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Abstract

Diffusion large language models (dLLMs) are emerging as an efficient alternative1

to autoregressive models due to their ability to decode multiple tokens in parallel.2

However, aligning dLLMs with human preferences or task-specific rewards via3

reinforcement learning (RL) is challenging because their intractable log-likelihood4

precludes the direct application of standard policy gradient methods. While prior5

work uses surrogates like the evidence lower bound (ELBO), these one-sided6

approximations can introduce significant policy gradient bias. To address this, we7

propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a8

lower bound of the true log-likelihood. Experiments show that SPG significantly9

outperforms baselines based on ELBO or one-step estimation. Specifically, SPG10

improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in11

GSM8K, 2.6% in MATH500, 18.4% in Countdown and 27.0% in Sudoku.12
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Figure 1: Test accuracy of SPG and baseline methods on four mathematical and logical reasoning
benchmarks. All methods are evaluated with a generation length of 256 in 128 denoising steps. Full
results are provided in Table 1.

1 Introduction13

Diffusion models, originally pioneered for high-fidelity image generation (Song et al., 2020; Ho et al.,14

2020), have recently emerged as a powerful and efficient paradigm for text generation (Austin et al.,15

2021; Campbell et al., 2022; Sun et al., 2022; Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024).16

These models operate in a discrete space but share architectural similarities with their continuous17

counterparts (Peebles and Xie, 2023). They employ a fixed noising process that progressively corrupts18

text data, while a neural network is trained to learn the reverse, denoising process. For instance,19

Masked Diffusion Language Model (MDLM) (Sahoo et al., 2024) uses random masking as its20

forward noising process and optimizes an Evidence Lower Bound (ELBO) of the log-likelihood. This21

ELBO-based objective has been widely adopted by subsequent large-scale diffusion language models22

(dLLMs), including LLaDA (Nie et al., 2025) and DREAM (Gong et al., 2024).23
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Figure 2: The training process of SPG for MDLM. Left: From a prompt c, we generate responses
{xj}gj=1. We then maximize a lower bound on the likelihood πθ(x

j | c) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence of
length 9 with a block size of 3, where the current generation block is highlighted in yellow.

A key advantage of dLLMs over their autoregressive (AR) counterparts is their ability to decode24

multiple tokens in parallel. This parallelism can significantly reduce inference latency, making it an25

attractive alternative for scalable language modeling (Wang et al., 2025a; Labs et al., 2025).26

Aligning large language models with human preferences (Ouyang et al., 2022) or task-specific27

rewards (e.g., inducing reasoning behavior) (Shao et al., 2024; Guo et al., 2025) typically requires28

a post-training stage of reinforcement learning (RL). However, applying RL to dLLMs remains29

underexplored. A principal challenge is the computationally intractable log-likelihood of dLLMs,30

which is essential for accurate policy gradient estimation. To circumvent this, recent works (Zhao31

et al., 2025; Yang et al., 2025; Zhu et al., 2025; Tang et al., 2025) adapt standard RL and preference32

optimization algorithms, such as GRPO (Shao et al., 2024) and DPO (Rafailov et al., 2023), by using33

the ELBO or a one-step estimation as a surrogate for the true likelihood. While straightforward, this34

approximation leads to misaligned policy gradients, and potential suboptimal performance.35

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel reinforcement36

learning algorithm for diffusion language models that computes a more robust and less biased policy37

gradient. As illustrated in Figure 2, our core idea is to “sandwich” the intractable log-likelihood of38

a generated sequence: we maximize a tractable lower bound for positive-reward sequences while39

minimizing an upper bound for negative-reward ones. To ensure a stable estimation of these bounds,40

we also propose a block-wise masking strategy that better aligns data distributions during policy41

rollout and optimization. SPG achieves state-of-the-art performance on four mathematical and logical42

reasoning benchmarks, improving accuracy by up to 3.6% on GSM8K, 2.6% on MATH500, 18.4%43

on Countdown, and 27.0% on Sudoku compared to the state-of-the-art RL algorithms for diffusion44

language models.45

In summary, our main contributions are:46

• A new policy gradient algorithm, SPG, which reduces bias by optimizing sandwiched variational47

bounds based on reward.48

• A block-wise masking technique that improves the stability of the training objective’s estimation.49

• State-of-the-art results among RL algorithms for diffusion language models on four reasoning50

benchmarks, demonstrating the effectiveness of our approach.51

2 Background52

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and53

reinforcement learning for text diffusion models.54

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences55

by x1:n. [k] represents {1, . . . , k}. Cat(x | p) is the categorical distribution over x with probabilities56

p, and U [a, b] denotes the uniform distribution in [a, b]. Throughout the paper, we use i ∈ [n] for57

position of the token, j ∈ [g] for a sequence in a group of rollouts, and t for the diffusion timestep.58

For discrete time processes, t ∈ [T ], while for continuous-time Markov chains, t ∈ [0, 1].59
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2.1 Masked Diffusion Language Models60

Diffusion models for language learn to generate text by reversing a gradual noising process. Specifically,61

Masked Diffusion Language Models (MDLMs) (Sahoo et al., 2024) start with clean text x1:n and62

corrupt it into zt ≡ zt,1:n over a continuous timestep t ∈ [0, 1] by progressively replacing tokens63

with a special [mask] token. At t = 0, the data is original (z0 = x), while at t = 1, the sequence64

is fully masked (z1 is all [mask] tokens). Each token is corrupted independently according to the65

forward transition kernel:66

qt|0(zt,i | xi) = Cat
(
zt,i | αtxi + (1− αt)m

)
, (1)

where m is the one-hot representation of the [mask] token. The noise schedule, αt ∈ [0, 1], is a67

strictly decreasing function, such as the linear schedule αt = 1− t, with α0 = 1 and α1 = 0.68

In the reverse process, a neural network, which we denote as the policy πθ , is then trained to perform69

the reverse process: predicting the original tokens x from a corrupted version zt. The transition from70

zt to zs (s < t) is parameterized with πθ as follows:71

pθ(zs | zt) = q (zs | zt,x = πθ(· | zt)) =

{
Cat(zs; zt), zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)πθ(·|zt)
1−αt

)
, zt = m.

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of72

each clean sequence x ∼ pdata, which simplifies to the following objective:73

LELBO(x;θ) = Et,zt

[ n∑
i=1

w(t) · 1(zt,i = m) · log πθ(xi | zt)
]
, (2)

where w(t) = α′
t/(αt − 1) is a time-dependent loss weight, and the expectation is over a random74

timestep t ∼ U [0, 1] and the corrupted sequence zt ∼ qt|0(· | x). In essence, this objective trains75

the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more76

comprehensive overview of MDLM, please refer to Appendix B and Sahoo et al. (2024).77

2.2 Reinforcement Learning for Diffusion Language Models78

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as79

a policy πθ that generates a response x to a prompt c. A reward function R(c,x) provides a80

scalar score for the response, and the training goal is to update θ to maximize the expected reward:81

J (θ) := Ex∼πθ(·|c)[R(c,x)]. This objective is commonly optimized using policy gradient methods,82

which rely on the following gradient estimator.83

∇θJ (θ) = Ex∼πθ(·|c)

[
R(c,x)∇θ log πθ(x | c)

]
. (3)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the84

policy’s log-likelihood, log πθ(x | c), is intractable and cannot be computed directly. To overcome85

this, prior work (Zhu et al., 2025; Yang et al., 2025) approximates this term using its ELBO, effectively86

replacing log πθ(x | c) with a score derived from the pre-training objective in Equation (2).87

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the88

true log-likelihood (ELBO ≤ log πθ). Consequently, the RL objective is only a valid lower bound on89

the true expected reward if all rewards R(c,x) are non-negative. This constraint prevents the model90

from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible91

with advanced RL algorithms that use relative or negative rewards (Shao et al., 2024), biasing the92

final policy. Our work aims to resolve this limitation.93

3 Sandwiched Policy Gradient with Evidence Bounds94

We introduce SPG, a novel policy gradient algorithm designed for masked diffusion language models95

(Algorithm 1). Our method aims to address a critical issue in applying reinforcement learning to96

dLLMs by creating a valid optimization objective based on tractable bounds of the model’s evidence.97

3



Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs
Require: prompt distribution D, number of completions per prompt g, number of inner updates µ,

forward process q, number of Monte Carlo samples m, initial policy π0, learning rate ϵ.
1: Initialize πθ ← π0

2: while not converged do
3: Sample a prompt c ∼ D, then g completions {xj ∼ πθ(· | c)}gj=1

4: ∀j ∈ [g], compute reward R(c,xj) and advantage Aj(xj , c)
5: for gradient update iterations {1, . . . , µ} do
6: ∀j ∈ [g], generate m perturbed samples {zj

tτ }
m
τ=1 ∼ q(· | xj)

7: Compute the sandwiched policy gradient ∇JSPG(θ) where:

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjL̃EUBO(x
j | c;θ)

)]
,

8: and LELBO, L̃EUBO are estimated from {zj
tτ }

m
τ=1, using Equation 2 and 7.

