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ABSTRACT

We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI au-
tomation agents across Windows, macOS, Linux, iOS, Android, and Web. The
benchmark spans four levels: Content Understanding, Element Grounding, Task
Automation, and Task Collaboration, covering essential skills for GUI agents. To
assess both effectiveness and efficiency, we further propose the Efficiency–Quality-
Aware (EQA) metric, which measures task success alongside action redundancy.
Extensive evaluations reveal that precise visual grounding is the critical deter-
minant of performance, underscoring the advantages of modular designs with
specialized grounding modules. Moreover, all agents suffer from substantial ineffi-
ciencies, frequently completing tasks with excessive steps despite eventual success.
Performance also degrades on complex or cross-application tasks, exposing weak-
nesses in memory, planning, and adaptive reasoning. By providing broad coverage,
standardized protocols, and novel metrics, MMBench-GUI establishes the first
comprehensive foundation for advancing GUI agent research.

1 INTRODUCTION

The rapid progress of Vision-Language Models (VLMs) (Wang et al., 2024; Chen et al., 2024b;
Bai et al., 2025; Zhu et al., 2025; Team et al., 2025; Xiaomi, 2025; Wang et al., 2025b) has greatly
advanced GUI agents, enabling complex interactions within graphical interfaces (Wu et al., 2024a;
Cheng et al., 2024; Hong et al., 2024; Zheng et al., 2024; Gou et al., 2024). These agents show a
strong potential to automate repetitive tasks in different domains, thus improving productivity (Xu
et al., 2024b; Wu et al., 2024b; Lin et al., 2024; Qin et al., 2025; Yang et al., 2024).

Nevertheless, existing benchmarks (Zhou et al., 2023; Cheng et al., 2024; Xie et al., 2024; Li et al.,
2024; Chang et al., 2024; Rawles et al., 2024; Li et al., 2025; Nayak et al., 2025; Sun et al., 2025; Xie
et al., 2025) suffer from three critical limitations: (1) they focus on isolated skills and overlook the
relationships among multiple capabilities (Deng et al., 2023a; Cheng et al., 2024; Xie et al., 2025; Li
et al., 2025); (2) their metrics prioritize the success rate while neglecting efficiency (Zhou et al., 2023;
Xu et al., 2024a; Xie et al., 2024; Bonatti et al., 2024); and (3) their scenario coverage is narrow,
failing to represent widely used GUI systems (He et al., 2024; Xie et al., 2024; Rawles et al., 2024;
Sun et al., 2025).

To overcome these gaps, we propose MMBench-GUI, a hierarchical, multi-platform benchmark
for systematic evaluation of GUI agents. As illustrated in Figure 1, the framework consists of
four ascending levels: (1) GUI Content Understanding, (2) GUI Element Grounding, (3) GUI
Task Automation, and (4) GUI Task Collaboration. Each level captures essential skills, from basic
perception to cross-application collaboration, enabling comprehensive capability assessment. In
addition, we introduce the Efficiency–Quality-Aware (EQA) metric, which jointly evaluates accuracy
and efficiency by measuring both task success and running steps. Finally, to ensure practical relevance,
we construct a dataset spanning six major platforms, thereby reflecting diverse real-world scenarios.

Leveraging extensive evaluations with MMBench-GUI, we identify key limitations in current GUI
agents. First, while general language models excel at high-level reasoning and planning, they perform
poorly in precise visual interaction. Accurate visual grounding emerges as the primary determinant
of task success, underscoring the need for improved localization. Second, efficiency has become
a critical bottleneck beyond raw success rate. Our proposed EQA metric highlights the redundant
steps prevalent in contemporary agents, caused by localization errors, incomplete action spaces, and
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Figure 1: MMBench-GUI: a hierarchical benchmark spanning four levels of increasing difficulty,
covering over 8,000 tasks across six commonly used platforms. From L1 to L4, task complexity
increases progressively, placing growing demands on the agent’s generalization and reasoning abilities.
Based on this benchmark, we visualize the performance of various models in the right figure, clearly
illustrating their respective strengths as well as areas with substantial room for improvement.

shortsighted planning. Third, agent performance degrades substantially in complex, ambiguous, and
cross-application tasks, revealing deficiencies in memory, state tracking, and adaptive reasoning.
Addressing these shortcomings is essential for advancing GUI agent capabilities.

In summary, our primary contributions are as follows:

• Hierarchical, cross-platform benchmark. We introduce a human-centered, progressive bench-
mark that evaluates GUI agents across four essential capability levels. For static tasks (L1, L2),
we provide fine-grained difficulty stratification; for dynamic tasks (L3, L4), we offer cleaned
data splits and novel task constructions to better mirror real-world variability.

• Comprehensive platform coverage. Our benchmark spans all major operating systems: Windows,
Linux, macOS, Android, iOS, and the Web, enabling consistent multi-platform evaluation under
a unified protocol. To our knowledge, this is the first benchmark to incorporate online task
scenarios for macOS, filling a long-standing gap in GUI agent evaluation.

• Novel efficiency-aware metric. We propose the EQA metric to jointly evaluate success and
efficiency in online tasks. Unlike prior works that focus solely on success rate, EQA additionally
measures whether tasks are completed within a step budget, thereby quantifying action redun-
dancy. This provides deeper insight into agent behavior and encourages the development of
agents that are not only capable but also efficient.

2 MMBENCH-GUI

2.1 HIERARCHICAL EVALUATION

Existing GUI agents typically execute tasks by emulating human operations such as mouse clicks and
keyboard inputs, which requires both interface comprehension and long-horizon planning. However,
current benchmarks evaluate only isolated aspects—for example, Screenspot (Cheng et al., 2024) em-
phasizes spatial localization, while OSWorld (Xie et al., 2024) focuses on end-task success—without
systematically assessing the full spectrum of underlying competencies. Consequently, the relation-
ships among these abilities remain unclear, making it difficult to disentangle the specific factors that
drive agent success or failure.

To overcome these limitations, we propose MMBench-GUI, a hierarchical evaluation framework
as shown in Figure 1. The framework comprises four ascending levels: (1) L1-GUI Content
Understanding, (2) L2-GUI Element Grounding, (3) L3-GUI Task Automation, and (4) L4-GUI Task
Collaboration. Each level introduces tasks of increasing complexity, enabling systematic assessment
of agents under progressively more demanding scenarios. The complete benchmark covers over
8,000 tasks across various platforms, with detailed statistics reported in Appendix A.3.
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Question:
Which of the following features would allow the user to have their travel details
automatically added to calendar application?

Options:
A.Forward Reservations B.Calendar Sync C.Trips List D.Custom Categories

Answer: B

Explanation:
The 'Calendar Sync' option is listed under the AUTOMATIONS section in the setting
panel, which would enable synchronization between trip data and a calendar application.
The other options serve different functions: Forward Reservations is for ticket
management, Trips List is for customizing trip displays, Custom Categories is for
organizing trips.

Difficulty: Medium

L1 - GUI Content Understanding

Basic instruction:
The iconic golden 20th Century Studios logo which features a monument-like structure
with searchlights against a purple-blue sky background.

Advanced instruction :
Explore content from the production company responsible for films like Avatar and The
Simpsons.

Data type: icon

Platform: windows

App name: Hulu

Bbox: [0.4109, 0.1656, 0.5801, 0.3206]

Size: 2560x1600

L2 - GUI Element Grounding

Task instruction :
Please tell me the number of commits kilian made on 05 Mar, 2023 for the A11Y project on 
Gitlab.com.

Evaluation function:
String_Match(must_include, ["1"])

Platform : Web

Type: Single

App name: [Gitlab.com]

Max steps: 15

L3 - GUI Task Automation

L4 - GUI Task Collaboration

Task instruction :
Use Google to search for the conference start date of NIPS 2025 (UTC-0), and add an 
event titled "NIPS" on the date in Calendar.

Evaluation function :
Check_Calendar_Status(content=‘Events’, items=[‘NIPS’, ‘Dec 2nd’])

Platform : android

Type : Multi

App name : [Chrome, Calendar]

Max steps : 15

Figure 2: Examples for all levels. Both of L1 and L2 are offline tasks for quick evaluation. Tasks of
L3 and L4 are evaluated in the virtual environment with an online manner.

2.2 L1-GUI CONTENT UNDERSTANDING

To reliably complete automated tasks, GUI agents must couple domain knowledge with visual
observations, allowing them to interpret interface layouts, functionalities, and embedded information.
This process is inherently challenging due to substantial variability in design paradigms across
platforms, inconsistencies in interface conventions among applications within the same platform, and
fragmented domain knowledge for specialized software. These complexities highlight the necessity
of advanced perception and understanding mechanisms. However, the absence of comprehensive
benchmarks has left such capabilities insufficiently and implicitly evaluated.

To address this gap, we introduce the first-level task: L1-GUI Content Understanding. Positioned at
the foundation, this task emphasizes that GUI comprehension is a prerequisite for accomplishing any
subsequent objectives.

Task Definition. At this task level, the objective is to evaluate an agent’s ability to extract, interpret,
and reason over information contained in GUI screenshots, without focusing on fine-grained element
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localization or concrete operational actions. To this end, we formulate the evaluation as a Multiple-
Choice Question Answering (MCQA) task grounded in visual observations, providing a standardized
and quantifiable framework that simplifies assessment. Formally, the task can be defined as

o∗ = Agent(V, q,O) (1)

where V denotes the visual observation (GUI screenshot) presented to the agent, q represents the
question about the observation to evaluate comprehension, and O = {o1, o2, . . . , ok} represents the
set of k candidate options for question q, among which only one o can correctly answer q.

