

Signed Distance Functions (SDF) Signed Distance Functions (SDFs) provide a scalar field where each
point in space is assigned a value representing its signed distance to the closest surface, with negative
values indicating points inside the object. SDFs offer a more expressive alternative to occupancy functions,
capturing both the geometry and topology of 3D shapes. DeepSDF (Park et al., 2019) pioneered the use
of neural networks to learn continuous SDF representations from data. Building on this, DISN (Xu et al.,
2019) introduced an amortized approach that eliminates the need for test-time optimization, enabling more
efficient inference. SDFs can be discretized over a voxel grid, resulting in a sampled SDF or grid SDF,
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which facilitates the use of convolutional architectures. SDFusion (Cheng et al., 2023) demonstrated the
effectiveness of this approach for 3D generation. Additionally, Mittal et al. (2022) proposed AutoSDF,
which generates SDF grids for shape patches autoregressively after encoding them with a VQ-VAE. Further
advancements include methods like 3D-LDM (Nam et al., 2022), where an MLP autoencoder predicts SDF
values from latent codes and query points, blending occupancy and SDF representations. Xie et al. (2024)
compared different representations, concluding that tensorial SDFs outperform triplane SDFs and tensorial
NeRFs in terms of fidelity and efficiency.
Triplanes Triplane representations encode 3D scenes using three orthogonal feature planes (xy, xz, yz) ∈
RN×N×C , significantly reducing memory requirements while retaining spatial information. This approach
was popularized by EG3D (Chan et al., 2022), which employs a triplane representation within a Generative
Adversarial Network (GAN) framework for high-quality 3D-aware image synthesis. Recent works have ex-
tended triplane representations to 3D generative modeling. Approaches such as 3DGen Gupta et al. (2023),
RODIN Wang et al. (2023), Blockfusion Wu et al. (2024b) and Direct3D Wu et al. (2024a) rely on latent
diffusion to denoise and then up-sample triplane latents, which are then decoded via a lightweight MLP
occupancy network and rendered volumetrically, facilitating the generation of high-fidelity 3D avatars or
even complete 3D environments. Practically, triplanes can be obtained from occupancy data by pretraining
a dedicated PointNet-UNet-OccNet autoencoder on a reconstruction loss, as detailed in Peng et al. (2020).
In this approach, the triplane latent resolution can be adjusted using specific UNet layers within the autoen-
coder. Alternatively, a triplane dataset can be directly optimized from a mesh dataset, as proposed in Wu
et al. (2024b), by jointly training an MLP decoder and its triplane input—considered here as an optimization
variable on par with the weights and biases of the MLP decoder—on a reconstruction loss over the entire
dataset. In this context, since the triplane equivalent of each asset in the database is readily available after
pretraining, the encoder part of the generative approach consists only of projection layers. These layers
encode high-dimensional triplanes into lower-dimensional triplane latents, on which the denoising diffusion
model will subsequently act.

C Generative pipelines

Diffusion models (Sohl-Dickstein et al., 2015) have emerged as a powerful class of generative models, demon-
strating remarkable success in image synthesis (Ho et al., 2020). They operate by progressively corrupting
training data through the sequential addition of Gaussian noise (forward process) and then learning to re-
cover the original data by reversing this noising process (reverse process). This framework has been extended
to 3D data, allowing for the generation of complex 3D structures (Lyu et al., 2021; Zhou et al., 2021).
Forward Process Given a data sample x0 drawn from a distribution q (x0), the forward diffusion process
generates a sequence of increasingly noisy samples xt, ∀t ∈ [1, · · · , T ] from x0 by adding Gaussian noise
ε ∼ N (0, I) at each timestep according to a predefined variance schedule 0 < β1 < · · · < βT < 1:

q(x1:T |x0) :=
T∏

t=1
q (xt|xt−1) , (1)

q (xt|xt−1) := N
(√

1 − βtxt−1, βtI
)

. (2)

A relevant property of such a diffusion process is that xt can be sampled from x0 using the closed-form
expression:

q(xt|x0) = N (
√

ᾱtx0, (1 − ᾱt) I), (3)

where αt := 1 − βt and ᾱt =
∏t

s=1 αs. This leads to the practical sampling equation:

xt =
√

ᾱtx0 +
√

1 − ᾱtε, ε ∼ N (0, I). (4)

Reverse Process. Initiating from a standard Gaussian distribution, xT ∼ N (0, I), a denoising model pθ

parameterized by trainable weights θ, learns to approximate a series of Gaussian transitions pθ (xt−1|xt).
These transitions incrementally denoise the signal such that
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pθ (x0:T ) := pθ (xT )
T∏

t=1
pθ (xt−1|xt) , (5)

pθ (xt−1|xt) := N (µθ (xt, t) , Σθ (xt, t)) . (6)

