
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FREE LUNCH AT INFERENCE: TEST-TIME REFINE-
MENT FOR DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion probabilistic models (DPMs) have recently achieved state-of-the-art
performance in generative tasks, surpassing traditional approaches such as GANs
and VAEs in both sample quality and training stability. Despite their success,
DPMs suffer from high computational cost and slow sampling, since they require
sequential denoising across many timesteps. Existing acceleration methods pri-
marily focus on reformulating the reverse process as an ODE/SDE and applying
advanced numerical solvers. While effective, these approaches largely overlook
the geometric properties inherently induced by the Gaussian process in DPMs. In
this work, we investigate the geometric behavior of DPMs in the latent variable
manifold, revealing an overlooked isotropic property derived from their Gaussian
formulation. Building on this characteristic, we introduce a lightweight test-time
refinement that can be seamlessly embedded into existing samplers. Our method
reduces the discretization error of sequential sampling methods and accelerates
the convergence of parallel sampling strategies, without requiring extra training
or additional model evaluations. Extensive experiments across multiple datasets
demonstrate that our approach consistently improves both generation quality and
efficiency, while remaining fully compatible with existing methods. By uncover-
ing and exploiting the isotropic nature of DPMs, this work provides a new perspec-
tive on the geometric foundations of DPMs and offers a complementary direction
for advancing their efficiency. As a snapshot result, when integrated into UniPC,
our method improves the FID score on LSUN bedroom from 39.89 to 20.08 with
4 function evaluations.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have rapidly become a dominant paradigm for high fidelity
data generation Sohl-Dickstein et al. (2015); Ho et al. (2020), following their introduction into the
field of generative modeling. Compared to conventional approaches such as Generative Adversar-
ial Networks (GANs) Goodfellow et al. (2014) and Variational Autoencoders (VAEs) Kingma &
Welling (2013), DPMs offer several advantages that they are more robust during training, produce
samples of superior quality, and provide a controllable generation process. These strengths have
enabled DPMs to be successfully deployed in diverse applications, including image synthesis Song
et al. (2021); Ho et al. (2020), path planning Yu et al. (2024); Ren et al. (2025), and other complex
generative tasks Chen et al. (2024b).

Despite these advantages, DPMs remain computationally intensive, incurring long generation times
due to the large number of sequential denoising steps (i.e., many function evaluations) Ho et al.
(2020). Unlike one-shot generators such as GANs Goodfellow et al. (2014), sampling from DPMs
requires sequentially evaluating the model across many timesteps. This computational bottleneck
originates from the Gaussian forward process assumed in DPMs, which in turn requires an iterative
reverse process to progressively denoise a signal from pure Gaussian noise back to data Song et al.
(2021). As a result, the deployment of DPMs is limited on computationally constrained platforms,
restricting their broader adoption.

To reduce this cost, existing research has primarily focused on reformulating the diffusion process
in terms of ordinary or stochastic differential equations (ODE/SDE) Song et al. (2020; 2021). This
connection enables the use of advanced numerical solvers in ODE/SDE to accelerate sampling e.g.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

high-order solvers Lu et al. (2022); Liu et al. (2022); Zhang & Chen (2023), and Picard iterations are
introduced to parallel the reverse process Shih et al. (2023). While these approaches substantially
reduce generation time, most prior work has focused primarily on solver design.

In contrast, comparatively less attention has been paid to the geometric characteristics of DPMs.
Understanding and exploiting the geometry of DPMs offers a complementary avenue for improving
both efficiency and fidelity of DPMs. A small but growing number of works have begun to ex-
plore geometric structures in DPMs. Prior studies impose geometric perspectives in time space to
reformulate trajectories, regularize training, or redesign noise schedules for improved stability and
fidelity Chen et al. (2024a); Song et al. (2023); Karras et al. (2022); Karczewski et al. (2025). For
example, flattening trajectories and carefully designing noise schedules have been shown to acceler-
ate the reverse process by reducing the number of timesteps required in the sampling process Song
et al. (2023); Karras et al. (2022), while recent geometric on spacetime manifold approaches speed
up sampling by approximating geodesic flows on learned manifolds Karczewski et al. (2025).

