
Pre-training Differentially Private Models with
Limited Public Data

Zhiqi Bu∗

Amazon
Xinwei Zhang∗†

University of Southern California
Sheng Zha

Amazon
Mingyi Hong

University of Minnesota

George Karypis
Amazon

Abstract

The superior performance of large foundation models relies on the use of mas-
sive amounts of high-quality data, which often contain sensitive, private and
copyrighted material that requires formal protection. While differential pri-
vacy (DP) is a prominent method to gauge the degree of security provided
to the models, its application is commonly limited to the model fine-tuning
stage, due to the performance degradation when DP is applied during the pre-
training stage. Consequently, DP is yet not capable of protecting a substantial
portion of the data used during the initial pre-training process. In this work,
we provide a theoretical understanding of the efficacy of DP training by ana-
lyzing the per-iteration loss improvement, through the lens of Hessian matrix
for large neural networks. We make a key observation that DP optimizers’
performance degradation can be significantly mitigated by the use of limited
public data, which leads to a novel DP continual pre-training strategy. Em-
pirically, using only 10% of public data and 90% of private data, our strat-
egy can achieve DP accuracy of 41.5% on ImageNet-21k (with ϵ = 8), as
well as non-DP accuracy of 55.7% and 60.0% on downstream tasks Places365
and iNaturalist-2021, respectively, on par with state-of-the-art standard pre-
training and substantially outperforming existing DP pre-trained models. Our
DP pre-trained models are released in fastDP library (https://github.com/
awslabs/fast-differential-privacy/releases/tag/v2.1).

1 Introduction

Large pre-trained models have been the backbone of computer vision and natural language process-
ing. Finetuning or zero/few-shots learning (including in-context learning) based on these models
can achieve superior performance. In particular, differentially private (DP) fine-tuning, such as full-
parameter training, LoRA, Adapter, BiTFiT, and linear probing [89, 49, 14, 12, 58, 24], has shown
to be almost as accurate as the standard non-DP fine-tuning on GPT [68, 6], ViT [27], and ResNet
[39] models, while protecting the privacy of fine-tuning data. To be more specific, DP language
and vision models are highly effective in defending against canary insertion attacks [66, 40, 42]
and membership inference attacks [20, 69, 32, 16]; DP fine-tuned GPT2 also reduces the personally
identifiable information leakage by 5 ∼ 10 times compared with its non-DP counterpart [53].

These DP fine-tuned models all follow a two-stage training procedure, in which the first stage trains
a model on large public datasets (e.g. ImageNet) from scratch without privacy protection, and the
second stage fine-tunes on relatively small private datasets (e.g. CIFAR10). However, a growing
concern has been raised against the pre-training on the vast amount of web-collected data [18, 17, 79,
41, 62, 67]. The pre-trained models could memorize and re-generate the sensitive information in the

∗Equal contribution. Email: zhiqibu@amazon.com. †Done at Amazon.
38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/awslabs/fast-differential-privacy/releases/tag/v2.1
https://github.com/awslabs/fast-differential-privacy/releases/tag/v2.1

training data, which include copyright content in books and codes, images of faces and nudity, and
other personally identifiable information such as address and phone numbers, even if the data have
been pre-processed by some content filters. While it is common to use close-source or proprietary
datasets (e.g. JFT [75, 24, 58]) instead and not release the models trained on these datasets, this
approach renders the models not reproducible and may still violate the data privacy implicitly.

Consequently, because of the uncertainty in seemingly safe-to-use public datasets, it is important to
apply DP to the pre-training phase, which is computationally feasible, since DP optimization can be
as efficient as the standard non-DP training [13, 38]. However, DP optimization without any public
data suffers from slow convergence, and suboptimal performance: even on CIFAR10, the non-DP
accuracy drops from > 95% to < 70% at ϵ = 8 [63]; on GPT2, the non-DP BLEU score degrades
from 65.73 (quality often better than human) to 15.457 (hard to get the gist) at ϵ = 3 [49]. In short,
pre-training and fine-tuning differ significantly in the amount of data and computation resources
used, as well as in optimization setups. We summarize the difference in Table 1.

Table 1: Comparing DP pre-training and DP fine-tuning.
pre-training fine-tuning

Dataset size large small
Training iterations large small(amount of compute)
Trainable model parameters 100% 0.1 ∼ 100%
Major cause of DP noising DP clippingperformance degradation

1.1 Contributions
Our main contributions are listed below. We emphasize that we have taken the privacy accounting
and the convergence (i.e. the dependence of loss on σ(B, T, ϵ) and B) jointly into consideration.

(1) We provide a new perspective of analyzing the loss improvement in DP training with different
optimizers. Specifically, in Section 2, we propose a Hessian-based framework to analyze the per-
iteration improvement on the generalization loss and the effects of per-sample gradient clipping,
noising, and hyperparameter choices (e.g., batch size, learning rate).

(2) Based on the framework, we can analyze the effect that DP mechanisms, especially the DP
noise but less so the DP clipping, have on pre-training and fine-tuning stages. This leads to some
theoretical justifications about why pre-training is more vulnerable to DP noise; see Figure 1 for
some empirical comparisons, and Section 3 for some in-depth discussion.

(3) Our analysis suggests that the deceleration due to DP mechanisms can be mitigated by using a
certain amount of public data. We then propose a DP continual pre-training strategy that continues
the pre-training privately from a non-DP initialization. Our strategy is easily implementable, auto-
matic and effective, obtaining accuracy on upstream and downstream tasks that is on par with its
non-DP variants, while significantly outperforming state-of-the-art DP pretraining algorithms (see
Figure 2).

0

10

20

30

40

50

0 100 200 300 400 500

T
ra

in
 A

cc
u

ra
cy

Steps

SGD
SGD+clipping
SGD+noise
SGD+DP

(a) Pre-training ViT-Base
(CIFAR10,ϵ = 1)

0

20

40

60

80

100

0 50 100 150 200 250

T
ra

in
 A

cc
u

ra
cy

Steps

SGD
SGD+clipping
SGD+noise
SGD+DP

(b) Fine-tuning ViT-Large
(CIFAR100, ϵ = 1)

2

4

6

8

10

12

14

16

18

0 160 320 480 640

T
ra

in
 L

o
ss

Steps

AdamW
AdamW+clipping
AdamW+noise
AdamW+DP

(c) Pre-training GPT2-
Large (CodeParrot, ϵ = 8)

0.4

0.6

0.8

1

1.2

1.4

1.6

1 4 7 10

T
ra

in
 L

o
ss

Epochs

AdamW

AdamW+clipping

AdamW+noise

AdamW+DP

(d) Fine-tuning GPT2-
Large (E2E, ϵ = 1)

Figure 1: Comparison among the convergence of standard SGD, clipped SGD without noise, noisy
SGD without clipping, and DP-SGD in different tasks and training stages.

1.2 Related works

This work is closely related to other works in DP convergence analysis, DP fine-tuning of large
models, the continual training and the Hessian-based analysis. We refer to Appendix C for an
extended discussion.

2

45

50

55

60

65

70

75

80

Ours =2 Ours =8 Ours = MIIL =

M
IA

 p
er

fo
rm

an
ce

 (
%

)
o
n
 I

m
ag

eN
et

-1
1
k

Accuracy

Precision

Recall

F1

AUC

Figure 2: Summary of results in Section 5. First three figures compare the downstream and few-shot
performance and the data efficiency (circle’s radius proportional to pre-training data size) of the
DP pre-trained models; the last figure shows the performance of DP pre-trained models defending
against privacy attacks (closer to 0.5 is stronger in defense).

1.3 Notions & settings

We denote the mini-batch size as B with index set B, dataset size as n, number of training iterations
as T , iteration index as t ≤ T , learning rate as η, model parameters as w ∈ Rd, and training samples
as x. We use {k,M,B} for {thousand, million, billion}.
We study DP optimization under a fixed computation budget (with a fixed number of samples), a
fixed privacy budget (with a fixed DP guarantee), and limited availability of public data.

1.4 Computation budget

We consider a fixed computation budget, so that the training ends when a fixed number of samples
S := BT have been processed. As B increases, the number of iterations T decreases linearly, while
the per-iteration training time increases almost linearly. This is because foundation models are
generally trained with large batch size, which requires the use of distributed learning and gradient
accumulation2. For example, Vision Transformers (ViT, [27, 74] is trained with B = 4k, GPT-3
[6] and LLaMA [77] with B ≈ 2k, DP-ResNet/ViT with B = 4k in [24] and B = 1M in [58],
DP-RoBERTa with B = 2k in [89], and DP-GPT2 with B = 1k in [49].

As a consequence, the batch size B has nearly zero influence on the total training time, leaving its
effect only on the convergence speed.

1.5 Privacy budget

Definition 1.1 ([29, 26]). A randomized algorithm M is (ε, δ)-DP if, for any two neighboring
datasets S,S ′ that differ by one sample and for any event E ,

P[M(S) ∈ E] ⩽ eεP [M (S ′) ∈ E] + δ,where δ < 1/n.

101 102 103 104

Batch size B

0.00

0.02

0.04

0.06

0.08

0.10
(B)2/B by RDP
(B)2/B by GDP
(B)2/B by PRV

O(1/B)

Figure 3: Noise levels by
privacy accountants.

0.00 0.25 0.50 0.75 1.00
per-sample grad norm ||gi||

5

10

15

20

cli
pp

in
g

fa
ct

or
 C

i

AUTO-V
AUTO-S
re-param (R=0.1)
re-param (R=0.2)
re-param (R=1)

Figure 4: Per-sample gradi-
ent clipping in (3).

We consider a fixed privacy budget
(ϵ, δ), to be realized through the DP
optimizers in (2). Essentially, a noise
σN (0, I) is injected to the gradient
at each iteration, whereas the noise
magnitude σ(B) is determined by
privacy accountants such as RDP (de-
fault) [59], PRV [34] and GDP [26, 8]
(see Figure 3).

2The mini-batch of size B (a.k.a. the logical batch size) is divided into B/b micro-batches, where the
micro-batch size is b ≪ B (a.k.a. the physical or per-GPU batch size, which determines the training speed and
memory cost). When b is fixed subject to GPU memory, the per-iteration training time is proportional to the
number of micro-batches and thus to B.