Following the approach from Ho et al. (2020), we define

µθ = 1
√

αt

(
xt − βt√

1 − ᾱt
εθ (xt, t)

)
(7)

Σθ(xt, t) = σ2
t I (8)

yielding the following Langevin dynamics

xt−1 = 1
√

αt

(
xt − βt√

1 − ᾱt
εθ (xt, t)

)
+ σtz, (9)

where z ∼ N (0, I) and εθ (xt, t) is a learnable network approximating the per-step noise on xt.
Loss Function The model is trained by minimizing the variational bound on negative log-likelihood.
However, Ho et al. (2020) showed that a simplified loss focusing on the noise prediction yields good empirical
results:

L = Ex0,εt

[∥∥εt − εθ

(√
αtx0 +

√
1 − ᾱtεt, t

)∥∥2
]

(10)

This loss encourages the network to predict the noise added at each timestep, facilitating the denoising
process during generation.

We adopt open-source implementations for DiT2 and a 3D U-Net3. Specific parameter settings will be
provided as hydra config files with our open-source codebase.

D Evaluation Metrics

We use the following metrics for evaluating our approach. The symmetric Chamfer distance is selected to
measure the distance between two point clouds X and Y .

CD(X, Y ) = 1
|X|

∑
x∈X

min
y∈Y

∥x − y∥2 + 1
|Y |

∑
y∈Y

min
x∈X

∥y − x∥2. (11)

The F-score is the harmonic mean of precision and recall for a generated mesh G and a reference mesh R.
The precision is defined as

P (τ) = 100
|G|

∑
g∈G

[
min
r∈R

∥g − r∥2 < τ

]
, (12)

with g as points sampled on the surface of the generated mesh, r as points sampled from the reference mesh,
τ as a threshold, and [·] as the Iversion bracket. The recall is defined accordingly as

R(τ) = 100
|R|

∑
r∈R

[
min
g∈G

∥r − g∥2 < τ

]
. (13)

The final F-score is then computed as
F (τ) = 2P (τ)R(τ)

P (τ) + R(τ) . (14)

We define the normal consistency between a generated mesh G and a reference mesh R as

NC(G, R) = 1
|G|

∑
g∈G

⟨n(g), n(Nr)⟩ . (15)

2https://github.com/facebookresearch/DiT
3https://github.com/CompVis/latent-diffusion/
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The function n(·) retrieves the normal of the respective point, g is a point sampled on the surface of the
generated mesh and Nr is the closest point on R to the point g. ⟨·, ·⟩ is the dot product which measures the
similarity of the normals.

To measure the quality of the generated meshes w.r.t. a set of reference meshes we use the metrics Coverage
(COV), Minimum matching distance (MMD), and 1-nearest neighbor accuracy (1-NNA).

COV(Sg, Sr) =
|{arg minY ∈Sr

D(X, Y )|X ∈ Sg}|
|Sr|

. (16)

MMD(Sg, Sr) = 1
|Sr|

∑
Y ∈Sr

min
X∈Sg

D(X, Y ). (17)

1-NNA(Sg, Sr) =
∑

X∈Sg
I[Nx ∈ Sg] +

∑
Y ∈Sr

I[Ny ∈ Sr]
|Sg| + |Sr|

. (18)

NX is the nearest neighbor of X in the set Sr ∪ Sg − {X}. Sr, Sg are the sets of reference and generated
meshes and are of equal size. We use the Chamfer distance for D in all our experiments.

E Ablation study: Reconstruction performance

Table 4 shows the results for reconstruction for the ShapeNet Chair category across all tested encoders. In
most cases, a standard autoencoder (with LayerNorm) performs best. This is expected since penalizing the
KL-divergence in VAEs stirs the distribution at the cost of lower reconstruction performance. However, we
find that the encoder choice only plays a minor role compared to the differences between representations.
Specifically, the inter-representation standard deviation (between best CD per representations) is 0.0098
whereas the intra-representation standard deviation (between encoder-wise CD for each representation) is
only 0.00504.