9: Perform gradient update: θ ← θ + ϵ∇JSPG(θ)

10: return πθ

3.1 A Lower Bound Objective for Policy Optimization98

Our approach is based on group relative policy optimization (Shao et al., 2024; Liu et al., 2025b). For99

a given prompt c, we generate a group of g responses {xj}gj=1 from the policy πθ . We then compute100

the advantage Aj(c,xj) := R(c,xj)− 1
g

∑g
ȷ=1 R(c,xȷ). Moreover, we transform the conventional101

policy optimization objective as an advantage-weighted log-likelihood objective, for reasons that will102

be clear later:103

J group(θ) = Ec,{xj}∼πsg[θ]

[
1

g

g∑
j=1

Aj(xj , c) log πθ(x
j | c)

]
, (4)

where sg[θ] indicates that gradients are not computed for the policy that generates the samples. This104

objective encourages generations with positive advantages (Aj > 0) and discourages those with105

negative advantages (Aj < 0).106

For dLLMs, the log-likelihood log πθ is intractable. A common surrogate is the evidence lower bound107

(ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood, minimizing108

the ELBO for negatively-rewarded samples does not guarantee a reduction in the true log-likelihood.109

To address this, we propose a sandwiched objective. For samples with positive advantages, we110

maximize the ELBO. For samples with negative advantages, we instead minimize a tractable evidence111

upper bound (EUBO), LEUBO. This creates a true lower bound for the original objective:112

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjLEUBO(x
j | c;θ)

) ]
, (5)

where the expectation is take with respect to c, {xj} ∼ πsg[θ]. Since LELBO ≤ log πθ ≤ LEUBO, it113

follows that JSPG(θ) ≤ J group(θ). Maximizing this tractable bound therefore serves as a valid proxy114

for optimizing the true objective.115

3.2 A Tractable Evidence Upper Bound116

To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require a117

tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.118

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process119

has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence x1:n, we have:120

LEUBO(x1:n;θ) =
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
·1(zt+1,i = m) ·πβ

θ (xi | zt+1)

]
+C(T ), (6)
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where C(T ) := 1
β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.121

Here, β ≥ 1 is a hyperparameter that controls the tightness of the bound, with values closer to 1122

yielding a tighter bound. The expectation is taken over the timestep t ∼ U [0, 1] and the noised latent123

zt ∼ qt|0(· | x).124

Corollary 1. Taking the limit of T →∞, we have:125

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T )

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(7)

126

In practice, we estimate L̃EUBO using Monte Carlo sampling and plug it in Equation 5 in place of127

LEUBO. The proof and theoretical analysis are provided in Appendix C.128

Remark. A key structural difference from LELBO is that the logarithm in LEUBO (Equation (6))129

appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the130

concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate131

of the true EUBO. While it is possible to derive a looser but unbiased bound using inequalities132

like log(x) ≤ x − 1, we found this approach empirically worse by widening the gap to the true133

log-likelihood, as shown in Table 10. We therefore retain the tighter, albeit slightly biased, formulation.134

3.3 Practical Considerations135

Block-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate LELBO136

and L̃EUBO in Equation (5) via Monte Carlo sampling: for each xj , we randomly sample m timesteps137

{tτ}mτ=1 and generate the corresponding partially masked samples {zj
tτ }

m
τ=1 ∼ q(· | xj). One138

straightforward approach as used in Yang et al. (2025) would be to apply random masking to139

clean sequences. However, recent dLLMs like LLaDA (Nie et al., 2025) employ a block-wise140

semi-autoregressive unmasking strategy during generation and achieve state-of-the-art performance141

over random unmasking. As a result, the policy rollout process actually encounters a much narrower142

and more structured set of partially masked sequences than with fully random masking.143

To better align data distributions during policy rollout and optimization, we adopt a block-wise144

masking strategy rather than random masking. As depicted in Figure 2, the sequence is divided into145

several blocks, and a random block is selected, with all preceding blocks left clean and all following146

blocks fully masked. Within the chosen block, tokens are randomly masked. Additionally, following147

D1 (Zhao et al., 2025), we lightly perturb the prompt and clean blocks by randomly masking tokens148

with a small probability pmask = 0.15 to enhance stability and generalization.149

Altogether, our block-wise masking strategy improves the stability of the objective’s estimation and the150

efficiency of policy optimization. While similar block-wise masking approaches have been explored151

in concurrent work for supervised fine-tuning or block diffusion models (Sun et al., 2025; Wang et al.,152

2025b), our focus is on RL for full-attention masked dLLMs. As shown in Figure 6, our models153

trained with block-wise masking generalize well to various inference strategies.154

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation of155

Equation (6) leads to a biased estimation to L̃EUBO and potentially requires a substantial number of156

samples to get reliable approximations, resulting in high computational costs and instability during157

training. To address these challenges, we use a mixture of L̃EUBO and LELBO as a more practical158

log-likelihood approximation for negative advantage traces:159

L̃Mix(x | c;θ) := ω · L̃EUBO(x | c;θ) + (1− ω) · LELBO(x | c;θ) (8)

where 0 ≤ ω ≤ 1 is a blend coefficient. Intuitively, the upper bound L̃EUBO sharpens the model160

decisions by applying a β-power adjustment to the original model output, acting as a strong correction161

signal for negative advantage traces. In contrast, the lower bound LELBO is easier and more stable to162

estimate with a small number of Monte Carlo samples, but it tends to introduce larger, systematic163

bias relative to the true log-likelihood. In particular, as a conservative approximation, LELBO alone is164
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insufficient for effectively penalizing negative advantage traces, thus limiting its efficacy. Therefore,165

combining them allows us to harness the strengths of each, resulting in a more effective log-likelihood166

estimation in practice. In the following proposition, we formalize the advantages of using the mixture167

by deriving the gradient of the mixture loss and analyzing the variance of the gradient.168

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let

ρβ := w(t, zt)π
β
θ (xi | zt, c)/E

[
w(t, zt)π

β
θ (xi | zt, c)

]
,

where w(t, zt) := w(t)1(zt = m). Then, the gradient of mixture objective (8) is given by169

gω,k = ((1− ω)w(t, zt) + ωρβ) ∂θk
log πθ(x | zt, c). (9)

If Var((ρβ − w(t, zt))∂θk
log πθ(x | zt, c)) > 0, then Var[gω,k] is a strictly convex quadratic in ω170

and thus admits a unique minimizer ω⋆
k. Moreover,171

Var[gω⋆
k,k

] < min
{
Var[g0,k], Var[g1,k]

}
,

172 A proof for the above proposition is provided in Appendix D.1. A few remarks are in order:173

• Confidence-aware weighting: The mixture gradient in Equation (9) realizes a confidence-aware174

weighting: uncertain tokens with small πβ
θ (xi | zt, c), indicating a low recovery chance, have a175

smaller weight, while confident tokens with large πβ
θ (xi | zt, c) are upweighted. The sharpness176

is controlled by parameter β and the blend by ω. Furthermore, the convex interpolation of the177

confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny gradients178

to a minimum value and thus prevents vanishing gradients.179

• Lower variance and more stable training: According to Proposition 1, the gradient of the optimal180

mixture, i.e., gω⋆
k,k

, has strictly smaller coordinate-wise variance than the gradient of either the lower181

bound (g0,k) or the upper bound (g1,k)1. In our experiments, we fix β and ω as hyperparameters for182

simplicity. These values can also be adaptively adjusted during training to better match the evolving183

training dynamics and data distribution.184

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound185

alone, as supported by our experimental results in Section 4. Further discussions of the mixture186

approach and empirical evidence of reduced gradient variance are provided in Appendix D.2 and187

Figure 7, and Appendix D.3 presents a toy example illustrating the distinct behaviors of the lower and188

upper bounds.189

4 Experiments190

In this section, we present experimental results highlighting the superior performance of SPG across191

various benchmarks. Further, we provide detailed analysis and ablations of SPG to assess the192

contribution of each component, examine the influence of key hyperparameters, and evaluate the193

robustness of our approach under different inference strategies.194

4.1 Experimental Setup and Main Results195

Experimental Setup. We conduct RL fine-tuning with SPG following the experimental settings in196

D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025). We employ LLaDA-8B-Instruct (Nie et al., 2025),197

a state-of-the-art open-sourced dLLM without post-training, as the base model, and experiment on four198

benchmarks: two for mathematical reasoning (GSM8K (Cobbe et al., 2021) and MATH500 (Lightman199

et al., 2023)) and two for logical reasoning (Countdown (Pan et al., 2025) and Sudoku (Arel, 2025)).200

We follow the same train-test splitting, reward functions, and evaluation protocol as D1 and WD1,201

except for Sudoku. For Sudoku, to avoid train-test leakage, we take the training set from D1 and split202

the data by Sudoku answers, ensuring that the test set contains entirely new puzzle solutions. This203

guarantees that the model cannot solve test puzzles merely by memorizing possible answers. All204

experiments are conducted in the zero-shot setting, except for Sudoku, where 3-shot generation is205

1Proposition 1 extends directly to a single, coordinate-independent optimizer ω⋆ obtained by minimizing the
sum of coordinate-wise variances.
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Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
WD1 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ Mixture 78.5+3.6 86.1+3.6 84.5+1.5 33.4+1.0 40.0+2.6 41.8+2.4 68.8+20 70.7+18 70.3+13 82.9+24 94.0+27 93.1+30
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Figure 3: Reward dynamics of SPG w/ Mixture during RL training, compared with D1, WD1, and
UniGRPO. SPG consistently leads to faster convergence and higher reward level. We report mean
and standard deviation over a rolling window of 50 steps.