3

2 Understanding DP training through the lens of Hessian

In this section, we derive the impact of different components in DP training, including the per-sample
clipping, the noising, and hyper-parameter choices. To do so, we characterize the per-iteration per-
sample loss improvement through the lens of Hessian.

We aim to optimize the generalization loss (equivalently the expected risk) for any differentiable
loss function, e.g. the cross entropy, mean squared error, or adversarial loss [33]:

min
w∈Rd

L(w) = Ex[L(w, x)]. (1)

We denote the per-sample gradient gi(w) := ∂L(w,xi)
∂w ∈ Rd, the oracle gradient G(w) :=

∂Ex[L(w,x)]
∂w ∈ Rd, and the oracle Hessian matrix H(w) := ∂2Ex[L(w,x)]

∂w2 ∈ Rd×d. In Assump-
tion 2.1, samples follow identically and independently (i.i.d.) from some data distribution, with no
restriction on the covariance structure Σ(w).
Assumption 2.1. Per-sample gradients gi(w) are i.i.d with

E[gi(w)] = G(w), Cov(gi(w)) = Σ(w).

Consider the general DP optimizers, such as SGD and Adam [46], which update the parameters with
the privatized gradient,

g =

∑
i∈B Cigi + σN (0, Id)

B
≈

c
∑

i∈B gi + σN (0, Id)

B
. (2)

Here Ci := C(∥gi∥;R) is the per-sample clipping factor that restricts the sensitivity of
∑

i Cigi

to some constant R, i.e. ∥Cigi∥ ≤ R. We set ∥Cigi∥ ≤ 1 (thus omitting R throughout the
paper) following the re-parameterized gradient clipping [24] and the automatic (AUTO) clipping
[14], whose Ci’s are listed below:

Ci,re-param = min

{
1

∥gi∥
,
1

R

}
or Ci,AUTO =

1

∥gi∥
. (3)

Figure 4 illustrates the values of Ci under different clipping functions. Note that in (2), we employ a
crucial approximation c ≈ E[Ci] so as to unify the formula of DP and non-DP SGD in Remark 2.2.
This approximation only holds when the directions of vectors

∑
i Cigi and

∑
i gi are very close,

i.e., there is little per-sample clipping bias. Such approximation is empirically validated in Fig-
ure 1, where we observe from the ‘SGD’ and ‘SGD+clipping’ curves that the convergence (without
noising) is not much influenced by the bias of per-sample gradient clipping.
Remark 2.2. Setting c = 1 and σ = 0, the gradient (2) reduces to the standard mini-batch gradient.
Hence, the difference between SGD and DP-SGD is characterized by (σ, c).

2.1 Per-iteration improvement of DP-SGD

Next, we characterize and analyze the per-iteration improvement of DP-SGD through the lens of
Hessian, under different choices of hyperparameters and clipping functions: wt+1 = wt−ηgt. The
extension of the analysis to more general optimizers (e.g., DP-Adam) is given in Section 3.4. We are
interested in minimizing the second-order Taylor approximation of L(w−ηg), which is sufficiently
accurate since parameter updates are often quite small [57]. The loss improvement in one iteration
can be approximated as:

L(w)− L(w − ηg) ≈ ηG⊤g − η2

2
g⊤Hg.

Taking the expectation of the right-hand side, we obtain the expected per-iteration loss improvement
(derived in Appendix A.1):

∆L := ηG⊤E[g]− η2

2
(tr (HCov(g)) + E[g]⊤HE[g]). (4)

By applying Assumption 2.1 and (2), we have E[g] = cG, Cov(g) = c2Σ/B+σ2/B2. Substitute
to (4), we obtain a quadratic function of η:

∆Lpriv(η,B) := ηcG⊤G− η2

2

(
c2G⊤HG+

c2tr(HΣ)

B
+

σ2tr(H)

B2

)
. (5)

4

We denote the batch size used for SGD and DP-SGD as Bnon-DP and BDP, respectively. Then by
optimizing the learning rate η 3, the per-sample and per-iteration improvement simplifies to

max
η

∆Lpriv/BDP = ∆L⋆
priv(BDP) :=

1

2

|G|4

BDPG⊤HG+ tr(HΣ) + σ2tr(H)/(BDP · c2)
. (6)

Given that the total number of processed samples is fixed at S = BT , (6) can be used as a metric to
evaluate the data efficiency of DP and non-DP training with different T,B and (ϵ, δ).

2.2 Per-iteration improvement of vanilla SGD

We can analyze the loss improvement of standard SGD as a sub-case of DP-SGD by substituting
c = 1, σ = 0 into (5), according to Remark 2.2:

∆Lpub := ηG⊤G− η2

2

(
tr(HΣ)

Bnon-DP
+G⊤HG

)
,∆L⋆

pub(B) :=
1

2

|G|4

Bnon-DPG⊤HG+ tr(HΣ)
(7)

We visualize (6), (7), and their individual terms in Figure 5.

500 1000 1500 2000 2500 3000 3500 4000
batch size B

{1}BG HG
{2}tr(H)
{3} 2tr(H)/(Bc2)
non-DP: {1}+{2}
DP: {1}+{2}+{3}

500 1000 1500 2000 2500 3000 3500 4000
batch size B

pe
r-s

am
pl

e
lo

ss
 im

pr
ov

em
en

t

non-DP: |G|4/({1}+{2})
DP: |G|4/({1}+{2}+{3})
B *

DP

(a) DP pre-training

200 400 600 800 1000
batch size B

{1}BG HG
{2}tr(H)
{3} 2tr(H)/(Bc2)
non-DP: {1}+{2}
DP: {1}+{2}+{3}

200 400 600 800 1000
batch size B

pe
r-s

am
pl

e
lo

ss
 im

pr
ov

em
en

t

non-DP: |G|4/({1}+{2})
DP: |G|4/({1}+{2}+{3})
B *

DP

(b) DP fine-tuning

Figure 5: Illustration of different terms in (6) and (7). Left sub-plots depict the denominators in (6)
and (7). Right sub-plots depict the whole terms and optimal batch sizes.
Implication 2.3 (Better DP mechanism helps). From (6), it is clear that smaller σ and larger c (hence
larger Ci) can help DP training. To reduce σ, we refer to Section 3.1 for a discussion of methods.
For the clipping, under the same sensitivity bound, AUTO clipping [14] gives the largest Ci among
all clipping functions (see Figure 4), and therefore is more preferred to use in practice.
Implication 2.4 (Batch size should be large, but not too large). As visualized by the red solid curves
in Figure 5, there exists an optimal batch size (marked in red dashed vertical lines)

B⋆
DP := argmaxB∆L⋆

priv(B) ≈
√

σ2tr(H)

c2G⊤HG
.

Compared to previous DP literature, which encourages the batch size to be as a large as possible,
our derivation of B⋆

DP indicates a sweet pot: while we also support the use of large batch size, we
highlight the data inefficiency if BDP is too large, a case that is often overlooked.

3 Impact of per-sample clipping and noising

In this section, we examine the effects of per-sample gradient clipping and noising on the DP train-
ing, leveraging the per-iteration per-sample loss improvement derived in Section 2. Specifically, we
define and analyze a “decelerator” term that characterizes the slowdown by DP optimizers.

Comparing DP-SGD to SGD, we can attribute the slow convergence of DP optimization to the term
σ2tr(H)/(Bc2) in (6), which is not present in the standard training (7). We refer to such a term as

decelerator:
σ2tr(H)

Bc2
≈ σ2tr(H)E|gi|2

B
, (8)

which couples the effects of per-sample gradient clipping and noise through the trace of Hessian. We
note that tr(H) in (8) characterizes the curvature (i.e. sharpness or flatness) of the loss landscape,
which strongly correlates with the downstream performance [51, 45, 96, 31].

Next, we discuss how the decelerator impacts the non-DP training, DP pre-training and fine-tuning.
3The optimal learning rate of DP-SGD cannot be used in practice because (i) the oracle G and H are

unknown; (ii) it is data-dependent and hence violates the DP guarantee. Such an optimal learning rate is only
used to help us understand the best possible per-iteration performance.

5

3.1 No noise, (almost) no deceleration

When σ = 0 (i.e., no DP noise), the decelerator vanishes and hence (6) reduces to (7), even if the
per-sample gradient clipping is used. We empirically verified this in Figure 1 (see blue and black
curves), where we see that the difference in convergence with or without clipping is negligible.

Given that DP noise is critical to the convergence speed, we highlight some techniques to reduce σ
under the same budget of (ϵ, δ): the advances in privacy accounting theory can justify smaller noise;
algorithms such as LoRA, low-pass and Kalman filters [93, 92] can reduce the effective noise.

3.2 DP pre-training can be vulnerable to noise

When σ ̸= 0, the decelerator is non-zero. Therefore, DP training is slowed down by the noise;
in Figure 1, SGD with noise (yellow and red curves) has worse performance than SGD without
noise (black and blue curves). Furthermore, in pre-training, the decelerator is relatively large in
the denominator of (6), i.e., BG⊤HG + tr(HΣ) ≤ σ2tr(H)

Bc2 when B ≤ B⋆
DP (see left sub-plot of

Figure 5(a)), and therefore the slowdown can be significant.

Note that the deceleration issue cannot be resolved by increasing B. Although increasing B im-
proves the relative speed of DP convergence in comparison to non-DP, i.e., the decelerator decreases,
it hurts the absolute speed since BG⊤HG increases, and thus the loss improvement (6) also wors-
ens (see right sub-plot of Figure 5(a)). Therefore, to design an efficient DP pre-training strategy, we
must keep B moderate and reduce the decelerator simultaneously.

3.3 DP fine-tuning is robust to noise

Empirical evidence has shown that DP fine-tuning is comparable to (though slightly worse than) the
standard non-DP fine-tuning [89, 49, 24, 58, 10, 14, 12], despite that σ ̸= 0. Such a phenomenon
implies that comparing public and DP finetuning, we have ∆L⋆

pub(B) ≈ ∆L⋆
priv(B). That is, the de-

celerator becomes small after the public pre-training. This is conceptually illustrated in Figure 5(b),
where the DP curve is close to the non-DP curve at moderate B during fine-tuning, but not so during
pre-training.