The agent’s goal is to analyze the question q, identify relevant information within V, conduct
reasoning, and finally select an option o∗ from O as the predicted answer. The key to achieving this
goal is the proper construction of the pair (q,O), as the effectiveness of the evaluation depends on
both the quality of the question and the relevance of the options. Therefore, we argue that a diverse
and sufficiently large set of well-constructed (q,O) pairs about GUI elements and operations, with
varying levels of difficulty, is essential to effectively evaluate the GUI understanding capabilities.

Data Collection and Annotation. We constructed a diverse dataset of application and website
screenshots and derived high-quality Question–Options–Answer pairs through a multi-stage pipeline
combining LLM generation, verification, and manual inspection. Examples are shown in Figure 2,
and the detailed data acquisition process and annotation protocol are provided in Appendix A.4.1.

Evaluation Metrics. For each question, we adopt accuracy as the evaluation metric, consistent
with common QA tasks. In addition, we propose a refined weighted accuracy that more rigorously
considers the number of options; full details are presented in Appendix A.5.1.

2.3 LEVEL 2: GUI ELEMENT GROUNDING

Accurate grounding of interactive UI elements is a fundamental prerequisite for executing GUI-
based tasks, requiring agents to localize target elements conditioned on task objectives and visual
observations. Despite recent progress, several challenges persist: (1) visual ambiguity from highly
similar elements, such as identical icons or buttons; (2) dynamic disruptions from pop-ups or transient
notifications; and (3) the difficulty of distinguishing inactive from active regions. As grounding
directly determines reliability, addressing these issues is critical for effective GUI automation.

However, existing benchmarks remain limited. ScreenSpot (Cheng et al., 2024; Wu et al., 2024b)
is nearly saturated, while ScreenSpot Pro (Li et al., 2025) is restricted to narrow domains. More
importantly, benchmark instructions are often overly direct (e.g., “submit the paper”), failing to
capture the nuanced references and reasoning required in real-world tasks. This mismatch leaves
a substantial gap between benchmark evaluation and practical deployment. To bridge this gap,
we introduce a new dataset that expands domain coverage and incorporates more diverse, realistic
instructions. By systematically categorizing instructions by descriptive type, our benchmark better
reveals model weaknesses and aligns evaluation with real-world agent reasoning.

Task Definition. Accurate perception and understanding by an agent typically require validation
through concrete actions, analogous to human interactions with GUI elements, to execute subsequent
task steps. Building upon the comprehension capabilities assessed in L1, we propose L2-GUI
Element Grounding to further measure the agent’s spatial localization ability, specifically, the accurate
identification of actionable GUI elements. This ability aligns precisely with the requirements of a
grounding task, formally defined as:

p = Agent(ins,V) (2)

where ins represents an instruction for the GUI element to be localized, which can be derived from a
direct user task or the agent’s internal reasoning process. The output p denotes the resulting location
of the target element, typically represented by the coordinates (x, y) that indicate the activation point
of the interactive element. The definition of ins constitutes the core component of this level. In
the context of GUI tasks, the description of an element can encompass various attributes, including
appearance, approximate spatial position, and functionality.

Data Collection and Annotation. We extend the data from L1 through annotating interactive ele-
ments and generating grounding instructions with a multistep procedure, enabling multidimensional
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analysis on a consistent data foundation. An example of L2 and the details of this design are provided
in Figure 2 and Appendix A.4.2, respectively.

Evaluation Metrics. Following the evaluation protocol of ScreenSpot (Cheng et al., 2024), we com-
puted accuracy separately for the Basic and Advanced instruction types. For each interactive element,
a prediction was considered successful if the agent’s predicted point of interaction–represented as a
coordinate (x, y)–fell within the annotated bounding box. Otherwise, it was marked as a failure. The
final accuracy was calculated as the proportion of successful predictions over the total number of
evaluated elements.

2.4 LEVEL 3: GUI TASK AUTOMATION

To accomplish tasks within a single application, agents must combine interface comprehension and
precise element localization with advanced planning and dynamic reasoning. A typical workflow
involves parsing task instructions, perceiving interface content, grounding target components, and
decomposing high-level objectives into executable actions (e.g., clicks, typing). The agent then itera-
tively interacts with the environment, adjusting its strategy based on real-time feedback. This tightly
integrated cycle of perception, decision-making, and interaction underpins robust task completion,
particularly in multi-step scenarios.

Key challenges include resolving ambiguous instructions, handling dynamic UI changes such as
pop-ups or context shifts, and efficiently planning long action sequences. Despite their prevalence in
real-world automation, these abilities are rarely assessed systematically across platforms. To fill this
gap, we propose L3-GUI Task Automation as the third level of our benchmark, targeting end-to-end
automation within a single, potentially complex, application. This level serves as a critical bridge
between low-level perception/grounding and higher-level, generalizable task-solving skills.

Task Definition. We formally define this level as follows: The agent is required to complete a multi-
step task within a single application by generating a sequence of actions that directly manipulate
the user interface to fulfill a specified objective. At each time step t, the agent receives a visual
observation Vt of the current UI state and generates an action At with corresponding parameters
Pt, based on the task instruction ins, the history Ht, and involved applications S (with S ∈
{App1,App2, . . . ,Appn} for single-app scenarios). The process is formally described as:

At, Pt = Agent(ins,Vt,Ht,Ss)

Vt+1 = Env(At, Pt)

Ht+1 = {Ht, (Vt, At, Pt)}
(3)

Here, Ht denotes the contextual history, which normally consists of previous observations and
action sequences. In practice, the implementation of history typically follows two styles. The
first style encapsulates the entire interaction process within multi-turn dialogues, while the second
one condenses history into natural language and injects it into the prompt. The agent-environment
interaction proceeds iteratively until a maximum number of steps (t = Tmax) is reached or a terminal
action (At ∈ [FINISH, FAIL]) is predicted.

Task Collection and Curation. Our benchmark integrates tasks from multiple established platforms
and further introduces a curated macOS task suite (MacOSArena) to ensure comprehensive and
realistic coverage. Detailed task sources, review protocols, and the design of MacOSArena are
provided in Appendix A.4.3. We also provide an example in Figure 2.

Evaluation Metrics. An ideal GUI agent should demonstrate both accuracy and efficiency. Yet,
existing benchmarks rely almost exclusively on Success Rate (SR), overlooking how efficiently tasks
are accomplished. To fill this gap, we introduce the Efficiency–Quality-Aware (EQA) metric, which
jointly accounts for task success and action economy, rewarding agents that complete more tasks with
fewer steps. We elaborate the defination and formulation of EQA in Appendix A.5.2.

2.5 LEVEL 4: GUI TASK COLLABORATION

Real-world automation often requires agents to coordinate actions across multiple applications,
managing heterogeneous interfaces and interdependent subtasks. Such scenarios demand more than
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localized planning: agents must adopt a global perspective, track cross-application dependencies,
sequence operations coherently, and maintain information flow. They must also demonstrate long-
horizon reasoning, robust error recovery, adaptability to interface changes, and resilience to runtime
variability-capabilities that remain challenging for contemporary GUI agents.

Despite the importance of collaboration and global reasoning, existing benchmarks rarely evaluate
these aspects systematically. To bridge this gap, we introduce L4-GUI Task Collaboration as the
fourth level of our benchmark, designed to assess agents’ ability to perform reasoning, coordination,
and adaptive automation across multiple applications.

Task Definition. Extending the formulation above, L4 evaluates the agent’s ability to coordinate
complex workflows involving multiple applications. The agent must generate and execute a sequence
of actions that may interact with any application in the set Sm, where Sm represents a subset of k
applications selected from the available pool, i.e., Sm ⊆ {App1,App2, . . . ,AppN} with |Sm| = k,
to accomplish a collaborative high-level task. Formally, the agent-environment loop in Equation 3
changes as follows:

At, Pt = Agent(ins,Vt,Ht,Sm)

Vt+1 = Env(At, Pt)

Ht+1 = {Ht, (Vt, At, Pt)}
(4)

Meanwhile, Ht now aggregates the interaction history across all relevant app environments. The
process terminates when either the step limit is reached or a terminal action is predicted.

Task Collection and Design. We further extend L3 tasks to L4 workflows as shown in Figure 2,
capturing inter-app coordination and realistic cross-interface scenarios. Detailed task construction
principles are provided in Appendix A.4.4.

Evaluation Metrics. We adopt the same evaluation metrics as in L3, i.e., SR and EQA. For both
levels, the completion result is determined by verifying the final state and counting the number of
steps taken, without the need to consider the individual states of multiple applications in Sm.

3 BENCHMARKING GUI AGENT BASELINES

In this section, we evaluate a diverse set of contemporary VLMs and LLMs, covering both open-source
and proprietary models, on MMBench-GUI to provide a comprehensive view of current GUI-agent
performance. Each method is supplied only with screenshots and task descriptions, deliberately
excluding auxiliary artifacts such as accessibility (A11y) trees or Set-of-Marks (SoM) data, thereby
aligning more closely with real-world deployment. We evaluate a broad range of both proprietary and
open-source models. The proprietary models include GPT-4o, Claude-3.7, Qwen-Max-VL (Hurst
et al., 2024; Anthropic, 2025; Bai et al., 2023) and the open-sourced models include Qwen2.5 series,
UI-TARS series, InternVL series, Aguvis, ShowUI, UGround, OS-Atlas (Bai et al., 2025; Qin et al.,
2025; Zhu et al., 2025; Xu et al., 2024b; Lin et al., 2024; Gou et al., 2024; Wu et al., 2024b). We also
assess hybrid configurations such as GPT-4o+UGround. The benchmarking details are provided in
the Appendix A.7.

3.1 BENCHMARK RESULTS ON L1-GUI CONTENT UNDERSTANDING

Table 1 reports model performance on the GUI Understanding task (L1) across three difficulty levels
and six platforms. InternVL3-72B consistently achieves the highest scores on all conditions, with
Qwen2.5-VL-72B and Qwen-Max-VL following. GPT-4o shows moderate results, while the Claude
variants and UI-TARS-72B-DPO perform substantially worse.

