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Abstract

The goal of generalized planning is to find a solution that
works for all tasks of a specific planning domain. Ideally,
this solution is also efficient (i.e., polynomial) in all tasks.
One possible approach is to learn such a solution from train-
ing examples and then prove that this generalizes for any
given task. However, such proofs are usually pen-and-paper
proofs written by a human. In our paper, we aim at automat-
ing these proofs so we can use a theorem prover to show that
a solution generalizes for any task. Furthermore, we want to
prove that this generalization works while still preserving ef-
ficiency. Our focus is on generalized potential heuristics en-
coding tiered measures of progress, which can be proven to
lead to a find in a polynomial number of steps in all tasks of
a domain. We show our ongoing work in this direction using
the interactive theorem prover Isabelle/HOL. We illustrate the
key aspects of our implementation using the Miconic domain
and then discuss possible obstacles and challenges to fully
automating this pipeline.

Introduction

Generalized planning is the problem of finding a solu-
tion that solves all tasks in a planning domain. Due to
the PSPACE-completeness of classical STRIPS planning
the performance of such solutions is usually unpredictable.
However, for some domains polynomial solvers exist and
can be synthesized automatically (e.g., Francès et al. 2019a).
This is particularly interesting for situations where a given
domain can be analyzed for some time before tasks of that
domain have to be solved but time for solving the tasks is
limited. For example, in space applications, domains can be
analyzed on the ground before a mission, while calling a
planner with potentially exponential running time during a
mission is not feasible. Most methods to synthesize polyno-
mial solvers are based on a supervised learning approach
(Yoon, Fern, and Givan 2006; Arfaee, Zilles, and Holte
2011; Francès et al. 2019a; Shen, Trevizan, and Thiébaux
2020), where the solver is learned from example tasks in the
domain. The performance guarantee then relies on the fact
that the learned solver generalizes to the whole domain. So
far, the proofs for this generalization have been manual pen-
and-paper proofs. This has two problems. Firstly, the man-

ual proof can be cumbersome and detailed1, especially given
that it might depend on all the action schemata in the given
domain. Secondly, due to the cumbersomeness of these man-
ual proofs, they are error-prone, which might not suffice for
resource-restrained applications, especially when such ap-
plications are safety-critical.

In this paper, we work towards a system where such
proofs are machine-checked, as well as largely automated.
Towards that end, we employ an interactive theorem prover.
Interactive theorem provers involve a human in the process
of mechanically proving a statement. The human provides
high-level proof steps and the theorem prover tries to fill
in the missing steps automatically. This ability to automate
cumbersome proof steps and to check the correctness of the
whole proof made interactive provers an obvious choice for
many applications, where proofs are cumbersome and error-
prone, and especially when the underlying proof obligation
is undecidable. A notable example is program verification,
where interactive theorem provers are the most successful
method to verify large scale pieces of software, e.g. an oper-
ating system kernel (Klein et al. 2009), a verified compiler
for C (Leroy 2009), and an LTL model checker (Esparza
et al. 2013).

Here we present our work-in-progress on a framework
to mechanize proofs of performance guarantees for gener-
alized planning heuristics. In particular, we focus on gen-
eralized potential heuristics (Francès et al. 2019a), which
are weighted sums of state features. In contrast to potential
heuristics in classical planning (Pommerening et al. 2014),
features are defined with a description logic and can be eval-
uated in all tasks of a domain. Francès et al. prove that
several learned generalized potential heuristics (for differ-
ent domains) lead to a backtrack-free search in any possible
task of the domain where the heuristic value decreases by at
least 1 in every step. Together with a guarantee on the max-
imal and minimal heuristic value, this ensures a polynomial
search effort. However, all these proofs were done manually
by the authors. This is clearly not an ideal scenario, as the ul-
timate goal of generalized planning is to come up with such
heuristics and their performance guarantees without input or
help from a user.

1The manual proofs by Francès et al. 2019b do not look that
complicated because they leave out a lot of low-level details.



The framework we work on uses the interactive theorem
prover Isabelle/HOL (Nipkow, Wenzel, and Paulson 2002)
to formally verify these manual proofs. We develop a frame-
work for interactive reasoning about annotated PDDL do-
mains. Such annotations include (i) domain assumptions, i.e.
properties that should hold for all instances of the domain,
(ii) domain invariants, which are properties that follow from
the action descriptions and domain assumptions for every
reachable state in every instance of the domain, and (iii)
generalized heuristics, which we prove to be descending.
Given such an annotated domain, this framework is capable
of parsing the domain, automatically proving many proper-
ties about it, and leaving only the core proof tasks for the
user to be proven interactively. Not all parts of the frame-
work that could be automated are automated yet and it is
currently limited to generalized potential heuristics that form
tiered measures of progress (Parmar 2002). As a proof of
concept, we interactively completed the relevant proofs for
the domain Miconic and were able to prove that the gener-
alized heuristic computed for it using the method of Francès
et al. indeed has the reported performance guarantee.

Together with a method to create hypothesis heuristics
such as the one by Francès et al., our framework could be
developed into an integrated tool to find solutions to a gener-
alized planning task that come with a formally verified per-
formance guarantee.