used for both training and evaluation2. For all models, we employ Low-Rank Adaptation (LoRA)206

with a rank of r = 128 and scaling factor α = 64. For SPG, we report results using both L̃EUBO (i.e.,207

SPG w/ EUBO) and L̃Mix (i.e., SPG w/ Mixture) for negative advantage traces. We select the value208

of β in the EUBO from {1.0, 1.5, 2.0} based on the best average test accuracy across all generation209

lengths, and fix the mixture coefficient ω at 0.5. Further experimental details are in Appendix E.1 and210

Appendix E.2.211

Baselines. We compare our method with several recent RL algorithms for dLLMs, including212

D1 (Zhao et al., 2025), WD1 (Tang et al., 2025), and UniGRPO (Yang et al., 2025). For D1 and213

WD1, we reproduce results using the official codebases and instructions, and for fair comparison, we214

omit the additional SFT stage in D1 across all models. For UniGRPO, since the code is not publicly215

available and the original work focuses on vision-language multimodal models, we reimplement the216

algorithm within our setup. For consistency, we set the number of inner gradient updates µ to 4 for all217

models, following GRPO (Shao et al., 2024). We also evaluate LLaDA-1.5 (Zhu et al., 2025) under218

our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference optimization approach219

on 350K preference pairs.220

Generation and Evaluation Setup. For both RL rollouts and evaluation, we use the semi-221

autoregressive confidence-based decoding strategy, following LLaDA, D1 and WD1. We apply the222

same generation setup as D1, with the denoising timestep set to half the total sequence length. The223

sequence is divided into blocks of 32 tokens, and in diffusion step, we unmask the 2 tokens with the224

highest confidence (measured by the probability of the sampled token) within the current incomplete225

block. During RL rollout, to encourage diverse outputs, we use a generation length of 256 and a226

sampling temperature of 0.9 across all benchmarks, except for sudoku, where the temperature is set to227

0.3 as in D1. During evaluation, the sampling temperature is set to 0.0. We evaluate the models every228

100 steps, reporting results from the checkpoint that achieves the highest average test accuracy across229

generation lengths of 128, 256, and 512.230

Results. We provide the performance of SPG on each benchmark in comparison to the base model231

and other baselines in Table 1. Both SPG w/ EUBO and SPG w/ Mixture consistently achieve232

2We use 3-shot generation for Sudoku because zero-shot is too difficult for this task, resulting in very few
meaningful RL rollouts. Few-shot examples used in our experiments are provided in Appendix E.3.
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Table 2: Ablations on log-likelihood estimation meth-
ods for negative advantage traces. The best results are
bolded and the second best underlined. We denote the
test accuracy gain to SPG w/ ELBO in green.

Model GSM8K MATH500 Countdown Sudoku
SPG wo/ neg 77.4 32.7 45.5 68.8
SPG w/ ELBO 80.9 37.4 67.1 82.4
SPG w/ EUBO 81.6 36.7 69.3 86.1
SPG w/ Mixture 83.1+2.2 38.4+1.0 69.9+2.8 90.0+7.6

Table 3: Ablations on the masking strategies
in Monte Carlo estimation. We denote the
absolute gain of test accuracy to random mask-
ing for each model in green.

Model Masking MATH500 Countdown
SPG w/ EUBO random 36.7 45.4

block-wise 36.7+0.0 69.3+23.9

SPG w/ Mixture random 36.9 62.8
block-wise 38.4+1.5 69.9+7.1

significant improvements over the baselines across all tasks and generation lengths, with the Mixture233

approach that combines ELBO and EUBO for negative advantage traces yielding the best performance.234

In particular, at a generation length of 256, SPG w/ Mixture improves the test accuracy over the235

previous state-of-the-art by 3.6% on GSM8K, 2.6% on MATH500, 18% on Countdown, and 27%236

on Sudoku, showcasing the effectiveness of SPG to conduct RL for dLLMs. Reward dynamics237

throughout training are illustrated in Figure 3, where SPG shows a rapid and steady increase in reward238

over the optimization steps, further demonstrating its efficiency and robustness. We provide additional239

results and comparisons to the baselines in Table 4 and Appendix F.1.240

4.2 Ablations and Further Analysis241

We conduct a series of ablation studies to gain deeper insights from the following aspects:242

• The contribution of each individual component, including log-likelihood estimation methods for243

negative advantage traces (Table 2) and the masking strategy in Monte Carlo estimation (Table 3).244

• The effect of key hyperparameters, including β that controls the tightness of the upper bound and245

the mixture coefficient ω (Figure 5).246

• The robustness of our approach under various inference strategies (Figure 6).247

Due to computational constraints, some ablation experiments are conducted on a representative248

mathematical reasoning benchmark (MATH500) and a logical reasoning benchmark (Countdown).249

Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512250

for the ablation studies, with detailed results for each generation length provided in Appendix F.2. In251

Appendix F.2, we also investigate alternative log-likelihood estimation methods for positive advantage252

traces in place of ELBO, as detailed in Table 11, and study the diversity of model generations by253

evaluating the pass@K performance of each model in Table 12.254

0 500 1000 1500 2000 2500
Steps

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

SPG w/ ELBO
SPG w/ EUBO
SPG w/ Mixture

Figure 4: Reward dynamics of
different methods on Sudoku.

Ablations on Algorithm Components. We first study the impact255

of different log-likelihood estimation methods for negative advantage256

traces in Table 2. Specifically, we compare our approach using257

L̃EUBO or L̃Mix with those using LELBO (SPG w/ ELBO) or omitting258

the negative advantage loss entirely (SPG wo/ neg). Removing259

the negative advantage loss results in a substantial performance260

drop, highlighting the importance of negative advantage penalties261

to RL. Additionally, both Mixture and EUBO methods outperform262

ELBO (except for EUBO in MATH500), showcasing the benefits263

of evidence upper bound regularization for negative rewards. We264

provide complete results for each generation length in Table 6.265

The effect of log-likelihood estimation methods is further illustrated by the reward dynamics of each266

model in Figure 4, taking Sudoku as an example. SPG w/ ELBO converges rapidly during training but267

plateaus early, as minimizing the lower bound does not necessarily minimize the true log-likelihood268

for negative advantage traces. In contrast, SPG w/ EUBO achieves higher final rewards but converges269

more slowly and less stably. Combining both, SPG w/ Mixture attains fast, stable convergence and270

high rewards, leading to an effective balance. This aligns with our discussions in Section 3.3.271

We also conduct ablations on the masking strategies in Monte Carlo estimation of LELBO, L̃EUBO,272

and L̃Mix. As shown in Table 3, the block-wise masking strategy outperforms random masking,273

demonstrating the importance of aligning input distributions between policy rollout and optimization.274

We provide complete results for each generation length in Table 7.275
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Figure 6: Ablations on inference strategies, including different combinations of decoding orders (i.e.,
semi-autoregressive (semi-AR) decoding with varying block sizes and full sequence decoding) and
unmasking approaches (i.e., confidence-based and random unmasking). We set generation length
to 256 and report the average accuracy across four benchmarks. SPG consistently outperforms all
baselines by a large margin across different inference strategies.

Ablations on Key Hyperparameters β and ω. We first examine the effect of β, a crucial276

hyperparameter in evidence upper bound estimation, in panels (a)-(d) of Figure 5. In general, a277

relatively small value of β (i.e., close to 1.0) leads to a tighter bound and thus better performance.278

Nevertheless, SPG consistently performs well across a range of β values on most tasks, indicating its279

robustness. For our main results in Table 1, we fix ω = 0.5 and select the optimal β ≥ 1, resulting in280

β = 1.0 for Sudoku and β = 1.5 for the other three benchmarks, except for Countdown with SPG w/281

EUBO where β = 2.0. Besides, since the ELBO corresponds to the case of β = 0 theoretically and282

EUBO corresponds to β ≥ 1, we also investigate intermediate values 0 < β < 1, which may serve as283

an implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform284

SPG w/ Mixture on most benchmarks.285

We also experiment on the effect of the mixture coefficient ω, keeping β fixed at its optimal value286

determined for ω = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure 5, combining287

lower and upper bounds with ω ∈ (0, 1) leads to better performance than leveraging either bound288

solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in289

Proposition 1 and Section 3.3. We provide complete ablation results of β and ω for each generation290

length in Table 8 and Table 9.291

Ablations on Inference Strategies. In the above experiments, we adopt a consistent state-of-292

the-art inference setup during both RL rollout and evaluation, i.e., confidence-based, block-wise293

semi-autoregressive generation with a block size of 32. The same configuration and block size are294

also used in our block-wise masking strategy. This raises the question of whether our approach295

generalizes well to alternative inference strategies. To assess this, we evaluate the base model296

and all RL fine-tuned models using various inference strategies, as shown in Figure 6. Despite297

being trained under confidence-based semi-AR decoding, SPG consistently outperforms all baselines298

by a substantial margin across all inference strategies, demonstrating its robustness and strong299

generalizability. Complete results for each benchmark individually are provided in Table 13.300

