© ® N O o A~ W N =

SPG: Sandwiched Policy Gradient for
Masked Diffusion Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion large language models (ALLMs) are emerging as an efficient alternative
to autoregressive models due to their ability to decode multiple tokens in parallel.
However, aligning dLLMs with human preferences or task-specific rewards via
reinforcement learning (RL) is challenging because their intractable log-likelihood
precludes the direct application of standard policy gradient methods. While prior
work uses surrogates like the evidence lower bound (ELBO), these one-sided
approximations can introduce significant policy gradient bias. To address this, we
propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a
lower bound of the true log-likelihood. Experiments show that SPG significantly
outperforms baselines based on ELBO or one-step estimation. Specifically, SPG
improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in
GSMSK, 2.6% in MATHS500, 18.4% in Countdown and 27.0% in Sudoku.

GSM8K MATH500 Countdown Sudoku
42.5 70.7 100 924.0
+3.6% T gea1 +2.6% 200 +18.4% 1 +27.0% 1
< . 80
K5 ars 40.0 60 52.3 67.0
> . 37.437.4
o 80.580.621% 37.5 36.0 43.0 60
C 80 40 40
37 772 35.0 30.9 27.726.932-532.1
1%} .
<, 32.5/32:432.2 20 eTe 2t 20
30.0 0
LLaDA-8B-Instruct LLaDA-1.5 D1 wD1 UniGRPO EE SPG (ours)

Figure 1: Test accuracy of SPG and baseline methods on four mathematical and logical reasoning
benchmarks. All methods are evaluated with a generation length of 256 in 128 denoising steps. Full
results are provided in Table E}

1 Introduction

Diffusion models, originally pioneered for high-fidelity image generation (Song et al.|[2020; Ho et al.
2020), have recently emerged as a powerful and efficient paradigm for text generation (Austin et al.,
2021} |Campbell et al.l 2022} [Sun et al., 2022; [Lou et al., 2023} [Sahoo et al., 2024 [Shi et al., [2024)).
These models operate in a discrete space but share architectural similarities with their continuous
counterparts (Peebles and Xiel [2023)). They employ a fixed noising process that progressively corrupts
text data, while a neural network is trained to learn the reverse, denoising process. For instance,
Masked Diffusion Language Model (MDLM) (Sahoo et al.l [2024) uses random masking as its
forward noising process and optimizes an Evidence Lower Bound (ELBO) of the log-likelihood. This
ELBO-based objective has been widely adopted by subsequent large-scale diffusion language models
(dLLMs), including LLaDA (Nie et al., 2025) and DREAM (Gong et al.| [2024).

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

24
25
26

27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45

46

47
48

49

50
51

52

53
54

55
56
57
58
59

Monte Carlo Est. of £ . and L
Clean Sequence X/

\/\\
Perturbed Sequence z/ ~ g(-|x’)

Random Masking

Prompt ¢ Upper Bound := exp (,CE(;B()(.’L‘]: (’))

Response x’ A, e)<0 |

Response X/ A,)< 0 /
. J\/\-‘Lﬂg(m]‘ | C) Block-Wise Masking (Ours)

Response x* A¥(x%, ¢) > 0 " Lower Bound := exp (LELB()(Q?J: c))

clean token mask token

Figure 2: The training process of SPG for MDLM. Left: From a prompt ¢, we generate responses
{7 }9_,. We then maximize a lower bound on the likelihood 7 (/ | c) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence of
length 9 with a block size of 3, where the current generation block is highlighted in yellow.

A key advantage of dLLMs over their autoregressive (AR) counterparts is their ability to decode
multiple tokens in parallel. This parallelism can significantly reduce inference latency, making it an
attractive alternative for scalable language modeling (Wang et al., [2025a}; [Labs et al.| 2025).

Aligning large language models with human preferences (Ouyang et al., [2022) or task-specific
rewards (e.g., inducing reasoning behavior) (Shao et al.,[2024} |Guo et al., |2025) typically requires
a post-training stage of reinforcement learning (RL). However, applying RL to dLLMs remains
underexplored. A principal challenge is the computationally intractable log-likelihood of dLLMs,
which is essential for accurate policy gradient estimation. To circumvent this, recent works (Zhao
et al.,[2025; |Yang et al.l 2025} Zhu et al., [2025} [Tang et al.,2025) adapt standard RL and preference
optimization algorithms, such as GRPO (Shao et al.,|2024) and DPO (Rafailov et al.,|2023)), by using
the ELBO or a one-step estimation as a surrogate for the true likelihood. While straightforward, this
approximation leads to misaligned policy gradients, and potential suboptimal performance.

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel reinforcement
learning algorithm for diffusion language models that computes a more robust and less biased policy
gradient. As illustrated in Figure[2] our core idea is to “sandwich” the intractable log-likelihood of
a generated sequence: we maximize a tractable lower bound for positive-reward sequences while
minimizing an upper bound for negative-reward ones. To ensure a stable estimation of these bounds,
we also propose a block-wise masking strategy that better aligns data distributions during policy
rollout and optimization. SPG achieves state-of-the-art performance on four mathematical and logical
reasoning benchmarks, improving accuracy by up to 3.6% on GSM8K, 2.6% on MATHS500, 18.4%
on Countdown, and 27.0% on Sudoku compared to the state-of-the-art RL algorithms for diffusion
language models.

In summary, our main contributions are:

* A new policy gradient algorithm, SPG, which reduces bias by optimizing sandwiched variational
bounds based on reward.

* A block-wise masking technique that improves the stability of the training objective’s estimation.

* State-of-the-art results among RL algorithms for diffusion language models on four reasoning
benchmarks, demonstrating the effectiveness of our approach.

2 Background

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and
reinforcement learning for text diffusion models.

Notation. We denote scalars by lowercase letters (), vectors by bold lowercase (), and sequences
by ®1.,,. [k] represents {1,...,k}. Cat(x | p) is the categorical distribution over & with probabilities
p, and U[a, b] denotes the uniform distribution in [a, b]. Throughout the paper, we use i € [n] for
position of the token, j € [g] for a sequence in a group of rollouts, and ¢ for the diffusion timestep.
For discrete time processes, ¢ € [T'], while for continuous-time Markov chains, ¢ € [0, 1].

60

61
62
63
64
65
66

67
68

69
70
71

72
73

74
75
76
77

78

79
80
81
82
83

84
85
86
87

88
89
90
91
92
93

94

95
96
97

2.1 Masked Diffusion Language Models

Diffusion models for language learn to generate text by reversing a gradual noising process. Specifically,
Masked Diffusion Language Models (MDLMs) (Sahoo et al., [2024) start with clean text x.,, and
corrupt it into z; = 2 1., Over a continuous timestep ¢ € [0, 1] by progressively replacing tokens
with a special [mask] token. At¢ = 0, the data is original (zg = x), while at ¢ = 1, the sequence
is fully masked (z; is all [mask] tokens). Each token is corrupted independently according to the
forward transition kernel:

@jo(ze,i | i) = Cat(ze; | cui + (1 — a)m), (D

where m is the one-hot representation of the [mask] token. The noise schedule, a; € [0,1], is a
strictly decreasing function, such as the linear schedule oy = 1 — ¢, with g = 1 and a3 = 0.

In the reverse process, a neural network, which we denote as the policy g, is then trained to perform
the reverse process: predicting the original tokens @ from a corrupted version z;. The transition from
zy to z4 (s < t) is parameterized with g as follows:

Cat(zs; 2¢), Z; # m,

polzs | 2) = (2 |z, @ = mo(- | 21)) = {Cat (1 (roeimtfeaimalza) gy —m,

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of
each clean sequence & ~ pgara, Which simplifies to the following objective:

Leipo(z;0) = E, -, [Z w(t) - 1(ze; = m) - log me(z; | zt)] : 2)
=1

where w(t) = «}/(a; — 1) is a time-dependent loss weight, and the expectation is over a random
timestep ¢ ~ U[0, 1] and the corrupted sequence z; ~ g¢o(- |). In essence, this objective trains
the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more
comprehensive overview of MDLM, please refer to Appendix [B]and [Sahoo et al.| (2024).

2.2 Reinforcement Learning for Diffusion Language Models

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as
a policy 7 that generates a response « to a prompt c¢. A reward function R(c,x) provides a
scalar score for the response, and the training goal is to update 8 to maximize the expected reward:
J(0) = Egry(.|c)[R(c, x)]. This objective is commonly optimized using policy gradient methods,
which rely on the following gradient estimator.

VoT(0) =Egmry(.|c) | R(c,z)Vologme(x |). 3)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the
policy’s log-likelihood, log mg (i | €), is intractable and cannot be computed directly. To overcome
this, prior work (Zhu et al.,[2025}; | Yang et al.L[2025)) approximates this term using its ELBO, effectively
replacing log g (x | ¢) with a score derived from the pre-training objective in Equation .

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the
true log-likelihood (ELBO < log 7). Consequently, the RL objective is only a valid lower bound on
the true expected reward if all rewards R(c, x) are non-negative. This constraint prevents the model
from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible
with advanced RL algorithms that use relative or negative rewards (Shao et al.,[2024), biasing the
final policy. Our work aims to resolve this limitation.

3 Sandwiched Policy Gradient with Evidence Bounds

We introduce SPG, a novel policy gradient algorithm designed for masked diffusion language models
(Algorithm[T). Our method aims to address a critical issue in applying reinforcement learning to
dLLMs by creating a valid optimization objective based on tractable bounds of the model’s evidence.

98

99
100

101

102
103

104
105
106

107
108
109
110
111
112

113
114
115

116

117

118

119
120

Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs

Require: prompt distribution D, number of completions per prompt g, number of inner updates y,
forward process ¢, number of Monte Carlo samples m, initial policy g, learning rate e.