Representation Encoder F-score (τ = 1
80 ) CD (*1e-4) NC

DualOctree AE 91.629 ± 7.5 0.012 ± 0.01 0.821 ± 0.07
DualOctree VAE 83.152 ± 12.38 0.017 ± 0.01 0.798 ± 0.07
DualOctree VQVAE 73.763 ± 14.23 0.023 ± 0.01 0.773 ± 0.07

NeRF AE 58.162 ± 13.74 0.032 ± 0.02 0.714 ± 0.07
NeRF VAE 57.326 ± 15.69 0.033 ± 0.02 0.786 ± 0.07

SDF AE 94.332 ± 6.69 0.011 ± 0.01 0.847 ± 0.06
SDF VAE 92.497 ± 7.05 0.013 ± 0.0 0.842 ± 0.06
SDF VQVAE 94.355 ± 6.37 0.011 ± 0.01 0.84 ± 0.06

Shape2VecSet AE 85.127 ± 13.81 0.019 ± 0.01 0.812 ± 0.06

Triplane AE 63.666 ± 17.73 0.033 ± 0.03 0.761 ± 0.08
Triplane VAE 43.952 ± 14.02 0.052 ± 0.04 0.733 ± 0.08
Triplane VQVAE 45.216 ± 14.22 0.046 ± 0.03 0.733 ± 0.08

Voxel AE 90.433 ± 13.14 0.016 ± 0.02 0.821 ± 0.07
Voxel VAE 90.5 ± 12.93 0.016 ± 0.02 0.821 ± 0.07
Voxel VQVAE 90.408 ± 13.03 0.016 ± 0.02 0.821 ± 0.07

Table 4: Reconstruction performance by encoder (solely ShapeNet-Chair category).

Furthermore, Figure 8 shows qualitative results for reconstruction. Thin or delicate structures lead to visible
errors as missing parts of the object or as loss of details. This error mode is common for all methods and
includes grid-less methods like NeRF.

4The intra-representation StD was only computed for the representations where results are available for all three encoder
models
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Figure 8: Qualitative results for mesh reconstruction.
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F Ablation study: Generation performance

Table 5 compares all variants of the generative model. The applicability of DiT and Unet depends signifi-
cantly on the structure of the latent vector. In most cases, AE outperforms VQ and VQVAE. DiT is more
suitable for NeRF, Voxel grid and Shape2VecSet, whereas U-Net yields better results with DualOctree, SDF
grid and Triplane. Interestingly, DiT also works well for grid-based representations that were usually just
used with U-Net based diffusion in related work. Due to the shorter training times and higher memory
efficiency of DiT, this is a promising result for future model development.

Representation Generator Encoder COV MMD 1-NNA
DualOctree Unet AE 0.367 0.059 0.900
DualOctree Unet UNet 0.458 0.046 0.686
DualOctree Unet VAE 0.440 0.047 0.662
DualOctree Unet VQVAE 0.393 0.049 0.708
NeRF DiT AE 0.240 0.085 0.965
SDF DiT AE 0.432 0.048 0.726
SDF DiT VAE 0.445 0.050 0.718
SDF DiT VQVAE 0.385 0.053 0.728
SDF Unet AE 0.372 0.054 0.787
SDF Unet VAE 0.378 0.058 0.743
SDF Unet VQVAE 0.347 0.054 0.744
Shape2VecSet DiT AE 0.400 0.048 0.790
Triplane Unet AE 0.422 0.052 0.815
Voxel DiT AE 0.427 0.056 0.894
Voxel DiT VAE 0.388 0.066 0.878
Voxel DiT VQVAE 0.357 0.060 0.891
Voxel Unet AE 0.385 0.059 0.881
Voxel Unet VAE 0.380 0.058 0.828
Voxel Unet VQVAE 0.438 0.061 0.826

Table 5: Ablation study on generation performance (only “Chair” category). Combinations that did not
converge to a state of proper 3D model generation are left out.

G Mesh reconstruction under varying preprocessing methods

G.1 Preprocessing non-watertight meshes

The analysis provided in subsection 4.4 shows that some mesh preprocessing methods, such as Mesh2SDF,
substantially alter the meshes by making them thicker and thereby introduce a bias. Figure 9 shows a visual
explanation of our preprocessing step using the flood fill algorithm. Instead of altering the mesh we define
the inside and outside as outlined in Figure 9 and then directly sample points and compute distances with
the determined sign.

Figure 10 illustrates the reconstruction of an airplane from an SDF grid with a resolution of 643. We first
apply the flood-fill algorithm to ensure watertightness. Then, we either directly transform the mesh into a
sampled SDF and back to a mesh (Figure 10b) or apply Manifold and then transform and reconstruct the
mesh (Figure 10c).