5 Conclusion301

We propose SPG, a novel reinforcement learning algorithm for diffusion large language models.302

SPG addresses the intractable log-likelihood in dLLMs by maximizing a tractable lower bound on303

positive reward sequences and minimizing an upper bound on negative ones, resulting in a more304

robust and less biased policy gradient. Additionally, we propose a block-wise masking strategy for305

Monte Carlo estimation to enhance optimization stability and efficiency. Extensive experiments on306

four mathematical and logical reasoning benchmarks demonstrate the superior performance of SPG,307

achieving significant improvement over baselines and the state-of-the-art performance.308
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A Related Work451

Diffusion Language Models. Building on the remarkable success of diffusion models for image452

generation in continuous domains (Song et al., 2020; Ho et al., 2020), researchers have explored453

their extension to discrete data such as text. Initial attempts focused on training continuous diffusion454

models in the text embedding space (Li et al., 2022; Gong et al., 2022; Han et al., 2022; Sahoo et al.,455

2025a), while they face challenges in optimization and generalization due to the discrete nature of text456

data. Masked diffusion models (Lou et al., 2023; Zheng et al., 2023; Campbell et al., 2024; Sahoo457

et al., 2024; Shi et al., 2024) address this by defining the diffusion process directly in the discrete458

token space, using random masking as the forward process, and have achieved strong empirical results.459

Block Diffusion (Arriola et al., 2025) further advances this direction by combining the strengths of460

autoregressive models, such as the capability to generate variable-length outputs and using KV cache461

to accelerate inference, with the benefits of diffusion language models like parallel decoding and462

flexible, any-order generation within blocks. Recently, large-scale diffusion language models trained463

with masked diffusion objectives have demonstrated performance competitive with similarly sized464

autoregressive models (Nie et al., 2025; Gong et al., 2024). More recent works (Wu et al., 2025; Ma465

et al., 2025; Liu et al., 2025a; Sahoo et al., 2025a,b) have introduced caching and parallel decoding466

algorithms that greatly enhance the inference efficiency of dLLMs.467

Reinforcement Learning for LLMs and Reasoning. The seminal works apply reinforcement468

learning to large language models (LLMs) to align them with human preferences via reinforcement469

learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). More recently,470

reinforcement learning has proven highly effective at enhancing the reasoning abilities of LLMs471

during the post-training stage, where rewards can be provided by a process reward model (Lightman472

et al., 2023) or verifiable reward signals. Algorithms such as Proximal Policy Optimization (PPO) and473

Trust Region Policy Optimization (TRPO) constrain policy updates to a trust region, reducing variance474

and promoting stable learning by preventing excessive shifts from the reference policy (Schulman475

et al., 2015, 2017). Group Relative Policy Optimization (GRPO) (Shao et al., 2024) introduces476

group-relative rewards, enabling efficient training without the need for an additional value (critic)477

model. GRPO and its variants have demonstrated strong empirical performance in state-of-the-art478

models such as DeepSeek-R1 (Guo et al., 2025), particularly on mathematical reasoning tasks,479

where incorporating long reasoning traces with self-reflection and verification steps yields significant480

improvements. Recent works (Liu et al., 2025b; Zheng et al., 2025; Team et al., 2025; Cohen481

et al., 2025) further improve RL algorithms for LLMs by reducing the bias introduced by the GRPO482

objective, enhancing sample efficiency, and introducing additional regularization.483

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored484

RL-based fine-tuning algorithms for diffusion models with continuous objectives (Fan et al., 2023;485

Black et al., 2023; Clark et al., 2023). While RL algorithms have achieved notable success to LLMs486

and continuous diffusion models, their applications to diffusion language models in the discrete space487

remain underexplored. DRAKES (Wang et al., 2024) leverages reward backpropagation along the488

denoising trajectory, but is computationally intensive for large scale models as the gradients are489

propagated through each denoising step. Alternatively, methods like D1 (Zhao et al., 2025) and490

UniGRPO Yang et al. (2025) utilize the GRPO framework, approximating the log-likelihood through491

either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in UniGRPO).492

VRPO (Zhu et al., 2025) adapts DPO (Rafailov et al., 2023) to fine-tune dLLMs by applying MC493

estimation of the ELBO. WD1 (Tang et al., 2025) starts from the GRPO formulation and the same494

log-likelihood estimation as in D1, while avoiding direct estimation of the old and reference policy495

log-likelihoods by integrating them into a weighted policy optimization objective. Despite these496

advances, a principled analysis of RL algorithms for dLLMs, especially the challenging log-likelihood497

estimation, is missing. This results in substantial bias in the optimization objective and suboptimal498

performance.499

B Basics of dLLMs500

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to501

Sahoo et al. (2024) for more details.502
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Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences503

by x1:n. A superscript (e.g., xj) denotes an item’s index within a group. We define the set of the first504

k integers as [k] := {1, . . . , k} and the k-dimensional probability simplex as ∆k−1. Distributions505

include the categorical Cat(· | p) and the uniform U [a, b]. Throughout the paper, we use the following506

primary indices: i ∈ [n] for position, j ∈ [g] for a sequence in a group, and t ∈ [0, 1] for the507

continuous diffusion timestep.508

We start from a discrete time version of the diffusion models with finite t ∈ [T ]. Assume a one-hot
categorical variable x ∈ {e1, . . . , ek} ⊂ ∆k−1. Further assume we gradually corrupt x into an
absorbing state m (i.e., e[mask] ) with transition matrix Qt at time t. Then:

q(zt | x) = Cat(zt | Qtx) = Cat(zt |
t∏

τ=1

Qτx).

Here, zt is also a one-hot categorical random variable in ∆k−1. In practice, one could choose Qt

such that:
q(zt | x) = Cat(zt | αtx+ (1− αt)m).

Here, α1 = 1, αT = 0, α′
t < 0.509

Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this510

particular case, consider the discretized Markov chain with T latent variables z1, z2, . . . ,zT , where511

zT = m and z1 = x. We use the shorthand z = z1:T and write512

LELBO(x;θ) = Ez∼q(·|x)

[
log

pθ(x, z)

q(z | x)

]
=Ez∼q(·|x)

[
log pθ(x, z1)︸ ︷︷ ︸

=0

+

T−1∑
t=1

log
pθ(zt | zt+1)

q(zt | zt+1,x)
+ log

pθ(zT )

q(zT | x)︸ ︷︷ ︸
=0

]

=

T−1∑
t=1

Ezt,zt+1∼q

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)Ezt∼q(·|zt+1,x)

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]
.

(10)

Here, log pθ(x, z1) = 0 because we assume z1 = x, and pθ(zT ) = q(zT | x) because we assume
zT = m. A common method to parameterize pθ is via predicting x with model πθ in q:

pθ(zt | zt+1) = q (zt | zt+1,x = πθ(· | zt+1)) .

Now, given that zt+1 is either m or x (assuming m ̸= x). Then the KL term in equation 10513

decomposes into the following.514

log
pθ(zt | zt+1)

q(zt | zt+1,x)
=


0 zt = zt+1 = x,

0 zt = m, zt+1 = x, (Impossible)
log πθ(x | zt+1) zt = x, zt+1 = m,

0 zt = zt+1 = m.

(11)

Moreover, q(zt = x | zt+1 = m,x) = αt−αt+1

1−αt+1
, and note that πθ(x | zt) = 1 when zt = x, so we515

have:516

LELBO(x;θ) =

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)1(zt+1 = m)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)

]
. (If zt+1 = x, then log πθ(x | zt+1) = 0)

(12)

Taking the above limit as T →∞, we have:517

LELBO(x;θ) =

∫ 1

t=0

Ezt∼q(·|x)

[
α′
t

αt − 1
log πθ(x | zt)

]
. (13)
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Generalization to Sequence The above is for a single categorical variable x. In practice as in518

language modeling, it becomes a sequence of categorical variables x1:n. Then we write519

LELBO(x1:n;θ) = Ez1:n∼q(·|x1:n)

[
log

pθ(x1:n, z1:n)

q(z1:n | x1:n)

]
= E{zi∼q(·|xi)}n

i=1

[ n∑
i=1

log
pθ(xi, z1:n)

q(zi | xi)

]
(Independence of q(· | xi))

=

n∑
i=1

E{zi′∼q(·|xi′ )}n
i′=1

[
log

pθ(xi, z1:n)

q(zi | xi)

]

=

n∑
i=1

LELBO(xi;θ).