1: Initialize 7y < 7

2: while not converged do 4

3 Sample a prompt ¢ ~ D, then g completions {x? ~ my(- | ¢)
4: Vj € [g], compute reward R(c, z’) and advantage A7 (7, ¢)
5
6
7

g
j=1
for gradient update iterations {1, ..., u} do
Vj € [g]. generate m perturbed samples {z] }7-, ~ q(- | 7)
Compute the sandwiched policy gradient V Jspg(0) where:

1 , . . A
Jspc(0) = E[g > (ﬂAa‘Zo - A Lripo (2 | €;0) + Lai<o - A Leuso(2 | ¢ 9)) }7

j=1
8: and Lg1po, Leuso are estimated from {z{T }m ., using Equation and
o: Perform gradient update: 6 < 0 + ¢V Jspc(0)

10: return 7y

3.1 A Lower Bound Objective for Policy Optimization

Our approach is based on group relative policy optimization (Shao et al.} 2024} |[Liu et al., [2025b). For
a given prompt ¢, we generate a group of g responses {x/ }?:1 from the policy mg. We then compute

the advantage A7(c,x’) := R(c,z’) — é 7_1 R(c,27). Moreover, we transform the conventional
policy optimization objective as an advantage-weighted log-likelihood objective, for reasons that will

be clear later:
1<~ ., ,
TE0) = Befar)or | + 3. Ao logmo(a |) | @
j=1

where sg[@)] indicates that gradients are not computed for the policy that generates the samples. This
objective encourages generations with positive advantages (47 > 0) and discourages those with
negative advantages (A7 < 0).

For dLLMs, the log-likelihood log 7g is intractable. A common surrogate is the evidence lower bound
(ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood, minimizing
the ELBO for negatively-rewarded samples does not guarantee a reduction in the true log-likelihood.
To address this, we propose a sandwiched objective. For samples with positive advantages, we
maximize the ELBO. For samples with negative advantages, we instead minimize a tractable evidence
upper bound (EUBO), Lgygo. This creates a true lower bound for the original objective:
g
Jspc(0) = E{ é Z (Laiso - A7 Leipo(®? | €;0) + L aico - A Leupo(x’ | ¢;0)) |, (5)
j=1

where the expectation is take with respect to c, {:cj } o~ Tsg[6]- Since Lgpo < logmg < Lgypo, it
follows that Jspg (@) < J#°'P(€). Maximizing this tractable bound therefore serves as a valid proxy
for optimizing the true objective.

3.2 A Tractable Evidence Upper Bound
To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require a
tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule oy. For any 8 > 1 and a sequence xy.,,, we have:

n T—1

1 ap —

ﬁEUBo(iULn;a) = E E log E Eztﬂ 7{_ oztt_: '1(2t+1,i = m)-wg(wi | Zt+1) +C(T), (6)
i=1 t=1

121

122
123
124

125

126
127
128

129
130
131
132
133
134

135

136
137

138
139
140
141
142
143

144
145
146
147
148
149

151
152
153
154

155
156
157
158
159

160
161
162
163
164

where C(T') := % logE., ~q(|z) [q(zLT | w)*”} is a constant independent of 6.

Here, § > 1 is a hyperparameter that controls the tightness of the bound, with values closer to 1
yielding a tighter bound. The expectation is taken over the timestep ¢ ~ /[0, 1] and the noised latent
ze ~ qyo(- | x).

Corollary 1. Taking the limit of T — oo, we have:

VBKEUBO(CBLn; 9) =V (EEUBo(iBl:n; 9) + C(T)) = VGEEUBO(wI:n; 9)7 where

. 1 5 ™
,CEU30(LE1:n; 0) = B ZIOg]Et,zt [’u}(t) . I]-(zt,i = m) . 71'9 (;l:z | Zt)} .
i=1

In practice, we estimate LEuso using Monte Carlo sampling and plug it in Equation [5|in place of
Lgugo. The proof and theoretical analysis are provided in Appendix [C]

Remark. A key structural difference from Lgipo is that the logarithm in Lgygo (Equation (6))
appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the
concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate
of the true EUBO. While it is possible to derive a looser but unbiased bound using inequalities
like log(x) < x — 1, we found this approach empirically worse by widening the gap to the true
log-likelihood, as shown in Table[I0] We therefore retain the tighter, albeit slightly biased, formulation.

3.3 Practical Considerations

Block-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate Lg o
and Lgygo in Equation (5) via Monte Carlo sampling: for each =/, we randomly sample m timesteps
{t-}7, and generate the corresponding partially masked samples {z] }7_, ~ ¢(- | 7). One
straightforward approach as used in [Yang et al.| (2025) would be to apply random masking to
clean sequences. However, recent dLLMs like LLaDA (Nie et al., [2025) employ a block-wise
semi-autoregressive unmasking strategy during generation and achieve state-of-the-art performance
over random unmasking. As a result, the policy rollout process actually encounters a much narrower
and more structured set of partially masked sequences than with fully random masking.

To better align data distributions during policy rollout and optimization, we adopt a block-wise
masking strategy rather than random masking. As depicted in Figure 2] the sequence is divided into
several blocks, and a random block is selected, with all preceding blocks left clean and all following
blocks fully masked. Within the chosen block, tokens are randomly masked. Additionally, following
D1 (Zhao et al.}[2025)), we lightly perturb the prompt and clean blocks by randomly masking tokens
with a small probability ppax = 0.15 to enhance stability and generalization.

Altogether, our block-wise masking strategy improves the stability of the objective’s estimation and the
efficiency of policy optimization. While similar block-wise masking approaches have been explored
in concurrent work for supervised fine-tuning or block diffusion models (Sun et al.l 2025} [Wang et al.}
2025b)), our focus is on RL for full-attention masked dLLMs. As shown in Figure @ our models
trained with block-wise masking generalize well to various inference strategies.

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation of
Equation (@) leads to a biased estimation to Lgypo and potentially requires a substantial number of
samples to get reliable approximations, resulting in high computational costs and instability during
training. To address these challenges, we use a mixture of £~EUBO and Lg o as a more practical
log-likelihood approximation for negative advantage traces:

EMix(CC | C; 0) =W EEUBO(:B | C; 0) —+ (1 — w) . LELBO(-’B | C; 9) (8)

where 0 < w < 1 is a blend coefficient. Intuitively, the upper bound Lgypo sharpens the model
decisions by applying a S-power adjustment to the original model output, acting as a strong correction
signal for negative advantage traces. In contrast, the lower bound L go is easier and more stable to
estimate with a small number of Monte Carlo samples, but it tends to introduce larger, systematic
bias relative to the true log-likelihood. In particular, as a conservative approximation, Lg; o alone is

165
166
167
168

169

170
171

173

174
175

176
177
178
179

180
181

182
183
184

185
186
187
188
189

190

191
192
193
194

195

196
197
198
199
200
201
202

204
205

insufficient for effectively penalizing negative advantage traces, thus limiting its efficacy. Therefore,
combining them allows us to harness the strengths of each, resulting in a more effective log-likelihood
estimation in practice. In the following proposition, we formalize the advantages of using the mixture
by deriving the gradient of the mixture loss and analyzing the variance of the gradient.

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let
ps = wit, 2)75 (@i | 21, €)/E [w(t, z)m5 (@i | z1,0)],
where w(t, z;) == w(t)1(z, = m). Then, the gradient of mixture objective (8) is given by

Guk = (1 —w)w(t, z) + wpg) O, log me(x | 2¢, c). 9)

If Var((ps — w(t, z¢))0g, log me(x | 2¢,¢)) > 0, then Varlg,, x| is a strictly convex quadratic in w
and thus admits a unique minimizer w;. Moreover,

Var[gw]:’k] < min{ Var[go.x], Varlg: k] },
A proof for the above proposition is provided in Appendix A few remarks are in order:

+ Confidence-aware weighting: The mixture gradient in Equation (9) realizes a confidence-aware
weighting: uncertain tokens with small wg (z; | z,¢), indicating a low recovery chance, have a

smaller weight, while confident tokens with large 71'5 (z; | 2, c) are upweighted. The sharpness
is controlled by parameter 5 and the blend by w. Furthermore, the convex interpolation of the
confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny gradients
to a minimum value and thus prevents vanishing gradients.

* Lower variance and more stable training: According to Proposition[] the gradient of the optimal
mixture, i.e., gu,» k. has strictly smaller coordinate-wise variance than the gradient of either the lower

bound (go,) or the upper bound (g, kﬂ In our experiments, we fix 8 and w as hyperparameters for
simplicity. These values can also be adaptively adjusted during training to better match the evolving
training dynamics and data distribution.

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound
alone, as supported by our experimental results in Section[d] Further discussions of the mixture
approach and empirical evidence of reduced gradient variance are provided in Appendix [D.2] and
Figure[7] and Appendix [D.3|presents a toy example illustrating the distinct behaviors of the lower and
upper bounds.

4 [Experiments

In this section, we present experimental results highlighting the superior performance of SPG across
various benchmarks. Further, we provide detailed analysis and ablations of SPG to assess the
contribution of each component, examine the influence of key hyperparameters, and evaluate the
robustness of our approach under different inference strategies.

4.1 Experimental Setup and Main Results

Experimental Setup. We conduct RL fine-tuning with SPG following the experimental settings in
D1 (Zhao et al.;,[2025) and WD1 (Tang et al., 2025)). We employ LLaDA-8B-Instruct (Nie et al., 2025),
a state-of-the-art open-sourced dLLM without post-training, as the base model, and experiment on four
benchmarks: two for mathematical reasoning (GSM8K (Cobbe et al.,2021)) and MATHS00 (Lightman
et al.||2023)) and two for logical reasoning (Countdown (Pan et al.,2025)) and Sudoku (Arel, 2025)).
We follow the same train-test splitting, reward functions, and evaluation protocol as D1 and WD,
except for Sudoku. For Sudoku, to avoid train-test leakage, we take the training set from D1 and split
the data by Sudoku answers, ensuring that the test set contains entirely new puzzle solutions. This
guarantees that the model cannot solve test puzzles merely by memorizing possible answers. All
experiments are conducted in the zero-shot setting, except for Sudoku, where 3-shot generation is

1Propositionextends directly to a single, coordinate-independent optimizer w* obtained by minimizing the
sum of coordinate-wise variances.