Running Example: Miconic
Throughout the paper, we use the Miconic domain (Koehler
and Schuster 2000) as a running example. In this domain,
passengers start at different floors of a building and each
passenger has one specific destination floor. The goal is to
find a plan where an elevator transports each passenger to its
destination.

Miconic can be seen as a logistics problem where a ve-
hicle (the elevator) needs to transport items (passengers) to
their desired destination. Francès et al. (2019a) showed that
it is possible to synthesize a compact planner for this do-
main.

Generalized Planning
We consider STRIPS planning tasks with negation repre-
sented in PDDL (McDermott et al. 1998; Haslum et al.
2019). A PDDL planning task is encoded using a first-order
vocabulary and can compactly represent a state space.

The first-order vocabulary of a task defines a domain. A
domain is a tuple Σ = 〈P, C,A,X〉, where P is a set of
predicate symbols, C is a set of constants (i.e., nullary func-
tions), A is a set of PDDL action schemas, and X is a set
of first-order logic formulas, called domain assumptions,
which we will discuss later. A lifted atom is a first-order
atom P (x1, . . . , xn) where P ∈ P and all xi are either vari-
ables or objects from C. A lifted literal is either a lifted atom
or its negation. A PDDL action schema a ∈ A is represented
with a precondition pre(a) and a set of add effects add(a),
and a set of delete effects del(a), where pre(a) is a set of
lifted literals and both add(a) and del(a) are sets of lifted
atoms.

A planning task Π in a domain Σ is a tuple 〈O, I,G〉,
where O is a set of objects, I is the initial state, and G is
the goal condition. A predicate symbol P ∈ P applied to
constants in C ∪ O is a (ground) atom and a subset of atoms
is a state with the interpretation that all atoms in the state are
true, while all others are false. The initial state I is a state,
while G is a set of atoms with the interpretation that our aim
is to make all atoms in G true. Any state s where G ⊆ s is a
goal state. The set of domain assumptions X contains first-
order formulas over I and G that restrict which instances we
consider part of the domain.

Action schemas a ∈ A can be grounded by consistently
replacing the variables in pre(a), add(a), and del(a) with
constants from C ∪ O. If every atom in the precondition of
a ground action is true in a state, we say the action is appli-
cable. If an action a is applicable in a state s then applying
it leads to the successor state s[a] = (s \ del(a)) ∪ add(a).
The set of successor states of a state s is succ(s) = {s[a] |
a is applicable in s}.

Example 1 In the Miconic domain, the set P has the fol-
lowing predicates: origin(p, f), indicating that passenger p
starts at floor f ; destin(p, f), indicating that passenger p’s
destination is floor f ; boarded(p), indicating that passenger
p has boarded into the elevator; served(p), indicating that
passenger p has reached their destination; lift-at(f) indicat-
ing that the elevator is in floor f ; floor(f) and passenger(p)
indicating the types of f and p; and above(f1, f2), indicat-
ing the order of floors.

The set C is empty for this domain and all constants are
defined by the set of objects O of each instance.

There are four action schemas in the domain: move the el-
evator up or down; letting a passenger board at their origin
or letting them depart at their destination. Moving the ele-
vator from f1 to f2 requires and then deletes lift-at(f1) and
adds lift-at(f2). A passenger can board an elevator on its
origin floor which adds boarded(p) (due to a modeling bug
in the IPC domain there is this can be done even if passen-
ger is already boarded). Similarly, a boarded passenger can
depart only at their destination, which deletes boarded(p)
and adds served(p). Additional conditions ensure that the
action parameters have the correct types using the predi-
cates floor(f) and passenger(p).

The domain assumptions X contain formulas restricting
the instances we consider as part of the domain. For exam-
ple, we use a domain assumption for the fact that the goal
consists of serving passengers:

∀a ∈ G.∃p.(a = served(p) ∧ passenger(p) ∈ I).

Other examples would be the assumptions that initially the
lift is at exactly one floor, and that every person has exactly
one origin and one destination floor. Note that these as-
sumptions are consistent with the original Miconic instances
(Koehler and Schuster 2000).

Generalized planning is the problem of finding solutions
that work for any given task of a fixed domain (Jiménez,
Segovia-Aguas, and Jonsson 2019). In other words, given a
fixed domain Σ, we want to solve any possible task Π of Σ.



Generalized Potential Heuristics
A heuristic is a function h mapping states to R0. A gener-
alized heuristic is a function defined over all states of all
possible tasks of a given domain. We use some terminology
by Seipp et al. (2016) to characterize heuristics: a state is
alive if it is not a goal state, reachable from the initial state,
and a goal state is reachable from it. A heuristic h is de-
scending on a state s if s has at least one successor s′ where
h(s′) ≤ h(s) − 1, and it is dead-end avoiding on a state s
if for every unsolvable state in s′ ∈ succ(s) h(s) < h(s′).
A heuristic is descending and dead-end avoiding (DDA) if it
is descending and dead-end avoiding on every alive state.
Heuristics with this property guide standard greedy algo-
rithms directly to a goal and are desirable in satisficing plan-
ning (Helmert et al. 2022).