To understand the stark contrast between DP fine-tuning and DP pre-training, we plug in the optimal

B⋆
DP =

√
σ2tr(H)

c2G⊤HG
from Implication 2.4 to ∆L⋆

priv(B). Then, we have the optimal improvement of
DP-SGD as

∆L⋆
priv(B

⋆
DP) =

1

2

|G|4

2
√
G⊤HG · σ2tr(H)/c2 + tr(HΣ)

.

Implication 3.1. Notice that by choosing Bnon-DP = 2B⋆
DP in (7), we have that DP-SGD with the

optimal batch size is as fast as the standard SGD with twice the batch size,

∆L⋆
pub(2B

⋆
DP) = ∆L⋆

priv(B
⋆
DP). (9)

Moreover, if B⋆
DP is moderate, then DP-SGD can converge at similar speed to a fast converging SGD

that uses a moderate batch size.
Remark 3.2. From (7), we observe that non-DP training is data-efficient only if Bnon-DPG

⊤HG≪
tr(HΣ). Otherwise, we can decrease Bnon-DP to effectively improve ∆L⋆

pub. Therefore, DP training

is data-efficient only if B⋆
DP ≈ 1

2Bnon-DP ≪ tr(HΣ)
2G⊤HG

, which holds in fine-tuning but not in early
stage of pre-training4. We illustrate the magnitude of the three terms in (6) for pre-training and
fine-tuning stages in Figure 6.

In the fine-tuning phase of Figure 6, tr(H) quickly decreases and so does the decelerator. Hence
a moderate BDP ≈ 100 can allow fast convergence. However, in the pre-training phase, tr(H)
increases to a large value within 5 epochs and remains for a long time (say epoch 5 to 40) before
it decreases again. Consequently, DP convergence is initially fast but only for a short period and
overall DP optimization is much slower than non-DP optimization, as shown in Figure 1(a)(c).

4An intuitive explanation is that tr(HΣ)

G⊤HG
= E[(gi−G)⊤H(gi−G)]

G⊤HG
=

E(g⊤
i Hgi)

E(gi)⊤HE(gi)
−1 resembles the variance

of per-sample gi in the space of H, which decreases as the model learns the common representation.

6

0 20 40 60 80 100
Epochs

10 1

101

103

105

107

c
G HG
tr(H)
tr(H)

0 20 40 60 80 100
Epochs

102

103

tr(H)/G HG
corresponding Bnon DP

optimal B *
DP

0 20 40 60 80 100
Epochs

10 2

100

102

104

106

108

1010

1012
c
G HG
tr(H)
tr(H)

0 20 40 60 80 100
Epochs

102

103

104

105

106

107

108 tr(H)/G HG
corresponding Bnon DP

optimal B *
DP

Figure 6: Evolution of terms in (6) and (7) that explains the deceleration of DP optimization, during
pre-training (left two) and fine-tuning (right two) ViT-Base on CIFAR100.

3.4 Extension to general optimizers

The analysis in the previous two sections can be easily extended to arbitrary optimizers as well as
techniques such as weight decay, gradient clipping, and parameter-efficient fine-tuning (PEFT). Let
p be an optimizer’s post-processor of gradient and consider wt+1 = wt − ηp(gt).

For examples, following the notation in Pytorch library [65], we can write Adam and SGD with
momentum (µ) and weight decay (λ),

Adam: p(g;m,v) =

β1m+(1−β1)g
1−βt

1√
β2v+(1−β2)g2

1−βt
2

+ 10−8
SGD(µ, λ): p(g;b,w) = µb+ g + λw.

Similarly, we can write any PEFT for any optimizer, e.g. PEFT (SGD): p(g;M) = M⊙ g where
M ∈ {0, 1} is an element-wise mask that makes a parameter non-trainable or frozen when Mi = 0.

Specially, we consider optimizers such that p(·) is scale-invariant (i.e. p(cG) = p(G)), such as
SignSGD/Adam [4] or normalized SGD/LAMB [61, 55, 87]. Applying Assumption 2.1 and the op-
timal learning rate, we derive the expected per-sample per-iteration improvement in Implication 3.3,
leaving the details Appendix A.5.
Implication 3.3. Suppose the post-processor p(·) is scale-invariant. Denote p = p(G), p′ = p′(G),
the per-sample per-iteration improvement maxη ∆L(η)/B simplifies to

1

2

|p⊤G|2

Bp⊤Hp+ tr(p′⊤Hp′Σ) + σ2tr(p′⊤Hp′)/(Bc2)

Interestingly, similar to the decelerator of DP-SGD (8), the decelerator σ2tr(p′⊤Hp′)/(Bc2) of
these DP optimizers also couples the per-sample gradient clipping, the noise and the Hessian, ren-
dering the theoretical implications from DP-SGD extendable to general DP optimizers.

4 Continual pre-training with DP
4.1 Necessity of public data in DP pre-training
In this section, we propose the DP continual pre-training strategy and demonstrate that the decel-
eration by DP can be effectively mitigated by using a certain amount of public data. We consider
the mixed data training that uses both public data (with subscript 0 for related hyperparameters) and
private data (with subscript 1). Then SGD becomes

gα,t :=
αt

B0

∑
j∈B0

gj,t +
(1− αt)

B1
(
∑
i∈B1

Ci,tgi,t + σN (0, Id)).

Here αt ∈ [0, 1] controls the ratio of privatized and non-privatized gradients, taking different forms
by public training (OnlyPublic, αt = 1), private training (OnlyPrivate, αt = 0), DPMD [2], a
tunable constant [32, 52], and Sample [30, 44].

Table 2: Summary of αt by mixed data training methods.
Ours DPMD Sample OnlyPublic OnlyPrivate

I(t < sT) 1-cos πt
2K

npub

npub+npriv
1 0

Using the mixed gradient gα and following (4), we can show that expected loss improvement is a
bivariate quadratic function of (η, α) (see Appendix A.3). After minimizing with respect to both
variables, we obtain:

α⋆ =

(
1

c

tr(HΣ) ·B1/B0

tr(HΣ) + σ2tr(H)/(B1c2)
+ 1

)−1

(10)

7

Remark 4.1. We see that the optimal choice in (10) gives α⋆ ̸= 0, which indicates that
∆L⋆

OnlyPrivate < ∆L⋆
mixed, i.e. the public data helps. On the other hand, the fact that optimal α⋆ ̸= 1

also indicates that ∆L⋆
OnlyPublic < ∆L⋆

mixed, i.e. the private data helps.

4.2 DP continual pre-training strategy overview

Motivated by Section 3 and Remark 4.1, we propose a two-phase DP continual pre-training strategy
in Appendix D: public pre-training for sT steps followed by private continual pre-training for (1−
s)T steps, which is equivalent to setting αt = I(t < sT) and the constant 0 < s < 1 controls the
portion of steps of public training.

Remark 4.2. Although (10) suggests that the optimal αt ∈ (0, 1), we only set binary αt ∈ {0, 1}
so as to not implement two data loaders and two back-propagation mechanisms simultaneously (one
for DP and one for standard). Note the methods in Table 2 are difficult to scale and not yet openly
implemented on distributed systems due to memory and synchronization issues.

We highlight that DP continual pre-training is as distinct from DP fine-tuning as their non-DP
counter-parts, despite both methods extending the learning from a pre-trained phase: the contin-
ual pre-training learns common knowledge without adapting to a specific task and serves a richer
foundation for many downstream tasks (see more discussion in Appendix C). In fact, we show in Ap-
pendix A.7 that the loss improvement of DP continual pre-training can be almost as fast as non-DP
pre-training on the full data (FullyPublic), thus closing the utility gap.

Table 3: Optimization by different training strategies.

public data private data privacy
OnlyPublic SGD not used Yes
OnlyPrivate not used DP-SGD Yes
FullyPublic SGD SGD No
FullyPrivate DP-SGD DP-SGD Yes

Mixed (our gα) SGD DP-SGD Yes
1.5

3

6

12

24

0 1 2 3 4

T
es

t
L

o
ss

Epochs

FullyPublic
FullyPrivate
OnlyPublic
Mixed (PubRatio=1%)
Mixed (PubRatio=10%)
SwitchPoint

Figure 7: Pre-training GPT2-small on
CodeParrot with different pre-training
strategies (ϵ = 8 if Mixed or FullyPrivate).

The switching (i.e. selecting s) can be automatically determined by public statistics without using
any DP budget. For example, we can use early stopping based on the loss or accuracy, switching
after the metrics stop improving (see Figure 7). Alternatively, we can monitor B⋆

DP and switch when
it drops to a moderate value so that the DP training converges fast by (9).

5 DP vision foundation models on ImageNet

We leverage the DP continual pre-training strategy discussed in Section 4 to train vision transformers
[27] on ImageNet datasets. We use ImageNet-1k (1.3M images, 1k classes; [25]) for public pre-
training, then ImageNet-11k (formally known as ImageNet-21k-P5, 11M images, 11k classes; [70])
for private pre-training. Notice that ImageNet-11k/21k is significantly harder to learn, with SOTA
accuracy ≈ 47% [70, 74] as compared to > 85% for ImageNet-1k. We apply data augmentation
including random flipping, contract shift, rotation, and resizing to 224× 224.

We evaluate our DP ViT on upstream and downstream tasks (including few-shot), achieving high
accuracy under low computation budget (compared to existing DP pre-trained models in Table 4).
In short, we show that unlocking more data (90% of full ImageNet), which cannot be used by DINO
due to privacy concern, is significantly beneficial.

5ImageNet-11k improves the dataset quality and thus the resulting models (see Table 3 in [70]), by removing
the infrequent classes from the full ImageNet-21k, thus remaining 78% of its 14M images and 48% of 21.8k
classes.