206
207

209
210
211

212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230

231
232

Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model /Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. ~ 69.5 772 798 282 324 346 188 168 168 57 277 262

LLaDA-1.5 70.4 80.5 81.9 26.8 322 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 72.2 80.6 81.3 31.4 36.0 394 30.9 30.9 34.4 7.2 325 29.3
WDI1 74.6 81.5 83.0 31.0 374 39.0 48.8 523 50.8 33.1 32.1 225
UniGRPO 74.9 82.5 82.7 324 374 394 445 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO 77.1 83.8 83.9 332 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9

SPG w/ Mixture 78.5:3.6 86.1+36 84.5:15 33.4+1.0 40.0:26 41.8:24 68.8:20 70.7+18 70.3:13 82.9:24 94.0+27 93.1:30

GSM8K MATH500 Countdown Sudoku
3.0 18 08 1.0
2
3 L6 0.8
Tao 0.6
g L4 ¥ o
81s N o,
1.2 0.4
1.0
05 1.0 0.2 02
0 2000 4000 6000 0 1000 2000 3000 4000 O 2000 4000 6000 0 500 1000 1500 2000 2500
Steps Steps Steps Steps
D1 WD1 —— UniGRPO —— SPG (ours)

Figure 3: Reward dynamics of SPG w/ Mixture during RL training, compared with D1, WDI1, and
UniGRPO. SPG consistently leads to faster convergence and higher reward level. We report mean
and standard deviation over a rolling window of 50 steps.

used for both training and evaluatimﬂ For all models, we employ Low-Rank Adaptation (LoRA)
with a rank of » = 128 and scaling factor @ = 64. For SPG, we report results using both EEUBO (i.e.,
SPG w/ EUBO) and Lyix (i.e., SPG w/ Mixture) for negative advantage traces. We select the value
of 4 in the EUBO from {1.0, 1.5, 2.0} based on the best average test accuracy across all generation
lengths, and fix the mixture coefficient w at 0.5. Further experimental details are in Appendix [E.T|and

Appendix[E2]

Baselines. We compare our method with several recent RL algorithms for dLLMs, including
D1 (Zhao et al., [2025), WD1 (Tang et al.l [2025), and UniGRPO (Yang et al., 2025). For D1 and
WD, we reproduce results using the official codebases and instructions, and for fair comparison, we
omit the additional SFT stage in D1 across all models. For UniGRPO, since the code is not publicly
available and the original work focuses on vision-language multimodal models, we reimplement the
algorithm within our setup. For consistency, we set the number of inner gradient updates p to 4 for all
models, following GRPO (Shao et al.,2024). We also evaluate LLaDA-1.5 (Zhu et al., [2025)) under
our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference optimization approach
on 350K preference pairs.

Generation and Evaluation Setup. For both RL rollouts and evaluation, we use the semi-
autoregressive confidence-based decoding strategy, following LLaDA, D1 and WD1. We apply the
same generation setup as D1, with the denoising timestep set to half the total sequence length. The
sequence is divided into blocks of 32 tokens, and in diffusion step, we unmask the 2 tokens with the
highest confidence (measured by the probability of the sampled token) within the current incomplete
block. During RL rollout, to encourage diverse outputs, we use a generation length of 256 and a
sampling temperature of 0.9 across all benchmarks, except for sudoku, where the temperature is set to
0.3 as in D1. During evaluation, the sampling temperature is set to 0.0. We evaluate the models every
100 steps, reporting results from the checkpoint that achieves the highest average test accuracy across
generation lengths of 128, 256, and 512.

Results. We provide the performance of SPG on each benchmark in comparison to the base model
and other baselines in Table [l Both SPG w/ EUBO and SPG w/ Mixture consistently achieve

*We use 3-shot generation for Sudoku because zero-shot is too difficult for this task, resulting in very few
meaningful RL rollouts. Few-shot examples used in our experiments are provided in Appendix @

233
234
235
236
237
238
239
240

241

242

243
244

245
246

247

248
249
250
251
252
253
254

255
256
257
258
259

261
262
263
264
265

266
267
268
269
270
271

272
273
274
275

Table 2: Ablations on log-likelihood estimation meth- Table 3: Ablations on the masking strategies
ods for negative advantage traces. The best results are in Monte Carlo estimation. We denote the
bolded and the second best underlined. We denote the absolute gain of test accuracy to random mask-

test accuracy gain to SPG w/ ELBO in green. ing for each model in green.
Model GSMS8K MATHS500 Countdown Sudoku Model Masking MATH500 Countdown
SPG wo/ neg 77.4 32.7 45.5 68.8 SPG w/EUBO random 36.7 454
SPG w/ ELBO 80.9 374 67.1 82.4 block-wise 36.7+0.0 69.3+23.9
SPG w/ EUBO 81.6 36.7 69.3 86.1 SPG w/ Mixture random 36.9 62.8
SPG w/ Mixture 83.1+2.2 38.4+1.0 69.9:2.8 90.0+7.6 block-wise 38.4415 69.947.1

significant improvements over the baselines across all tasks and generation lengths, with the Mixture
approach that combines ELBO and EUBO for negative advantage traces yielding the best performance.
In particular, at a generation length of 256, SPG w/ Mixture improves the test accuracy over the
previous state-of-the-art by 3.6% on GSMS8K, 2.6% on MATH500, 18% on Countdown, and 27%
on Sudoku, showcasing the effectiveness of SPG to conduct RL for dLLMs. Reward dynamics
throughout training are illustrated in Figure 3] where SPG shows a rapid and steady increase in reward
over the optimization steps, further demonstrating its efficiency and robustness. We provide additional
results and comparisons to the baselines in Table 4] and Appendix [F.1]

4.2 Ablations and Further Analysis

We conduct a series of ablation studies to gain deeper insights from the following aspects:

* The contribution of each individual component, including log-likelihood estimation methods for
negative advantage traces (Table[2) and the masking strategy in Monte Carlo estimation (Table [3).

* The effect of key hyperparameters, including (3 that controls the tightness of the upper bound and
the mixture coefficient w (Figure[5).

* The robustness of our approach under various inference strategies (Figure [6)).

Due to computational constraints, some ablation experiments are conducted on a representative
mathematical reasoning benchmark (MATHS500) and a logical reasoning benchmark (Countdown).
Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512
for the ablation studies, with detailed results for each generation length provided in Appendix [F:2] In
Appendix[F.2] we also investigate alternative log-likelihood estimation methods for positive advantage
traces in place of ELBO, as detailed in Table [T} and study the diversity of model generations by
evaluating the pass@K performance of each model in Table [12]

Ablations on Algorithm Components. We first study the impact
of different log-likelihood estimation methods for negative advantage 0.8
traces in Table [2] Specifically, we compare our approach using
EEUBO or EMiX with those using Lg; go (SPG w/ ELBO) or omitting
the negative advantage loss entirely (SPG wo/ neg). Removing 0.4
the negative advantage loss results in a substantial performance
drop, highlighting the importance of negative advantage penalties TR TR TR T
to RL. Additionally, both Mixture and EUBO methods outperform Steps

ELBO (except for EUBO in MATHS00), showcasing the benefits
of evidence upper bound regularization for negative rewards. We
provide complete results for each generation length in Table [6]

SPG w/ ELBO
—— SPG w/ EUBO
0.2 —— SPG w/ Mixture

Figure 4: Reward dynamics of
different methods on Sudoku.

The effect of log-likelihood estimation methods is further illustrated by the reward dynamics of each
model in Figure[4] taking Sudoku as an example. SPG w/ ELBO converges rapidly during training but
plateaus early, as minimizing the lower bound does not necessarily minimize the true log-likelihood
for negative advantage traces. In contrast, SPG w/ EUBO achieves higher final rewards but converges
more slowly and less stably. Combining both, SPG w/ Mixture attains fast, stable convergence and
high rewards, leading to an effective balance. This aligns with our discussions in Section [3.3]

We also conduct ablations on the masking strategies in Monte Carlo estimation of Lgi go, £~EUBO,

and leix. As shown in Table |3| the block-wise masking strategy outperforms random masking,
demonstrating the importance of aligning input distributions between policy rollout and optimization.
We provide complete results for each generation length in Table[7}

8

276
277
278
279
280
281
282
283
284
285

286
287
288
289

291

292

294
295
296
297
298
299
300

301

302
303
304
305
306
307
308

= (a) GsM8K (b) MATH500 (c) Countdown (d) Sudoku (e) MATH500 (f) Countdown

=
< 83.1 38.4 72 90.0 185 38.4 70.9
—h—— -
383.0 38 20
69.9 70
5825 70 6 38.0
o
9] 37 36.7 60 37.5
;() 82.0 81.6 68 9.3 68
2815 36 40 37.0
o
0 81.0 66 36.5
z 05 10 15 20 05 10 15 20 05 10 15 20 05 10 15 20 0.0 0.5 10 00 05 1.0
B B B B w w

—— SPGw/EUBO —— SPG w/ Mixture
Figure 5: (a)-(d): ablations on the effect of 3 in the upper bound; (e)-(f): ablations on the mixture
coefficient w. The best performed 8 > 1 and w € [0, 1] are marked by triangle in each setting.

Semi-AR, Block=16, Semi-AR, Block=32, Semi-AR, Block=64, Semi-AR, Block=32, Full Sequence, Full Sequence,
- Confidence Confidence Confidence Random Confidence Random
9 . 3.2 2.7
S0 +16.2% 1 68.7 +15.0% 1 70.7 +8.7% 1, u7°'°7 +14.6% 1 &6 +16.7% 1t +9.4% 1
9 : 61.2

58.158.2 4

ge 2600 53.5 sLo 5 52.907
O s0 45.9 = 463
< 43.8 42.943.3 43.1 44.5
0 40{37.87.8 38.5%0-2 36.4 38.140:2 37.9
= 32.6 32.4 B34:0
30 28.8 27.5 27.28.8
>
< LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 N UniGRPO BN SPG w/ EUBO Il SPG w/ Mixture

Figure 6: Ablations on inference strategies, including different combinations of decoding orders (i.e.,
semi-autoregressive (semi-AR) decoding with varying block sizes and full sequence decoding) and
unmasking approaches (i.e., confidence-based and random unmasking). We set generation length
to 256 and report the average accuracy across four benchmarks. SPG consistently outperforms all
baselines by a large margin across different inference strategies.

Ablations on Key Hyperparameters 5 and w. We first examine the effect of 3, a crucial
hyperparameter in evidence upper bound estimation, in panels (a)-(d) of Figure 5] In general, a
relatively small value of 53 (i.e., close to 1.0) leads to a tighter bound and thus better performance.
Nevertheless, SPG consistently performs well across a range of 5 values on most tasks, indicating its
robustness. For our main results in Table we fix w = 0.5 and select the optimal 5 > 1, resulting in
B = 1.0 for Sudoku and 8 = 1.5 for the other three benchmarks, except for Countdown with SPG w/
EUBO where 8 = 2.0. Besides, since the ELBO corresponds to the case of S = 0 theoretically and
EUBO corresponds to 3 > 1, we also investigate intermediate values 0 < 8 < 1, which may serve as
an implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform
SPG w/ Mixture on most benchmarks.