Francès et al. (2019a) introduce the concept of general-
ized potential heuristics, which are weighted sums over fea-
tures mapping states to integers. We limit both weight func-
tions and features to natural numbers.

Definition 1 (Generalized Potential Heuristics) Let S be
a set of states, F be a set of features f : S → N, and
w : F → N be a weight function. The value of the gen-
eralized potential heuristic with features F and weights w
on a state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

In our work, we are interested exclusively in cardinal-
ity features over description logic (DL) concepts and roles.
We use the SOI language with equality role-value-maps
(Baader et al. 2003). This language can be defined with the
following production rules:

C :=> | ⊥ | AC | {a1, . . . , an} |
(¬C) | (C t C) | (C u C) |
(∃R.C) | (∀R.C) | (R = R),

where AC is a set of named concepts, forming the basis of
the inductive definition, and a1, . . . , an are nominals. Simi-
larly, roles are defined as follows

R := AR | (R−1) | (R ◦R) | (R+),

where AR is a set of named roles. Due to space limitation,
we point the reader to Francès et al. (2019a) and Baader
et al. (2003) for detailed explanations on the semantics of
each constructor above. Intuitively, in a state s a named con-
cept AC like boarded evaluates to the set of objects o, where
boarded(o) ∈ s. The concepts > and ⊥, {a1, . . . , an} eval-
uate to the set of all, no, or the explicitly listed objects. The
concepts ¬C, C1 t C2 and C1 u C2 have their intuitive in-
terpretation using set complement, union and intersection.
Roles evaluate to relations over objects, for example named
roles AR like origin evaluate to the set of tuples (p, f) where
origin(p, f) ∈ s. The roles R−1, R1 ◦ R2 and R+ evaluate
to the inverse relation, relational composition and transitive
closure of the recursive evaluations. The more complex con-
cept ∃R.C evaluates to the set of all objects x such that there
is an object y such that (x, y) is in the evaluation of R and y

is in the evaluation of fC. The concept ∀R.C is analogously
defined and the concept R1 = R2 evaluates to all objects x
such that for all y, the tuple (x, y) is either contained in both
roles or in none of them.

The value of a feature f = |c| is the cardinality of the
concept c evaluated in the respective state.

Example 2 The Miconic domain uses named concepts
AC = {served, boarded, lift-at} and named roles AR =
{origin, destin}. We also consider the following concepts:

not-boarded-needs-lift :=passenger u ¬served u ¬boarded
u (∀origin.¬lift-at)

not-boarded-has-lift :=passenger u ¬served u ¬boarded
u (∃origin.lift-at)

boarded-wrong-place :=passenger u ¬served u boarded
u (∀destin.¬lift-at)

boarded-right-place :=passenger u ¬served u boarded
u (∃destin.lift-at)

passenger-served :=passenger u served.

We can encode the following generalized potential heuristic
h using the concepts above:

h =5 · |not-boarded-needs-lift|
+ 4 · |not-boarded-has-lift|
+ 3 · |boarded-wrong-place|
+ 2 · |boarded-right-place|
+ 1 · |passenger-served|.

The generalized potential heuristic above encodes a tiered
measure of progress (Parmar 2002). In words, the different
concepts used in the heuristic describe different tiers, and an
object of the task can only be part of one concept per state
(i.e., the intersection of two concepts is empty). The idea is
that these concepts are ordered – from best to worst – with
respect to the goal condition. Moving one object from one
concept to a better one decreases the heuristic value.

A heuristic encodes a tiered measure of progress if it is al-
ways possible to apply an action in a non-goal state to move
an object from one concept to a better one. That is the case
for the heuristic h in Example 2. This implies that h is de-
scending for Miconic. Since every action moves at least one
object to a better concept and the number of concepts is con-
stant, a greedy search guided by h will only take polynomial
time in the number of objects (Francès et al. 2019a).

Currently, all proofs to show that a heuristic h is a tiered
measure of progress (and thus descending) are done man-
ually (Parmar 2002; Yoon, Fern, and Givan 2006; Francès
et al. 2019b). We work towards a system to automate this
process.

Approach
Tiered measures of progress guide a hill-climbing search di-
rectly to the goal, so they have guaranteed polynomial per-
formance. However, so far, all methods that use measures of



Task Σ Hypothesis h Domain
assumptions X

Prove background theory

Prove domain theory

Find and prove invariants

Prove number of
features is finite (A1)

Prove no features
occurs twice in h (A2)

Prove concepts are
mutually exclusive (A3)

Case distinction over
which concepts are empty

Find a witness action

Prove no new object
appears during transition (A4)

Prove no object moves
to a worse concept (A5)

Prove (at least) one object
moves to a better concept (A5)

Prove steps above
imply h is descending

for each case

Figure 1: Steps of our proof. Red boxes represent the input
given to Isabelle; blue boxes represent theories that need to
be proved only once; green boxes represent parts that are
fully automated; orange boxes represent proofs that are in-
teractive. The part of the proof corresponding to the gray
dashed box (“Find and Prove Invariants”) is not currenctly
implemented and it is assumed to be provided by the user.

progress either come up with them manually (Parmar 2002),
or create them based on sample tasks (Yoon, Fern, and Gi-
van 2006; Francès et al. 2019a). In both cases, it remains
to show that the progress measure is a strong measure of
progress for all tasks in the domain, i.e., that it generalizes
beyond the sample tasks.