8

Table 4: Pre-training strategies of models. Standard non-DP training is marked in black; DP training
is in green. † indicates self-supervised without using the labels. “Images ×” is the total number of
images used (dataset size×epochs). “Non-privacy” means no DP guarantee on a subset of training
data due to the non-DP pre-training phase.

reference model pre-training continual training non-privacy images ×
TAN [71] ImageNet-1k — — 1.2B

(Syn)ViP [90] ViT-Base Shaders21k† Shaders21k 1.3B
ViP [90] ViT-Base Shaders21k† LAION400M† Shaders21k 1.9B

DINO [19] ViT-Base ImageNet-1k† — ImageNet-1k 0.3B
Ours This work ViT-Base ImageNet-1k† ImageNet-11k ImageNet-1k 0.7B
MIIL [70] ViT-Base ImageNet-1k ImageNet-11k ImageNet-11k 1.4B

Original [27] ViT-Base ImageNet-21k ImageNet-1k ImageNet-21k 1.2B
AugReg [74] ViT-Base ImageNet-1k ImageNet-21k ImageNet-21k 4.3B

NFnet-JFT [24] ResNet-50 JFT300M — JFT300M 4.0B

5.1 Training strategy
For the public pre-training, we follow the self-supervised learning by [19] (self-distillation with
no labels, or DINO), whereas the private continual pre-training is a supervised learning following
[70]6. We employ AdamW optimizer with batch size B = 4096 and learning rate η = 0.0002 set by
the line search. Our training strategy is similar to a concurrent work [90], with critical differences
highlighted in Appendix C.

When automatically switching from public to private pre-training, the classification head (the last
layer) is re-initialized because the number of classes is different in the two pre-training phases: we
switch from 1k classes to 11k classes. This switching is triggered by early stopping. In the continual
pre-training phase, we train with DP linear probing for 10 epochs then with DP full-parameter train-
ing for 20 epochs, with a total ≈100k training steps. This strategy achieves an upstream accuracy
41.5% on ImageNet-11k by our ViT-Base under ϵ = 8, and 39.8% under ϵ = 2.

5.2 Algorithm implementation
We employ fastDP library to apply the DP-AdamW with automatic per-sample clipping function
[14] and layer-wise clipping style [9]. Specifically, the DP optimization is under the multi-GPU
distributed system, using DP-ZeRO [7] and mixed-precision training, so as to enjoy the same training
speed and memory efficiency as the non-DP training. We calibrate the DP noise using the improved
Renyi accountant.

5.3 Downstream performance
Our DP pre-training learns highly transferable representations, demonstrated through the strong
performance on a list of downstream datasets. We summarize in Table 4 a number of models from
previous literature for comparison. We mark DP pre-trained models in green and leave non-DP
models in black. The most informative baselines are DINO and MIIL, since our DP models continue
the pre-training from DINO, following a strategy similar to MIIL.

In Table 5, we compare different pre-training strategies (all non-DP except ours) leveraging the same
dataset and same model architecture – ViT-Base (86M param). Our evaluation shows that DP pre-
trained models achieve high downstream accuracy under standard and non-DP fine-tuning: 98.4%
on CIFAR10, 90.2% on CIFAR100, 86.5% on Food101 and 96.8% on SVHN. Our DP continual
pre-training clearly improves upon DINO, with +0.3 ∼ 2.0% on accuracy, and is comparable to the
non-DP pre-trained MIIL that uses twice the data size (1.4B v.s. our 0.7B).

In Table 6, when the downstream tasks (non-DP) are more challenging with only a few data samples
to learn from, our DP model substantially outperforms previous DP pre-trained models across all
settings, for example, by +19 ∼ 38% on CIFAR100 when compared to ViP and TAN. We attribute
the success to the high quality of pre-training data, i.e. ImageNet-1k/11k, in contrast to Shaders (by
comparing DINO to (Syn)ViP) and LAION (by comparing the improvement from DINO to ours and
from (Syn)ViP to ViP).

6We observe that, using AugReg (a supervised pre-training strategy) for public pre-training on ImageNet-1k
and/or for private pre-training on ImageNet-21k gives very similar result.

9

Table 5: Standard/DP fine-tuning accuracy with the same architecture (ViT-Base) and pre-training
dataset (ImageNet-21k) up to subsampling and preprocessing. Number of processed images by each
model is indicated in the parenthesis.

Pre-training
Fine-tuning CIFAR10 CIFAR100 Food101 SVHN

non-DP ϵ = 8 ϵ = 2 non-DP ϵ = 8 ϵ = 2 non-DP ϵ = 8 ϵ = 2 non-DP ϵ = 8 ϵ = 2
DINO (0.3B) 98.1 97.2 97.0 88.2 84.7 82.7 85.2 77.2 73.5 96.2 91.7 90.3

Oursϵ=2 (0.7B) 97.8 96.6 96.1 88.8 83.1 81.1 84.8 75.5 72.5 96.3 91.3 90.1
Oursϵ=8 (0.7B) 98.4 97.2 96.9 90.2 85.0 82.8 86.5 78.4 75.3 96.8 92.5 91.3

MIIL (1.4B) 98.8 98.5 98.2 91.4 90.9 89.2 87.2 84.5 83.0 96.8 93.3 92.0
ViT base (1.2B) 98.9 98.3 98.1 92.6 89.9 88.2 89.4 85.5 83.1 96.9 93.5 92.5
AugReg (4.3B) 98.9 98.8 98.5 93.1 91.2 90.4 90.2 87.6 85.7 96.9 93.8 92.5

Table 6: Few-shot accuracy of DP pre-trained
models (TAN, ViP and ours) and their non-DP
initialization.

Aircraft Aircraft CIFAR100 CIFAR100 fine-tune
(10-shot) (20-shot) (10-shot) (30-shot) epochs

TANϵ=8 22.84 37.93 27.78 42.35 200
(Syn)ViP 21.79 46.85 38.96 55.84 200
ViPϵ=8 31.62 53.05 40.95 57.52 200
DINO 32.04 45.61 47.31 66.92 100

Oursϵ=2 36.42 48.27 64.74 74.62 100
Oursϵ=8 42.57 57.15 65.26 76.38 100

Table 7: Linear-probing accuracy (non-DP)
of pre-trained models, except “full” indicating
full-parameter.

ImageNet-1k Places365 iNat2021 fine-tune
images 1M 1.8M 2.7M epochs
TANϵ=8 49.0 40.5 31.7 90 / 90 / 90
(Syn)ViP 49.8 43.2 32.4 90 / 90 / 90
ViPϵ=8 55.7 46.1 38.1 90 / 90 / 90
DINO 76.1 52.1 43.5 8 / 5 / 10

Oursϵ=2 76.2 52.5 46.5 8 / 5 / 10
Oursϵ=8 77.9 53.0 49.1 8 / 5 / 10

Oursϵ=2(full) 78.0 55.6 57.2 8 / 5 / 10
Oursϵ=8(full) 78.5 55.7 60.0 8 / 5 / 10

NFnet-JFT 74.1 54.5 — 10 / 26 / —

In Table 77, we extend the evaluation of full fine-tuning and linear probing to SOTA non-DP base-
lines and to million-image scale Our DP model achieves 55.7% (+9.6% over ViP) on Places365 with
1.8M images and 60.0% (+21.9% over ViP) on iNat2021 with 2.7M images. The current non-DP
SOTA is 57-60% on Places365 [24, 27] and about 64% on iNat2021 [80, 60] after pre-training on
2.7 ∼ 4B images. This showcases the effectiveness of DP pre-training as our models only leverage
0.7B images.

5.4 Privacy protection

We employ a white-box membership inference attack (MIA) to evaluate the data protection by our
DP pre-training: 1) for each image in ImageNet-11k, we compute its output logits and loss, which
serves as the feature of the MIA dataset; 2) we randomly select 50% of the testing images and the
same number of training images (522, 496 samples) as the MIA test set, and the rest data as MIA
train set; 3) we label the training images as class “1” and testing images as class “0”. This creates
the MIA dataset with 11k features and binary labels.

Table 8: Membership inference attack results. Values
closer to 0.5 indicate better privacy protection.

Accuracy Precision Recall F1 AUC
Oursϵ=2 50.1% 50.1% 47.5% 0.49 0.50
Oursϵ=8 51.3% 51.6% 64.4% 0.57 0.51
Oursϵ=∞ 53.8% 54.1% 71.2% 0.62 0.54

MIIL 54.0% 58.5% 77.3% 0.67 0.62

We fit a logistic regression with the MIA
training set to classify whether an image
belongs to the training set of ImageNet-
11k (class “1”) or not. We report the re-
sults on the MIA testing set in Table 8,
showing the effectiveness of DP protection
when ϵ ≤ 8.

6 Discussion

In this paper, we conduct an insightful and unified convergence analysis on DP optimization. Specif-
ically, we identify the decelerator (8) of DP training as a result of the per-sample gradient clipping,
the noise and the Hessian, which can be significantly mitigated by a small amount (< 10%) of
public training. Consequently, we propose DP continual pre-training that is almost as accurate and
implementable as the fully public pre-training.

7For ImageNet-1k, we strike through some results because this dataset was used in the pre-training. It is
only meaningful to compare our models to DINO and observe the benefit of continual pre-training, but not to
others.

10

Acknowledgement

The work of Xinwei Zhang was partially done while interning at Amazon. Mingyi Hong holds
concurrent appointments as an Amazon Scholar and as a faculty at the University of Minnesota.
This paper describes their work performed at Amazon.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 308–318, 2016.

[2] Ehsan Amid, Arun Ganesh, Rajiv Mathews, Swaroop Ramaswamy, Shuang Song, Thomas
Steinke, Vinith M Suriyakumar, Om Thakkar, and Abhradeep Thakurta. Public data-assisted
mirror descent for private model training. In International Conference on Machine Learning,
pages 517–535. PMLR, 2022.

[3] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 464–473, 2014.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[5] Leonard Berrada, Soham De, Judy Hanwen Shen, Jamie Hayes, Robert Stanforth, David Stutz,
Pushmeet Kohli, Samuel L Smith, and Borja Balle. Unlocking accuracy and fairness in differ-
entially private image classification. arXiv preprint arXiv:2308.10888, 2023.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing systems, 33:1877–1901,
2020.

[7] Zhiqi Bu, Justin Chiu, Ruixuan Liu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Zero
redundancy distributed learning with differential privacy. In ICLR 2023 Workshop on Pitfalls
of limited data and computation for Trustworthy ML.

[8] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential
privacy. Harvard data science review, 2020(23), 2020.