We also experiment on the effect of the mixture coefficient w, keeping 3 fixed at its optimal value
determined for w = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure[5] combining
lower and upper bounds with w € (0, 1) leads to better performance than leveraging either bound
solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in
PropositionT]and Section We provide complete ablation results of 3 and w for each generation
length in Table[§|and Table

Ablations on Inference Strategies. In the above experiments, we adopt a consistent state-of-
the-art inference setup during both RL rollout and evaluation, i.e., confidence-based, block-wise
semi-autoregressive generation with a block size of 32. The same configuration and block size are
also used in our block-wise masking strategy. This raises the question of whether our approach
generalizes well to alternative inference strategies. To assess this, we evaluate the base model
and all RL fine-tuned models using various inference strategies, as shown in Figure [} Despite
being trained under confidence-based semi-AR decoding, SPG consistently outperforms all baselines
by a substantial margin across all inference strategies, demonstrating its robustness and strong
generalizability. Complete results for each benchmark individually are provided in Table [T3}

5 Conclusion

We propose SPG, a novel reinforcement learning algorithm for diffusion large language models.
SPG addresses the intractable log-likelihood in dLLMs by maximizing a tractable lower bound on
positive reward sequences and minimizing an upper bound on negative ones, resulting in a more
robust and less biased policy gradient. Additionally, we propose a block-wise masking strategy for
Monte Carlo estimation to enhance optimization stability and efficiency. Extensive experiments on
four mathematical and logical reasoning benchmarks demonstrate the superior performance of SPG,
achieving significant improvement over baselines and the state-of-the-art performance.

309

311
312
313

314
315
316

317
318

320
321

322
323
324

325
326
327

328

330
331
332

333
334
335

336
337

338
339
340
341

342
343

344
345
346

347
348
349

350
351
352

353
354

References

Arel. Arel’s sudoku generator. https://www.ocf.berkeley.edu/ arel/sudoku/main.html, 2025.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiagi Han, Subham Sekhar
Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and
diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981-17993, 2021.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266-28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Taco Cohen, David W Zhang, Kunhao Zheng, Yunhao Tang, Remi Munos, and Gabriel Synnaeve. Soft
policy optimization: Online off-policy 1l for sequence models. arXiv preprint arXiv:2503.05453,
2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858-79885, 2023.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. arXiv preprint arXiv:2210.17432,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

10

355
356
357

358
359
360

361
362
363

364
365
366

367
368
369

370
371

372
373

374
375

376
377
378

379
380

382

383
384

385
386

387
388
389

390
391
392

393
394
395

396
397

398
399
400

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language models
based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-Im
improves controllable text generation. Advances in neural information processing systems, 35:
4328-4343, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
github, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong
Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4195-4205, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pages 547-562. University of California Press, 1961.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models.
Advances in Neural Information Processing Systems, 37:130136-130184, 2024.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The diffusion duality. arXiv preprint arXiv:2506.10892, 2025a.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,

Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025b.

11

401
402
403

404
405

406
407
408

409
410
411

412
413
414

415
416
417

418
419

420
421

422
423
424

425
426

427
428
429
430

431
432

433
434
435

436
437
438

439
440

441
442

443
444
445

446
447

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131-103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Bowen Sun, Yujun Cai, Ming-Hsuan Yang, and Yiwei Wang. Blockwise sft for diffusion lan-
guage models: Reconciling bidirectional attention and autoregressive decoding. arXiv preprint
arXiv:2508.19529, 2025.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilijja Bogunovic. wdl: Weighted policy
optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797-3820, 2014.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,
Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion
models via reward optimization with applications to dna and protein design. arXiv preprint
arXiv:2410.13643, 2024.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025a.

Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforce-
ment learning framework for diffusion large language models. arXiv preprint arXiv:2509.06949,
2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. arXiv preprint arXiv:2302.05737, 2023.

12

as¢ Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
449 Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
450 large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

13

451

452
453
454
455
456
457
458
459
460
461
462

464
465
466
467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

484
485
486
487
488

490
491
492
493
494
495

497

498
499

500

501
502

A Related Work

Diffusion Language Models. Building on the remarkable success of diffusion models for image
generation in continuous domains (Song et al., [2020; Ho et al., [2020), researchers have explored
their extension to discrete data such as text. Initial attempts focused on training continuous diffusion
models in the text embedding space (Li et al.,[2022} |Gong et al.} [2022; Han et al.||2022} |Sahoo et al.,
2025a), while they face challenges in optimization and generalization due to the discrete nature of text
data. Masked diffusion models (Lou et al.l 2023} |Zheng et al., [2023; |(Campbell et al.| [2024; Sahoo
et al.,|[2024; |Shi et al.| 2024) address this by defining the diffusion process directly in the discrete
token space, using random masking as the forward process, and have achieved strong empirical results.
Block Diffusion (Arriola et al.,|2025)) further advances this direction by combining the strengths of
autoregressive models, such as the capability to generate variable-length outputs and using KV cache
to accelerate inference, with the benefits of diffusion language models like parallel decoding and
flexible, any-order generation within blocks. Recently, large-scale diffusion language models trained
with masked diffusion objectives have demonstrated performance competitive with similarly sized
autoregressive models (Nie et al., [2025; |Gong et al.,|2024). More recent works (Wu et al.| 2025} [Ma
et al.,[2025} |Liu et al.} 2025a;Sahoo et al.| 2025alb) have introduced caching and parallel decoding
algorithms that greatly enhance the inference efficiency of dLLMs.

Reinforcement Learning for LLMs and Reasoning. The seminal works apply reinforcement
learning to large language models (LLMs) to align them with human preferences via reinforcement
learning from human feedback (RLHF) (Christiano et al.,|2017; Ouyang et al.| 2022). More recently,
reinforcement learning has proven highly effective at enhancing the reasoning abilities of LLMs
during the post-training stage, where rewards can be provided by a process reward model (Lightman
et al.,[2023)) or verifiable reward signals. Algorithms such as Proximal Policy Optimization (PPO) and
Trust Region Policy Optimization (TRPO) constrain policy updates to a trust region, reducing variance
and promoting stable learning by preventing excessive shifts from the reference policy (Schulman
et al., 2015, [2017). Group Relative Policy Optimization (GRPO) (Shao et al., |2024) introduces
group-relative rewards, enabling efficient training without the need for an additional value (critic)
model. GRPO and its variants have demonstrated strong empirical performance in state-of-the-art
models such as DeepSeek-R1 (Guo et al. [2025), particularly on mathematical reasoning tasks,
where incorporating long reasoning traces with self-reflection and verification steps yields significant
improvements. Recent works (Liu et al.l [2025b}; [Zheng et al., 2025 [Team et al.| 2025} |(Cohen
et al.| [2025) further improve RL algorithms for LLMs by reducing the bias introduced by the GRPO
objective, enhancing sample efficiency, and introducing additional regularization.

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored
RL-based fine-tuning algorithms for diffusion models with continuous objectives (Fan et al.| 2023}
Black et al., 2023} |Clark et al.,[2023)). While RL algorithms have achieved notable success to LLMs
and continuous diffusion models, their applications to diffusion language models in the discrete space
remain underexplored. DRAKES (Wang et al., [2024])) leverages reward backpropagation along the
denoising trajectory, but is computationally intensive for large scale models as the gradients are
propagated through each denoising step. Alternatively, methods like D1 (Zhao et al.l [2025)) and
UniGRPO |Yang et al.| (2025) utilize the GRPO framework, approximating the log-likelihood through
either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in UniGRPO).
VRPO (Zhu et al., [2025]) adapts DPO (Rafailov et al., 2023) to fine-tune dLLMs by applying MC
estimation of the ELBO. WD (Tang et al.,[2025)) starts from the GRPO formulation and the same
log-likelihood estimation as in D1, while avoiding direct estimation of the old and reference policy
log-likelihoods by integrating them into a weighted policy optimization objective. Despite these
advances, a principled analysis of RL algorithms for dLLMs, especially the challenging log-likelihood
estimation, is missing. This results in substantial bias in the optimization objective and suboptimal
performance.

B Basics of dLLMs

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to
Sahoo et al.| (2024])) for more details.

14

s03 Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (a), and sequences
504 by @1.,. A superscript (e.g.,) denotes an item’s index within a group. We define the set of the first
s05 K integers as [k] := {1,...,k} and the k-dimensional probability simplex as A*~!. Distributions
s06 include the categorical Cat(- | p) and the uniform ¢/ [a, b]. Throughout the paper, we use the following
507 primary indices: ¢ € [n] for position, j € [g] for a sequence in a group, and ¢ € [0, 1] for the
so8 continuous diffusion timestep.

We start from a discrete time version of the diffusion models with finite ¢ € [T']. Assume a one-hot

categorical variable € {ey,...,er} C A*~1. Further assume we gradually corrupt = into an
absorbing state m (i.€., €[ask)) With transition matrix Q; at time ¢. Then:

t
q(z |) = Cat(z | Qix) = Cat(z | || Q-=)
T=1
Here, z, is also a one-hot categorical random variable in A*~!. In practice, one could choose Q;
such that:
q(z: |) = Cat(z: | x4+ (1 — ap)m).

soo Here, a; = 1,ar = 0,0} < 0.
st10 Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this
511 particular case, consider the discretized Markov chain with 7" latent variables 21, 2o, . . ., 27, where
512z = m and z; = x. We use the shorthand z = z;.7 and write

pe(xvz)

0) =, 1p | log LT Z)

EELBO(ma) zrq(-])|: 0g q(z | w):|
T-1

=E-q(la) [logi”s(w»zl) + 3 log Lotz) o, poler)]
N—— =1 (J(zt | zt-‘rlam) q(ZT ‘ w)
—_— ——

=0 (10)

-« po(zt | Ze41)
4
:E Ezt7zt+1NQ|:logtt+1:|
t=1

Q(Zt | Zt+1;33)

! P (Z |Z)
o\ ~t t+1
_—E E., i~V Ez gl |20y) | log ————|.
=1 patie)Baeatizen,){ g‘J(zt|zt+1’$)}

Here, log pg(x, z1) = 0 because we assume 21 = x, and pg(zr) = ¢(2zr |) because we assume
zr = m. A common method to parameterize pg is via predicting & with model g in q:

Po(zt | ze41) = q(2¢ | Zep1, 2 = 7o (- | 2e41)) -

513 Now, given that z;,; is either m or x (assuming m # x). Then the KL term in equation
514 decomposes into the following.