Complementary to ODE/SDE solvers and time space geometric approaches (e.g., flatten trajectories,
etc.), this work adopts a distinct geometric viewpoint on the latent-variable manifold in DPMs. In
particular, we identify an isotropic structure induced by the Gaussian process underlying these mod-
els. Building on this insight, we propose a zero-cost, test-time refinement that integrates seamlessly
with existing sampling frameworks. The plug-in refinement reduces discretization error in sequential
sampling methods and accelerates the convergence of Picard iterations in parallel samplers, without
any additional model evaluations or training.

Our key contributions can be summarized as follows:

• Geometric perspective on latent manifold of DPMs. We reveal and formalize an isotropic
property inherent in the Gaussian process of DPMs, providing a new geometric viewpoint
on their latent manifold.

• Lightweight zero-cost, test-time refinement. Leveraging this property, we design a zero-
cost, test-time refinement method that can be seamlessly integrated into existing solvers,
reducing the discretization error of sequential sampling methods without extra training or
additional model evaluations.

• Faster parallel sampling. We demonstrate that our approach accelerates the convergence
of Picard-iteration–based parallel samplers via a dual-update mechanism, improving both
efficiency and image quality.

• Experiments across multiple datasets and baselines demonstrate consistent gains in both
sample quality and generation speed, highlighting the effectiveness and generalization of
our method. As a snapshot result, when integrated into UniPC, our method reduces the
Fréchet inception distance (FID) score on LSUN bedroom from 39.89 to 20.08 with 4
function evaluations.

We believe that uncovering and systematically leveraging the isotropic structure inherent in
the Gaussian process underlying DPMs can pave the way for future advances in diffusion
modeling.

2 RELATED WORK

The practical deployment of diffusion probabilistic models (DPMs) is often limited by their com-
putational expense, as the reverse process requires many sequential function evaluations and con-
sequently long runtimes. Following the introduction of denoising diffusion probabilistic models
(DDPM) Ho et al. (2020), efforts to accelerate sampling emerged almost immediately. DDIM Song
et al. (2021) addressed this by breaking the Markov chain in the reverse process, enabling large sam-
pling step sizes and substantially reducing the number of iterations needed for image generation. It
also introduced a quadratic, non-uniform timestep schedule that further mitigates discretization er-
ror. In addition, DDIM highlighted a connection between discrete-time denoising processing and
continuous-time ordinary differential equations (ODE) Song et al. (2021). At the same time, re-
lated work established a link between DDPM and stochastic differential equations (SDE) Song et al.
(2020). This ODE/SDE viewpoint opens the door to high-order solvers that control discretization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

error at large step sizes without increasing the number of function evaluations Karras et al. (2022);
Dormand & Prince (1980). Pseudo-Numerical Methods for Diffusion Models (PNDM) Liu et al.
(2022) propose a pseudo-function to approximate the behavior of differential equations. Based on
this perspective, DPM-Solver Lu et al. (2022) and its variants Lu et al. (2023); Zheng et al. (2023)
employ high-order exponential integrators tailored to DPMs, and DEIS Zhang & Chen (2023) simi-
larly applies an exponential integrator to accelerate sampling.

Classic ODE correction techniques have been adapted to diffusion sampling to refine predictor up-
dates and improve image quality Zhao et al. (2023); Xue et al. (2024). Complementary scheduling
strategies include adaptive step-size control based on scaled error estimates to balance local errors
across steps Jolicoeur-Martineau et al. (2021), as well as auxiliary networks that predict timesteps
during sampling Zhou et al. (2024).

Large sampling steps inherently increase discretization error, motivating knowledge distillation ap-
proaches that transfer the behavior of a high-fidelity teacher requiring many timesteps to a student
model that achieves comparable performance with fewer steps Salimans & Ho (2022); Berthelot
et al. (2023); Song et al. (2023). Despite reducing the number of inference steps, distillation meth-
ods require additional training and thus introduce substantial cost overhead.

A small but growing body of work explores geometric structure in diffusion, shaping trajectories
and schedules in time–state space to improve stability and fidelity Chen et al. (2024a); Song et al.
(2023); Karras et al. (2022); Karczewski et al. (2025). For example, trajectory flattening and sched-
ule redesign can shorten the effective integration path and better align the reverse dynamics with
the target distribution Song et al. (2023); Karras et al. (2022), while recent perspectives accelerate
sampling by approximately following geodesic flows on learned manifolds Karczewski et al. (2025).