(14)

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse520

process pθ is conditioned on all z1:n instead of a single token’s zi.521

C Evidence Upper Bound for dLLMs522

In this section, we provide the derivation of the evidence upper bound. Following the above section,523

we start from the discrete time version of the diffusion models.524

Lemma 1 (Rényi Variational Bound; Rényi (1961); Van Erven and Harremos (2014)). Fix an525

observation x. Let q(· | x) be any distribution on Z such that p(· | x) ≪ q(· | x), denoting that526

p(· | x) is absolutely continuous with respect to q(· | z). Then, the following holds for any β ≥ 1:527

Ez∼q(·|x)

[
log

p(x, z)

q(z | x)

]
≤ log p(x) ≤ 1

β
logEz∼q(·|x)

[(
p(x, z)

q(z | x)

)β
]
. (15)

528

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the529

following theorem.530

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process531

has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence of categorical variables532

x1:n, we have:533

log πθ(x1:n) ≤ LEUBO(x1:n;θ), (16)

where534

LEUBO(x1:n;θ) :=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]
+ C(T ),

(17)
and C(T ) := 1

β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.535

Proof. We first consider the case with a single categorical variable x. On the account of Lemma 1536

and following a similar argument as in equation 10, for any β ≥ 1, we can write537

log πθ(x) ≤
1

β
logEz∼q(·|x)

[(
pθ(x, z)

q(z | x)

)β
]

=
1

β
logEz1:T∼q(·|x)

[ T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]
(18)

Note that the sequence z1:T has a form {x, . . . ,x,m, . . . ,m}. Define the transition event:538

At := {zt = x, zt+1 = m} (19)
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Then, by the law of total expectations, equation 18 can be expressed as:539

1

β
logEz1:T∼q(·|x)

[ T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]

=
1

β
log

T−1∑
t=1

P(At)Ez∼q(·|x)

[
T−1∏
s=1

(
pθ(zs | zs+1)

q(zs | zs+1,x)

)β
∣∣∣∣∣At

]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)q(zt = x | zt+1 = m,x)

(
pθ(zt = x | zt+1 = m)

q(zt = x | zt+1 = m,x)

)β]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)

αt − αt+1

1− αt+1
πβ
θ (x | zt+1)

]
(20)

The penultimate line is due to the fact that conditioned on the event At, the ratio pθ(zs|zs+1)
q(zs|zs+1,x)

is equal540

to one for any s ̸= t. The last line uses the formula for q. The indicator 1(zt = m) appears in the541

final expression because the terms in the bound are only non-trivial when the model must make a542

prediction from a corrupted state.543

Now we generalize the above to a sequence of categorical variablesx = x1:n. Similar as Equation (18),544

we have545

log πθ(x1:n) ≤
1

β
logEz1:T∼q(·|x)

[ T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
The upper bound in the RHS can be further derived as546

1

β
logEz1:T∼q(·|x)

[ T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)1(yi

1:T = z1:T )

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

≤ 1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

=
1

β
log

(
Ez1:T∼q(·|x)

[
q(z1:T | x)−n

]
·
( n∏

i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β))

=
1

β
log

n∏
i=1

Ez1:T∼q(·|x)

[ T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+

1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
=
1

β

n∑
i=1

logEz1:T∼q(·|x)

[ T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+ C(T ) (21)

Here, yi
1:T are copies of z1:T enforced to agree with z1:T using the indicator 1(yi

1:T = z1:T ). C(T )547

is a constant independent of θ, and the first term in Equation (21) can be derived similar to the single548

variable case in Equation (20):549

1

β

n∑
i=1

logEz1:T∼q(·|x)

[ T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]

550
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Furthermore, we can derive the continuous time version by omitting the constant term that does not551

affect the gradient with respect to θ, and taking the limit of T → ∞ similar as the derivations for552

LELBO, as shown in Corollary 1:553

Corollary 1. Taking the limit of T →∞, we have:554

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T )

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(22)

One caveat of the above L̃EUBO is that the log is outside of the expectation, which in general makes555

Monte Carlo sample estimates biased. One could certainly further loosen the bound using the556

inequality log x ≤ x− 1:557

LEUBO(x) ≤
1

β

n∑
i=1

Et∼U [0,1],zt∼q

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)

]
− n

β
(23)

But in practice we found this results in much worse performance, as demonstrated in Table 10,558

potentially due to the much larger gap between EUBO and likelihood.559

D Additional Analysis on Upper and Lower Bounds560

D.1 Proof of Proposition 1561

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let

ρβ := w(t, zt)π
β
θ (xi | zt, c)/E

[
w(t, zt)π

β
θ (xi | zt, c)

]
,

where w(t, zt) := w(t)1(zt = m). Then, the gradient of mixture objective (8) is given by562

gω,k = ((1− ω)w(t, zt) + ωρβ) ∂θk
log πθ(x | zt, c). (24)

If Var((ρβ − w(t, zt))∂θk
log πθ(x | zt, c)) > 0, then Var[gω,k] is a strictly convex quadratic in ω563

and thus admits a unique minimizer ω⋆
k. Moreover,564

Var[gω⋆
k,k

] < min
{
Var[g0,k], Var[g1,k]

}
,

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example xi.565

The gradient of the LELBO and L̃ELBO are given by:566

∇θLELBO = E [w(t, zt)∇ log πθ(xi | zt, c)] (25)

∇θL̃EUBO =
E
[
w(t, zt)π

β
θ (xi | zt, c)∇ log πθ(xi | zt, c)

]
E
[
w(t, zt)π

β
θ (xi | zt, c)

] (26)

Then the gradient of the mixture objective L̃Mix is given by:567

∇θL̃Mix = E
[(

(1− ω)w(t, zt) + ωρβ

)
∇θ log πθ(xi | zt, c)

]
(27)

We further compute the per-parameter (per-dimension) variance of the gradient of L̃Mix and consider568

the optimal mixture coefficient ω to minimize the variance. For simplicity, we use the following569

short-hand notation:570

sk := ∂θk
log πθ(xi | zt, c)

We denote the k-th coordinate of the gradient∇θL̃Mix by gω,k. Then, the coordinate-wise variance of571

the gradient is given by572

Var
[
gω,k

]
= E
[(
(1− ω)w + ω ρβ

)2
s2k

]
−
(
E
[(
(1− ω)w + ω ρβ

)
sk
])2

= Var(wsk) + 2ωCov(wsk, (ρβ − w)sk) + ω2 Var((ρβ − w)sk)
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where we used the shorthand w ≡ w(t, zt). The above expression is quadratic in ω and we find the573

optimal ω by setting the derivative of variance to zero:574

∂

∂ω
Var
[
gω,k

]
= 2 Cov

(
w sk, (ρβ − w) sk

)
+ 2ω Var

(
(ρβ − w) sk

)
= 0

⇒ ω⋆
k = −

Cov
(
w sk, (ρβ − w) sk

)
Var
(
(ρβ − w) sk

) .

The above yields a per-coordinate optimal ω⋆
k. Equivalently, we can write ω⋆

k as follows:575

ω⋆
k =

Var
(
w sk

)
− Cov

(
w sk, ρβ sk

)
Var
(
w sk

)
+Var

(
ρβ sk

)
− 2 Cov

(
w sk, ρβ sk

)
Furthermore, ω⋆

k is a minimizer of coordinate-wise variance in the non-degenerative case with576

Var
(
(ρβ − w) sk

)
> 0, as the variance is strongly convex in ω.577

The coordinate-wise variance of gradients in LELBO (ω = 0) and L̃ELBO (ω = 1), and the optimal578

mixture coefficient ω⋆ are then given by579

LELBO : Var
[
g0,k

]
= Var

[
w sk

]
,

L̃ELBO : Var
[
g1,k

]
= Var

[
w sk

]
+ 2 Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

)
,

Optimal: Var
[
gω⋆

k,k

]
= Var

[
w sk

]
−

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ,

The difference between the variance of LELBO and L̃ELBO with the optimal mixture coefficient can580

then be derived as follows:581

Var
[
w sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

Var
[
ρβ sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

582

D.2 Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds583

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score584

function ∇θ log πθ(xi | zt, c) in the gradient in the case of the mixture objective (i.e., ∇θL̃Mix in585

Equation (27)) over using only the lower bound (i.e., ∇θLELBO in Equation (25)):586

wMix

wELBO
=

(1− ω)w(t, zt) + ωρβ
w(t, zt)

= (1− ω) + ω
πβ
θ (xi | zt, c)

E
[
w(t, zt)π

β
θ (xi | zt, c)

]
Treating the expectation over all samplesE

[
w(t, zt)π

β
θ (xi | zt, c)

]
as a constant (since it is averaged),587

the second term in the above ratio is strictly increasing in πβ
θ (xi | zt, c). This realizes a confidence-588

aware weighting: uncertain tokens with small πβ
θ (xi | zt, c), i.e., those with a low recovery chance,589

have a smaller weight, while confident tokens with large πβ
θ (xi | zt, c) are upweighted, with sharpness590

being controlled by parameter β and the blend by ω.591

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function592

in the gradient of upper bound (i.e., ∇θL̃EUBO in Equation (26)) over the mixture gradient:593

wEUBO

wMix
=

ωρβ
(1− ω)w(t, zt) + ωρβ
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Figure 7: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

Considering the above ratio, when πβ
θ (xi | zt, c) is very small, the coefficient of score function in594

∇θL̃EUBO, wEUBO, becomes very small, preventing updates to the parameters. However, the mixing595

approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other596

words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously597

floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to598

large EUBO weights.599

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,600

we plot the gradient norm of each model trained with different log-likelihood estimation methods for601

negative advantage traces in Figure 7. When using the mixture objective, the model has consistently602

smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.603

604

D.3 Toy Example for Upper and Lower Bounds.605

In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of606

the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for607

optimization based on the optimization direction.608

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., x = [x1,x2]609

and V = {A,B}. Then, We can calculate LELBO and L̃EUBO in closed form:610

LELBO(x = AA) =
1

2

[
log πθ(x1 = A | MA) + log πθ(x1 = A | MM) (28)