0 Zt = Zt41 = T,
log po(zi | zey1) _Jo Zp =M, 241 = T, (Impossible) (11
q(zt | zt41,) logme(x | 2t41) 2t =@, 2441 =M,
0 Rt = Zt41 = M.
515 Moreover, q(z; = @ | ze41 = m, x) = F= ;fl and note that mg(x | ;) = 1 when z; = x, so we
516 have:
LeLpo(x; 0) Z E. i i~qt- z)[10g mo(x | 2e41) (241 = m)}
T-1
= Z Eziii~alla) [1og mo(x | Zt+1):| . (If z41 = x, then log g (x | 2¢41) = 0)
(12)
517 Taking the above limit as 7" — oo, we have:
1 /
«
Leipo(x; 0) :/ E’ztqu(-m)|: i log o (| zt)} (13)
t=0 ap—1

15

518
519

520
521

522

524

525
526
527

528

529
530

531
532
533

535

536
537

538

Generalization to Sequence The above is for a single categorical variable . In practice as in
language modeling, it becomes a sequence of categorical variables x;.,,. Then we write

Li:n, Zln
EELBO(wl:n; 0) = Ezlqu(-kclm) l:lo pe(ll):|

q(zl:n | wl:n)
- Po\Ti, Z1:n .

= E{zimatlz), [Z log q((zwl))} (Independence of g | z:))
i=1 L

14
pe(xiazlzn)] 14

n
=) Eiglzayn_, | l0g
Zz; {zir~aClza)}y_y { q(zi | x;)

Leigo(xi;0).

I
NgEN

i=1

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse
process pg is conditioned on all 2., instead of a single token’s z;.

C Evidence Upper Bound for dLLMs

In this section, we provide the derivation of the evidence upper bound. Following the above section,
we start from the discrete time version of the diffusion models.

Lemma 1 (Rényi Variational Bound; [Rényi1 (1961); [Van Erven and Harremos| (2014)). Fix an
observation x. Let q(- | x) be any distribution on Z such that p(- |) < q(- | =), denoting that
p(- | z) is absolutely continuous with respect to q(- | z). Then, the following holds for any § > 1:

B
E.q(lo) [log Z(;ii))} <logp(x) < %ngM(.‘m) [(%)] : (15)

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the
following theorem.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule . For any 3 > 1 and a sequence of categorical variables
x1.,,, we have:

log mo(x1:n) < Leugo(®1:0;0), (16)

where

n T-1

1 o —«

Lrupo(T1:0;0) = 3 > log Y E.,, lw (2410 =m) - mp (@i | 2e41) | + C(T),
=1 t=1

a7
and C(T) := % logE., ;~q(|z) [q(zl:T | w)_”} is a constant independent of 6.

Proof. We first consider the case with a single categorical variable . On the account of LemmalT]
and following a similar argument as in equation for any 8 > 1, we can write

B
1 pe(x, 2)
logmg(x) < = logE, q(.1x <
(z) 3 q(-|z) q(z | x)
T-1 B
1 po(2t | ze41) >]
=—logE, ... _ (18)
B & Fmratie) [tl;[l <Q(zt | zt41,)
Note that the sequence z1.7 has a form {, ..., x, m, ..., m}. Define the transition event:
Ai ={zt = x,z¢11 = m} (19)

16

539 Then, by the law of total expectations, equation [T8]can be expressed as:

T-1 8
1 po(2t | z141)
E logE.. rnq(|2) [H (

=1 q(zt | zt41,)

1 T-1 T-1 Zs | Zs g
:Blog;P(At)Ez~q(-\m) lH (M) ‘At]

Q(zs | Zs4+1,

s=1
og H (== | >(p9(zﬁ:w|zw:m)>ﬁ]
=-—log 2y ~a(-lz zZ —m)q(z = | =z =m,x
,6 pot t+1 (1(|) t+1 1 t+1 q(zt =@ | Zt+1 = m,m)
1. = Qp — Qi1 g
=7 log Y gt Lz =)T s, e @ | #) (20)
t=1

s40 The penultimate line is due to the fact that conditioned on the event .4, the ratio %ﬁf%
541 to one for any s # ¢. The last line uses the formula for g. The indicator 1(z; = m) appears in the
s42 final expression because the terms in the bound are only non-trivial when the model must make a

s43 prediction from a corrupted state.

is equal

s44 Now we generalize the above to a sequence of categorical variables © = x;.,,. Similar as Equation (18]),
545 we have

T—1 n

B
log 7o (% 1.n) < BlogIEjz1 ra(c|z) { H H <pez“|zt+1)) }

th | Zt+1, T)

s46 The upper bound in the RHS can be further derived as

rT’—1 n

B
1 Do thzt+1)):|
—logE,, ;g |I|I<
B = q(|:c)_t“1 (216 | 2¢41,)

1 —n - be ytz | yt+1 P
:BIOgEzmew) q(z17 | @) H Z iz | 2) 1Yy = 217 H A A A A

1= ly t=1 yt1|yt+1’)
1:T
T—1 8

1 po(yi |yt+1

710gE21T~q(|w) ZIT|33 nH E y1T|w H (i

B P o \ai, |y @)

T-1 8

1 o (Y ; | yf+1
=_log IEZLTNQ(.@)[(z1.7 | @) "} (H E q(Yi.r |) H (“

B 1yt =1 ytz‘yt+1ﬂ)

1 L rt po(zti | zt41) A 1
ti | 241 n
=B logHEWq(-m)[H (Z)) }Wk’g&ww ja(zir |)]

=1 t=1 q(

1 — = po(zei | ze41) \’
:521ogEzlzT~q(.,w)[H <)) } +C(T) 1)
=1

=1 q(zei | zeq1,

sa7 Here, yi . are copies of z1.7 enforced to agree with z;.7 using the indicator 1(y%., = z1.7). C(T)
s48 is a constant independent of 6, and the first term in Equation (21)) can be derived similar to the single
549 variable case in Equation (20):

Lo T-1 po(zei | ze41) ’
EZlogEZLTNQHE) H (25 | z101, @)

=1 ‘I(th | Zt+1,$)

1 -y

a —
Z log Z E.,\imq) [LR Y (2400 = m) - (@ | ztm]
550 O

17

551
552
553

554

555
556
557

558
559

560

561

562

563

565
566

567

568
569
570

571
572

Furthermore, we can derive the continuous time version by omitting the constant term that does not
affect the gradient with respect to 0, and taking the limit of 7" — oo similar as the derivations for
Lo, as shown in Corollary [T}

Corollary 1. Taking the limit of T — oo, we have:

VeﬁEUBo(mlzn; 9) = Vo (EEUBO(ml:n§ 9) + C(T)) = VGEEUBo(wlm; e)a where

. 1 & 5 (22)
EEUBO(-'Bl:nQ 0) = B ZIOgEtzt {w(t) .]l(zm = m) ~7'r0 (.’1}7 | Zt) .
i=1

One caveat of the above /::EUBO is that the log is outside of the expectation, which in general makes
Monte Carlo sample estimates biased. One could certainly further loosen the bound using the
inequality logz < z — 1:

1 n
Leuso(®) < 5 > Eeoufo1],2i~q [w(t) Lz =m) 7y (@ | zt)] - % (23)
=1

But in practice we found this results in much worse performance, as demonstrated in Table
potentially due to the much larger gap between EUBO and likelihood.

D Additional Analysis on Upper and Lower Bounds

D.1 Proof of Proposition|[l]

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let
pp = w(t,zt)ﬂg(wi | z¢,¢)/E w(t,zt)ﬂg(wi | Zuc)}’

where w(t, z;) == w(t)1(z; = m). Then, the gradient of mixture objective (8) is given by

Guk = (1 —w)w(t, z) +wpg) Og, log me(x | 2¢, C). (24)

If Var((ps — w(t, z¢))0e, log me(x | 2¢,¢)) > 0, then Varlg,, | is a strictly convex quadratic in w
and thus admits a unique minimizer wy. Moreover,

Var[gwi,k] < min{ Var[go. k] Var[ng]},

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example ;.
The gradient of the Lg; o and Lg o are given by:

V0£ELBO =K [w(t, zt)V log 7T'9(1,‘i ‘ Zt, C)] (25)
~ E [w(tazt)ﬂ-g(wi | zt7c)v10gﬂ-9($i ‘ zt7c):|
Ve Lruso = 5 (26)
E [w(t,zt)we (z; | zt,c)]
Then the gradient of the mixture objective Loy is given by:
Volwmix = E K(l —w)w(t, z) + wpg)Vg log me(x; | 2t, c)] (27)

We further compute the per-parameter (per-dimension) variance of the gradient of Ly and consider
the optimal mixture coefficient w to minimize the variance. For simplicity, we use the following
short-hand notation:

s = Og,, logme(x; | 24, €)

We denote the k-th coordinate of the gradient VgﬁMix by gu, k- Then, the coordinate-wise variance of
the gradient is given by

Var[g%k] = E[((l —w)w + wpg)Q si} - (E[((l —w)w + wpﬁ) sk])g

= Var(wsg) + 2w Cov(wsg, (pg — w)sk) + w? Var((ps — w)si)

18

573
574

575

576
577

578
579

580
581

582

583

584
585
586

587

588
589

590
591

593

where we used the shorthand w = w(t, z¢). The above expression is quadratic in w and we find the
optimal w by setting the derivative of variance to zero:

% Var[g%k.] =2 Cov(w Sk, (pg —w) sk) + 2w Var((p,g —w) sk) =0
Cov(w sk, (pg —w) sg)
Var((pg — w) si)

The above yields a per-coordinate optimal wj. Equivalently, we can write wj;, as follows:

= wp = —

Var(w sk) - Cov(w Sk, PB sk)

* _
Wk = Var(w sk) + Var(pﬁ sk) -2 Cov(w Sk, PB sk)

Furthermore, wj, is a minimizer of coordinate-wise variance in the non-degenerative case with
Var((ps — w) si;) > 0, as the variance is strongly convex in w.