Three consistent patterns emerge. First, performance declines as task difficulty increases, with Easy
always outperforming Medium and Hard. Second, cross-platform variability is evident: macOS and
Linux generally yield higher scores, whereas Android and Web introduce larger fluctuations and
lower accuracy. Third, InternVL3-72B not only maintains the top rank (79.2%, 77.9%, 75.7% on
Easy, Medium, and Hard, respectively) but also exhibits the smallest performance drop, indicating
stronger robustness. Qwen2.5-VL-72B remains second, while GPT-4o degrades more sharply on
harder items. In summary, these results reveal substantial differences in model capability for GUI
content understanding, offering a solid quantitative foundation for the deeper analysis presented in
the following section.
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Table 1: Performance on L1-GUI Content Understanding. ‘Overall’ represents the aggregated
score across all platforms, calculated as a weighted sum of individual platform scores.

Model Windows MacOS Linux iOS Android Web Overall

Easy Level
GPT-4o (2024) 62.47 67.89 62.38 58.52 56.41 58.51 60.16
Claude-3.5 (2024) 41.34 50.04 41.61 42.03 38.96 41.79 41.54
Claude-3.7 (2025) 34.66 49.05 39.37 42.76 37.45 40.80 39.08
Qwen-Max-VL (2023) 69.05 72.51 69.91 70.82 63.09 69.46 68.15
Qwen2.5-VL-72B (2025) 65.86 75.23 73.02 67.24 58.09 72.08 66.98
UI-TARS-72B-DPO (2025) 41.59 28.52 35.16 31.08 52.25 35.33 40.18
InternVL3-72B (2025) 74.67 78.72 79.16 83.57 80.10 81.18 79.15

Medium Level
GPT-4o (2024) 56.33 63.13 59.70 54.06 57.69 54.98 57.24
Claude-3.5 (2024) 39.28 47.63 45.97 44.57 42.03 34.33 41.26
Claude-3.7 (2025) 39.34 39.23 42.28 39.45 36.05 36.17 38.39
Qwen-Max-VL (2023) 63.40 73.85 66.90 68.02 63.66 64.59 65.44
Qwen2.5-VL-72B (2025) 66.29 72.73 72.63 59.27 66.24 68.24 67.45
UI-TARS-72B-DPO (2025) 38.83 41.60 37.14 41.72 54.74 31.55 41.77
InternVL3-72B (2025) 71.46 78.58 79.88 78.43 81.36 78.67 77.89

Hard Level
GPT-4o (2024) 60.69 60.38 52.42 45.27 50.93 50.83 53.49
Claude-3.5 (2024) 37.40 42.70 34.07 40.86 36.96 38.11 37.55
Claude-3.7 (2025) 32.99 34.48 31.97 39.20 36.99 38.92 35.65
Qwen-Max-VL (2023) 66.64 67.59 65.80 60.23 58.78 65.34 63.69
Qwen2.5-VL-72B (2025) 70.68 68.91 70.98 57.59 53.94 68.10 64.56
UI-TARS-72B-DPO (2025) 31.48 35.87 24.19 36.33 58.13 19.94 35.78
InternVL3-72B (2025) 75.08 77.44 76.19 70.37 75.73 78.11 75.70

Table 2: Performance on the L2-GUI Element Grounding. “Adv.” stands for advanced, while
“Avg.” refers to the weighted average of all results in a row, where the weights correspond to the
proportion of tasks for each platform and mode relative to the total number of tasks.

Model Windows MacOS Linux iOS Android Web Avg
Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv.

GPT-4o (2024) 1.5 1.1 8.7 4.3 1.1 1.0 5.1 3.3 2.5 1.4 3.2 2.9 2.9
Claude-3.7 (2025) 1.5 0.7 12.5 7.5 1.1 0.0 13.7 10.6 1.4 1.4 3.2 2.3 4.7
Qwen-Max-VL (2023) 43.9 36.7 58.8 56.1 53.9 30.1 77.4 59.1 79.5 70.1 74.8 58.8 58.0
Aguvis-7B-720P (2024b) 37.3 21.7 48.1 33.3 33.5 25.0 67.5 65.2 61.00 51.0 61.6 45.5 45.7
ShowUI-2B (2024b) 9.2 4.4 24.1 10.4 25.1 11.7 29.0 19.7 17.4 8.7 22.9 12.7 16.0
OS-Atlas-Base-7B (2024b) 36.9 18.8 44.4 21.7 31.4 13.3 74.8 48.8 69.6 46.8 61.3 35.4 41.4
UGround-V1-7B (2024) 66.8 39.0 71.3 48.6 56.5 31.1 92.7 70.9 93.5 71.0 88.7 64.6 65.7
InternVL3-72B (2025) 70.1 42.6 75.7 52.3 59.2 41.3 93.6 80.6 92.7 78.6 90.7 65.9 72.2
Qwen2.5-VL-72B (2025) 55.7 33.8 49.9 30.1 40.3 20.9 56.1 28.2 55.6 25.4 68.4 45.8 41.8
Qwen2.5-VL-7B (2025) 31.4 16.5 31.3 22.0 21.5 12.2 66.6 55.2 35.1 35.2 40.3 32.5 33.9
UI-TARS-1.5-7B (2025) 68.3 39.0 69.0 44.5 64.4 37.8 88.5 69.4 90.5 69.3 81.0 56.5 64.3
UI-TARS-72B-DPO (2025) 78.6 51.8 80.3 62.7 68.6 51.5 90.7 81.2 93.0 80.0 88.1 68.5 74.3

3.2 BENCHMARK RESULTS ON L2-GUI ELEMENT GROUNDING

Table 2 presents the results for the L2 element grounding task across six platforms and two in-
struction types. Performance varies widely: GPT-4o and Claude-3.7 exhibit almost no grounding
ability, whereas open-source models such as UI-TARS-72B-DPO, InternVL3-72B, UGround-V1-7B,
and Qwen2.5-VL-72B achieve substantially higher scores. The strongest results are obtained by
UI-TARS-72B-DPO (74.25%) and InternVL3-72B (72.20%), both showing robust cross-platform
consistency, for instance, UI-TARS surpasses 80% on macOS, Android, and Web in the Basic set-
ting while remaining competitive on Linux and iOS. A clear platform-dependent pattern emerges:
high-performing models achieve greater accuracy on mobile and web environments (e.g., UI-TARS
93.54% on Android and 88.71% on Web) than on desktop systems. Furthermore, all models show
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Table 3: Evaluation result of L3-GUI Task Automation and L4-GUI Task Collaboration. Values
in bold indicate the highest score within each group; underlined values indicate the second highest.

Model Windows MacOS Linux Android Web Avg

SR EQA SR EQA SR EQA SR EQA SR EQA SR EQA

L3-GUI Task Automation (Max Steps=15)
GPT-4o (2024) 5.6 3.3 0.0 0.0 6.8 4.4 19.0 8.9 1.9 1.5 7.2 4.1
Claude-3.7 (2025) 6.8 3.4 8.6 2.8 7.4 4.2 11.2 3.5 1.9 1.5 6.8 3.4
Aguvis-72B (2024b) 4.1 2.0 0.0 0.0 3.1 1.6 18.1 10.8 5.8 2.2 6.2 3.2
UI-TARS-7B (2025) 6.2 3.2 2.9 2.2 16.5 13.4 23.7 15.5 11.0 6.1 13.7 9.6
UI-TARS-1.5-7B (2025) 11.1 6.0 11.4 6.6 26.5 18.7 30.2 17.9 20.8 12.2 22.0 14.0
UI-TARS-72B-DPO (2025) 11.1 5.4 11.4 7.8 30.3 18.9 43.1 26.6 23.4 17.1 26.1 16.5
Qwen2.5-VL-72B (2025) 11.8 7.2 2.9 2.0 9.8 5.4 16.4 9.8 15.6 9.9 12.2 7.3
GPT-4o + UGround-V1-7B (2024) 13.1 8.1 2.9 1.0 16.1 8.7 34.5 21.1 23.2 16.7 19.4 11.9
GPT-4o + UI-TARS-1.5-7B (2025) 14.5 6.8 2.9 0.9 20.2 11.1 33.6 15.2 28.6 17.5 22.2 11.8

L3-GUI Task Automation (Max Steps=50)
GPT-4o (2024) 3.5 2.3 2.9 1.7 11.6 9.1 21.6 10.8 3.3 3.2 9.4 6.3
Claude-3.7 (2025) 6.4 4.0 11.4 4.2 10.3 6.3 11.2 3.6 2.6 2.6 8.1 4.5
Aguvis-72B (2024b) 3.5 1.6 0.0 0.0 4.2 2.0 19.8 14.7 9.0 3.8 7.4 4.3
UI-TARS-7B (2025) 8.4 6.1 2.9 2.5 23.9 13.9 25.4 18.1 13.6 8.0 17.8 11.2
UI-TARS-1.5-7B (2025) 15.9 11.3 11.4 7.0 29.8 21.3 31.6 22.2 26.0 17.5 25.6 17.9
UI-TARS-72B-DPO (2025) 17.9 11.8 11.4 8.4 31.4 25.4 45.7 35.2 21.4 16.9 27.9 21.6
Qwen2.5-VL-72B (2025) 9.7 6.9 5.7 4.0 10.6 7.9 27.6 21.8 14.4 9.7 13.7 10.1
GPT-4o + UGround-V1-7B (2024) 20.7 11.9 5.7 3.2 19.5 10.9 47.4 37.2 26.5 25.5 25.1 17.5
GPT-4o + UI-TARS-1.5-7B (2024) 26.2 17.3 8.6 5.0 22.9 13.8 42.2 33.1 28.6 21.0 27.2 18.7