[9] Zhiqi Bu, Ruixuan Liu, Yu-Xiang Wang, Sheng Zha, and George Karypis. On the accuracy
and efficiency of group-wise clipping in differentially private optimization. arXiv preprint
arXiv:2310.19215, 2023.

[10] Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional
neural networks with differential privacy. Advances in Neural Information Processing Systems,
35:38305–38318, 2022.

[11] Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep
learning with differential privacy. Transactions on Machine Learning Research, 2023.

[12] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term
fine-tuning of foundation models. In Forty-first International Conference on Machine Learn-
ing.

[13] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization
on large model at small cost. In International Conference on Machine Learning, pages 3192–
3218. PMLR, 2023.

[14] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially
private deep learning made easier and stronger. Advances in Neural Information Processing
Systems, 36, 2024.

11

[15] Zhiqi Bu and Yuan Zhang. Differentially private optimizers can learn adversarially robust
models. Transactions on Machine Learning Research, 2023.

[16] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1897–1914. IEEE, 2022.

[17] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. In The Eleventh
International Conference on Learning Representations, 2022.

[18] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training
data from large language models. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2633–2650, 2021.

[19] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[20] Junjie Chen, Wendy Hui Wang, and Xinghua Shi. Differential privacy protection against mem-
bership inference attack on machine learning for genomic data. In BIOCOMPUTING 2021:
Proceedings of the Pacific Symposium, pages 26–37. World Scientific, 2020.

[21] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private
sgd: A geometric perspective. Advances in Neural Information Processing Systems, 33:13773–
13782, 2020.

[22] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi,
Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first
truly open instruction-tuned llm, 2023.

[23] Rudrajit Das, Abolfazl Hashemi, Sujay Sanghavi, and Inderjit S Dhillon. On the convergence
of differentially private federated learning on non-lipschitz objectives, and with normalized
client updates. arXiv preprint arXiv:2106.07094, 2021.

[24] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[26] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

[27] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Inter-
national Conference on Learning Representations, 2020.

[28] Jingfei Du, Édouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael Auli,
Veselin Stoyanov, and Alexis Conneau. Self-training improves pre-training for natural lan-
guage understanding. In Proceedings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, pages
5408–5418, 2021.

[29] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Theory of cryptography conference, pages 265–284. Springer,
2006.

[30] Cecilia Ferrando, Jennifer Gillenwater, and Alex Kulesza. Combining public and private data.
arXiv preprint arXiv:2111.00115, 2021.

12

[31] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2020.

[32] Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Ste-
fano Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8376–8386, 2022.

[33] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572, 2014.

[34] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential
privacy. Advances in Neural Information Processing Systems, 34, 2021.

[35] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.

[36] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A Smith. Don’t stop pretraining: Adapt language models to domains
and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 8342–8360, 2020.

[37] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[38] Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Back-
urs, Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning
with group-wise clipping. In The Eleventh International Conference on Learning Representa-
tions.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[40] Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia Erell, Alon Peled-Cohen, Itay Laish,
Hootan Nakhost, Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim, et al. Learning and
evaluating a differentially private pre-trained language model. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages 1178–1189, 2021.

[41] Daniel Huynh. Starcoder memorization experiment highlights privacy risks
of fine-tuning on code. https://huggingface.co/blog/dhuynh95/
starcoder-memorization-experiment, 2023.

[42] Huseyin A Inan, Osman Ramadan, Lukas Wutschitz, Daniel Jones, Victor Rühle, James With-
ers, and Robert Sim. Training data leakage analysis in language models. arXiv preprint
arXiv:2101.05405, 2021.

[43] Shaoxiong Ji, Tianlin Zhang, Kailai Yang, Sophia Ananiadou, Erik Cambria, and Jörg Tiede-
mann. Domain-specific continued pretraining of language models for capturing long context
in mental health. arXiv preprint arXiv:2304.10447, 2023.

[44] Zach Jorgensen, Ting Yu, and Graham Cormode. Conservative or liberal? personalized dif-
ferential privacy. In 2015 IEEE 31St international conference on data engineering, pages
1023–1034. IEEE, 2015.

[45] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp min-
ima. In International Conference on Learning Representations, 2016.

[46] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[47] Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and
Abhradeep Thakurta. Toward training at imagenet scale with differential privacy. arXiv
preprint arXiv:2201.12328, 2022.

13

https://huggingface.co/blog/dhuynh95/starcoder-memorization-experiment
https://huggingface.co/blog/dhuynh95/starcoder-memorization-experiment

[48] Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-
Tat Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer
in high dimensions? Advances in Neural Information Processing Systems, 35:28616–28630,
2022.

[49] Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models
can be strong differentially private learners. In International Conference on Learning Repre-
sentations, 2021.

[50] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81, 2004.

[51] Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better
downstream: Implicit bias matters for language models. In International Conference on Ma-
chine Learning, pages 22188–22214. PMLR, 2023.

[52] Ruixuan Liu, Zhiqi Bu, Yu-xiang Wang, Sheng Zha, and George Karypis. Coupling public and
private gradient provably helps optimization. arXiv preprint arXiv:2310.01304, 2023.

[53] Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. In
2023 IEEE Symposium on Security and Privacy (SP), pages 346–363. IEEE Computer Society,
2023.

[54] Yi-An Ma, Teodor Vanislavov Marinov, and Tong Zhang. Dimension independent gen-
eralization of dp-sgd for overparameterized smooth convex optimization. arXiv preprint
arXiv:2206.01836, 2022.

[55] Danilo P Mandic. A generalized normalized gradient descent algorithm. IEEE signal process-
ing letters, 11(2):115–118, 2004.

[56] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as ap-
proximate bayesian inference. Journal of Machine Learning Research, 18:1–35, 2017.

[57] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[58] Harsh Mehta, Abhradeep Thakurta, Alexey Kurakin, and Ashok Cutkosky. Large scale transfer
learning for differentially private image classification. arXiv preprint arXiv:2205.02973, 2022.

[59] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations
symposium (CSF), pages 263–275. IEEE, 2017.

[60] Andre Nakkab, Benjamin Feuer, and Chinmay Hegde. Lit tuned models for efficient species
detection. In 2nd AAAI Workshop on AI for Agriculture and Food Systems, 2023.

[61] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[62] Lily Hay Newman and Andy Greenberg. Chatgpt spit out sensitive data
when told to repeat ’poem’ forever. https://www.wired.com/story/
chatgpt-poem-forever-security-roundup/, 2023.

[63] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tem-
pered sigmoid activations for deep learning with differential privacy. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 9312–9321, 2021.

[64] Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. Bleu: a method for automatic
evaluation of machine translation. pages 311–318, 2002.

[65] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

14

https://www.wired.com/story/chatgpt-poem-forever-security-roundup/
https://www.wired.com/story/chatgpt-poem-forever-security-roundup/

[66] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-
fy ml: A practical guide to machine learning with differential privacy. Journal of Artificial
Intelligence Research, 77:1113–1201, 2023.

[67] Katyanna Quach. Inside the 1tb imagenet data set used to train the world’s ai: Naked kids,
drunken frat parties, porno stars, and more, Oct 2019.

[68] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.

[69] Md Atiqur Rahman, Tanzila Rahman, Robert Laganière, Noman Mohammed, and Yang Wang.
Membership inference attack against differentially private deep learning model. Trans. Data
Priv., 11(1):61–79, 2018.

[70] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining
for the masses. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021.

[71] Tom Sander, Pierre Stock, and Alexandre Sablayrolles. Tan without a burn: Scaling laws of
dp-sgd. In International Conference on Machine Learning, pages 29937–29949. PMLR, 2023.

[72] Dezhao Song, Andrew Vold, Kanika Madan, and Frank Schilder. Multi-label legal document
classification: A deep learning-based approach with label-attention and domain-specific pre-
training. Information Systems, 106:101718, 2022.

[73] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse
of dimensionality in unconstrained private glms. In International Conference on Artificial
Intelligence and Statistics, pages 2638–2646. PMLR, 2021.

[74] Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Research, 2022.

[75] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference
on computer vision, pages 843–852, 2017.

[76] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

[77] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[78] Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much
more data). In International Conference on Learning Representations, 2020.

[79] Florian Tramèr, Gautam Kamath, and Nicholas Carlini. Considerations for differentially pri-
vate learning with large-scale public pretraining. arXiv preprint arXiv:2212.06470, 2022.

[80] Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin
Mac Aodha. Benchmarking representation learning for natural world image collections. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12884–12893, 2021.

[81] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization
with non-convex loss functions. In International Conference on Machine Learning, pages
6526–6535. PMLR, 2019.

[82] Di Wang and Jinhui Xu. Differentially private empirical risk minimization with smooth non-
convex loss functions: A non-stationary view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1182–1189, 2019.

15

https://github.com/tatsu-lab/stanford_alpaca

[83] Zihan Wang, K Karthikeyan, Stephen Mayhew, and Dan Roth. Extending multilingual bert
to low-resource languages. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 2649–2656, 2020.

[84] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS
Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and per-
formance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469,
2020.

[85] Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In International Conference on
Learning Representations, 2020.

[86] Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped
sgd with perturbation for differentially private non-convex optimization. arXiv preprint
arXiv:2206.13033, 2022.

[87] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xi-
aodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. In International Conference on Learning Repre-
sentations, 2019.

[88] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad,
Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus:
User-friendly differential privacy library in pytorch.

[89] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath,
Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private
fine-tuning of language models. In International Conference on Learning Representations,
2021.

[90] Yaodong Yu, Maziar Sanjabi, Yi Ma, Kamalika Chaudhuri, and Chuan Guo. Vip: A differen-
tially private foundation model for computer vision. In Forty-first International Conference on
Machine Learning, 2023.

[91] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes?
insights from a noisy quadratic model. Advances in neural information processing systems,
32, 2019.

[92] Xinwei Zhang, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn, and Vahab Mir-
rokni. Disk: Differentially private optimizer with simplified kalman filter for noise reduction.
arXiv preprint arXiv:2410.03883, 2024.

[93] Xinwei Zhang, Zhiqi Bu, Mingyi Hong, and Meisam Razaviyayn. Doppler: Differentially
private optimizers with low-pass filter for privacy noise reduction. Advances in neural infor-
mation processing systems, 2024.