+ log πθ(x2 = A | AM) + log πθ(x2 = A | MM)
]

(29)

L̃EUBO(x = AA) =
1

β
log
(πβ

θ (x1 = A | MA) + πβ
θ (x1 = A | MM)

2

)
(30)

+
1

β
log
(πβ

θ (x2 = A | AM) + πβ
θ (x2 = A | MM)

2

)
(31)

For simplicity, denote a := πθ(x1 = A | MA) and b := πθ(x1 = A | MM), and consider the of the611

likelihood of the first token x1. We have612

LELBO(x1) =
1

2
(log a+ log b) (32)

L̃EUBO(x1) =
1

β
log
(aβ + bβ

2

)
(33)

Take the partial gradient with respect to a and b respectively,613

∂LELBO(x1)

∂a
=

1

2a
;
∂LELBO(x1)

∂b
=

1

2b
(34)

∂L̃EUBO(x1)

∂a
=

aβ−1

aβ + bβ
;
∂L̃EUBO(x1)

∂b
=

bβ−1

aβ + bβ
(35)
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Therefore, for L̃EUBO, the gradient direction is dominated by the larger one between a and b, while614

for LELBO, the gradient direction is dominated by the smaller one. Such property is illustrated in the615

landscapes of −LELBO and −L̃EUBO for a, b ∈ (0, 1) in Figure 8.

Figure 8: Landscapes of −LELBO and −L̃EUBO for 0 < a, b < 1. −L̃EUBO is flatter among low
value regions while sharper among high value regions, making it more suitable for log-likelihood
minimization; vice versa for −LELBO.

616

When x = AA has negative advantage, the corresponding LELBO and L̃EUBO are minimized. For617

LELBO, the model benefits more from further decreasing the smaller one between probabilities a618

and b. In the extreme case, LELBO = −∞ when either a or b equals to zero, leaving the other term619

not sufficiently decreased. Instead, when using L̃EUBO for negative advantage traces, the larger one620

between a and b is preferentially minimized, leading to a more balanced optimization that stably621

decreases the log-likelihood.622

Similarly, when x = AA has positive advantage, the corresponding LELBO and L̃EUBO are maximized.623

Using LELBO enables effectively increasing the smaller likelihood, while L̃EUBO focuses on the larger624

one, leading to a less efficient optimization.625

E Additional Experimental Details626

E.1 Datasets and Reward Functions627

We follow the setting in D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025), using the same reward628

functions and train-test splitting, except for Sudoku. The rewards are designed to encourage both629

correctness and proper formatting, with varying levels of granularity tailored for each task. For630

completeness, we provide details as follows.631

GSM8K. We utilize the train split of the GSM8K dataset3 for RL training, and evaluate model632

performance on the test split. We follow the Unsloth reward setup4, utilizing five equally-weighted633

additive components:634

• XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents635

after the closing tag.636

• Soft Format Reward: +0.5 for outputs matching the pattern:637

<reasoning>...</reasoning><answer>...</answer>638

• Strict Format Reward: +0.5 for exact formatting with correct line breaks.639

3https://huggingface.co/datasets/openai/gsm8k
4https://unsloth.ai/blog/r1-reasoning
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• Integer Answer Reward: +0.5 if the answer is a valid integer.640

• Correctness Reward: +2.0 of the answer matches the ground truth.641

MATH500. We utilize the train split of the MATH dataset5 for RL training, and evaluate model642

performance on the test split. We use a format reward and a correctness reward:643

• Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside644

them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but645

\boxed is present; 0.25 if neither the answer tags nor \boxed is present.646

• Correctness Reward: We award 2.00 if the answer in \boxed{} matches the ground truth.647

Countdown. We utilize the train split of the Countdown dataset6 for RL training, restricting to648

instances that use only three numbers. We evaluate on the same set of 256 synthetically generated649

countdown questions with 3 numbers as in D1 (Zhao et al., 2025). The reward covers three cases:650

+1.0 if the expression reaches the target using the exact numbers; +0.1 if the numbers are correct but651

does not reach the target; +0.0 otherwise.652

Sudoku. We experiment on the 4×4 Sudoku dataset7 generated by Arel (2025). The original653

training split contains 1M unique Sudoku puzzles covering all 288 4×4 Soduku solutions. To avoid654

train-test leakage and potential cheating by memorizing all the solutions, we randomly select 200655

solutions and include all puzzles corresponding to these solutions into the new training set, resulting656

in 694,006 training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88657

solutions to construct the test set, which has 256 Soduku puzzles in total.658

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which659

has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the660

questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the661

Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear662

in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot663

samples are provided in Appendix E.3.664

E.2 Hyperparameter Settings and Implementation Details665

We follow D1 (Zhao et al., 2025) for most hyperparameter settings. We employ Low-Rank Adaptation666

(LoRA) with a rank of r = 128 and scaling factor α = 64. The training was conducted on 8 NVIDIA667

A100-80G or NVIDIA H100-80G GPU, with the following hyperparameters: batch size of 6 per668

GPU, and gradient accumulation steps of 2. We set the number of inner gradient update µ as 4 for all669

models. We use the AdamW optimizer (Loshchilov and Hutter, 2017), with β1 = 0.9, β2 = 0.99,670

weight decay of 0.1, learning rate of 3×10−6, and gradient clipping at 0.2. We utilize Flash Attention671

2 (Dao, 2023)and 4-bit quantization.672

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-673

based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for674

Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g675

as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since676

the rollout stage dominates the training time, the average time per gradient update step for SPG is677

similar to that of the other baselines.678

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for679

MATH500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with680

generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest681

average accuracy over the three generation lengths, except for the ablations on inference strategies in682

Table 13, where we only evaluate on generation length 256.683

E.3 Few-Shot Samples for Sudoku684

Sample 1:685

5https://huggingface.co/datasets/ankner/math-500
6https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
7https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

22

https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset


Question:
Solve the following Sudoku puzzle: 3014002020004130
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 3 0 1 4
R2: 0 0 2 0
R3: 2 0 0 0
R4: 4 1 3 0

Fill easy singles:
R1 missing 2 → R1C2=2.
R4 missing 2 → R4C4=2.
Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 → R3C4=1, R3C3=4.
R3 now missing 3 → R3C2=3.
Column1 missing 1 → R2C1=1.
Column2 missing 4 → R2C2=4.
Last cell R2C4=3.

Final grid:
R1: 3 2 1 4
R2: 1 4 2 3
R3: 2 3 4 1
R4: 4 1 3 2
</reasoning>
<answer>
3214142323414132
</answer>686

Sample 2:687

Question:
Solve the following Sudoku puzzle: 0000100420013142
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 0 0 0 0
R2: 1 0 0 4
R3: 2 0 0 1
R4: 3 1 4 2

Fill easy singles:
Col1 missing 4 → R1C1=4.
Col4 missing 3 → R1C4=3.
Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 → R1C2=2, R2C2=3.
R1C3=1.
R2 now missing 2 → R2C3=2.
Col2 missing 4 → R3C2=4, then R3C3=3.

Final grid:
R1: 4 2 1 3
R2: 1 3 2 4
R3: 2 4 3 1
R4: 3 1 4 2
</reasoning>
<answer>
4213132424313142
</answer>688

Sample 3:689
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Question:
Solve the following Sudoku puzzle: 2001403002001420
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 2 0 0 1
R2: 4 0 3 0
R3: 0 2 0 0
R4: 1 4 2 0

Fill easy singles:
R1 missing 3,4; Col2 can’t be 1 so R1C2=3 → R1C3=4.
R4 missing 3 → R4C4=3.
Col4 missing 2,4; R2 must take 2 → R2C4=2 → R2C2=1.
Col1 missing 3 → R3C1=3.
Col3 missing 1 → R3C3=1 → R3C4=4.

Final grid:
R1: 2 3 4 1
R2: 4 1 3 2
R3: 3 2 1 4
R4: 1 4 2 3
</reasoning>
<answer>
2341413232141423
</answer>690

F Additional Results691

F.1 Additional Evaluations to the Main Results692

Complete evaluation results. We provide the complete evaluation results, along with those reported693

in D1 (Zhao et al., 2025) and WD1 (Tang et al., 2025), in Table 4. Our reproduced numbers closely694

match the reported results. d1-LLaDA (Zhao et al., 2025) denotes the model that conducts first SFT695

and then RL (using D1). All other models are trained solely with RL. In D1 and d1-LLaDA, the best696

result for each generation length is reported separately, whereas we select a single checkpoint with the697

highest average accuracy across all three generation lengths, leading to slightly worse results than the698

reported numbers. The reported results in WD1 are based on evaluations on fewer checkpoints, so699

they are generally a bit lower than our reproduced values.700

Table 4: Complete model performance on four reasoning benchmarks compared with baselines. We
provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 (reported) 72.6 79.8 81.9 33.2 37.2 39.2 33.2 31.3 37.1 - - -
D1 (reproduced) 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
d1-LLaDA (reported) 73.2 81.1 82.1 33.8 38.6 40.2 34.8 32.0 42.2 - - -
WD1 (reported) - 80.8 82.3 - 34.4 39.0 - 51.2 46.1 - - -
WD1 (reproduced) 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO (ours) 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ mixture (ours) 78.5 86.1 84.5 33.4 40.0 41.8 68.8 70.7 70.3 82.9 94.0 93.1

Dynamics of Completion Length. We provide the dynamics of the effective sequence length of701

SPG during RL training in Figure 9. We also report the effective length of the best checkpoint in702

Table 5. SPG leads to effective usage of the total given length and good adaptation to task difficulties.703
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Figure 9: Dynamics of the effective generation length of SPG during RL training, compared with D1,
WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report mean
and standard deviation over a rolling window of 50 steps.