L4-GUI Task Collaboration (Max Steps=15)
GPT-4o (2024) 7.5 5.9 0.0 0.0 3.5 2.4 0.0 0.0 2.1 0.1 3.0 2.2
Claude-3.7 (2025) 3.6 1.6 2.9 2.0 7.3 4.8 0.0 0.0 – – 4.8 3.0
Aguvis-72B (2024b) 3.2 3.0 0.0 0.0 1.6 0.4 3.3 3.2 – – 1.9 1.2
UI-TARS-7B (2025) 3.2 3.0 0.0 0.0 4.0 2.2 6.7 9.6 – – 3.6 3.1
UI-TARS-1.5-7B (2025) 3.2 3.0 2.9 0.8 5.0 4.0 6.7 6.6 – – 4.6 3.7
UI-TARS-72B-DPO (2025) 3.2 3.1 5.7 1.5 7.5 5.9 10.0 9.6 – – 6.8 5.2
Qwen2.5-VL-72B (2025) 6.2 4.2 0.0 0.0 2.5 1.7 6.7 6.1 – – 3.4 2.5
GPT-4o + UGround-V1-7B (2024) 9.3 5.1 0.0 0.0 3.6 2.5 3.3 3.2 – – 3.9 2.6
GPT-4o + UI-TARS-1.5-7B (2025) 12.3 6.4 0.0 0.0 5.6 3.8 23.3 21.1 4.3 0.7 8.4 6.2

L4-GUI Task Collaboration (Max Steps=50)
GPT-4o (2024) 6.2 5.0 0.0 0.0 5.9 5.4 0.0 0.0 2.1 1.5 4.0 3.5
Claude-3.7 (2025) 6.3 4.8 2.9 2.0 9.3 7.4 0.0 0.0 – – 5.5 3.9
Aguvis-72B (2024b) 3.2 3.1 0.0 0.0 1.6 0.4 6.7 6.4 – – 2.4 1.7
UI-TARS-7B (2025) 6.2 5.2 0.0 0.0 4.6 3.6 10.0 6.5 – – 4.9 3.7
UI-TARS-1.5-7B (2025) 6.2 6.0 2.9 0.9 7.6 5.5 13.3 13.1 – – 7.4 5.9
UI-TARS-72B-DPO (2025) 9.3 6.2 5.7 2.3 8.5 7.2 20.0 11.8 – – 9.8 6.9
Qwen2.5-VL-72B (2025) 6.2 5.2 0.0 0.0 1.6 1.3 6.7 6.5 – – 2.9 2.8
GPT-4o + UGround-V1-7B (2024) 9.3 5.0 0.0 0.0 5.5 3.8 6.7 6.4 – – 5.3 3.7
GPT-4o + UI-TARS-1.5-7B (2024) 12.3 6.8 2.9 1.0 7.5 5.6 23.3 21.7 4.1 2.0 9.8 7.4

reduced accuracy under Advanced instructions compared to Basic ones, highlighting the additional
challenge posed by abstract or functional cues.

3.3 BENCHMARK RESULTS ON L3/L4-GUI TASK AUTOMATION/COLLABORATION

Tables 3 present results for single-app (L3) and multi-app (L4) automation under step limits of 15
and 50. A unified evaluation pipeline was applied, with standardized prompts and action spaces for
general-purpose models and official settings for GUI-specific agents.

On L3 tasks, overall performance remains modest: the best method, GPT-4o + UI-TARS-1.5-7B,
achieves only 26.6% SR, while most models fall below 20%. GUI-specific agents such as UI-TARS-
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72B-DPO outperform others, particularly on Linux and Android, whereas language-centric models
like GPT-4o and Claude-3.7 perform poorly. Crucially, combining general-purpose models with
grounding modules consistently improves results—for example, GPT-4o alone yields 6.13% SR, but
surpasses 17% when paired with UGround or UI-TARS. In contrast, L4 performance drops sharply:
the top system reaches just 8.78% SR, with most models under 6%, underscoring the difficulty of
cross-application automation. Allowing longer action sequences (50 vs. 15 steps) improves SR and
EQA across settings but does not close the gap, suggesting persistent challenges in long-horizon
planning and multi-step execution.

Platform differences are also pronounced. Android and Web yield relatively higher scores (e.g.,
GPT-4o + UI-TARS-1.5-7B achieves 33.10%/25.81% SR/EQA on Android), whereas desktop envi-
ronments, especially macOS, lag substantially.

Overall, these results highlight the benefits of integrating planning with grounding for L3 tasks, while
revealing a substantial performance gap in L4 scenarios that exposes the limitations of current agents
in robust, long-horizon, multi-application automation.

4 ANALYSIS OVERVIEW

Synthesizing the results in Section 3 across L1–L4 yields six findings that delineate the current limits
of GUI agents:

• Planning is not enough: general-purpose LMs plan well but miss fine-grained interactions;
coupling planners with specialized grounders reliably lifts performance.

• Accurate visual grounding is the primary driver of success: improvements in localization
translate directly into higher SR and more stable behavior.

• Efficiency remains underexplored: our EQA metric reveals pervasive step redundancy; princi-
pled early stopping and step-aware policies matter.

• Action-space bottlenecks: many failures arise from missing or overly coarse primitives, not
perception alone—richer, better-scoped actions are required.

• Fragility under complexity and dynamics: accuracy and efficiency drop with instruction
abstraction, UI volatility, and longer horizons, indicating limited generalization.

• Cross-application gaps: multi-app workflows fail mainly due to deficits in memory/state
tracking and cross-app information flow rather than deficiencies in recognition per se.

Together, these findings chart a concrete path forward: pair strong planners with high-precision
grounders, expand and normalize the action space, elevate efficiency to a first-class objective via
EQA-aware policies, and equip agents with persistent memory for cross-application orchestration.

We provide complete analyses and evidence in Appendix A.6 with extended textual discussions and
complementary figures and tables. These materials substantiate each finding and offer diagnostic
guidance for future work.

5 CONCLUSION

In this work, we presented MMBench-GUI, a novel hierarchical multi-platform evaluation framework
that comprehensively assesses the capabilities and limitations of GUI automation agents. Through
rigorous evaluations across multiple operating systems and diverse tasks, we uncovered critical
insights into key performance bottlenecks, particularly highlighting the importance of accurate visual
grounding, sophisticated planning, and robust cross-platform generalization. Our findings demon-
strate that modular architectures integrating specialized grounding modules significantly improve
performance, addressing inherent limitations of general-purpose language models. Additionally, our
analysis underscores the importance of improving long-horizon reasoning, adaptive error recovery,
and effective memory and state management to address complex and ambiguous GUI scenarios.
MMBench-GUI thus provides a foundational benchmarking resource and actionable guidance for
future research efforts, advancing the development of robust, reliable, and practically applicable GUI
automation agents.
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ETHICS STATEMENT

Our work complies with the ICLR Code of Ethics. The proposed dataset is constructed without
collecting any personally identifiable information or sensitive data. All screenshots, metadata
information are obtained from synthetic or publicly accessible software environments and do not
involve real users’ private data. Human experts are limited to interface-level information (e.g., UI
element labels, bounding boxes, or action descriptions) without exposure to personal content. The
released resources (dataset, and code) are intended solely for research purposes to advance open and
reproducible study of cross-platform computer use agents. We explicitly discourage any misuse of
these resources in ways that could compromise privacy, security, or fairness. No conflicts of interest
or sponsorship bias exist in this work, and all authors adhere to research integrity practices, including
transparent documentation of data sources, collection procedures, and evaluation protocols

REPRODUCIBILITY STATEMENT

The reproducibility-critical aspects of our benchmark center on both the construction of the evalu-
ation data and the model evaluation protocol. Accordingly, the appendix provides comprehensive
descriptions of the data-construction methodology and the prompts used for labeling (Appendix A.4),
together with a full account of the evaluation pipeline-covering inference setup (Appendix A.7),
termination criteria, and metric computation (Appendix A.5), thereby enabling researchers to replicate
the dataset and reproduce our evaluations with fidelity under transparent and repeatable conditions.
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A APPENDIX

In this section, we present material that augments the main content, including more extensive analyses,
formal derivations of the evaluation metrics, additional figures and tables, and a detailed exposition
of the data-construction process. We strongly encourage readers to consult this section in parallel
with the main paper, as doing so will facilitate a more comprehensive understanding and assessment
of our contributions under space-constrained presentation in the body of the paper. The appendix is
organized as follows:

• Appendix A.1: We explain the use of LLMs in our paper.
• Appendix A.2: We review related works in GUI Agent and corresponding benchmarks.
• Appendix A.3: We conduct a statistical analysis of the benchmark dataset.
• Appendix A.4: We elaborate the details about data collection, data annotation, task curation and

task design.
• Appendix A.5: We formally define all evaluation metrics and detail their computation, including

step-by-step formulas and measurement protocols.
• Appendix A.6: We present an in-depth analysis of the benchmark experiments and articulate

several findings designed to inform subsequent work by the research community.
• Appendix A.7: We provide a detailed description of the evaluation setup and protocol.

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We affirm that this paper is prepared and written entirely by us. We did not use any large language
models (LLMs) to generate the abstract, content, or any part of the text, The ideas, analysis, and
conclusions presented are the sole product of the authors’ original thought and research. We did,
however, utilize LLMs to help us polish the writing of our paper.

In annotating the L1 and L2 datasets, we employed LLMs as annotators, consistent with other works.
We subsequently conducted human screening and post-editing of the LLM outputs to ensure quality
and to mitigate potential privacy concerns and inappropriate content.