[94] Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Jinfeng Yi. Under-
standing clipping for federated learning: Convergence and client-level differential privacy. In
International Conference on Machine Learning, ICML 2022, 2022.

[95] Yingxue Zhou, Steven Wu, and Arindam Banerjee. Bypassing the ambient dimension: Private
sgd with gradient subspace identification. In International Conference on Learning Represen-
tations, 2020.

[96] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in
stochastic gradient descent: Its behavior of escaping from sharp minima and regularization
effects. In International Conference on Machine Learning, pages 7654–7663. PMLR, 2019.

[97] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in
stochastic gradient descent: Its behavior of escaping from sharp minima and regularization
effects. In International Conference on Machine Learning, pages 7654–7663. PMLR, 2019.

16

A Derivation and proofs

A.1 Derivation of Equation (4)

∆L := ηG⊤E[g]− η2

2
E[g⊤Hg]

(a)
= ηG⊤E[g]− η2

2
tr
(
HE[gg⊤]

)
(b)
= ηG⊤E[g]− η2

2
tr (HCov(g)) + tr

(
HE[g]E[g]⊤

)
(c)
= ηG⊤E[g]− η2

2
(tr (HCov(g)) + E[g]⊤HE[g])

where (a) uses equations (13) and then (12) to the second term; (b) separates the expectation of gg⊤

into its mean squared and covariance and uses (11); (c) uses equations (12) and then (13) to the last
term.

Property of the trace:

tr(A+B) = tr(A) + tr(B), tr(cA) = ctr(A), Linearity, (11)
tr(AB) = tr(BA), Trace of product, (12)

tr(a) = a, Trace of a number. (13)

A.2 Explanation for Implication 2.4

We will leverage GDP to validate that σ(B)2/B ≈ O(1/B), given that most of other privacy
accountants are numerical and hard to interpret. We note that µ-GDP has an one-to-one mapping
with the (ε, δ)-DP:

δ = Φ(− ϵ

µ
+

µ

2
) + Φ(− ϵ

µ
− eϵ

µ

2
)

where Φ is the normal cumulative distribution function.

Lemma A.1. Given an iterative algorithm with ℓ2 sensitivity 1 at each iteration, which uniformly
samples the data in dataset of size n with ratio B

n , by injecting Gaussian noise N (0, σ2I) to the
output of the algorithm at each iteration, it satisfies µ-GDP with

µ =
B

n

√
T (e1/σ(B)2 − 1) =

√
BS(e1/σ(B)2 − 1)/n,

where S denotes the fixed computation budget.

The proof is equivalent to that in Section 2.4 in [26].

By Taylor expansion over B,

σ(B)2 =
1

log(µ
2n2

BS + 1)
=

BS

µ2n2
+

1

2
+O(

1

B
) −→ σ(B)2

B
=

S

µ2n2
+

1

2B
+ o(

1

B
)

In the pre-training regime, S/n is the number of epochs (usually between 1 and 300) and the sample
size n is huge, i.e. n > 107 for ImageNet and n > 1012 for large language model training. Hence
the first term is negligible and σ(B)2/B ≈ 0.5/B.

A.3 Proof of results in Section 3.3

Proof. Leveraging (2), we have

E(g) = αG+ (1− α)cG, Cov(g) = α2 Σ

B0
+ (1− α)2(

c2Σ

B1
+

σ2I

B2
1

)

17

Substituting in the mixed gradient gα and following (4), we can write down the expected improve-
ment of mixed data training:

∆Lmixed = η(α+ (1− α)c)G⊤G− η2(1− α)2σ2

2B2
1

tr(H)

− η2

2
(
α2

B0
+

(1− α)2

B1
c2)tr(HΣ)

− η2

2
(α+ (1− α)c)2G⊤HG,

which is a bivariate quadratic function ∆Lmixed to be minimized over (η, α). To make the presenta-
tion easier, we denote η0 = ηα, η1 = η(1− α), and the above equation can be rewritten as:

∆Lmixed = (η1c+ η0)G
⊤G− 1

2

η21σ
2

B2
1

tr(H)− 1

2
(
η21
B1

c2 +
η20
B0

)tr(HΣ)− 1

2
(η1c+ η0)

2G⊤HG.

Note that if we set η1 = 0 or η0 = 0, we essentially train the model with only public data or private
data, respectively.

can be written as a bivariate quadratic function over (η0, η1):

∆Lmixed = −(Aη20 +Bη21 + Cη0 +Dη1 + Eη0η1)

in which

A =
1

2
G⊤HG+

1

2

tr(HΣ)

B0
,

B =
1

2
c2G⊤HG+

1

2
c2

tr(HΣ)

B1
+

1

2

σ2tr(H)

B2
1

,

C = −G⊤G,

D = −cG⊤G,

E = cG⊤HG.

The maximizer is
η0 = −2BC −DE

4AB − E2
, η1 = −2AD − CE

4AB − E2
.

Hence
1− α∗

α∗ =
2AD − CE

2BC −DE
=⇒ α∗ = 1/

(
2AD − CE

2BC −DE
+ 1

)
Finally

α∗ =

(
ctr(HΣ)G⊤G/B0

c2tr(HΣ)G⊤G/B1 + σ2tr(H)G⊤G/B2
1

+ 1

)−1

=

(
1

c

tr(HΣ) ·B1/B0

tr(HΣ) + σ2tr(H)/(B1c2)
+ 1

)−1

A.4 Explanation of Remark 3.2

From (6), the optimal batch size for DP-SGD is

argmax
B

1

2

|G|4

BG⊤HG+ tr(HΣ) + σ2tr(H)/(Bc2)

= argmin
B

BG⊤HG+ tr(HΣ) + σ2tr(H)/(Bc2) ≈
√

σ2tr(H)

c2G⊤HG

which minimizes (6) to

DP-SGD(B∗
DP) −→

1

2

|G|4

2
√

G⊤HG · σ2tr(H)/c2 + tr(HΣ)

18

where B∗
DP :=

√
σ2tr(H)

c2G⊤HG
.

Note this is equivalent to applying Bnon-DP := 2
√

σ2tr(H)
c2G⊤HG

= 2B∗
DP on (7),

SGD(Bnon-DP) ≡ SGD(2B∗
DP) ≡ DP-SGD(B∗

DP).

We emphasize that generally
SGD(2BDP) ̸≡ DP-SGD(BDP).

A.5 Loss improvement of general DP optimizers – Implication 3.3

From wt+1 = wt − ηp(gt), the expected per-iteration loss improvement becomes

∆L = ηG⊤E[p(g)]− η2

2
(tr (HCov(p(g))) + E[p(g)]⊤HE[p(g)]). (14)

Applying Assumption 2.1 and delta method, with G = ∂L
∂w , we have

√
B(p(g)− p(cG)) =

√
Bp′(cG) · (g − cG) + op(1)→ N

(
0, p′(cG)[c2Σ+ σ2/B]p′(cG)⊤

)
where p′(cG) ≡ ∂p(cG)

∂cG ∈ Rd×d. Hence

E(p(g)) ≈ p(cG),Cov(p(g)) ≈ p′(cG) ·
(
c2Σ/B + σ2/B2

)
· p′(cG)⊤

Next, the expected improvement contributed by one sample is a quadratic function of η:

∆L/B ≈
(
ηp(cG)⊤G− η2

2

σ2tr[p′(cG)⊤Hp′(cG)]

B2

−η2

2

c2tr[p′(cG)⊤Hp′(cG)Σ]

B
− η2

2
p(cG)⊤Hp(cG)

)
/B

Applying the optimal learning rate, the optimal per-sample loss improvement ∆L/B at each itera-
tion simplifies to

1

2

|p(cG)⊤G|2

Bp(cG)⊤Hp(cG) + c2tr(p′(cG)⊤Hp′(cG)Σ) + σ2tr(p′(cG)⊤Hp′(cG))/B

In the special case that p is scale-invariant, e.g. in adaptive optimizers like Adam or in SignSGD,
we get p′(cG) = ∂p(cG)

∂cG = ∂p(G)
∂G

∂G
∂cG = p′(G)/c and thus

1

2

|p(G)⊤G|2

Bp(G)⊤Hp(G) + tr(p′(G)⊤Hp′(G)Σ) + σ2tr(p′(G)⊤Hp′(G))/(Bc2)

A.6 Improvement of performance measures other than the optimization loss

We now consider two extended cases when the optimization loss is different to the performance
measures. For example, the model may be trained via the cross-entropy loss but measured on 0-1
accuracy.

optimization performance example
L L vanilla L is cross-entropy
L Lother vanilla L is cross-entropy; Lother is BLEU or accuracy

Lmod L adversarial training Lmod is adversarial loss; L is cross-entropy
Table 9: DP/non-DP optimization when the optimization loss is different to the performance mea-
sures.

For the first case, we analyze many performance measures of DP models (denoted as Lother) beyond
the optimization loss L. For instance, foundation models trained on cross-entropy loss can be eval-
uated on classification accuracy, F1 score, BLEU [64], ROGUE [50], fairness [37], calibration [35],
adversarial robustness, etc.

19

We demonstrate that our analysis in previous sections indeed generalizes: equivalent to (5), we have

∆Lother(η) = ηG⊤
otherE[g]−

η2

2
E[g⊤Hotherg]

where Gother,Hother are the oracle gradient and Hessian of Lother. The per-sample per-iteration
improvement, maxη ∆Lother/B, simplifies to

1

2

|G⊤
otherG|2

BG⊤HotherG+ tr(HotherΣ) + σ2tr(Hother)/(Bc2)
,

with the decelerator being σ2tr(Hother)/(Bc2) in place of (8). As implied by Section 3.3, we expect
the public pre-training also mitigates this decelerator, so that well-trained DP models and non-DP
models should be equally performant. Empirically speaking, DP fine-tuning has shown to be as
accurate [49, 24], adversarially robust [15], calibrated [11], and fair [5] as the standard fine-tuning.

For the second case, e.g. adversarial, sharpness-aware, fairness-aware or calibration-aware training,
the optimization is on the modified loss ∂Lmod

∂w but the performance is measured on the vanilla loss
∂L
∂w . For instance, we want an adversarially trained model to be sufficiently accurate. To be specific,
FGSM and PGD (L2/L∞ perturbation with norm ρ) lead to the modified loss

Lmod := max
||ξ||≤ρ

Ex[L(w, x+ ξ)],Gmod =
∂Lmod

∂w
.