To exploit hardware efficient utilization, Shih et al. (2023); Lu et al. (2025) proposed a parallel
sampling method based on Picard iteration, enabling concurrent computation across timesteps. Al-
though this approach can yield speedups, it often requires additional model evaluations to ensure
convergence, and the overall runtime depends on the convergence rate of iterations.

Complementary to existing methods, we adopt a latent manifold perspective. We identify an
isotropic structure induced by the Gaussian process and leverage it to derive a zero-cost, test-time
refinement that integrates seamlessly with existing sampling methods. The proposed plug-in method
reduces discretization error in sequential sampling methods and accelerates the convergence of Pi-
card iterations in parallel sampling methods. Importantly, our method does not require any additional
model evaluations or training.

3 PRELIMINARY

0
200

400
600

800
1000Step 0.0

0.2
0.4

0.6
0.8

1.0

Per
tur

bat
ion

 Magn
itu

de

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cosine Similarity between and

0.5

1.0

Co
sin

e
Si

m
ila

rit
y

Figure 1: Cosine similarity between the input perturbation δ and the
resulting change in predicted noise ∆ϵ for stable diffusion v1-4. ∆ϵ
and δ are shown in Equation (8). High values indicate strong align-
ment between input changes and output changes.

Figure 2: Predictor-
corrector procedure,
corrector refines latent
variables, ours refines
predicted noise

Diffusion Probabilistic Model. Let qdata(x) denote the data distribution. DPMs assume a forward
Gaussian process, where at t = 0 we have q0(x0) = qdata(x) with x0 = x being the clean samples.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The forward process is defined as a Gaussian transition Lu et al. (2022):

q0t(xt | x0) = N
(
xt | αtx0, σ

2
t I
)
, (1)

where t ∈ [0, T], and αt, σt form the noise schedule. This schedule is designed such that the
marginal distribution at the terminal time satisfies p(xT) ≈ N (0, σ̃2I) for T > 0 and σ̃ > 0. More-
over, the signal-to-noise ratio α2

t

σ2
t

decreases monotonically with respect to t, ensuring the Gaussian
process Lu et al. (2022).

Furthermore, the forward process shares the same transition with stochastic differential equation
(SDE) Kingma et al. (2021):

dxt = f(t)xt dt+ g(t) dwt,x0 ∼ q0(x0), (2)

where wt ∈ Rd is the standard Wiener process, f(t) = dlogαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

The corresponding reverse process of the forward diffusion from timestep T to 0, are given by Song
et al. (2021):

dxt = [f(t)xt − g2(t)∇x log qt(xt)] dt+ g(t) dw̄t, (3)

where w̄t denotes a standard Wiener process in reverse time and pT (xT) ≈ N (0, σ̃2I).

The training objective of DPMs is to approximate the scaled score function −σt∇x log qt(xt) with
a neural network ϵθ(xt, t) parameterized by θ. For a well-trained network,

ϵθ(xt, t) ≈ −σt∇x log qt(xt). (4)

The Reverse Process. In contrast to the forward process, which drives samples away from the
data manifold, the reverse process removes noise to trace a trajectory back toward it by solving
SDE/ODE

dxt

dt
= f(t)xt +

g2(t)

2σ2
t

ϵθ(xt, t),xT ∼ N (0, σ̃2I), (5)

where f(t) = dlogαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

For a given latent variable xs at time s, using the half log-SNR(λ) replace the α and σ, λt = log(αt

σt
).

The analytical solution for latent variable at time t for a given latent variable at time s is Lu et al.
(2022); Zhao et al. (2023)

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵθ(xλ, λ)dλ. (6)

ODE/SDE solvers serve as the Predictor, approximating the integral in Equation (6) via a truncated
series expansion, which introduces local discretization error. To mitigate this, a Corrector is applied
at each step to refine the predicted latent state, as shown in Figure 2 Zheng et al. (2023). The
Predictor and Corrector can be any ODE/SDE solver:

xt ← Predictor
(
xs, ϵθ(xs, s), Q

)
, x c

t ← Corrector
(
xs, ϵθ(xt, t), Q

)
, (7)

where Q is the query of previously predicted noise. Leveraging intrinsic characteristics of DPMs,
our method provides an extra refinement step on the predicted noise.