The coordinate-wise variance of gradients in Lg; go (w = 0) and ﬁELBO (w = 1), and the optimal
mixture coefficient w* are then given by

Lego : Var[gox| = Var|w sg],
Lo : Var (91,1] = Var[w si,| +2 Cov(wsy, (pg —w) si) + Var((ps — w) si),
2
(Cov(w sk, (pg —w) Sk))
Var((pg — w) si) ’

The difference between the variance of Lg;po and EELBO with the optimal mixture coefficient can
then be derived as follows:

Optimal: Var[g.:] = Var[w si| —

2
(Cov(w Sk, (pg —w) sk)>
Var((pg — w) si,)
(Cov(w Sk, (pg —w) si) + Var((ps — w) sk)) -
Var((ps — w) si) -

Var[w sk] — Var [gw;’k] = >0

Var [pg sk] — Var [gwi’k] =

D.2 Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score
function Vg log mg(; | z¢, ¢) in the gradient in the case of the mixture objective (i.e., Vg Lymix in
Equation (27)) over using only the lower bound (i.e., Vg Lg1go in Equation (23)):
wg (z; | 2, €)

E [w(t,zt)wg(wi | zt,c)}

wwix (1 —w)w(t, z;) +wpg

WELBO w(t, z¢)

(1-w)4w

Treating the expectation over all samples E [w(t, zt)wg (; | 2¢, c)} as a constant (since it is averaged),

the second term in the above ratio is strictly increasing in wg (x; | z¢,¢). This realizes a confidence-
aware weighting: uncertain tokens with small 775 (x; | 2, €), i.e., those with a low recovery chance,

have a smaller weight, while confident tokens with large ﬂg (x; | z:, c) are upweighted, with sharpness
being controlled by parameter (5 and the blend by w.

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function
in the gradient of upper bound (i.e., Vg Lgupo in Equation) over the mixture gradient:

WEUBO wpp

WMix (1 —w)w(t, zt) +wpp

19

594

595
596
597
598
599

600
601
602
603
604

605

606
607
608

609
610

611
612

613

GSM8K Math500 Countdown Sudoku

1.5
3 3 2.0

£

2o 1.0 2 15

° 1.0
0.5

o! W 1 05
0.0 04 0.0

1000 2000 3000 0 1000 2000 3000 O 2000 4000 6000 O 1000 2000
Steps Steps Steps Steps
SPG w/ ELBO —— SPG w/ EUBO —— SPG w/ Mixture

Figure 7: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

Considering the above ratio, when 7796 (x; | z,) is very small, the coefficient of score function in

Vo LEuBo, WEUBO, becomes very small, preventing updates to the parameters. However, the mixing
approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other
words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously
floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to
large EUBO weights.

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,
we plot the gradient norm of each model trained with different log-likelihood estimation methods for
negative advantage traces in Figure[/| When using the mixture objective, the model has consistently
smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.

D.3 Toy Example for Upper and Lower Bounds.

In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of
the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for
optimization based on the optimization direction.

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., € = [x1, T2]
and V = {A, B}. Then, We can calculate Lg; go and Lgygo in closed form:

1
Leigo(@ = AA) = [log mo(x1 = A | MA) + log e (21 = A | MM) (28)

+logmo(zs = A | AM) + log Te(22 = A | MM)} (29)
. 1 (1 = A | MA) + 75 (x; = A | MM
‘CEUBO(a’:AA) — 710g(9(1 |) H(1 |)) (30)

B 2
B _ 6 _
—i—%lo (ﬂe(mg—A|AM)—|2—7r9(:I:2—A\MM)) 31

For simplicity, denote a := mg(x1 = A | MA) and b := mg(x1 = A | MM), and consider the of the
likelihood of the first token x;. We have

1
Leipo(x1) = 5(105%‘1 +logb) (32)
~ 1 B + bﬁ
LEUBO(wl) = BIOg (a 5) (33)

Take the partial gradient with respect to a and b respectively,
OLgso(x1) 1 OLppo(x1) 1

da 2a b 2 G4
OLguso(®1) a1 ~ OLgupo(T1) b1 (35)
da dP b8’ Ob RN

20

614
615

616

617
618
619
620
621
622

623
624
625

626

627

628
629
630
631

632
633
634

635

636

637
638

639

Therefore, for EEUBO, the gradient direction is dominated by the larger one between a and b, while
for Lg1 o, the gradient direction is dominated by the smaller one. Such property is illustrated in the

landscapes of —Lg go and —Lrupo for a,be (0,1)in Figure

—LEBO —LEyuBo

Figure 8: Landscapes of —Lg o and —ENEUBO for0 < a,b < 1. —/jEUBo is flatter among low
value regions while sharper among high value regions, making it more suitable for log-likelihood
minimization; vice versa for —Lgi go.

When x = AA has negative advantage, the corresponding Lg; go and Lgygo are minimized. For
Lg1 B0, the model benefits more from further decreasing the smaller one between probabilities a
and b. In the extreme case, Lg go = —oo When either a or b equals to zero, leaving the other term
not sufficiently decreased. Instead, when using Lrypo for negative advantage traces, the larger one
between a and b is preferentially minimized, leading to a more balanced optimization that stably
decreases the log-likelihood.

Similarly, when = AA has positive advantage, the corresponding Lg; o and EEUBO are maximized.

Using L1 o enables effectively increasing the smaller likelihood, while Lgygo focuses on the larger
one, leading to a less efficient optimization.

E Additional Experimental Details

E.1 Datasets and Reward Functions

We follow the setting in D1 (Zhao et al., [2025) and WD1 (Tang et al., 2025), using the same reward
functions and train-test splitting, except for Sudoku. The rewards are designed to encourage both
correctness and proper formatting, with varying levels of granularity tailored for each task. For
completeness, we provide details as follows.

GSMS8K. We utilize the train split of the GSMSK dataselﬂ for RL training, and evaluate model
performance on the test split. We follow the Unsloth reward setuIﬂ utilizing five equally-weighted
additive components:

e XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents
after the closing tag.

* Soft Format Reward: +0.5 for outputs matching the pattern:
<reasoning>...</reasoning><answer>...</answer>

* Strict Format Reward: +0.5 for exact formatting with correct line breaks.

3https ://huggingface.co/datasets/openai/gsm8k
4https ://unsloth.ai/blog/rl-reasoning

21

https://huggingface.co/datasets/openai/gsm8k
https://unsloth.ai/blog/r1-reasoning

640

641

642

644
645
646

647

648
649
650
651
652

653

655
656
657
658

659
660
661
662
663
664

665

666

668
669
670
671
672

673
674
675
676
677
678

680
681
682
683

684

685

* Integer Answer Reward: +0.5 if the answer is a valid integer.
* Correctness Reward: +2.0 of the answer matches the ground truth.

MATHS00. We utilize the train split of the MATH dataseﬂ for RL training, and evaluate model
performance on the test split. We use a format reward and a correctness reward:

* Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside
them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but
\boxed is present; 0.25 if neither the answer tags nor \boxed is present.

* Correctness Reward: We award 2.00 if the answer in \boxed{} matches the ground truth.

Countdown. We utilize the train split of the Countdown datasetE] for RL training, restricting to
instances that use only three numbers. We evaluate on the same set of 256 synthetically generated
countdown questions with 3 numbers as in D1 (Zhao et al.| 2025). The reward covers three cases:
+1.0 if the expression reaches the target using the exact numbers; +0.1 if the numbers are correct but
does not reach the target; +0.0 otherwise.

Sudoku. We experiment on the 4x4 Sudoku datase generated by |Arel| (2025). The original
training split contains 1M unique Sudoku puzzles covering all 288 4 x4 Soduku solutions. To avoid
train-test leakage and potential cheating by memorizing all the solutions, we randomly select 200
solutions and include all puzzles corresponding to these solutions into the new training set, resulting
in 694,006 training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88
solutions to construct the test set, which has 256 Soduku puzzles in total.

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which
has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the
questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the
Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear
in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot
samples are provided in Appendix [E.3]

E.2 Hyperparameter Settings and Implementation Details

We follow D1 (Zhao et al.| 2025) for most hyperparameter settings. We employ Low-Rank Adaptation
(LoRA) with a rank of » = 128 and scaling factor o« = 64. The training was conducted on 8 NVIDIA
A100-80G or NVIDIA H100-80G GPU, with the following hyperparameters: batch size of 6 per
GPU, and gradient accumulation steps of 2. We set the number of inner gradient update w as 4 for all
models. We use the AdamW optimizer (Loshchilov and Hutter, [2017)), with 8; = 0.9, 5 = 0.99,
weight decay of 0.1, learning rate of 3 x 10~°, and gradient clipping at 0.2. We utilize Flash Attention
2 (Dao}, 2023)and 4-bit quantization.

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-
based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for
Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g
as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since
the rollout stage dominates the training time, the average time per gradient update step for SPG is
similar to that of the other baselines.

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for
MATHS500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with
generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest
average accuracy over the three generation lengths, except for the ablations on inference strategies in
Table[T3] where we only evaluate on generation length 256.

E.3 Few-Shot Samples for Sudoku

Sample 1:

5https ://huggingface.co/datasets/ankner/math-500
6https ://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
7https ://github.com/Black-Phoenix/4x4-Sudoku-Dataset

22

https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

Question:

Solve the following Sudoku puzzle: 3014002020004130
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 3014

R2: 0020

R3:2000

R4:4130

Fill easy singles:

R1 missing 2 — R1C2=2.

R4 missing 2 — R4C4=2.

Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 — R3C4=1, R3C3=4.
R3 now missing 3 — R3C2=3.

Columnl missing 1 — R2C1=1.

Column2 missing 4 — R2C2=4.

Last cell R2C4=3.

Final grid:
R1:3214
R2: 1423
R3:2341
R4:4132
</reasoning>
<answer>
3214142323414132
css </answer>
687 Sample 2:

Question:

Solve the following Sudoku puzzle: 0000100420013142

Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 0000

R2: 1004

R3:2001

R4:3142

Fill easy singles:

Coll missing 4 — R1C1=4.

Col4 missing 3 — R1C4=3.

Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 — R1C2=2, R2C2=3.
R1C3=1.

R2 now missing 2 — R2C3=2.

Col2 missing 4 — R3C2=4, then R3C3=3.

Final grid:

R1: 4213

R2: 1324
R3:2431
R4:3142
</reasoning>
<answer>
4213132424313142
cas </answer>

689 Sample 3:

23

Question:

Solve the following Sudoku puzzle: 2001403002001420
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 2001

R2: 4030

R3: 0200

R4: 1420

Fill easy singles:

R1 missing 3,4; Col2 can’t be 1 so R1C2=3 — R1C3=4.
R4 missing 3 — R4C4=3.

Col4 missing 2,4; R2 must take 2 — R2C4=2 — R2C2=1.
Coll missing 3 — R3C1=3.

Col3 missing 1 — R3C3=1 — R3C4=4.