Our long-term goal is to have a system that can automati-
cally generate a solver with a formally verified performance
guarantees for a given domain. Such a guarantee on the per-
formance is particularly important for systems that have to
know in advance how much computational resources are re-
quired to solve a task, for example in space applications
where battery power is severely limited. We show the first
steps toward this goal. The system we envision would work
in two phases:
1. Find a hypothesis, in our case a generalized potential

heuristic that is descending on some sample tasks.
2. Prove (semi-)automatically that the hypothesis general-

izes to all tasks in the domain, in our case, that the heuris-

tic is descending on all tasks in the domain. If this is not
the case, generate more samples and start from phase 1
again.

Phase 1 is already handled by Francès et al. (2019a)
whose method is guaranteed to find a heuristic that is de-
scending on all sample tasks if such a heuristic exists. We
work on Phase 2 here. In particular, we use automated and
interactive theorem provers to show that a given generalized
potential heuristic is indeed descending on all tasks of a do-
main. To do so, we make a case distinction and show in each
case that there is a witness action – an action that is appli-
cable in this case and only moves objects to better concepts.
This in turn shows that the heuristic is a tiered measure of
progress and thus descending in all tasks.

A fully automated process for this step is not possible, as
some of the involved problems are undecidable in general.
Interactive theorem proving involves the user in steps where
no complete methods exist, or where a fully automated solu-
tion would require an impractical amount of time. Our hope
is to automate as many steps as possible so the user can focus
on the core problems. Since interactive proofs are checked
by Isabelle/HOL (Nipkow, Wenzel, and Paulson 2002), the
final result is a complete formally verified proof about the
performance of the involved heuristic.

As we are reporting on work in progress, not all steps in
the process are finished yet. In its current form, our imple-
mentation sets up a formal proof environment in the inter-
active theorem prover Isabelle/HOL. This implementation
proves the statements we discuss in the rest of the paper and
it is available online (Abdulaziz, Pommerening, and Corrêa
2022). Figure 1 gives an overview of the process. It also
distinguishes between stepts that are interactive, fully auto-
mated, or not yet implemented.

As input, we take a PDDL description of the domain to-
gether with a description of domain assumptions and a list of
invariants for the domain. PDDL files only describe the set
of predicates P , constants C, and action schemasA. Further-
more, we supplement it with the domain assumptions X and
invariants. Similar to the domain assumptions, invariants are
also first-order logic formulas. The idea is that if an invari-
ant formula I holds in a given state s then it also holds in the
successors of s. In contrast to domain assumptions, invari-
ants need to be proved as consequences of the domain de-
scription and the domain assumptions. If an invariant holds
for an initial state according to our assumptions X , then it
will hold on any reachable state (by induction).

Example 3 In Miconic, we use invariants to express that
predicates like passenger are static, i.e., that if p is a pas-
senger in the initial state, p will be a passenger in all reach-
able states. Another invariant expresses that served(p) ∈ s
implies boarded(p) /∈ s for all reachable states s. In total,
we use ten such invariants in Miconic.

For each invariant, we have an accompanying domain axiom
claiming that the invariant holds in the initial state. The com-
plete system would have to prove that each claimed invariant
is actually invariant across the application of any action. Our
prototype currently does not perform this step.

In addition to the domain and the invariants we also read



in a file containing a list of concepts and a description of the
heuristic (the weights of involved concepts). We currently
are limited to cardinality features but kept the system open
to possibly extend this in the future. In the full system, the
domain and domain axioms would have to be provided by
the user, and the heuristic would be discovered in Phase 1,
for example with the method by Francès et al. (2019a). In-
variants could be discovered automatically but since there is
an infinite number of invariants in each domain finding a suf-
ficiently large set of invariants likely has to involve the user.
We hope that in the future, we can set up the proof environ-
ment in such a way that failed interactive proof attempts fail
with an error that helps the user identify missing invariants.

In the theory that we set up automatically, the user then
has to prove the following properties interactively:

1. Given two concepts, show that they are mutually exclu-
sive, i.e., there is no state where an object is in two of the
concepts.

2. Prove that all invariants specified in the input files are
indeed invariant, i.e., if they hold before an action appli-
cation, they hold after the action application.

3. Possibly split cases further. We automatically set up a
case distinction for alive states based on the concepts
used in the heuristic. This automatic case distinction or-
ders the concepts of the heuristic and has one case per
concept where this concept is non-empty and every ear-
lier concept is empty. The idea is that the concepts rep-
resent a tiered measure of progress and we distinguish
cases based on the first non-empty tier in this progress
measure. If another case split is required, this has to be
done interactively.

4. In each case, specify a witness action that will lead to
a decreasing heuristic value in alive states of this case
or show a contradiction in the case. Specifying a wit-
ness action amounts to choosing an action schema and
defining parameters of that action. The parameters have
to be objects whose existence we can derive from the
case. For example, if we handle a case where the con-
cept passenger u ¬served is non-empty, we can derive
the existence of an object p such that passenger(p) ∈ s
and served(p) /∈ s. This object can then be used as a
parameter in the witness action. Showing a contradic-
tion in a case usually involves showing that all states
in this case are goal states. For example, if the concept
passengeru¬served is empty, we can use the domain ax-
iom that the goal consists only of served facts for passen-
gers to show that all goals are satisfied. Since we make a
case distinction over alive states, showing that all states
in a case are goal states (and thus not alive) yields a con-
tradiction.