A.2 RELATED WORKS

GUI Agents. GUI agents have attracted growing interest, driven by advances like Anthropic’s
Computer-Use Agent1 and OpenAI’s Operator2. Currently, GUI Agents mainly fall into two
paradigms: a) Modular agent schemes (Cheng et al., 2024; Gou et al., 2024; Yang et al., 2024;
Zhang et al., 2025; Wu et al., 2025; Xie et al., 2025; Wang et al., 2025a), which typically employs
general-purpose VLMs (i.e., GPT-4o) as planners, integrated with a specially trained GUI grounding
model for focused UI element localization; b) Native agent schemes (Xu et al., 2024b; Wu et al.,
2024b; Lin et al., 2024; Sun et al., 2024; Qin et al., 2025; Yang et al., 2024), where planning and
grounding are trained in an end-to-end manner. Modular approaches benefit from state-of-the-art
components but face challenges in system-level alignment Cheng et al. (2024); Gou et al. (2024).
In contrast, the native agent paradigm aligns capabilities more naturally during training (Wu et al.,
2024b; Xu et al., 2024b; Qin et al., 2025). Both paradigms can use screenshots (Niu et al., 2024; Liu
et al., 2024a), accessibility trees (A11y Trees) (Gao et al., 2023), and HTML pages (Furuta et al.,
2023; Deng et al., 2023b) as input. However, A11y Trees and HTML codes vary across platforms,
are prone to noise, and may cause excessive token length (Zheng et al., 2024; Hong et al., 2024;
Cheng et al., 2024). Generally, in this work, we focus exclusively on the screenshot-only setting and
propose a hierarchical, multi-platform benchmark to evaluate these vision-only native agents.

GUI Benchmarks. Effectively GUIs requires a sophisticated grasp of intertwined visual and textual
cues, yet this complex domain remains largely outside the scope of general-purpose multimodal QA
benchmarks (Liu et al., 2024c; Yue et al., 2024; Masry et al., 2022). While ScreenQA (Hsiao et al.,
2022) and WebSRC (Chen et al., 2021) provide large-scale QA datasets based on Android screenshots
and web pages respectively, and GUI-World introduces cross-platform GUI QA via video data, these

1https://www.anthropic.com/news/3-5-models-and-computer-use
2https://openai.com/index/computer-using-agent
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Table 4: Statistics of the evaluation data in MMBench-GUI. Owing to the inherent restrictions of
the iOS ecosystem, we were unable to include online tasks for iOS in L3&L4. All other platforms are
covered in full.

Windows MacOS Linux iOS Android Web Overall

L1

L1 - Easy
271 84 196 115 307 221 1194

L1 - Medium
271 84 196 115 307 221 1194

L1 - Hard
271 84 196 115 307 221 1194

L2

L2 - Basic
271 345 191 314 356 310 1787

L2 - Advanced
272 346 196 330 335 308 1787

L3 145 35 268 - 116 155 719

L4 35 35 101 - 30 47 248

Total 1536 1013 1344 989 1758 1483 8123

efforts offer limited support for interactive GUI agents. To evaluate visual grounding in GUI contexts,
several benchmarks have emerged. ScreenSpot (Cheng et al., 2024) and its improved versions (Wu
et al., 2024b; Li et al., 2025) support cross-platform UI grounding with progressively enhanced
realism and annotation quality. UI-I2E-Bench (Liu et al., 2025a) and UI-Vision (Nayak et al., 2025)
further expand this by aligning natural language instructions with GUI elements of varying scale and
type. For reasoning and planning, offline benchmarks like (Rawles et al., 2023; Chen et al., 2024a;
Li et al., 2024; Deng et al., 2023a; Kapoor et al., 2024; Lu et al., 2024) assess action prediction
from fixed trajectories, while online benchmarks (Zhou et al., 2023; Xie et al., 2024; Bonatti et al.,
2024; Rawles et al., 2024; Xu et al., 2024a; Liu et al., 2024b) enable interactive evaluation across
platforms. However, macOS remains underexplored. Our MMBench-GUI benchmark addresses this
gap by enabling online evaluation on macOS and emphasizing cross-platform robustness, providing a
realistic and comprehensive evaluation for GUI agents.

A.3 BENCHMARK STATISTICS

Table 4 enumerates the complete task inventory, 8123 distinct instances, broken down by operating
platform, level, and difficulty band. Our benchmark has the following characteristics:

• L1-GUI Content Understanding (3 × QA splits). Each of the six platforms contributes an identical
triplet of 271/84/196/115/307/221 items (Windows → Web), yielding 1194 examples per
difficulty (Easy, Medium, Hard) and 3582 in total. This symmetry ensures that any performance
gap across the three difficulty tiers cannot be attributed to data imbalance.

• L2-GUI Element Grounding (Basic vs. Advanced). The grounding set is roughly 50% larger
than Level 1, with 1787 examples per split (Basic=Advanced). Note the deliberate platform
skew: mobile platforms (iOS + Android = 686 or 38%) receive more queries than desktop
platforms, reflecting the higher UI diversity and screen density of mobile apps.

• L3-GUI Task Automation (single application). A compact but varied set of 719 trajectories
focuses on long-horizon planning within one application. Linux dominates (268 tasks) to capture
the complexity of desktop productivity apps, while mobile splits are omitted for this level to
avoid conflating OS diversity with task length.

• L4-GUI Task Collaboration (multiple applications). The hardest tier comprises 248 cross-
application workflows. Although smaller, it intentionally spans all three desktop platforms and
major mobile browsers (47 Web tasks, 30 Android tasks) to stress test memory hand-off and
state persistence.
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• Aggregate balance. Across the whole benchmark Windows (1536) and Android (1758) provide
the two largest pools, but no single platform exceeds 22% of the corpus, guarding against
model over-specialisation. The progressive shrinkage, from 3582 (L1) to 248 (L4), mirrors the
increasing cost and difficulty of annotation, while still offering enough samples (about 250) for
a statistically meaningful evaluation in the top tier.

Overall, the benchmark delivers (1) platform diversity, (2) controlled difficulty gradation, and (3) a
realistic taper in task count that matches real-world annotation effort, thereby enabling fine-grained
diagnosis of GUI agent capabilities at every competence level.

L1 - GUI Content Understanding

Question:
What action is available in the context menu that appears when right-clicking on a calendar in
the My calendars list?

Options:
A.Show this only B.Print calendar C.Delete event D.Create new event E.Change time zone

Answer: A

Explanation:
The context menu shows the 'Show this only' option, but does not include print, delete event, 
create new event, or change time zone.

Difficulty: Hard

Basic instruction:
An unchecked checkbox labeled 'Search subcollections' in the Advanced Search dialog box.

Advanced instruction :
Enable the option to include subcollections in your Zotero library search.

Data type: text

Platform: linux

App name: Zotero

Bbox: [0.3406, 0.4231, 0.4182, 0.4454]

Size: 1920x1080

L2 - GUI Element Grounding

L3 - GUI Task Automation

Task instruction :
Please adjust the brightness of the image that named as ’Panda’ on the desktop as 40. 

Evaluation function:
Check_Gimp_Status(content=‘image’, items=[‘brightness’, 40])

Platform : linux

Type: Single

App name: [Gimp]

Max steps: 50

Task instruction :
Calculate how many years, months, weeks and days are between 10/08/1980 
(MM/DD/YYYY) and 8/2/2024 using the calculator app, and save the result in a file 
called 'Differences.txt' on the Desktop (e.g. X years, Y months, Z weeks, W days)

Evaluation function :
Exact_Match(type='is_file_saved_desktop', filename='Differences.txt', 
textcontent='43 years, 9 months, 3 weeks, 4 days')

Platform : windows

Type : Multi

App name : [Calculator, Notepad]

Max steps : 50

L4 - GUI Task Collaboration

Figure 3: More examples for all levels.
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A.4 DATA&TASK COLLECTION AND ANNOTATION

A.4.1 L1-GUI CONTENT UNDERSTANDING

We manually collected screenshots from widely used applications and websites across all supported
platforms, selected for their high usage frequency and representative user scenarios. In addition,
we supplemented our data with a small number of screenshots sourced from publicly available
datasets (Cheng et al., 2024; Li et al., 2025). To ensure diversity, we include screenshots of varying
sizes, ranging from single-window to full-screen views, and accompanied each image with metadata;
filenames were anonymized using an MD5-based encoding scheme constructed from a combination
of platform, application name, and original file path, to avoid path conflicts and information leakage.

Then, we followed a four-step strategy to construct high-quality Question-Options-Answer pairs:

• Step 1: Claude 3.7 (Anthropic, 2025) was used to generate three questions for each image,
corresponding to three levels of difficulty: easy, medium, and hard. Each question includes 4
to 6 answer options, with exactly one correct choice. In addition, Claude 3.7 was instructed
to provide an explanation for each question, detailing the reasoning process that leads to
the correct answer. In designing the questions for each image, we guided Claude 3.7 to
focus on various aspects of the GUI, including the functionality of UI elements, structural
relationships within the interface, content states, hierarchical layout, and executable tasks.
The detailed prompt for this process is shown in Prompt 1.

• Step 2: We then used GPT-o4-mini (OpenAI, 2025) to verify the validity of each question,
set of options, and answer, jointly considering the UI interface and the generated explanation.
The errors were corrected with justification and revised explanations.

• Step 3: Then, GPT-o3 (OpenAI, 2025) was used to further review and refine the revised
items following the same Prompt 2 as in Step 2.

• Step 4: Finally, manual sampling was performed to ensure overall quality and consistency.

By incorporating three different strong models across the pipeline, we reduced the risk of model-
specific hallucinations and stylistic bias. We provide another example in Figure 3.

A.4.2 L2-GUI ELEMENT GROUNDING

We reuse the data from L1 to annotate additional agent capabilities, enabling multidimensional
analysis on a consistent data foundation. This design facilitates exploration of inter-task correlations
and addresses earlier research questions. We also manually labeled the positions of interactive
elements, i.e. user-operable components such as buttons or icons, using bounding boxes, and
categorized them as either Text or Icon, following the classification scheme used in ScreenSpot (Cheng
et al., 2024).