Final grid:

R1: 2341
R2:4132
R3:3214

R4: 1423
</reasoning>
<answer>
2341413232141423

e0 </answer>

ot F Additional Results

62 F.1 Additional Evaluations to the Main Results

693 Complete evaluation results. We provide the complete evaluation results, along with those reported
694 1in D1 (Zhao et al.,|2025) and WD1 (Tang et al., 2025), in Table|4} Our reproduced numbers closely
695 match the reported results. d1-LLaDA (Zhao et al.|[2025) denotes the model that conducts first SFT
696 and then RL (using D1). All other models are trained solely with RL. In D1 and d1-LLaDA, the best
697 result for each generation length is reported separately, whereas we select a single checkpoint with the
698 highest average accuracy across all three generation lengths, leading to slightly worse results than the
699 reported numbers. The reported results in WD1 are based on evaluations on fewer checkpoints, so
700 they are generally a bit lower than our reproduced values.

Table 4: Complete model performance on four reasoning benchmarks compared with baselines. We
provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 772 79.8 282 324 346 188 168 168 57 277 262
LLaDA-1.5 704 805 819 268 322 358 219 21.1 215 74 269 290
D1 (reported) 726 79.8 819 332 372 392 332 313 371 - - -
D1 (reproduced) 722 80.6 813 314 36.0 394 309 309 344 72 325 293
dI-LLaDA (reported) 73.2 81.1 82.1 338 38.6 402 348 320 422 - - -
WDI (reported) - 80.8 823 - 344 39.0 - 512 46.1 - - -
WDI (reproduced) 746 815 830 310 374 390 488 523 50.8 33.1 321 225
UniGRPO 749 825 827 324 374 394 445 430 570 590 67.0 629

SPG w/ EUBO (ours) 77.1 83.8 839 332 376 394 684 715 680 812 87.1 899
SPG w/ mixture (ours) 78.5 86.1 84.5 334 400 418 688 70.7 703 829 94.0 93.1

701 Dynamics of Completion Length. We provide the dynamics of the effective sequence length of
702 SPG during RL training in Figure[0] We also report the effective length of the best checkpoint in
703 Table[5] SPG leads to effective usage of the total given length and good adaptation to task difficulties.

24

704

705
706
707

708
709

710
71

GSM8K MATH500 Countdown Sudoku

250

250 256
3240 ~ 200

L2220 240 255
150

> 200 254
B 230 100

30:)180 s 253

W e 220
0 252
0 2000 4000 6000 0 1000 2000 3000 4000 0 2000 4000 6000 0 500 1000 1500 2000 2500
Steps Steps Steps Steps
D1 WD1 —— UniGRPO —— SPG (ours)

Figure 9: Dynamics of the effective generation length of SPG during RL training, compared with D1,
WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report mean
and standard deviation over a rolling window of 50 steps.

Table 5: Effective sequence length of each model at the best checkpoint corresponding to Table on
four reasoning benchmarks.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model /Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448

LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 84 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249

SPG w/ mixture 108 176 195 121 229 384 75 78 79 115 239 491

F.2 Additional Ablation Results

In this section, we provide the complete results for each generation length and task in supplement
to Section F.2] We also include additional ablation studies on the looser upper bound, different
log-likelihood estimation methods for positive advantage traces, and Pass@K performance.

Ablations on Algorithm Components. We provide the complete results for ablations on log-
likelihood estimation methods in Table[6|and for ablations on masking strategies in Table[7]

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined. SPG w/ Mixture consistently outperforms other
likelihood estimation methods.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Awg.

SPG wo/ neg 720 790 813 774 282 322 37.8 327 438 481 445 455 550 829 684 688
SPG w/ ELBO 75.6 828 844 809 358 376 388 374 668 660 684 671 738 894 841 824
SPGw/EUBO 77.1 838 839 81.6 332 376 394 367 684 715 680 693 812 871 899 86.1
SPG w/ Mixture 785 86.1 845 83.0 334 400 418 384 688 707 703 69.9 829 940 931 90.0

Table 7: Ablations on the masking strategies in Monte Carlo estimation. Our block-wise masking
strategy leads to consistent improvement to random masking on both benchmarks.
MATHS500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO random 334 354 414 367 426 410 527 454
block-wise 33.2 37.6 394 367 684 715 68.0 69.3

SPG w/ Mixture random 338 382 388 369 523 645 715 628
block-wise 33.4 40.0 418 384 688 70.7 703 69.9

Ablations on Key Hyperparameters /5 and w. We provide the complete results for ablations on 3
in Table[8] and for ablations on w in Table

25

712
713
714
715
716
717

718
719
720
721

722
723
724
725
726
727
728
729

730
731
732
733
734

Table 8: Ablations on the value of 3 in the upper bound.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model B 128 256 512 Avg 128 256 512 Avg. 128 256 512 Awg. 128 256 512 Aug

050 777 832 845 818 328 364 412 368 71.1 688 746 715 647 534 574 585
075 772 839 845 819 31.0 366 400 359 707 707 707 70.7 634 657 454 582

SPGw/EUBO 1.00 765 839 83.6 813 31.0 374 388 357 660 668 664 664 812 871 899 86.1
1.50 77.1 838 839 816 332 376 394 367 695 645 664 668 327 405 399 377
200 765 839 832 812 324 368 382 358 684 715 680 693 281 319 280 293

1.00 78.8 856 849 831 340 402 392 378 699 695 703 699 829 940 931 90.0
SPG w/ Mixture 1.50 78.5 86.1 845 83.1 334 400 418 384 688 70.7 703 699 832 860 84.6 846
200 788 857 847 831 324 388 398 370 703 69.1 695 69.6 443 605 60.7 552

Table 9: Ablations on the mixture coefficient w on MATH500 and Countdown.

SPG w/ Mixture MATHS500 (0-shot) Countdown (0-shot)

w 128 256 512 Avg. 128 256 512 Avg.
0.00 358 37.6 388 374 668 660 684 67.1
0.25 346 376 422 381 715 68.0 672 689
0.50 334 40.0 418 384 688 70.7 703 699
0.75 342 386 412 38.0 695 69.1 742 709
1.00 332 37.6 394 367 695 645 664 66.8

Ablations on Inference Strategies. We provide complete results for ablations on different inference
strategies in Table Note that the reported numbers of each method for “Semi-AR, Block=32,
Confidence” is in general slightly higher than the results in Table[Tjunder the same inference setting.
This is because in Table we select best checkpoint specifically for generation length 256 to
maintain consistency with other inference settings, while in Table[T] we choose the checkpoint with
the highest average accuracy across generation lengths 128, 256, and 512.

Ablations on the Looser Upper Bound. As mentioned in Section[3.2]and Appendix[C} a looser
but unbiased bound can be derived using inequalities like log(x) < @ — 1, i.e., L1 o0se (Equation).
However, as shown in Table[I0} this looser bound performs worse empirically than the tighter upper

bound Lryupo we used, possibly due to a larger discrepancy from the true log-likelihood.

Table 10: Ablations on the looser upper bound. The loose bound performs worse than the tighter

upper bound we used, indicating inferior performance due to a larger discrepancy from the true
log-likelihood.

SPG w/ EUBO MATHS500 (0-shot) Countdown (0-shot)

8 Upper Bound 128 256 512 Avg. 128 256 512 Avg.

1.0 L:ILOO;E 294 354 394 347 438 652 648 579
Lruso 31.0 374 388 357 660 668 664 664

1.5 L:Loosc 29.8 31.8 38.8 335 469 547 570 529
Lruso 332 37.6 394 367 695 645 664 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always
using Lg; go for positive advantage traces, we experiment on MATHS500 and Countdown benchmarks
using both Leuso and Ly, for positive advantage traces. Correspondingly, we use w = 0.5 and the
best performed [as previously discussed for negative advantage traces. For the positive advantage
traces, we always use the tightest 5 = 1.0 for both Lgypo and Lygix. The results are shown in Table
indicating that using the upper bound for likelihood estimation of positive advantage traces performs
worse than using Lgp go. This aligns well with our theoretical insights that the lower bound is a better
objective for log-likelihood maximization.

Ablations on Pass@K Performance. In all previous experiments, we apply greedy sampling
by setting temperature as 0.0 following D1 and LLaDA. However, beyond accuracy, it is essential
for models to generate a diverse set of outputs that can cover the correct solution and allow for
explorations. In this section, we investigate the models’ ability to generate diverse outputs using a
higher temperature, and evaluate their Pass@K performance on MATHS500 and Countdown, as shown

26

735
736
737

739
740
741
742

Table 11: Ablations on log-likelihood estimation for positive advantage traces. Using the upper bound
for log-likelihood estimation of positive advantage traces perform worse than using the lower bound.

Positive traces MATHS500 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.
SPG w/EUBO Lgugo (8 = 1.0) 344 362 392 36.6 48.1 467 50.8 485

LELBO 332 376 394 367 684 715 680 69.3
SPG w/ Mixture Lyix (8 =1.0,w=0.5) 354 384 390 376 69.1 684 703 693

LELBO 334 40.0 418 384 688 70.7 703 69.9

in Table[I2] Specifically, we set temperature to 0.9 and generation length to 256, conduct evaluations
every 100 steps, and report results from the checkpoint with the highest accuracy. For comparison,
we also include results from greedy sampling, denoted as Pass @ 1Greedy. As expected, increasing the
temperature leads to a decrease in Pass@1 performance across all models, aligning with observations
from previous work. For K>1, the Pass@K scores improve for all models as K increases from 1 to 4.
SPG achieves the best performance across all settings, with SPG w/ Mixture reaching 55.6% Pass@4
accuracy on MATHS500 and 76.6% on Countdown, demonstrating the ability of SPG to generate
diverse outputs that can recover the correct solution.

Table 12: Pass@K performance of each model on MATHS500 and Countdown. We set temperature
as 0.9 and report results of the best checkpoint of each case at a generation length of 256. For
comparison, we also include the greedy sampling performance, i.e., Pass @ 1Greedy. The best results
are bolded and the second best are underlined.