Without applying Manifold, the limited grid resolution fails to capture thin structures such as airplane wings
accurately, leading to incomplete or distorted reconstructions. Conversely, manifoldizing the mesh ensures
that thin structures are represented as solid volumes, allowing grid-based methods to capture these features
within the constraints of the grid resolution. However, this comes at the expense of altering the original
mesh geometry, which may not be desirable in applications requiring high fidelity.
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(a) (b) (c) (d)

(e)

Figure 9: Defining the inside (red) and outside (blue) of a mesh with our flood fill implementation. (a) we
define a target grid encompassing the mesh. (b) we mark all voxels that touch the mesh surface (gray) and
then flood fill starting from a corner voxel guaranteed to be outside to define the outside region (blue). (c)
voxels that touch the mesh but not an outside voxel defined by the 26-voxel-neighborhood get removed. This
step effectively eliminates internal structures not considered part of the outer shape of an object. (d) all
unlabelled voxels get labelled as inside (red). (e) For all gray voxels we determine whether the voxel center
lies inside or outside by comparing to the plane defined by the closest point to the surface and the normal
approximated by the sum of the positions of the outside neighbor voxels. The surface points sampled in this
step are reused for computing distances for the SDF.

(a) Ground truth (b) Reconstructed w/o Manifold (c) Reconstructed with Manifold

Figure 10: Reconstruction quality when converting to a sampled SDF and back
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G.2 Dataset quality comparison

This reconstruction analysis can not only be used to compare preprocessing methods, but also to compare
the quality of datasets. We analyze ShapeNet and Objaverse with our pipeline by converting all meshes to
SDF grids and then convert this representation back to the mesh format. Figure 11 shows the distribution
of reconstruction errors measured here as F-score. We observe that a larger fraction of objects in Objaverse
is of lower quality, i.e., a conversion to an implicit representation produces a larger error.

Further, we can observe on the ShapeNet dataset that quality differs significantly between categories. Fig-
ure 12 shows the reconstruction error for the three categories airplane, car, chair. The F-scores for the car
category are low even for a grid of size 3843, which we attribute to internal structures not captured by our
preprocessing method.
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Figure 11: Distribution of F-scores between original and reconstructed mesh using an SDF grid of size 3843.
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Figure 12: Effect of the grid resolution on the round trip conversion errors from mesh to SDF grid and back
with our flood-fill method. Note that the threshold τ for computing the F-score is relative to the voxel size
of the used grid.
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H Representation Scalability in Complex Objects

We analyze how well representations handle complex shapes. We approached this in three ways: (1) We
measure object complexity in the ShapeNet test set and relate it to the reconstruction performance, (2) We
use shapes with sharp edges (cube), smooth surfaces (sphere), and complex fractal surfaces (Mandelbulb),
and trained the methods to encode and reconstruct them, and (3) we evaluate the complexity of the generated
objects to study difficulties in generating complex objects. “Complexity” in (1) and (3) is measured using
triangle count and surface-to-volume ratio ( S

V ).
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Figure 13: Complexity analysis. Best viewed zoomed in.

For approach (1), i.e. measuring object complexity in ShapeNet, Figure 13 (a) shows that voxel grids and
NeRF suffer from higher S

V , whereas other representations are not affected. Figure 13 (b) shows that a higher
triangle count impedes the reconstruction performance for all representations. Shape2VecSet, however, is
expected to better deal with high S

V when more points are sampled. Furthermore, our analysis of specific
complex shapes (approach (2)) shows that there are failure cases when reconstructing fractal shapes. SDF-
based generation smoothes the surfaces, whereas 3DShape2VecSet introduces small artifacts (see Figure 14).

Figure 14: Mandelbulb reconstruction

Approach (3), i.e. evaluating the complexity of generated objects, finds that the S
V is generally lower for

generated objects (see Figure 15), specifically 40 ± 18 for SDF-generated, 61 ± 27 for DualOctree-generated,
vs 156±90 for ShapeNet objects (N = 400). This suggests a bias towards generating simple, smooth objects.
Training on more complex assets, e.g. Objaverse, could alleviate this issue.

I User Study

To capture human preferences of objects generated by different methods, we asked 24 users to rate objects
generated for the chair category. Each user was shown pairs of objects and asked to select the one they
preferred considering the object complexity and surface quality. To rank the methods we use the Bradley-
Terry model, which models the probability of a method A being better than a method B as

P (A > B) = exp(pA)
exp(pA) + exp(pB) . (19)
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Figure 15: Surface-to-volume ratio for generated objects and ShapeNet, using categories airplane, car and
chair.

The parameters pA and pB are scores for the respective methods. We estimate the scores p by minimizing
the cross entropy CE

min
p

∑
i

CE (p, yi)) (20)

with p as the vector of scores and yi as the preference labels collected from the participants. The results are
visualized in Figure 3 showing that objects generated with the SDF representations are preferred over the
other representations.
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