We adopt a three-step procedure to generate grounding instructions for annotated interactive elements:

• Step 1: Claude 3.7 was prompted to produce two types of instruction per element: Basic,
which describes visual features and approximate location to test perception-based grounding,
and Advanced, which targets functional understanding through implicit cues. To increase
diversity, three stylistic variants were generated for each type. The detailed prompt for this
step is shown in Prompt 3.

• Step 2: We developed an annotation tool to manually review and refine these instructions,
ensuring that each uniquely maps to a specific element.

• Step 3: A validated instruction per type was selected to form the final evaluation set.

A.4.3 L3-GUI TASK AUTOMATION

To ensure broad coverage and real-world relevance, our GUI task automation benchmark encompasses
tasks across multiple major platforms, including Windows, Linux, macOS, web, and Android. Due to
the inherent restrictions of the iOS ecosystem, iOS tasks are not currently included.

The majority of tasks are sourced from established public benchmarks, each of which leverages
virtualization technology to provide robust and reproducible GUI environments. Specifically,
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Prompt 1:

You are an expert GUI analyst for {os_name} and item-writer.

Input:
1. One screenshot of a GUI application.
2. The application’s name ({app_name} or “Not available") — optional and for background only; do
not mention it in any question text.

Task:
Create exactly one multiple-choice question about the screenshot at each of three difficulty levels
(easy, medium, hard). For every question you generate:

• Write the stem in clear English that can be answered only by understanding the screenshot. Avoid
trivial facts (e.g., “What color is the button?”) unless color is functionally meaningful.

• Focus on tasks, labels, hierarchy, states, or affordances shown in the UI.
• Provide 4–6 answer options labeled “A”, “B”, “C”, . . . in a JSON sub-object called
"options".

• Ensure one and only one option is strictly correct; the others must be clearly incorrect but
plausible. Give the answer key (the letter of the correct option).

• Double-check yourself that the correct answer is indeed unique and unambiguous.
• Do not include the {app_name} or any other identifying text of the app in the stem or options.
• Give a concise "explanation" stating why the correct option is right and the others are not in

1–3 sentences.
• The hard question should require the answerer to think more about the screenshot, the question,

and the options (you can also make options be easy to confuse).

Output format:
Return a single valid JSON array containing three objects (one per difficulty), in English, structured
exactly like this schema:
[
{

"difficulty": "easy",
"question": "<stem>",
"options": {
"A": "<option text>",
"B": "<option text>",
"C": "<option text>",
"D": "<option text>" // add "E","F" only if needed

},
"answer": "A",
"explanation": "<brief rationale>"

},
...

]

Important Constraints:
1. Produce only the JSON text—no markdown, headings, or commentary.
2. Validate that the JSON is syntactically correct before outputting.
3. After generation, internally review each Q&A for accuracy and compliance.

tasks for the Linux platform are drawn from OSWorld (Xie et al., 2024), Android from Android-
World (Rawles et al., 2024), web from WebArenaLite-v2 (Liu et al., 2025b), and Windows from
WindowsAgentArena (Bonatti et al., 2024). These resources have been extensively validated in
prior research and collectively provide a diverse set of task scenarios. Importantly, our use of these
benchmarks is not a simple replication. Each task underwent a rigorous manual review process,
during which we excluded any instances likely to result in agent failure due to non-agent factors such
as unstable network conditions, required account authentication, or platform-specific anomalies. This
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Prompt 2:

You are a meticulous GUI-QA evaluator.

Input:
1. One screenshot (image) of a GUI application running on a {os_name}.
2. The application’s name (app_name) – optional and strictly for background; never mention it in
your output.
3. A JSON-like array (qa_items) containing three single-choice questions about the screenshot
(intended levels: easy, medium, hard). Each object is expected to have the keys question, options,
answer, difficulty, and optionally explanation.
* Ignore cosmetic or syntactic issues in the supplied JSON (e.g., extra backticks, missing quotes,
inconsistent key order, markdown fences).
* Focus only on the content of question, options, and answer when deciding validity.

Task:
For each question, decide whether it is content-valid for use in a test. A question is valid only if all the
following hold:

• The stem can be answered solely by inspecting the screenshot (no outside knowledge).
• Exactly one option is correct and that option is the one listed in answer.
• Incorrect options are clearly wrong yet still plausible.
• Neither stem nor options reveal the app_name.
• The difficulty label is reasonable (honor system; do not reject only for minor mislabelling).

The hard level should allow the answerer to think more deeply about the screenshot, the question, and
the options. You may make the options easy to confuse.
* Do not penalise minor formatting faults that do not affect the five substantive criteria.

Output format:
Return a JSON array of three objects in the original order, each with:
{
"difficulty": "<same as input>",
"valid": "yes" | "no",
"comment": "<if valid: empty string; if not valid: brief reason

why>",
"fix": <if valid: null; if not valid: a *fully corrected* object

that replaces the faulty one (same schema as above, with all
issues fixed)>

}

Notes:
1. Provide an empty string (“ ") for comment and “null" for fix when valid is “yes".
2. When valid is “no", supply both an actionable comment and a complete fix object that meets
all criteria.
3. Do not wrap the result in markdown or add explanations outside the JSON.
4. Verify that the final JSON is syntactically correct before sending it.

curation ensures that the performance evaluations reflect true capabilities of the agent, rather than
artifacts of the benchmarking environment.

To address the lack of existing online evaluation resources for the macOS platform, we introduce
MacOSArena, a novel set of 70 curated tasks spanning 9 widely used macOS applications. Of these,
35 tasks are categorized as L3 tasks and the remaining 35 as L4 tasks. Task design for macOS
follows the same principles as for other platforms, utilizing paired natural language instructions
and screenshots to simulate virtual environments, thereby ensuring consistency and comparability
across all platforms. This multi-platform, carefully curated task set provides a comprehensive and
fair foundation for benchmarking GUI agents in realistic and heterogeneous settings. We provide
extra illustrative examples in Figure 3 to demonstrate the details of L3 tasks.
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Prompt 3:

You are a GUI agent currently operating on a {os_name}.

Input:
1. The first image is a screenshot from the {application} {app_or_web}, in which a selected element is
highlighted with a distinctive red box and a red arrow.
2. The second image is the cropped region containing the selected element and corresponding box and
arrow.
3. A simple and coarse description of the selected element.

Task:
Your task is to understand the possible role, function, and related global contextual information of the
selected element on the current page from the first image. Then, from the second image, you can
combine the global information from the first image to further analyze the relationship between the
selected element and its surrounding information. The simple and coarse description can be regarded
as a prior for the selected element. Finally, you are required to conclude two types of instructions for
the selected element:
* Basic Instruction: Informative description that summarizes key information.
* Advanced Instruction: An indirect yet specific instruction that refers to the selected element.

Guidelines for Generating Descriptions:
Basic Instruction:

• Concise summary including appearance and position.
• Avoid referencing the red box or arrow.
• Examples:

– “A circular icon with a white background and a magnifying glass symbol in black."
– “Located in the top-right corner, to the right of the profile avatar icon."

Advanced Instruction:

• Focus on function and reasoning.
• Avoid visual/positional terms.
• Examples:

– "Search some latest posts"
– "Type in text to discover related content"

Output format:
Return a dictionary with:
{

"basic_instruction": ["xxxx", "xxx", "xxx"],
"advanced_instruction": ["xxxxx", "xxx", "xxx"]

}

Notes:
1. Ensure instructions are clear, unambiguous, and concise.
2. Do not mention the red box and arrow.
3. Coarse descriptions are only priors.

A.4.4 L4-GUI TASK COLLABORATION

L4 tasks are designed as an extension of the single-app automation tasks in L3, with a primary
focus on multi-application collaboration and information transfer across heterogeneous interfaces.
For tasks in existing benchmarks that inherently involve multiple applications, we included them
in our evaluation after a careful review of their availability and robustness. In addition, for those
benchmarks lacking native multi-app workflows, we manually designed new tasks that explicitly
require inter-app coordination. We also supplemented original multi-app tasks to further enrich the
variety and complexity of cross-application scenarios.

A key design principle in constructing L4 tasks is to ensure that actions in one application provide
necessary context or information for subsequent operations in another application. For example, in a
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representative macOS task, the agent is required to search online for the time and location of CVPR
2023 and then create a corresponding event in the Calendar app on the same date and month, but in
the year 2090. To avoid issues related to time-sensitive information or changing event details, we
decoupled the evaluation criteria from the actual event date, ensuring that the correctness of task
completion is independent of the assessment time.

This systematic approach to task collection and design enables comprehensive evaluation of an agent’s
ability to reason globally, manage inter-app dependencies, and execute complex workflows that mirror
real-world user demands in multi-application environments. In the lower part of Figure 3, we provide
examples to illustrate how collaborative tasks involving two applications can be constructed.

A.5 DETAILS OF EVALUATION METRICS

A.5.1 EVALUATION METRICS FOR L1-GUI CONETNT UNDERSTANDING.

Formally, the accuracy for an evaluation set comprising N Question-Options-Answer pairs can be
defined as:

Acc =
1

N

N∑
i=1

Θ(o∗i = oi), (5)

where Θ(o∗i = oi) is an indicator function that equals 1 if the predicted answer o∗i for the i-th pair
matches the ground-truth answer oi and 0 otherwise.

To account for variations in the number of answer choices, we introduce a simple dynamic adjustment
factor α to rescale the original accuracy of each question. Taking Windows platform which has Nwin

questions as an example, the accuracy of L1 is computed as:

Accwin =
1

Nwin

Nwin∑
i=1

α ·Θ(o∗i = oi), α =
mi − 1

mi
(6)

where mi is the number of options for question i. Accordingly, for any given difficulty level, the
agent’s understanding ability (i.e., accuracy) can be computed as:

Score =
∑
j∈O

Nj

N
· Accj (7)

where O = {win,linux,mac,ios,android,web} denotes the set of operation platforms, Nj

is the number of questions for platform j, N =
∑

j∈O Nj is the total number of questions across all
platforms.