DP adversarial training applies on

p =
1

B
(
∑
i

Cigmod,i + σN (0, Id)) ≈
1

B
(c
∑
i

gmod,i + σN (0, Id))

where per-sample gradient is gmod,i :=
∂ max||ξ||≤ρ L(w,xi+ξ)

∂w . Note that the modified gradient may
be post-processed by optimizers like AdamW. To be clear, only in this section, we write p = ∂Lmod

∂w
and omit the post-processing of the optimizer (i.e. we only show for SGD).

Next, the expected per-iteration loss improvement becomes

∆L = ηG⊤E[p]− η2

2
(tr (HCov(p)) + E[p]⊤HE[p]). (15)

Applying Assumption 2.1, we have

E[p] = cGmod,Cov(p) = c2Σmod/B + σ2/B2

Hence, the expected per-iteration improvement contributed by one sample is a quadratic function of
η:

∆L/B := (ηcG⊤Gmod −
η2

2

σ2tr(H)

B2
− η2

2

c2tr(HΣmod)

B
− η2

2
c2G⊤

modHGmod)/B

Applying the optimal learning rate, the optimal per-sample per-iteration improvement,
maxη ∆L/B, simplifies to

1

2

|G⊤Gmod|2

BG⊤
modHGmod + tr(HΣmod) + σ2tr(H)/(Bc2)

(16)

Again, the decelerator is the same as (8). Therefore, DP training will be as good as the standard
training when the decelerator is small under the modified loss. This supports the observation that
DP adversarial training can be accurate in [15], if DP natural training is comparable to non-DP
natural training.

A.7 Explaining the effectiveness of DP continual pre-training

Taking a step further than Remark 4.1, we claim that DP continual pre-training can converge as fast
as non-DP pre-training (FullyPublic), conditioning on that the non-DP initialization is sufficiently

20

strong: running sT iterations of public training followed by the DP training is only marginally
weaker than FullyPublic in (7):

sT∑
t=1

|Gt|4

G⊤
t HtGt +

tr(HtΣt)
B

+

T∑
t=sT

|Gt|4

G⊤
t HtGt +

tr(HtΣt)
B + (8)

⪅
sT∑
t=1

|Gt|4

G⊤
t HtGt +

tr(HtΣt)
B

+

T∑
t=sT

|Gt|4

G⊤
t HtGt +

tr(HtΣt)
B

,

given that the decelerator (8) is small for t > sT .

B Experiment settings and additional details

In this section, we provide additional descriptions and experiment details for the numerical results
in the main paper.

B.1 Datasets

We use the following datasets throughout this paper.

• ImageNet: ImageNet-21k [25] is the full dataset with various releases which contain 14.2M
images from 21,841 classes. ImageNet-1k is a subset of ImageNet-21k using 1k high-level
classes. We use the ILSVRC2012 version, which contains 1.2 million training images and
100000 test images. ImageNet-11k [70] is another subset of ImageNet-21k that removes
invalid/infrequent classes, retaining 11.1M images (train:test=10.5M :0.52M) and 10,450
classes in the Winter21 version.

• CIFAR-10/CIFAR-100: 50,000 training and 10,000 test images, with 10 or 100 classes,
respectively.

• Food101: it contains 101 classes of food, with 101,000 images in total, 1000 images per
class (training 750 and test 250).

• SVHN: it contains 10 classes of digits in natural scene images, with 73257 training and
26032 test images.

• Aircraft: FGVCAircraft dataset contains 3334 training and 3333 test images with 100
classes.

• Places365: Places365-Standard dataset contains 1.8 million training and 36000 test images
from 365 scene classes.

• iNat2021: iNaturalist 2021 dataset contains 10,000 classes of species, with 2.7 million
training and 0.1 million test images.

• CodeParrot: a GitHub dataset of about 180 GB containing roughly 20 million Python files.
We use 3% of these files, that is 606,720 rows of training and 3322 rows of test data. We
take sequence length 128.

• E2E: a dataset of restaurant reviews, containing 42,061 training and 4693 test instances.
We take sequence length 100.

B.2 Experiment settings

For images, we use 224 × 224 resolution and patch 16 for vision transformers. After pre-training,
an additional classifier head is inserted for each downstream task.

B.2.1 Figure 1

We use batch size 1000 and search over learning rate ∈ [5e− 5, 1e− 4, 2e− 4, 5e− 4].

1. CIFAR10, ViT-Base, random initialization, η = 5e − 5 without noise, η = 5e − 4 with
noise, 10 epochs.

21

2. CIFAR100, ViT-Large, pretrained by timm library, η = 5e − 5 without noise, η = 5e − 4
with noise, 5 epochs.

3. CodeParrot, GPT2-Large, random initialization, η = 1e − 4 without clipping, η =
5e − 4 with clipping. This follows closely from https://huggingface.co/learn/
nlp-course/chapter7/6.

4. E2E, GPT2-Large, pretrained by transformers library, η = 1e − 4 without noise, η =
5e− 4 with noise, 10 epochs.

B.2.2 Figure 3

n = 106, ϵ = 1, δ = 1/n, S = 106 (1 epoch). We use the privacy accountants in Opacus [88]: RDP
[59], GDP [26, 8], PRV [34]. The dashed lines depict σ(1)2/B for these privacy accountants.

B.2.3 Figure 5

For pre-training, σ2 = 0.25,G⊤HG = 1e2, tr(H)/c2 = 2e8, tr(HΣ) = 2e4; for fine-tuning,
σ2 = 0.25,G⊤HG = 1e2, tr(H)/c2 = 2e6, tr(HΣ) = 2e4.

B.2.4 Figure 6

We train ViT-Base with η = 5e − 4, B = 500, ϵ = 2. We use the Hutchinson method to compute
Hessian-related trace, e.g. tr(H) = Ev∈Rd [v⊤Hv] ← 1

k

∑k
i=1 v

⊤
i Hvi, where v ∼ N(0, Id)

and k = 100. Note the Hessian-vector product Hv can be computed by one back-propagation of
G(w)⊤v ∈ R on w.

B.2.5 Figure 7

We train GPT2-small with η = 2 × 10−4, B = 7680, epochs Epub = 1 (if not early stopped by
patience = 2), Epriv = 3 for mixed training, E = 4 for other cases. In the figure, ‘PubRatio’ is the
percentage of public data among all data.

B.2.6 Table 5

We empirically observe that ViT-Base models with/without fine-tuning on ImageNet1k.

E.g. vit base patch16 224 miil.in21k ft in1k v.s. vit base patch16 224 miil.in21k;

vit base patch16 224.augreg in21k ft in1k v.s. vit base patch16 224.augreg in21k
are very similar in final accuracy, though those with fine-tuning converge faster at early epochs.

We train for 10 epochs, B = 1000.

• non-DP fine-tuning: full-parameter, η = 5e − 5 (except for SVHN and CIFAR10 under
ϵ = 2, we use η = 2e− 5 instead).

• DP fine-tuning: BiTFiT [12], η = 2e−3 (except for SVHN and CIFAR10 under ϵ = 2, we
use η = 5e− 4 instead). We observe that for our models, the accuracy may benefit from a
smaller learning rate (1e-3) when ϵ ≥ 8.

B.2.7 Table 6

We train with full-parameter fine-tuning and B = 1000. Our learning rate η = 5e − 5 (ϵ = 8) and
η = 2e− 5 (ϵ = 2). x-shot means x samples per class, e.g. 30-shot CIFAR100 means 3000 samples
in total.

B.2.8 Table 7

We train with η = 5e − 5 (ϵ = 8) and η = 2e − 5 (ϵ = 2) for full-parameter fine-tuning and
parameter-efficient fine-tuning. We note that with much heavier (public) pre-training, e.g. on JFT4B,
DP NFnet-F3 and JFT4B can achieve even better accuracy [24].

22

https://huggingface.co/learn/nlp-course/chapter7/6
https://huggingface.co/learn/nlp-course/chapter7/6

B.3 Details in training stage switching

When switching from public pre-training to private continual pre-training, the DP gradient may have
a different scale than the historical optimizer states and make the continual pre-training unstable.
Therefore, we investigate different strategies to re-initialize the optimizer states during the switching.
Throughout the training, we use AdamW, which have three states: the iteration index (t), the first-
order momentum (m), and the second-order momentum (v).

In the experiment, we train a ViT-Base model from scratch on the CIFAR100 dataset. In the first
three epochs, we use vanilla AdamW, then we switch to DP-AdamW and continue training for one
epoch. During the switching, we fixed the learning rate and reset different states (t,v,m) to zeros.
The ablation study result is shown in Figure 8.

From the figure, we observe that re-initializing the first-order momentum m (R1) results in the best
performance when switching from public to private training. For the other cases, we observe a
performance drop when switching.

Figure 8: Ablation study of switching from non-DP to DP training with AdamW on CIFAR100
dataset. When switching (T = 1200), we re-initialize different states in the AdamW optimizer in
different linestyles. “R1”, “R2”, and “RS” indicate m, v and t are re-initialized, respectively. “N”
indicates no re-initialization, and “Ref” is the reference behavior of continual training with non-DP
AdamW.

B.4 Details for MIA

To conduct the membership inference attack (MIA) in Table 8, we employ a white-box attack with
full access to model parameters and data, to evaluate the data protection by our DP pre-training. The
attack has two major steps. Step I: construct MIA dataset. To construct the MIA dataset, we use
the following procedures: 1) for each image in ImageNet-11k, we compute its output logits and loss,
which serves as the feature of the MIA dataset; 2) we randomly select 50% of the testing images and
the same number of training images (522, 496 samples) as the MIA test set, and the rest 50% of the
testing images and 10% of the training images as MIA train set; 3) we label the training images as
class “1” and testing images as class “0”. This creates the MIA dataset with 11k features and binary
labels. Step II: evaluate MIA performance. After obtaining the MIA dataset, we fit a binary
logistic regression with the MIA training set to classify whether an image belongs to the training
set of ImageNet-11k (class “1”). We use the L-BFGS optimizer and class re-weighting to train
the model for 50 epochs. After training, we evaluate the performance of the training classification
model on the MIA test dataset and compute the classification accuracy, precision, recall, F1-score,
and AUROC of the classification task. The MIA attack procedures are illustrated in Figure 9.