Currently, we have interactive proofs for our Miconic use
case for all of these steps except for proving the invariants.
As the invariants we use are simple, we do not expect large
problems proving them interactively, however, if we accept
arbitrary first-order formulas as invariants, proving them is
a semi-decidable problem, so an automated method will fail
in some cases where the domain does not hold.

Our framework is limited to generalized potential heuris-
tics that encode tiered measures of progress where the con-
cepts are mutex. We view this as an interesting use case be-
cause an intuitive way of specifying a progress measure is to
describe the different stages certain objects can be in (e.g.,
passengers first wait for a lift, then are about to enter a lift,
wait inside the lift, are about to exit the lift, and finally ar-
rive at their destination). The description of these stages ex-
pressed with a description logic naturally forms mutex con-
cepts and a tiered measure of progress.

We discuss the individual steps of our framework in more
detail in the following sections.

Foundations for Formal Reasoning about
Domains and Heuristics

One of our main contributions is constructing a formal math-
ematical background theory to aid in the formal reasoning
about PDDL domains and formulas in the DL fragment we
use. Such a background theory has to contain a formaliza-
tion of the syntax and semantics of PDDL and the DL frag-
ment in Isabelle/HOL’s logic. The syntax of PDDL and the
description logic is formalized in the form of an abstract
syntax tree, and the semantics are formalized by defining
functions and predicates (e.g. defining what is a valid plan,
or what is the result of action execution) operating on the
abstract syntax trees. Beyond the syntax and the semantics,
this background theory contains general theorems which are
reusable in any application that requires formal reasoning
about PDDL and description logic.

PDDL
For PDDL, we build on the work of Abdulaziz and Lam-
mich (2018), who formalized its syntax and semantics in
Isabelle/HOL. Their theory uses a more general definition
of PDDL, though, and is not restricted to STRIPS tasks
with negation. For example, in general PDDL action pre-
conditions are first-order formulas, objects are typed, and
effects can have additional conditions. In contrast, we focus
on STRIPS, where preconditions are sets of literals, objects
are untyped, and effects are given as two sets of atoms. The
reasoning in the more general PDDL setting is not problem-
atic in theory but can introduce some complications when
formally proving theorems about a given STRIPS domain.
When formalizing a proof in a STRIPS domain, reasoning
about actions whose preconditions are sets of literals is more
natural in interactive reasoning, as it more closely follows
the pen-and-paper proofs. Furthermore, there is better sup-
port for automatically reasoning about sets in Isabelle/HOL.
Likewise, reasoning about types is inconvenient when we
work in STRIPS domains where objects are untyped.

To be able to reason at the proper level when formally
reasoning about STRIPS problems we built a framework of
formal theorems and automated proof methods. This frame-
work transforms proof obligations about PDDL domains,
which contain formulas as preconditions, into proof obli-
gations about sets. It also can automatically discharge any
proof obligations about object types when reasoning about
STRIPS problem. In our experience, using this framework



significantly simplifies the process of formally proving state-
ments about the Miconic domain.

In addition to changing perspective from general PDDL
to STRIPS, our background theory defines the terms we in-
troduced in the background section. In particular, we define
what an alive state is and prove properties for alive states,
for example that alive states are reachable and that invari-
ants that hold in the initial state also hold in all alive states. In
addition to being useful for reasoning about potential heuris-
tics, this theory might find application in certifying unsolv-
ability of planning tasks.

Formalizing Concept Languages
Another contribution of our work is that we formalized the
abstract syntax and the semantics of concept languages. For
instance, Listing 1 shows the formalization of the abstract
syntax of the fragment of description logic we consider. This
listing shows how we use algebraic data-types, as imple-
mented in Isabelle/HOL, to model the abstract syntax. Al-
gebraic data types are widely used in functional program-
ming2. They are used to elegantly recursively represent fi-
nite structures, e.g. trees. In our case, a role could be a goal
predicate, an inverse of another role, a transitive closure
of another role, or a composition of two roles. The latter
three possibilities are recursively defined, i.e. they are de-
fined in terms of roles. Also note that, next to each of the
possibilities of the roles, we define a custom syntax which
strongly matches the pen-and-paper format. Similar to roles,
the abstract syntax tree of a concept is defined recursively.
Isabelle/HOL can automatically compute a lattice for such
types, thus showing that the data type is well-defined. Based
on that lattice, it derives induction principles which can be
used for proving theorems by structural induction on a vari-
able with the given data type. The implementation in Is-
abelle/HOL for deriving these proofs is based on bounded
natural functors (Traytel, Popescu, and Blanchette 2012).