A.5.2 EVALUATION METRICS FOR L3 AND L4

We define EQA as a continuous-time recall metric over cumulative agent effort. Consider an ordered
set of N tasks. For each task i ∈ {1, 2, . . . , N}, let:

• si = 1 if the agent successfully completes task i, and si = 0 otherwise,

• ti > 0 be the number of steps the agent takes to complete task i.

We define the cumulative cost and cumulative success after the first k tasks as:

Tk =

k∑
j=1

tj , Sk =

k∑
j=1

sj . (8)

Let the global budget be Tmax = N · tmax, where tmax is the maximum step limit per task. We
normalize the cumulative effort as:

uk =
Tk

Tmax
∈ [0, 1]. (9)
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The instantaneous recall at normalized time u is defined as:

R(u) = max
k:uk≤u

Sk

N
, u ∈ [0, 1]. (10)

Finally, EQA is computed as the area under the step-wise non-decreasing recall curve:

EQA =

∫ 1

0

R(u) du ≈ 1

M

M−1∑
m=0

R

(
m

M − 1

)
, (11)

where M = 101 denotes the number of uniformly spaced evaluation points. This metric encourages
agents to complete more tasks in fewer steps, offering a holistic measure of task performance.

A.6 FURTHER ANALYSIS AND KEY FINDINGS

In this section, we conduct an in-depth analysis to delve into the underlying causes and implications
reflected in our benchmark results. Our investigation is structured around three primary dimensions:
platform, task, and model, and adheres to a single-variable control principle to ensure the validity
of our comparisons. By processing the empirical results, we identify the essential challenges facing
contemporary GUI agents, offering valuable guidance to advance future development.

Finding 1: General-purpose language models excel at task decomposition, planning, and self-
reflection but struggle with fine-grained visual interactions. Across different model categories,
proprietary models, exemplified by GPT-4o and Claude, demonstrate pronounced limitations in
fine-grained GUI tasks. As shown in Table 2 and the right part of Figure 4, their average scores in L2
are merely 2.87 for GPT-4o and 4.66 for Claude-3.7, in contrast to the specialized visual grounding
model UGround-V1-7B, which achieves a score of 65.68%. A similar trend emerges in L3 tasks. For
instance, GPT-4o alone achieves success rates (SR) of only 4.05%/6.13% in single-app automation
scenarios (Max Step = 15/50, see Table 3). However, when paired with domain-specific grounding
modules such as UGround-V1-7B or UI-TARS-1.5-7B, the SR of GPT-4o rises substantially to
11.93%/17.50%. These phenomena indicate that proprietary models are inherently deficient in
the precise perception and localization of UI components, which can be effectively remedied by
specialized perception modules.

Thus, beyond incorporating auxiliary localization modules during training and increasing the amount
of fine-grained perceptual data, a more fundamental and forward-looking direction lies in embracing
a modular architecture. This approach enables the model to dynamically interface with external
modules based on its own capability gaps (e.g., visual grounding), effectively allowing for targeted
augmentation through specialized “external agents”. Within this synergistic and collaborative frame-
work, the capabilities of general-purpose models can be significantly augmented and tailored for
complex GUI automation tasks.

Finding 2: Accurate visual grounding significantly determines the success rate of GUI task
execution. The full decision-making pipeline of a GUI agent can be abstracted into three stages:
perceive accurately ⇒ reason properly ⇒ act precisely. An initial failure in element localization
will cause cascading errors, rendering subsequent steps ineffective. To examine the critical role
of localization, we designed two complementary experimental setups as shown in the left part of
Figure 4: (1) fixing the planner while incrementally improving the grounder, and (2) fixing the
grounder while varying the planner. Correlation analyses revealed a clear pattern: with the same
planner, improving localization alone led to a 2.8× (∆ = 17.25) increase in SR. In contrast, when
localization performance remained roughly constant, replacing the planner with a stronger VLM
yielded marginal returns (1.15×, ∆ = 3.58). This finding indicates that the key to improving GUI
task automation lies in advancing visual localization. Consequently, the visual grounder should be
the primary and most critical component in any modular architecture, providing the stable foundation
required for higher-level functions like planning, memory, and reflection.

Finding 3: Efficiency, including step minimization and early stopping, is a critical yet underex-
plored dimension of GUI agent performance.

The introduction of the EQA metric enables us to move beyond evaluating whether an agent simply
completes a task, by shifting attention to how efficiently the task is accomplished. This novel
perspective facilitates deeper insights through a more fine-grained analysis of agent behavior.
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×2.84 ×𝟏.15

∆17.25

∆3.58

Figure 4: Left: Demonstrates the relative contribution of visual grounding versus planning in driving
performance gains under current conditions. We consider two experimental conditions—fixing the
planner while varying the grounder, and vice versa—and examine how different combinations affect
task success rate. Similar color hues denote groups with the same fixed planner or grounder. Right:
Task success grows roughly linearly with visual-grounding accuracy. General-purpose language
models are virtually “blind” at the L2 grounding stage, which drives their L3 automation success rate
(SR) sharply down. Plugging in a dedicated visual grounder restores precise perception and, in turn,
lifts SR dramatically—highlighting fine-grained grounding as the principal bottleneck.

We additionally compute two derived metrics, EQA
SR and SR − EQA, to facilitate a more com-

prehensive analysis. Based on the definition of the EQA and SR, we further reformulate them
as:

EQA =
1

N

∑
i∈C

(1− ui), SR =
|C|
N

, (12)

where C denotes the set of all successfully completed tasks, and ui =
Ti

Tmax
∈ (0, 1] represents the

normalized completion step of task i within the global step budget. From this, EQA
SR and SR−EQA

can be derived as:
EQA

SR
=

1

|C|
∑
i∈C

(1− ui) = 1− 1

|C|
∑
i∈C

ui, (13)

SR− EQA =
1

N

∑
i∈C

ui = SR× (
1

|C|
∑
i∈C

ui), (14)

where 1
|C|

∑
i∈C ui denotes the average steps in which a task is completed.

Therefore, EQA
SR has an intuitive physical interpretation: it reflects the average remaining steps per

successful task. Its upper bound is 1, which corresponds to the idealized case where all successful
tasks are completed almost immediately (i.e., at the first step). Conversely, its lower bound is 0,
indicating that all successful completions occur only at the very end of the allowed budget. EQA

SR
quantifies how many steps, on average, are consumed before successful completion. Meanwhile,
SR−EQA also has an intuitive physical interpretation: it is approximately proportional to the total
normalized time consumed across all successful tasks, and can be interpreted as a “redundant step
bill”. A larger difference between EQA and SR implies a greater average normalized completion time
ui for the successful set, meaning that tasks tend to be completed closer to the end of the budget—i.e.,
with more redundant steps. Conversely, a smaller difference (approaching zero) indicates that most
successful tasks are completed early, near the beginning of the budget, suggesting minimal or no
redundancy. Thus, the magnitude of the gap between EQA and SR effectively captures how “wasteful”
the agent is, even among the tasks it completes.

We re-organize the EQA
SR and SR − EQA using the average results in Table 3 as EQ1 and EQ2,

and present the aggregated findings in Table 5. Combining with Figure 5, we can disclose four
complementary patterns. First, the modular pairing of a powerful planner with a specialized grounder,
exemplified by GPT-4o + UGround-V1-7B and GPT-4o + UI-TARS-1.5-7B, elevates the success rate
under a 50-step budget by roughly 5.7%, yet still incurs a substantial redundant step cost (EQ2 = 7-8),
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Figure 5: EQA visualization across different models under L3 for different allowed steps. As
discussed in Section 2.4, EQA reflects a combination of task completion and efficiency (i.e., the
number of steps used upon completion). In practice, we compute it by interpolating both the step
budget and the success rate (SR) 100 times. The area under the curve formed by these interpolated
SR values yields the final EQA score.

Table 5: Additional metrics derived by SR and EQA. Here, EQ1
15 and EQ2

15 denotes for EQA
SR and

SR − EQA, respectively, when the maximal step is 15. ∆EQ1 = EQ1
50 − EQ1

15 and so is the ∆EQ2.
Similarly, ∆SR = SR50 − SR15 and ∆EQA = EQA50 − EQA15

Model ∆SR ∆EQA EQ1
15 EQ1

50 EQ2
15 EQ2

50 ∆EQ1 ∆EQ2

GPT-4o (2024) 2.21 2.08 0.57 0.66 3.09 3.22 0.09 0.13
Claude-3.7 (2025) 1.20 0.95 0.50 0.55 3.40 3.65 0.04 0.25
Aguvis-72B (2024b) 0.43 0.56 0.52 0.57 3.29 3.16 0.05 -0.13
UI-TARS-1.5-7B (2025) 2.84 3.23 0.64 0.70 7.31 6.92 0.06 -0.39
UI-TARS-72B-DPO (2025) 2.06 5.27 0.62 0.77 8.96 5.75 0.16 -3.21
Qwen2.5-VL-72B (2025) 1.57 2.86 0.60 0.74 4.91 3.62 0.14 -1.29
GPT-4o+UGround-V1-7B (2024) 5.71 5.57 0.62 0.70 7.43 7.57 0.08 0.14
GPT-4o+UI-TARS-1.5-7B (2025) 5.70 7.53 0.53 0.70 9.74 7.91 0.17 -1.83
Avg. 2.72 3.51 0.57 0.67 6.02 5.23 0.10 -0.79

signaling that cross-module coordination and early termination heuristics remain inadequate. Second,
the large-scale DPO-aligned UI-TARS-72B-DPO achieves the strongest efficiency profile, increasing
EQ1 to 0.773 while compressing EQ2 from 8.96 to 5.75 (∆EQ2 = -3.21); this demonstrates that
aligning to human preferences that explicitly reward rapid task completion can translate directly
into tangible efficiency gains. Third, general-purpose agents such as GPT-4o and Claude-3.7 extract
minimal benefit from a longer budget (∆SR<2.5%) and even exhibit higher redundant step costs
(EQ2 increases from 3.09 to 3.22 and 3.40 to 3.65, respectively), underscoring that simply extending
the interaction horizon cannot compensate for their limited visual granularity and action precision,
therefore, integrating specialized perception or actuation modules is becoming indispensable. Lastly,
none of the curves in Figure 5 attains the ideal “hug-the-top-left-corner” profile, underscoring a
pervasive lack of effective early-stopping heuristics and cost-aware search strategies.