Table 5: Effective sequence length of each model at the best checkpoint corresponding to Table 1 on
four reasoning benchmarks.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448
LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 84 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249
SPG w/ mixture 108 176 195 121 229 384 75 78 79 115 239 491

F.2 Additional Ablation Results704

In this section, we provide the complete results for each generation length and task in supplement705

to Section 4.2. We also include additional ablation studies on the looser upper bound, different706

log-likelihood estimation methods for positive advantage traces, and Pass@K performance.707

Ablations on Algorithm Components. We provide the complete results for ablations on log-708

likelihood estimation methods in Table 6 and for ablations on masking strategies in Table 7.709

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined. SPG w/ Mixture consistently outperforms other
likelihood estimation methods.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.
SPG wo/ neg 72.0 79.0 81.3 77.4 28.2 32.2 37.8 32.7 43.8 48.1 44.5 45.5 55.0 82.9 68.4 68.8
SPG w/ ELBO 75.6 82.8 84.4 80.9 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1 73.8 89.4 84.1 82.4
SPG w/ EUBO 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3 81.2 87.1 89.9 86.1
SPG w/ Mixture 78.5 86.1 84.5 83.0 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 82.9 94.0 93.1 90.0

Table 7: Ablations on the masking strategies in Monte Carlo estimation. Our block-wise masking
strategy leads to consistent improvement to random masking on both benchmarks.

MATH500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.
SPG w/ EUBO random 33.4 35.4 41.4 36.7 42.6 41.0 52.7 45.4

block-wise 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3
SPG w/ Mixture random 33.8 38.2 38.8 36.9 52.3 64.5 71.5 62.8

block-wise 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

Ablations on Key Hyperparameters β and ω. We provide the complete results for ablations on β710

in Table 8 and for ablations on ω in Table 9.711
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Table 8: Ablations on the value of β in the upper bound.
GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)

Model β 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.
0.50 77.7 83.2 84.5 81.8 32.8 36.4 41.2 36.8 71.1 68.8 74.6 71.5 64.7 53.4 57.4 58.5
0.75 77.2 83.9 84.5 81.9 31.0 36.6 40.0 35.9 70.7 70.7 70.7 70.7 63.4 65.7 45.4 58.2

SPG w/ EUBO 1.00 76.5 83.9 83.6 81.3 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4 81.2 87.1 89.9 86.1
1.50 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8 32.7 40.5 39.9 37.7
2.00 76.5 83.9 83.2 81.2 32.4 36.8 38.2 35.8 68.4 71.5 68.0 69.3 28.1 31.9 28.0 29.3
1.00 78.8 85.6 84.9 83.1 34.0 40.2 39.2 37.8 69.9 69.5 70.3 69.9 82.9 94.0 93.1 90.0

SPG w/ Mixture 1.50 78.5 86.1 84.5 83.1 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 83.2 86.0 84.6 84.6
2.00 78.8 85.7 84.7 83.1 32.4 38.8 39.8 37.0 70.3 69.1 69.5 69.6 44.3 60.5 60.7 55.2

Table 9: Ablations on the mixture coefficient ω on MATH500 and Countdown.
SPG w/ Mixture MATH500 (0-shot) Countdown (0-shot)
ω 128 256 512 Avg. 128 256 512 Avg.
0.00 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1
0.25 34.6 37.6 42.2 38.1 71.5 68.0 67.2 68.9
0.50 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9
0.75 34.2 38.6 41.2 38.0 69.5 69.1 74.2 70.9
1.00 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

Ablations on Inference Strategies. We provide complete results for ablations on different inference712

strategies in Table 13. Note that the reported numbers of each method for “Semi-AR, Block=32,713

Confidence” is in general slightly higher than the results in Table 1 under the same inference setting.714

This is because in Table 13, we select best checkpoint specifically for generation length 256 to715

maintain consistency with other inference settings, while in Table 1, we choose the checkpoint with716

the highest average accuracy across generation lengths 128, 256, and 512.717

Ablations on the Looser Upper Bound. As mentioned in Section 3.2 and Appendix C, a looser718

but unbiased bound can be derived using inequalities like log(x) ≤ x− 1, i.e., L̃Loose (Equation (23)).719

However, as shown in Table 10, this looser bound performs worse empirically than the tighter upper720

bound L̃EUBO we used, possibly due to a larger discrepancy from the true log-likelihood.721

Table 10: Ablations on the looser upper bound. The loose bound performs worse than the tighter
upper bound we used, indicating inferior performance due to a larger discrepancy from the true
log-likelihood.

SPG w/ EUBO MATH500 (0-shot) Countdown (0-shot)
β Upper Bound 128 256 512 Avg. 128 256 512 Avg.

1.0 L̃Loose 29.4 35.4 39.4 34.7 43.8 65.2 64.8 57.9
L̃EUBO 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4

1.5 L̃Loose 29.8 31.8 38.8 33.5 46.9 54.7 57.0 52.9
L̃EUBO 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always722

using LELBO for positive advantage traces, we experiment on MATH500 and Countdown benchmarks723

using both L̃EUBO and L̃Mix for positive advantage traces. Correspondingly, we use ω = 0.5 and the724

best performed β as previously discussed for negative advantage traces. For the positive advantage725

traces, we always use the tightest β = 1.0 for both L̃EUBO and L̃Mix. The results are shown in Table 11,726

indicating that using the upper bound for likelihood estimation of positive advantage traces performs727

worse than using LELBO. This aligns well with our theoretical insights that the lower bound is a better728

objective for log-likelihood maximization.729

Ablations on Pass@K Performance. In all previous experiments, we apply greedy sampling730

by setting temperature as 0.0 following D1 and LLaDA. However, beyond accuracy, it is essential731

for models to generate a diverse set of outputs that can cover the correct solution and allow for732

explorations. In this section, we investigate the models’ ability to generate diverse outputs using a733

higher temperature, and evaluate their Pass@K performance on MATH500 and Countdown, as shown734
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Table 11: Ablations on log-likelihood estimation for positive advantage traces. Using the upper bound
for log-likelihood estimation of positive advantage traces perform worse than using the lower bound.

Positive traces MATH500 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO L̃EUBO (β = 1.0) 34.4 36.2 39.2 36.6 48.1 46.7 50.8 48.5
LELBO 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3

SPG w/ Mixture L̃Mix (β = 1.0, ω = 0.5) 35.4 38.4 39.0 37.6 69.1 68.4 70.3 69.3
LELBO 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

in Table 12. Specifically, we set temperature to 0.9 and generation length to 256, conduct evaluations735

every 100 steps, and report results from the checkpoint with the highest accuracy. For comparison,736

we also include results from greedy sampling, denoted as Pass@1Greedy. As expected, increasing the737

temperature leads to a decrease in Pass@1 performance across all models, aligning with observations738

from previous work. For K>1, the Pass@K scores improve for all models as K increases from 1 to 4.739

SPG achieves the best performance across all settings, with SPG w/ Mixture reaching 55.6% Pass@4740

accuracy on MATH500 and 76.6% on Countdown, demonstrating the ability of SPG to generate741

diverse outputs that can recover the correct solution.742

Table 12: Pass@K performance of each model on MATH500 and Countdown. We set temperature
as 0.9 and report results of the best checkpoint of each case at a generation length of 256. For
comparison, we also include the greedy sampling performance, i.e., Pass@1Greedy. The best results
are bolded and the second best are underlined.