C Related works

Convergence analysis of DP training (the goals) Recent works have attributed the slow DP
convergence to the large number of model parameters [95, 48], the noise level added to gradients
[84, 14, 86], and the per-sample gradient clipping [11, 21, 94]. Our analysis in (6) and (8) covers
these factors as well as the choice of hyperparameters. We note that a key quantity of DP conver-
gence is tr(H), which implicitly covers the model dimension d and is also analyzed in [54] to give a
dimension-free generalization bound. Moreover, existing works mostly study the empirical conver-
gence on the training set, in terms of the gradient norm ||gt|| → 0, the parameter space wt → w∗,
or the training loss Lt → L∗ as t → ∞. Our work focuses on the generalization performance,

23

Figure 9: The process of membership inference attack (MIA).

and pays particular attention on the data efficiency (as well as computation efficiency) that is rarely
captured in the literature.

More on DP convergence analysis (the assumptions) The convergence analysis of non-convex
DP deep learning is very challenging and under-studied. There are roughly 3 routes to walk around
the challenge: (1) Working on convex models instead (see [73, 23] and more in Sec 4.1.2 [66]), e.g.
assuming some form of convexity or only optimizing the last layer (essentially a linear model). This
route offers deep theoretical insights thanks to the simplified models, but generally fails to match the
training dynamics nor the performance of deep learning. For instance, last-layer training may work
reasonably well in computer vision but not so in language tasks, obtaining only 26 BLEU score for
DP-GPT2 on E2E dataset compared to 63 BLEU score via DP full-parameter training. (2) Working
on the continuous-time gradient flow, rather than the gradient descent in practice, in order to get
rid of the per-sample gradient clipping or the Gaussian noise. This route essentially works with
infinitely small learning rate, which falls short in the performance as SOTA DP models are trained
with large learning rate [49]. (3) Assuming that the loss L is Lipschitz continuous (i.e. the gradient is
bounded) [3, 81, 82] or Lipscthiz smooth [21, 14, 86]. While both assumptions lead to some insights
of the DP training behaviors, the Lipschitz constant is hardly calculable and time-dependent (maybe
even diverging) in practice. Particularly, in the Lipschitz continuous setting, the per-sample gradient
clipping is not used in DP deep learning, reducing the technical difficulty significantly but missing
the gist of DP-SGD from a practitioner’s viewpoint.

In contrast, our work does not rely on these and many other assumptions in the literature, because
we do not study the loss convergence along all iterations. We instead scrutinize the per-iteration loss
improvement in (5). Put differently, we focus on the local behavior of DP optimizer rather than the
global behavior.

Differentially private training The literature of DP deep learning has predominantly focused on
fine-tuning the pre-trained models (e.g. full-parameter [1, 49, 14] and PEFT [78, 89, 12, 58]). Im-
portantly, DP fine-tuning (1) can be as performant as the standard non-DP fine-tuning consistently,
(2) achieves better empirical performance with larger models [14, 9] and (3) necessarily relies on the
public data pre-training. Our work is distinct from previous works since we focus on DP pre-training
with large sample size, large number of iterations, and very limited public data. Interestingly, we no-
tice that DP pre-training also enjoy these desirable characteristics of DP fine-tuning, e.g. requiring
public data (only a small amount) in Section 4.1 and benefiting from scaling up the models (see Fig-
ure 4, Figure 5 and Table 9 in [90]). This empirical evidence of similar training dynamics between
DP pre-training and DP fine-tuning, despite their difference in learning goals, is well-supported by
our decelerator analysis in Section 3.

Continual pre-training Continual pre-training is a training strategy that accumulates knowledge
from a large amount of data, in order to improve its generalization ability to unseen domains and
datasets [36, 28, 83, 43, 72]. It is different from fine-tuning which focuses on a task-specific and
often smaller dataset. Therefore, the (continually) pre-trained models possess strong few-shot (in-
cludign zero-shot) ability but may not be competent in specific functionality such as conversation,
and vice versa for fine-tuned models like ChatGPT, Alpaca [76], and Dolly [22].

Multiple DP pre-trained models have been developed [47, 24, 90], but these models either (1) suffer
from low accuracy, e.g. 6.9% on ImageNet-1k without additional data by [47] and 32.4% by [24];
or (2) demand significantly more data and compute to match the non-DP pre-training, e.g. 100× in

24

[90] when comparing DP ViP model to non-DP SimCLR; or (3) rely on uncommon tricks such as a
huge batch size from 16-98K, that are not adopted in the standard deep learning community. Related
to (3), we believe DP continual pre-training can further improve using the existing techniques from
the non-DP continual training, including the replay mechanism and curriculum learning, and avoid
catastrophic forgetting.

Hessian-based analysis in deep learning Applying the second-order Taylor expansion of loss
motivates the famous Newton’s method and is commonly adopted in deep learning [57, 97, 85,
56, 91], where the Hessian matrix is useful to analyzing the convergence and data efficiency (e.g.
selecting the critical batch size [57]), even though it is infeasible to derive H ∈ Rd×d explicitly for
large models. Our work follows the same path with a specific focus on DP related operations (i.e.
the clipping and the noise). We use the Hutchinson method and Hessian-vector product to compute
tr(H), HG and so on.

System design of DP training To make DP deep learning broadly applicable, we believe it is nec-
essary to not only evaluate DP algorithms on the utility, but also from a system design perspective.
The design of a DP system, such as our DP continual pre-training, should resemble that of the stan-
dard non-DP system (see our extensive discussion in Remark 4.2). Such a design will be compatible
to and benefit from new advances in the much larger non-DP literature, unifying DP and non-DP
communities, instead of crafting techniques that are limited to DP learning only.

Data distribution shift There may be some distribution shift between the public pre-training data
and the private fine-tuning data or continual pre-training data. Empirically speaking, DP training
can be robust to such distribution shift. For instance, DP fine-tuning has successfully transferred
from ImageNet to CIFAR10, CIFAR100, SVHN, Food101, CelebA, FMNIST, GSTRB [14], from
JFT to ImageNet [24, 58], and from Places365 to ImageNet [47]. Although this work does not
address the distribution shift due to similarity between ImageNet-1k and ImageNet-11k, our anal-
ysis in Section 3, especially the formula of decelerator, still holds in this scenario. Therefore, we
expect our DP continual pre-trainin to work withstanding the data distribution shift, as empirically
demonstrated from Shaders to LAION [90].

Concurrent work The concurrent work – ViP [90] – also studies the DP continual pre-training,
thus is the closest strategy to ours. We elaborate the similarity and differences between two strate-
gies.

Similarity

1. Both use ViT-Base as backbone and AdamW as optimizer.
2. Both use self-supervised learning (SSL) for public pre-training.
3. Both use ϵ = 8 for DP continual pre-training.
4. Both public datasets (Shaders v.s. ImageNet-1k) have ≈ 1M images.

Differences

1. ViP uses SSL on DP continual pre-training. We use supervised learning.
2. ViP adds a decoder to ViT-Base (in total 99.0M parameters) during the pre-training. We

replaces the classifier head of ViT-Base (94.4M parameters) for DP continual pre-training.
Hence the model architecture is different.

3. ViP trains on Shaders (for 1.6B images) and LAION (for 0.6B images). We train on
ImageNet-1k (for 0.3B images) and ImageNet-11k (for 0.4B images). Hence data dis-
tribution and quality is different, and our training requires about 1/3 the computation.

4. ViP’s private dataset (LAION) has 233M images. Ours (ImageNet-11k) has 12M images.
Hence our training requires much smaller dataset (see Figure 3(a) [90]).

5. ViP has to use huge batch size 98K (see Figure 4(b) [90], where the loss diverges with
batch size 8K). We use 4K.

6. ViP experiments with various model sizes, from ViT-Nano (18.6M) to Large (233M). We
only use ViT-Base.

25

D Algorithm of DP continual pre-training

Algorithm 1 DP continual pre-training

1: switch to DP=False
2: for t = 1, 2, ... do
3: Compute the loss Lt by forward pass
4: if switch to DP==False: then
5: Compute public gradient g
6: else
7: Compute private gradient g
8: end if
9: Update wt+1 = wt − ηg

10: if Lt > Lt−1 then
11: Set switch to DP=True
12: end if
13: end for

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We recognize the limitations of the second-order Taylor expansion and that
we cannot explain the trace of Hessian’s evolution.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

27

Justification: This paper has no theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give all the necessary information and will open-source our codebase.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [Yes]
Justification: Open access to code will be available after paper decision.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give all details in the main text and in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: We believe the pattern is clear.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: This work focuses on the accuracy, independent of the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It does.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

30

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

31

paperswithcode.com/datasets

Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

32

	Introduction
	Contributions
	Related works
	Notions & settings
	Computation budget
	Privacy budget

	Understanding DP training through the lens of Hessian
	Per-iteration improvement of DP-SGD
	Per-iteration improvement of vanilla SGD

	Impact of per-sample clipping and noising
	No noise, (almost) no deceleration
	DP pre-training can be vulnerable to noise
	DP fine-tuning is robust to noise
	Extension to general optimizers

	Continual pre-training with DP
	Necessity of public data in DP pre-training
	DP continual pre-training strategy overview

	DP vision foundation models on ImageNet
	Training strategy
	Algorithm implementation
	Downstream performance
	Privacy protection

	Discussion
	Derivation and proofs
	Derivation of eq:one-iteration
	Explanation for imply:large batch
	Proof of results in sec:DP finetune
	Explanation of imply: BdpBnondp
	Loss improvement of general DP optimizers – imply:optimal DP Adam
	Improvement of performance measures other than the optimization loss
	Explaining the effectiveness of DP continual pre-training

	Experiment settings and additional details
	Datasets
	Experiment settings
	fig:pretrain vs finetune
	fig:noiseB
	fig:breakdown
	fig:batchterms
	fig:train strategies
	tab:downstream
	tab:fewshot
	tab:large

	Details in training stage switching
	Details for MIA

	Related works
	Algorithm of DP continual pre-training