The semantics, i.e. functions that assign meaning to the
syntax are also formalized in Isabelle/HOL. The semantics
of concepts are formalized in the form of a function that
maps a state and a concept to a set of objects. For roles an
analogous function maps to sets of pairs of objects. List-
ing 2 shows a sample of these functions. These functions
are primitive recursive, i.e. they are defined recursively in
terms of recursive algebraic data types. In particular, they
are defined using pattern matching. For instance, the func-
tion role value is defined to take, as arguments a role
and a state. It is defined recursively in the role via pattern
matching, where its value depends on the different possi-
bilities a role could be. In all cases, this function returns
a set of pairs of objects, defined using set comprehension.
Note that the syntax used to define these sets is analogous
to the pen-and-paper syntax one would use to define the
sets. Similarly, we have another recursive function defin-
ing the value of a concept. Isabelle/HOL is able to auto-
matically prove termination for all these recursive functions.
Interested readers should consult Isabelle’s documentation,

2Interested readers should refer to standard textbooks, like the
book by Thompson (2011, Chapter 15).

which summarises Isabelle/HOL’s function definition facili-
ties, and Krauss (2009) for the theory behind it.

A main focus of our formalization of description
logic was to develop a library which enables better
(semi)automated reasoning. Since automation methods in
Isabelle/HOL are chiefly based on Gentzen-style deduc-
tion,3 we prove lemmas about concept languages which
can act as Gentzen-style deduction rules. For instance, the
lemma in Listing 3 is the analogue of conjunction intro-
duction, but for concept languages. In particular, that the-
orem is an implication, which is written as a right-arrow.
The assumptions of that theorem, to the left of the arrow,
lie between the square brackets and are separated by a semi-
column. The conclusion of the theorem is to the right of the
arrow. Again, we use the set element relation (∈) and the
other functions were defined in the previous two listings.

In addition to these general lemmas aimed to make au-
tomation easier, we also formalized the definitions related
to generalized potential heuristics. This includes the defini-
tion of the value of a feature and the heuristic in a given
state, what it means to be decreasing transition, and what it
means to be a descending heuristic. The overarching goal for
this library is to provide background theory to aid in proving
that a given heuristic is decreasing in a given domain. Our
main theorem in this section sets out sufficient conditions
to show that a transition is a decreasing transition, w.r.t. a
given heuristic. To discuss it, we first have to define some
additional notation.

We say an object moves from concept C to C ′ along a
transition from state s to a state s′ if the object is in concept
C in state s and in concept C ′ in s′. For the interpretation
of a generalized potential heuristic as a tiered measure of
progress, we define Ch as the concepts used in the features
of a heuristic h. We consider a partial order on Ch based
on the weight of the respective cardinality features in the
heuristic. We say concept C is better than concept C ′ if it
occurs lower in this partial order, i.e. if it occurs with a lower
weight in the heuristic.

Theorem 1 A transition from a state s to a state s′ leads to
a decrease in the value of a generalized potential heuristic
h using concepts Ch if

A1 the number of features in h is finite,
A2 no feature occurs twice in the heuristic,
A3 the concepts in Ch are mutually exclusive, i.e. no object

can be in two different concepts of Ch in any given state,
A4 there are no objects that are in some concept C ′ ∈ Ch

in state s′ but in no concept C ∈ Ch in state s (i.e., no
objects “spontaneously appear” in some concept during
the state transition),

A5 no objects move to worse concepts, and at least one
moves to a strictly better concept.

3These are proof systems in which propositions are proved us-
ing tree-like proofs. Every proof step is represented as a branching
in the proof tree using one deduction rule. Interested readers can
consult the book by Troelstra and Schwichtenberg (2000, Chap-
ter 3), which provides a good introduction.



Listing 1: Abstract syntax of a concept language.
datatype role =

2 PredRole predicate
| GoalPredRole predicate

4 | Inverse role ("_ -1
C " 29)

| TransitiveClosure role ("_+
C" 29)

6 | Composition role role (infix "◦C" 25)

8 datatype concept =
Universe (">C")

10 | Empty ("⊥C")
| PredConcept predicate

12 | GoalPredConcept predicate
| Negation concept ("¬C _" [40] 40)

14 | Union concept concept (infix "tC" 30)
| Intersection concept concept (infix "uC" 35)

16 | RestrictEx role concept ("∃C_._" 10)
| RestrictFa role concept ("∀C_._" 10)

18 | RoleValueMap role role (infix "=C" 50)

Note that we do not forbid objects from “spontaneously
disappearing”. This is not a problem as our weights are non-
negative so objects leaving all concepts of Ch can only de-
crease the heuristic value.

The proof of this theorem is moderately involved and
takes around 500 lines in Isabelle. The core argument in-
volves performing a structural induction on the heuristic it-
self, i.e. an induction on the set of weight/feature pairs that
constitute the heuristic, generalizing over the heuristic func-
tion as well as its values in the states s and s′.

The main goal of proving this theorem is to prove that a
heuristic is descending for a given domain. The final theo-
rem in our background theory states that if A1–A3 are sat-
isfied and for every alive state in the domain there is a suc-
cessor satisfying A4–A5, the heuristic is descending. This
leaves A1–A5 as the main proof obligations for the user to
show that a given heuristic is descending for a given domain.