MATHS00 (0-shot) Countdown (0-shot)
Model Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4 Pass@1Greedy Pass@1l Pass@2 Pass@3 Pass@4
LLaDA-8B-Instruct 324 31.5 40.9 45.7 48.8 16.8 15.8 28.1 37.7 453
LLaDA-1.5 32.2 32.6 422 47.4 50.4 21.1 18.2 32.1 42.5 50.0
D1 37.8 34.3 43.1 48.0 52.0 324 24.5 40.4 514 60.6
WDI1 38.6 36.0 449 49.9 53.6 54.7 443 60.6 68.0 73.1
UniGRPO 38.4 34.7 439 49.5 53.2 449 36.8 55.2 65.0 72.3
SPG w/ EUBO 38.0 34.4 443 49.9 54.0 71.5 68.2 71.9 739 76.6
SPG w/ mixture 40.0 36.5 46.0 51.2 55.6 71.1 67.5 72.5 75.1 76.6

27

Table 13: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSMS8K MATHS500 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 31.4 13.7 26.2 375
LLaDA-1.5 78.8 334 16.0 23.0 37.8
D1 79.7 37.2 27.0 31.4 43.8
Semi-AR, Block=16, Confidence =~WD1 82.3 374 53.9 36.8 52.6
UniGRPO 825 36.8 46.5 63.4 57.3
SPG w/ EUBO 84.7 374 70.3 822 687
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 324 16.8 27.1 38.5
LLaDA-1.5 80.5 322 21.1 26.9 40.2
D1 80.6 37.8 324 32.8 459
Semi-AR, Block=32, Confidence ~WD1 81.7 38.6 541 35.7 58.1
UniGRPO 82.6 38.4 44.9 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 332 27.3 32.6 429
LLaDA-1.5 81.0 354 20.3 36.4 433
D1 80.9 37.6 383 39.8 49.2
Semi-AR, Block=64, Confidence WDI1 82.5 374 52.3 41.8 535
UniGRPO 823 374 535 82.9 64.0
SPG w/ EUBO 843 374 69.5 88.8 70.0
SPG w/ Mixture 85.5 41.4 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 24.4 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
D1 69.7 274 18.4 29.9 364
Semi-AR, Block=32, Random WD1 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 414 60.1 51.0
SPG w/ EUBO 74.1 314 42.6 72.6 55.2
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 239 17.8 0.0 68.3 27.5
LLaDA-1.5 414 20.4 0.0 67.9 32.4
D1 57.5 22.6 0.0 72.3 38.1
Full Sequence, Confidence WD1 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 242 8.2 95.6 445
SPG w/ EUBO 543 234 63.3 88.9 575
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2
LLaDA-8B-Instruct 52.7 17.8 133 27.1 27.7
LLaDA-1.5 535 19.8 13.7 28.0 28.8
D1 53.0 22.6 28.5 31.8 34.0
Full Sequence, Random WD1 54.6 234 434 30.0 37.9
UniGRPO 57.6 22.6 471 57.3 46.3
SPG w/ EUBO 58.5 25.2 56.6 713 529
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7

28

743

744
745
746
747
748

749

750

751

752

753

F.3 Qualitative Examples on GSMSK

We present qualitative examples for all models on GSMS8K, using a generation length of 256 and 128
diffusion steps. Incorrect reasoning steps or answers are highlighted in red and the correct answers are
highlighted in green. SPG leads to more concise and accurate reasoning compared to other models.
Note that the models may sometimes achieve the correct answer through flawed reasoning, while such
artifacts are expected to diminish with a stronger base model.

Model: LLaDA-8B-Instruct
Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: LLaDA-8B-Instruct
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 0.6 x 5 = 3 dollars.
We can break down the cost as follows:

* The first glass costs $5.

* The second glass costs $3.
* The third glass costs $5.

* The fourth glass costs $3.
* Andsoon...

We can see that the cost alternates between $5 and $3. Since Kylar wants to buy 16 glasses, we need
pair them up.

The first of each pair costs $5, and the second of each pair costs $3. Therefore, the cost of each pair
is 5 + 3 = 8 dollars.

Since there are 8§ pairs of glasses (16 glasses divided into pairs), the total cost is 8 x 8 = 64 dollars.
</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: LLaDA-8B-Instruct

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, 2 x 4 = 8. She also has three makeup sets with six colors each,
3 X 6 = 18. So, the total number of eyeshadow colors Amy initially has is: 8 + 18 = 26. Next, her
sister steals one of the palettes, which she loses completely. Therefore, the number of colors left
from the remaining palettes is: 8 — 4 = 4. Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: g = 3. Thus, the number of colors left from the
one makeup set is: 6 — 3 = 3. Adding, the total number of eyes leftis: 4 43 = 11.

</reasoning>

<answer>

</answer>

Model: D1

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: D1

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of

29

754

755

756

757

758

the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 5 x 0.6 = 3 dollars. We can break down the cost into two parts:

1. The cost of the first 8 glasses, each costing $5.
2. The cost of the next 8 glasses, each costing $3.

First, let’s calculate the cost of the first 8 glasses: 8 x 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses: 8 x 3 = 24 dollars.
Now, we add these two amounts together: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay $64 for them.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: D1

Answer:

Amy initially has two eyeshadow palettes with four colors each, so she has 2 x 4 = 8 colors from
the palettes. She also has three makeup sets with six colors each, so she has 3 x 6 = 18 colors from
the makeup sets. Her’s sister steals one of the palettes, so she now has 8 — 1 = 7 colors from the
palettes. Amy uses up half of the colors from one makeup set, so she uses g = 3 colors from that
set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets. Adding these to the remaining
palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.

</reasoning>

<answer>

</answer>

Model: WD1

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: WD1

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
full price and the discounted price glasses.

First, let’s calculate the cost of the first 8 glasses, which are sold at the full price of $5 each:
8 x 5 = 40 dollars.

Next, let’s calculate the cost of the next 8 glasses, which are sold at 60% of the full price.

Since 60% of $5 is: 0.6 x 5 = 3 dollars. So, the cost for the next 8 glasses is: 8 x 3 = 24 dollars.
Now, we add the cost of the first 8 glasses and the cost of the next 8 glasses: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay .

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: WDI1

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each: 2 x 4 = 8. Additionally, she has three makeup sets with six colors
each: 3 x 6 = 18. So, together, she has: 8 4+ 18 = 26. Next, her sister steals one of the palettes,
which she loses 4 colors: 26 — 4 = 22. Then, Amy uses up half of the colors from one makeup set.

30

759

761

762

763

764

Each makeup set has six colors, so half of that is: g = 3. Thus, she uses 3 colors from one makeup
set, leaving: 6 — 3 = 3 colors in that makeup set.

Finally, we add the remaining colors from the makeup set to the remaining colors: 22 + 3 = 25.
</reasoning>

<answer>

</answer>

Model: UniGRPO

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: UniGRPO

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
regular glasses and the discounted glasses. A regular glass costs $5, and every second glass costs
60% of that price, which is 5 x 0.6 = 3.

Since Kylar will buy 16 glasses, he will have 8 regular glasses and 8 discounted glasses. The cost of
8 regular glasses is 8 x 5 = 40 dollars. The cost of 8 discounted glasses is 8 x 3 = 24 dollars.
Therefore, the total cost for 16 glasses is 40 + 24 = 64 dollars.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: UniGRPO

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 x 4 = § colors from the palettes. She also has three
makeup sets with six colors each, so she has 3 x 6 = 18 colors from the makeup sets. Adding these
together gives her initially 8 4 18 = 26 eyeshadow colors. Next, her sister steals one of the palettes,
so she now has 8 — 4 = 14 colors from the palettes. She then uses up half of the colors from one
makeup set. Since she used one makeup set, containing six colors, she used g = 3 colors from that
set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets.

Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14 + 15 = 29
eyeshadow colors left.

</reasoning>

<answer>

</answer>

Model: SPG w/ EUBO

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: SPG w/ EUBO

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost structure of
the glasses. The first glass costs $5, and every second glass costs 60% of the price of the first glass.
Therefore, the cost of each second glass is 5.0 x 0.6 = 3.0 dollars.

Kylar wants to buy 16 glasses, which means he will have § pairs of glasses. Each pair consists of one
first glass and one second glass. The cost of one pair is: 5.0 4+ 3.0 = 8.0 dollars. Since there are 8

pairs, the total cost is: 8 x 8.0 = 64.0 dollars. Thus, Kylar needs to pay dollars for 16 glasses.
</reasoning>
<answer>

31

765

766

767

768

769

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ EUBO

Answer:

First, let’s calculate the total number of eyeshadow colors Amy initially has:

 She has two eyeshadow palettes with four colors each: 2 x 4 = 8 colors.
* She has three makeup sets with six colors each: 3 x 6 = 18 colors.
* Adding these together gives: 8 + 18 = 2
Next, we account for the changes:
 Her sister steals one palette, so she loses 4 colors: 26 — 4 = 22
* Amy uses up half of the colors from one makeup set, which is g = Jcolors: 22 —3 =19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>

<answer>

</answer>

Model: SPG w/ Mixture

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: SPG w/ Mixture

Answer:

1. The first glass costs $5.

2. Every second glass costs 60% of $5, which is 0.6 x 5 = 3 dollars.

3. Kylar wants to buy 16 glasses, so he will have 8 full-priced glasses and 8 discounted
glasses.

4. The cost for 8 full-priced glasses is 8 x 5 = 40 dollars.

5. The cost for 8 discounted glasses is 8 x 3 = 24 dollars.

6. Adding these the total cost is 40 + 24 = 64 dollars.

</reasoning>
<answer>
</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ Mixture

Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2 x 4 = 8 colors

2. She also has three makeup sets with six colors each: 3 x 6 = 18 colors
3. Adding these together gives gives: 8 + 18 = 26 colors
4. Her sister steals one palette, so she loses: 4 colors
5. Amy uses up half of the colors from one makeup set: g = 3 colors
6. Subtracting these lost and used colors: 26 — 4 — 3 = 19 colors
</reasoning>
<answer>

32

770

</answer>

33

	Introduction
	Background
	Masked Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Sandwiched Policy Gradient with Evidence Bounds
	A Lower Bound Objective for Policy Optimization
	A Tractable Evidence Upper Bound
	Practical Considerations

	Experiments
	Experimental Setup and Main Results
	Ablations and Further Analysis

	Conclusion
	Related Work
	Basics of dLLMs
	Evidence Upper Bound for dLLMs
	Additional Analysis on Upper and Lower Bounds
	Proof of prop:mixture
	Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds
	Toy Example for Upper and Lower Bounds.

	Additional Experimental Details
	Datasets and Reward Functions
	Hyperparameter Settings and Implementation Details
	Few-Shot Samples for Sudoku

	Additional Results
	Additional Evaluations to the Main Results
	Additional Ablation Results
	Qualitative Examples on GSM8K