To mitigate the efficiency bottlenecks aforementioned, we identify three possible research avenues.
(1) Confidence- or value-based early-termination policies: equip agents with stopping rules that
immediately end an episode when the marginal utility of further actions falls below a threshold,
rather than passively consuming the entire step budget. (2) Cost-sensitive fine-tuning: during
reinforcement-learning (or DPO-style) alignment, impose explicit penalties for every superfluous
action so that optimization shifts from maximizing success rate (SR) alone to jointly maximizing the
success-conditioned efficiency score EQA. (3) Progress-aware self-reflection: require the planner
to periodically estimate the set of remaining sub-goals and, upon detecting that all objectives are
satisfied, issue an immediate FINISH action. Together, these interventions target the twin goals of
cutting redundant steps and encouraging agents to “know when to stop”, thereby narrowing the gap
between current GUI agents and human-level operational efficiency.

Finding 4: The limitation of action space restricts the agent’s ability to execute planned actions,
especially in GUI task collaboration scenarios.
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In Table 3, a notable fraction of models fail to complete the task on the web platform. The under-
lying cause is that, during web-interaction execution, the models lack the ability to trigger action
switch_tab to enable ’press Tab to switch tabs’. In headless-browser settings, this omission
blocks seamless navigation across multiple tabs, preventing cross-window information from being
transferred from one context to another and ultimately derailing task completion.

On the other hand, due to the inherent heterogeneity of interactions across desktop, mobile, and
web platforms, the current prompt-based definition of action functions struggles to comprehensively
capture the full spectrum of platform-specific operations. Moreover, during inference, models may
confuse actions across platforms, producing incorrect or incompatible output actions. Such issues can
directly lead to task failure, even in single-platform, multi-app scenarios, and become particularly
pronounced in multi-platform, multi-app settings, for example, when copying text from a web page
and pasting it into a desktop application like Word for further formatting.

Building on these observations, we argue that a more generalizable, extensible, and potentially
platform-agnostic definition of the action space is worth pursuing. One intuitive and straightforward
direction is to construct a unified API abstraction layer that comprehensively covers multi-platform
operations. Under this design, the agent interacts with the environment by invoking platform-
independent APIs, while the backend of the API is responsible for platform-specific adaptations.
An alternative route focuses on operation atomization. Unlike current action spaces that rely on
fixed, platform-tied commands, an ideal action space would emphasize a set of primitive operations,
decoupled from any particular environment. Agent-issued instructions are then mapped to these
primitives via a many-to-many translation schema, where each high-level intent may correspond to
a combination of atomic steps. These atomic units can then be recompiled into platform-specific
execution commands, enabling robust and consistent interaction across environments. Beyond
these two approaches, we believe that the research community should continue to explore better
formulations of the action space, those characterized by strong generality, high extensibility, and
minimal platform dependence.

Finding 5: Although many GUI agents excel in simple cases, their effectiveness diminishes
significantly as task complexity rises, revealing limited generalization capabilities.

As shown in Figure 6, although many systems perform impressively on easy scenarios, their accura-
cy/success rate deteriorates sharply as soon as either (i) the local difficulty within a level increases
(easy → medium → hard; basic → advanced) or (ii) the global task complexity rises from L1 to
L4. These steep drops - especially pronounced for general-purpose LLMs - indicate that today’s
agents still lack robust generalization to harder, less stereotyped GUI situations. For example, the
GUI understanding score of GPT-4o drops from 60.2% (easy) to 53.5% (hard), a -11% decrease,
while even the highly tuned InternVL3-72B loses 4% (Table 1). In element grounding, switching
from ’Basic’ to semantically implicit ’Advanced’ queries slashes GPT-4o’s mean accuracy by nearly
40% and still costs the specialist UI-TARS-72B-DPO 16% (Table 2). The effect compounds across
levels: the strongest agent (GPT-4o + UI-TARS-1.5-7B) succeeds in 26.6% of tasks at L3 but only
8.8% once multi-app collaboration is required in L4, a 67% collapse that is mirrored by other models
(Tables 3). Concomitant declines in EQA confirm that agents not only fail more often but also waste
proportionally more steps before failing.

These sharp drops expose three intertwined bottlenecks: (1) ill-posed perceptual clues (small widgets,
non-salient text), (2) longer credit-assignment chains, and (3) noisy action spaces inflate the search
space exponentially. Current models, trained largely on static screenshots, lack the robust abstract
representations and error-driven exploration strategies needed to cope.

Possible targeted remedies include: (1) Curriculum & hard-negative mining. Intentionally up-sample
adversarial layouts (occlusion, theme changes, deceptive affordances) during instruction tuning to
inoculate perceptual modules against distribution shift. (2) Dynamic skill routing. Teach planners
to self-diagnose uncertainty and automatically invoke auxiliary skills (OCR, vision transformers,
memory retrieval) as difficulty rises. (3) Hierarchical planners with macro-actions. Introduce
option-level abstractions (e.g., open-browser-tab) so that sparse EQA-style rewards can flow to
high-level decisions instead of individual clicks. (4) Unified state schema for all applications. Store
“App → Page → Element” graphs in an external memory that survives context switches, allowing the
planner to reason over shared entities rather than raw pixel buffers.
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Figure 6: Difficulty-Gradient Heatmap. Models’ scores across difficulty levels are encoded with a
single-hue palette whose saturation fades from high (dark) to low (light). Colored rectangles outline
comparable model groups. Within and across these groups, the color consistently fades from L1, L2
to L3 and L4, indicating that higher task complexity amplifies each model’s weaknesses and causes a
steep performance drop-off.

We believe that by attacking these verified failure modes, the community can turn today’s hardest
cases, from implicitly described buttons to multi-window workflows, into stepping-stones toward
truly general-purpose GUI agents.

Finding 6: The failures in multi-application environments primarily stem from limited cross-
context memory and action space, rather than issues with perception or planning.

Success drops that cannot be explained by harder screenshots or longer action chains alone appear
as soon as the agent must pass information between applications. The strongest single-app system,
GPT-4o+UI-TARS-1.5-7B, falls from 26.6% SR on L3 to just 8.8% on L4 (Tables 3); UI-TARS-
72B-DPO shows an almost identical collapse (25.3% to 8.0%). Failures concentrate at window or
tab boundaries: five models are labeled ‘-’ on the Web platform simply because they cannot express
the primitive switch_tab. At the same time, EQA shrinks far more than the accompanying
SR−EQA penalty (e.g., 18.7% → 6.4% for GPT-4o + UI-TARS), signaling that agents waste many
steps rediscovering the context they have just lost. These phenomena point to a deficit in working
memory and action-space coverage, rather than in perception or generic planning.

Addressing these failures may require agents to focus on memory-centric research avenues, including:
(1) External episodic buffer. Log every UI observation and write-back (copy, navigate, paste . . . )
to an append-only timeline that the language planner can query with natural language—much like
retrieval-augmented generation, but for GUI states. (2) Semantic anchors. Tag entities (e.g., “flight-
price $514”) with stable IDs when first seen; subsequent references use the anchor, so the planner no
longer depends on window focus to recall an object. (3) Cross-context consistency checks. Inject
lightweight assertions, for example, “clipboard should now contain X” and “target window title
equals Y”. Violations trigger immediate self-repair instead of long, fruitless trial-and-error loops,
cutting the redundant steps that dominate L4 failures.

A.7 BENCHMARKING DETAILS

To ensure fairness, we evaluated all candidate models through a unified interface compatible with the
OpenAI API protocol. Specifically, each model was deployed as an API-style service, and outputs
were obtained by sending POST requests to the service endpoint along with the conversation input.
For each model, we crafted both system and user prompts strictly based on official documentation
or released code. For proprietary models, we designed detailed and effective prompts to elicit high-
quality responses as faithfully as possible. Apart from model-specific settings, all other parameters,
such as temperature and top-p, were kept consistent across evaluations.
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During evaluation, the input and output processing pipeline was tailored to the requirements of each
task level. For L1-GUI Content Understanding and L2-GUI Element Grounding, the input to the
model comprised the GUI screenshot paired with either the relevant instruction or the question-options
set. Model outputs were assessed using exact-match evaluation protocol, analogous to standard
practices in grounding and QA tasks. However, given the variability in instruction-following abilities
across different models, for example, the QA tasks in L1, we observed that some model outputs
could not be reliably parsed. To address this, we implemented a hybrid parsing mechanism based
on multiple regular expressions to robustly extract valid answers. In our codebase, we expose a
customizable parse_function for each method, enabling tailored post-processing strategies to
accommodate the unique output formats of various models.

For L3-GUI Task Automation and L4-GUI Task Collaboration, evaluation focused solely on whether
the agent successfully achieved the desired end state, without the need to interpret intermediate
natural language outputs. Therefore, parsing functions were not required for these levels; instead, we
compared the final state directly against predefined success criteria to determine task completion.
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