Domain- and Heuristic-Specific Reasoning
The theorems we described so far (Theorem 1 and all other
theorems about PDDL, DL, and concept languages) are in-
dependent of a specific domain or heuristic. We now de-
scribe another important part of our contribution that sup-
ports formal reasoning about a given heuristic and domain.
Our tools can automatically generate definitions for a PDDL
domain and a heuristic as an Isabelle/HOL theory. These
definitions are the representation about which the user rea-
sons and proves theorems. Our tooling also automatically
proves many properties about the domain and the heuristic.
These properties are then used in the interactive proofs done
by the user.

PDDL
Given a domain, described in a PDDL file, we built tool-
ing that parses the different elements of the domain into Is-
abelle/HOL definitions. In addition to the PDDL domain, we
also parse domain invariants and domain assumptions. Each

invariant is parsed into a domain assumption that the state-
ment holds for the initial state and a theorem stating that
this is indeed an invariant. In the current state of our sys-
tems, these statements about the invariants are not proved.
However, the invariants we use for the Miconic example are
very simple statements and we do not expect major difficul-
ties proving them interactively. In general, proving invari-
ants is semi-decidable, as any first-order logic formula can
be written as an invariant. To express the domain assump-
tions, we make use of a feature in Isabelle/HOL called a lo-
cale (Ballarin 2014). Locales are a way to structure theories
in Isabelle/HOL. In our context here, the most interesting
aspect of locales is that assumptions specified in a locale are
implicit assumptions for any theorem within the locale. We
prove all our theorems within the domain’s locale, so all do-
main assumptions are implicit assumptions to all theorems
in the locale, i.e. to all the theorems about the given domain.

In addition to representing the domain, the invariants, and
the domain assumptions, we also automatically prove tech-
nical lemmas that are needed to ease the automation of the
proofs. For instance, we generate lemmas stating that all
predicates in the domain have different names.

Generalized Potential Heuristics
Similar to what we do with the PDDL domain, our system
also parses the given description of the concepts and the
heuristic and translates them into Isabelle/HOL definitions.
We also prove many technical lemmas about the concepts in
the given domain. In particular, we prove that concepts and
features have different names. We also describe the different
concepts in features of the heuristic, and the partial order
between them based on the weights.

To prove that the given heuristic is descending, we show
that the assumptions of Theorem 1 apply to the domain and
the heuristic. Assumptions A1 and A2 are easy to show au-
tomatically for the given heuristic. Automating the proof of
assumption A3 is more problematic. Showing that two con-
cepts C1 and C2 cannot overlap is equivalent to showing that



Listing 2: Semantics of a concept language.
fun role_value::"role ⇒ state ⇒ (object × object) set" where

2 "role_value (PredRole p) M =
{(x,y) : untyped_object_tuples. (Atom (predAtm p [x,y])) ∈ M}" |

4 "role_value (GoalPredRole p) M =
{(x,y) : untyped_object_tuples. (predAtm p [x,y]) ∈ (atoms (goal P))}" |

6 "role_value (Inverse r) M =
{(x,y) : untyped_object_tuples. (y,x) ∈ (role_value r M)}" |

8 "role_value (TransitiveClosure r) M =
{(x,y) : untyped_object_tuples. (x,y) ∈ (role_value r M)\<ˆsup>+}" |

10 "role_value (Composition r1 r2) M =
{(x,z) : untyped_object_tuples.

12 ∃y. (x,y) ∈ (role_value r1 M) ∧ (y,z) ∈ (role_value r2 M)}"

14 fun concept_value::"concept ⇒ state ⇒ object set" where
"concept_value Universe M = untyped_objects" |

16 "concept_value Empty M = {}" |
"concept_value (PredConcept p) M = {x : untyped_objects. (Atom (predAtm p [x])) ∈ M}" |

18 "concept_value (GoalPredConcept p) M =
{x : untyped_objects. (predAtm p [x]) ∈ (pos_atoms (goal P))}" |

20 "concept_value (Negation c) M = untyped_objects - (concept_value c M)" |
"concept_value (Union c1 c2) M = (concept_value c1 M) ∪ (concept_value c2 M)" |

22 "concept_value (Intersection c1 c2) M = (concept_value c1 M) ∩ (concept_value c2 M)" |
"concept_value (RestrictEx r c) M =

24 {x : untyped_objects. ∃y. (x,y) ∈ (role_value r M) ∧ y ∈ (concept_value c M)}" |
"concept_value (RestrictFa r c) M =

26 {x : untyped_objects. ∀y. (x,y) ∈ (role_value r M) −→ y ∈ (concept_value c M)}" |
"concept_value (RoleValueMap r1 r2) M =

28 {x : untyped_objects. ∀y. (x,y) ∈ (role_value r1 M) ←→ (x,y) ∈ (role_value r2 M)}"

Listing 3: Conjunction introduction for our concept language.
lemma concept_valueI:

2 "Jx ∈ concept_value c1 M; x ∈ concept_value c2 MK =⇒ x ∈ concept_value (c1 uC c2) M"

the concept C1uC2 is not satisfiable. This problem is unde-
cidable for most fragments of description logic that include
role-value maps (i.e., concepts like (R1 = R2)) (Schmidt-
Schauß 1989). Without role-value maps, our fragment of de-
scription logic is contained in ALCIOreg where satisfiabil-
ity checks are EXPTIME-complete (De Giacomo 1995) and
is thus decidable.