MATH500 (0-shot) Countdown (0-shot)
Model Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4 Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4
LLaDA-8B-Instruct 32.4 31.5 40.9 45.7 48.8 16.8 15.8 28.1 37.7 45.3
LLaDA-1.5 32.2 32.6 42.2 47.4 50.4 21.1 18.2 32.1 42.5 50.0
D1 37.8 34.3 43.1 48.0 52.0 32.4 24.5 40.4 51.4 60.6
WD1 38.6 36.0 44.9 49.9 53.6 54.7 44.3 60.6 68.0 73.1
UniGRPO 38.4 34.7 43.9 49.5 53.2 44.9 36.8 55.2 65.0 72.3
SPG w/ EUBO 38.0 34.4 44.3 49.9 54.0 71.5 68.2 71.9 73.9 76.6
SPG w/ mixture 40.0 36.5 46.0 51.2 55.6 71.1 67.5 72.5 75.1 76.6
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Table 13: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSM8K MATH500 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 31.4 13.7 26.2 37.5
LLaDA-1.5 78.8 33.4 16.0 23.0 37.8
D1 79.7 37.2 27.0 31.4 43.8

Semi-AR, Block=16, Confidence WD1 82.3 37.4 53.9 36.8 52.6
UniGRPO 82.5 36.8 46.5 63.4 57.3
SPG w/ EUBO 84.7 37.4 70.3 82.2 68.7
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 32.4 16.8 27.7 38.5
LLaDA-1.5 80.5 32.2 21.1 26.9 40.2
D1 80.6 37.8 32.4 32.8 45.9

Semi-AR, Block=32, Confidence WD1 81.7 38.6 54.7 35.7 58.1
UniGRPO 82.6 38.4 44.9 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 33.2 27.3 32.6 42.9
LLaDA-1.5 81.0 35.4 20.3 36.4 43.3
D1 80.9 37.6 38.3 39.8 49.2

Semi-AR, Block=64, Confidence WD1 82.5 37.4 52.3 41.8 53.5
UniGRPO 82.3 37.4 53.5 82.9 64.0
SPG w/ EUBO 84.3 37.4 69.5 88.8 70.0
SPG w/ Mixture 85.5 41.4 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 24.4 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
D1 69.7 27.4 18.4 29.9 36.4

Semi-AR, Block=32, Random WD1 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 41.4 60.1 51.0
SPG w/ EUBO 74.1 31.4 42.6 72.6 55.2
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 23.9 17.8 0.0 68.3 27.5
LLaDA-1.5 41.4 20.4 0.0 67.9 32.4
D1 57.5 22.6 0.0 72.3 38.1

Full Sequence, Confidence WD1 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 24.2 8.2 95.6 44.5
SPG w/ EUBO 54.3 23.4 63.3 88.9 57.5
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2
LLaDA-8B-Instruct 52.7 17.8 13.3 27.1 27.7
LLaDA-1.5 53.5 19.8 13.7 28.0 28.8
D1 53.0 22.6 28.5 31.8 34.0

Full Sequence, Random WD1 54.6 23.4 43.4 30.0 37.9
UniGRPO 57.6 22.6 47.7 57.3 46.3
SPG w/ EUBO 58.5 25.2 56.6 71.3 52.9
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7
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F.3 Qualitative Examples on GSM8K743

We present qualitative examples for all models on GSM8K, using a generation length of 256 and 128744

diffusion steps. Incorrect reasoning steps or answers are highlighted in red and the correct answers are745

highlighted in green. SPG leads to more concise and accurate reasoning compared to other models.746

Note that the models may sometimes achieve the correct answer through flawed reasoning, while such747

artifacts are expected to diminish with a stronger base model.748

Model: LLaDA-8B-Instruct749

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: LLaDA-8B-Instruct
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 0.6× 5 = 3 dollars.
We can break down the cost as follows:

• The first glass costs $5.
• The second glass costs $3.
• The third glass costs $5.
• The fourth glass costs $3.
• And so on...

We can see that the cost alternates between $5 and $3. Since Kylar wants to buy 16 glasses, we need
pair them up.
The first of each pair costs $5, and the second of each pair costs $3. Therefore, the cost of each pair
is 5 + 3 = 8 dollars.
Since there are 8 pairs of glasses (16 glasses divided into pairs), the total cost is 8× 8 = 64 dollars.
</reasoning>
<answer>
64

</answer>750

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: LLaDA-8B-Instruct
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, 2 × 4 = 8. She also has three makeup sets with six colors each,
3× 6 = 18. So, the total number of eyeshadow colors Amy initially has is: 8 + 18 = 26. Next, her
sister steals one of the palettes, which she loses completely. Therefore, the number of colors left
from the remaining palettes is: 8− 4 = 4. Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: 6

2 = 3. Thus, the number of colors left from the
one makeup set is: 6− 3 = 3. Adding, the total number of eyes left is: 4 + 3 = 11.
</reasoning>
<answer>
11

</answer>751

Model: D1752

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: D1
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of

753
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the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 5× 0.6 = 3 dollars. We can break down the cost into two parts:

1. The cost of the first 8 glasses, each costing $5.
2. The cost of the next 8 glasses, each costing $3.

First, let’s calculate the cost of the first 8 glasses: 8× 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses: 8× 3 = 24 dollars.
Now, we add these two amounts together: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay $64 for them.
</reasoning>
<answer>
64

</answer>754

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: D1
Answer:
Amy initially has two eyeshadow palettes with four colors each, so she has 2× 4 = 8 colors from
the palettes. She also has three makeup sets with six colors each, so she has 3× 6 = 18 colors from
the makeup sets. Her’s sister steals one of the palettes, so she now has 8− 1 = 7 colors from the
palettes. Amy uses up half of the colors from one makeup set, so she uses 6

2 = 3 colors from that
set. Therefore, she has 18− 3 = 15 colors left from the makeup sets. Adding these to the remaining
palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.
</reasoning>
<answer>
22

</answer>755

Model: WD1756

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: WD1
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
full price and the discounted price glasses.
First, let’s calculate the cost of the first 8 glasses, which are sold at the full price of $5 each:
8× 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses, which are sold at 60% of the full price.
Since 60% of $5 is: 0.6× 5 = 3 dollars. So, the cost for the next 8 glasses is: 8× 3 = 24 dollars.
Now, we add the cost of the first 8 glasses and the cost of the next 8 glasses: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay 64 .
</reasoning>
<answer>
64

</answer>757

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: WD1
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each: 2× 4 = 8. Additionally, she has three makeup sets with six colors
each: 3× 6 = 18. So, together, she has: 8 + 18 = 26. Next, her sister steals one of the palettes,
which she loses 4 colors: 26− 4 = 22. Then, Amy uses up half of the colors from one makeup set.

758
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Each makeup set has six colors, so half of that is: 6
2 = 3. Thus, she uses 3 colors from one makeup

set, leaving: 6− 3 = 3 colors in that makeup set.
Finally, we add the remaining colors from the makeup set to the remaining colors: 22 + 3 = 25.
</reasoning>
<answer>
25

</answer>759

Model: UniGRPO760

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: UniGRPO
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
regular glasses and the discounted glasses. A regular glass costs $5, and every second glass costs
60% of that price, which is 5× 0.6 = 3.
Since Kylar will buy 16 glasses, he will have 8 regular glasses and 8 discounted glasses. The cost of
8 regular glasses is 8× 5 = 40 dollars. The cost of 8 discounted glasses is 8× 3 = 24 dollars.
Therefore, the total cost for 16 glasses is 40 + 24 = 64 dollars.
</reasoning>
<answer>
64

</answer>761

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: UniGRPO
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 × 4 = 8 colors from the palettes. She also has three
makeup sets with six colors each, so she has 3× 6 = 18 colors from the makeup sets. Adding these
together gives her initially 8 + 18 = 26 eyeshadow colors. Next, her sister steals one of the palettes,
so she now has 8− 4 = 14 colors from the palettes. She then uses up half of the colors from one
makeup set. Since she used one makeup set, containing six colors, she used 6

2 = 3 colors from that
set. Therefore, she has 18− 3 = 15 colors left from the makeup sets.
Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14 + 15 = 29
eyeshadow colors left.
</reasoning>
<answer>
29

</answer>762

Model: SPG w/ EUBO763

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: SPG w/ EUBO
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost structure of
the glasses. The first glass costs $5, and every second glass costs 60% of the price of the first glass.
Therefore, the cost of each second glass is 5.0× 0.6 = 3.0 dollars.
Kylar wants to buy 16 glasses, which means he will have 8 pairs of glasses. Each pair consists of one
first glass and one second glass. The cost of one pair is: 5.0 + 3.0 = 8.0 dollars. Since there are 8
pairs, the total cost is: 8× 8.0 = 64.0 dollars. Thus, Kylar needs to pay 64 dollars for 16 glasses.
</reasoning>
<answer>764
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64
</answer>765

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ EUBO
Answer:
First, let’s calculate the total number of eyeshadow colors Amy initially has:

• She has two eyeshadow palettes with four colors each: 2× 4 = 8 colors.
• She has three makeup sets with six colors each: 3× 6 = 18 colors.
• Adding these together gives: 8 + 18 = 2

Next, we account for the changes:
• Her sister steals one palette, so she loses 4 colors: 26− 4 = 22

• Amy uses up half of the colors from one makeup set, which is 6
2 = 3 colors: 22− 3 = 19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>
<answer>
19

</answer>766

Model: SPG w/ Mixture767

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: SPG w/ Mixture
Answer:

1. The first glass costs $5.
2. Every second glass costs 60% of $5, which is 0.6× 5 = 3 dollars.
3. Kylar wants to buy 16 glasses, so he will have 8 full-priced glasses and 8 discounted

glasses.
4. The cost for 8 full-priced glasses is 8× 5 = 40 dollars.
5. The cost for 8 discounted glasses is 8× 3 = 24 dollars.
6. Adding these the total cost is 40 + 24 = 64 dollars.

</reasoning>
<answer>
64

</answer>768

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ Mixture
Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2× 4 = 8 colors
2. She also has three makeup sets with six colors each: 3× 6 = 18 colors
3. Adding these together gives gives: 8 + 18 = 26 colors
4. Her sister steals one palette, so she loses: 4 colors
5. Amy uses up half of the colors from one makeup set: 6

2 = 3 colors
6. Subtracting these lost and used colors: 26− 4− 3 = 19 colors

</reasoning>
<answer>769
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19
</answer>770
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