For domains where a descending generalized potential
heuristic can be expressed without role-value maps (e.g. this
is the case in Miconic), a complete decision procedure could
be implemented in Isabelle/HOL to automatically prove that
concepts are mutually exclusive. Currently, we do not use
such a complete decision procedure but rely on an incom-
plete method of Isabelle/HOL. This incomplete method suc-
cessfully discharges the proof of A3 for Miconic. However,
we are not sure whether this would work for other domains.
An additional complication could be that proving A3 needs
the domain assumptions – as we stated, every theorem we
prove has the domain assumptions as implicit assumptions
due to our locale. This would be problematic as domain as-
sumptions are arbitrary first-order formulas, so proving A3
will then be a first-order theorem proving task.

The Interactive Part: Showing the Existence of
an Improving Transition

The remaining part of the proof is to show that assumptions
A4 and A5 of Theorem 1 hold for every alive state. Together
with the proofs of A1–A3 described in the previous section,
we can then conclude that in every alive state there is an
action whose application decreases the heuristic value.

We prove assumptions A4 and A5 by case analysis. In
particular, we use an ordering C1, C2, . . . , Cn over the con-
cepts occurring in the heuristic description. We then have n
cases, where each case 1 ≤ i ≤ n assumes that concepts
C1, C2, . . . , Ci−1 are empty, and concept Ci is not empty in
a fixed alive state s. We prove automatically that at least an
object exists in Ci in state s. For this object, we automati-
cally prove properties based on the concept that it is in.
Example 4 For concept “not-boarded-has-lift”, we show
that an object p exists that satisfies

passenger(p) ∈ s, served(p) /∈ s, boarded(p) /∈ s, and
∃f.(origin(p, f) ∈ s ∧ lift-at(f) ∈ s).

Currently, we define these properties of the witness object



manually, but they closely follow the structure of the concept
and could be derived by straightforward syntactic analysis.

The user then chooses an action and interactively proves
that it is a witness action, i.e., that the successor reached
through this action satisfies A4 and A5. Choosing an action
consists of selecting an action schema and picking its pa-
rameters. The witness action in general cannot be derived
automatically. While it would be possible to test all different
action schemas, selecting the parameters is not as straight-
forward. For example, a parameter could simply be the ob-
ject from the non-empty concept, but in general its existence
could also be derived from nested existentially quantified
concepts or domain assumptions.

Next, the user has to show that the precondition of the wit-
ness action is always satisfied in any alive state of the current
case. In this proof, the user can use the domain assumptions,
the assumptions about the current case (i.e., which concepts
are empty/non-empty), and the properties of the object in the
non-empty concept.

Finally, the user has to show three facts about the transi-
tion induced by applying the witness action in an alive state
satisfying the current case:

1. for each concept in the heuristic, if an object was in this
concept before applying the action, afterwards it is not in
a worse concept.

2. at least one object moves to a better concept.

3. no object is added to any concept that was not in a con-
cept before. To show that, we show that for each heuristic
concept that, if an object is in the concept after the appli-
cation, then it was in a heuristic concept before the action
application.

Again the proofs can use the domain and case assumptions,
properties of the object in the non-empty concept, but ad-
ditionally they can use the fact that the precondition of the
witness action is satisfied to derive further information about
the state.

We automated the proof of each of the three proof obli-
gations we described above. We implemented proof meth-
ods within Isabelle using the Eisbach framework (Matichuk,
Murray, and Wenzel 2016) to automate these proofs. We
have no theoretical guarantees on the completeness of these
methods, but a single proof method works for all cases of
Miconic.

Together, the three properties show assumptions A4 and
A5 which allow the user to apply Theorem 1 to conclude
that the heuristic value decreases while applying the witness
action.

The last step in the proof, which the user has to perform
interactively, is to combine all the previous results to prove
that the heuristic has a decreasing successor in every alive
state. If the default case split was used, this part of the proof
would always look the same so it can be generated auto-
matically. This then shows that the heuristic is a tiered mea-
sure of progress. This can in turn be used with the theorem
we discussed earlier to show that the heuristic is indeed de-
scending.

Conclusion
We showed first results of our tool to automate proofs of
performance guarantees using generalized heuristics in Is-
abelle/HOL. In particular, we show an interactive theorem
proving method for planning domains and generalized po-
tential heuristics. So far, our scope is limited to those heuris-
tics representing tiered measures of progress expressed with
mutually exclusive concepts. We showed the viability of the
system by proving that a heuristic for the domain Miconic is
indeed descending.

The next steps of our work are to automate some of the
remaining parts of the proofs where possible. For example,
proving that all concepts are mutually exclusive could be
automated if we restrict the description logic to no longer
allow role-value maps. Finding parameters for a witness ac-
tion is an interesting problem as well. While it is potentially
semi-decidable, incomplete methods that systematically try
objects based on the non-empty concept and the domain as-
sumptions could already cover many interesting cases.

In the long run, our framework could be used more gener-
ally for other proofs about PDDL domains and generalized
heuristics.
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