4 METHODOLOGY

4.1 OVERLOOKED CHARACTERISTIC OF DIFFUSION MODELS

Existing training-free methods primarily focus on improving ODE/SDE solvers to reduce sampling
time or enhance image quality. However, these approaches often overlook a key geometric property
induced by the Gaussian process in DPMs that the variations in the model’s output are inherently
aligned with variations in its input. In this section, we formalize this property and demonstrate that
it arises directly from the Gaussian process underlying diffusion models.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1.1 ALIGNMENT IN THE LATENT-VARIABLE MANIFOLD

For a timestep t, let ϵθ(x, t) denote the noise predicted from the DPMs. For a perturbation δ applied
to the input latent variable x, the first-order Taylor expansion of the corresponding change in the
predicted noise satisfies

∆ϵ = ϵθ(x+ δ)− ϵθ(x) ≈ ∇xϵθ(x, t)δ. (8)

From Equation (4), when the DPMs are well trained, the prediction of the the DPMs is the ideal
scale score function, where ϵθ(x, t) ≈ −σt∇x log qt(x). Hence

∆ϵ ≈ ∇xϵθ(x, t)δ ≈ −σt∇2
x log qt(x)δ (9)

Gaussian regime. When t → T , the marginal distribution qt(x) approaches a Gaussian distribu-
tion:

qt(x) = N (µt,Σt) ≈ N (0, σ2
t I). (10)

For a Gaussian distribution, the Hessian matrix of the log-density equals

Ht(x) = ∇2
x log qt(x) = −Σ−1

t = −(σ2
t I)

−1, (11)

more details are shown in appendix.

Substituting this expression into Equation (9), the change in the predicted noise under a small input
perturbation δ becomes

∆ϵ ≈ σt Σ
−1
t δ =

σt

σ2
t

I δ =
1

σt
δ. (12)

Thus, when the timestep t is close to T , the latent variable distribution lies in the Gaussian regime.
In this case, the change in the model’s output is exactly aligned with the input perturbation. As a
result, for any perturbation introduced to the input of DPMs, the corresponding predicted noise can
be obtained without re-evaluating the DPM.

No Gaussian regime. When t → 0, the marginal distribution qt(x) approaches the true data dis-
tribution. For a given forward process of DPMs q(xt|x0) = N (xt|αtx0, σ

2
t I), The latent variable

xt at timestep t from a given latent variable xt−1 at timestep t− 1 is calculated by

xt =
αt

αt−1
xt−1 +

(√
σ2
t −

αt

αt−1
σ2
t−1

)
ϵ, (13)

where ϵ ∼ N (0, I). Let σ̂2
t = σ2

t −
α2

t

α2
t−1

σ2
t−1 and α̂t =

αt

αt−1

By using Tweedie’s formula Efron (2011)

∇x log qt(x) =
∇xqt(x)

qt(x)
=

α̂tµt−1|t(x)− x

σ̂2
t

, (14)

Where µt−1|t = E(xt−1|xt) =
∫
xt−1p(xt−1|xt)dxt−1.

The Hessian matrix is achieved by differentiating∇x log qt(x), which is

∇2
x log qt(x) =

α̂t

σ̂2
t

∇xµt−1|t(x)−
1

σ̂2
t

I (15)

=
α̂2
t

σ̂4
t

Σt−1|t(x)−
1

σ̂2
t

I,

we show the proof of ∇xµt−1|t(x) =
α̂t

σ̂2Σt−1|t(x) in appendix.

Special case: treating the reverse transition as Gaussian. When the timestep sizes are small,
the reverse transitions are approximated by a Gaussian q(xt−1|xt) = N (µt−1|t(xt),Σt−1|t(xt)),
where Σt−1|t(x) = ηtI Sohl-Dickstein et al. (2015); Ho et al. (2020). Under this assumption, the

Hessian matrix for each timestep is isotropic, where ∇2
x log qt(x) =

(α̂2
t

σ̂4
t
η − 1

σ̂2
t

)
I indicate the

corresponding predicted noise can be achieved by ∆ϵ = σt

(
1
σ̂2
t
− α̂2

t

σ̂4
t
η
)
δ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

General case. However, as shown in Figure 1, the cosine similarity is a smooth decrease with
the reverse process. This reveals that the reverse process of DPMs is close to, but not exactly, a
Gaussian process, which indicates the Σt−1|t(x) is not isotropic. Rewrite the Equation (15) to be

∇2
x log qt(x) =

1
σ̂2
t

(α̂2
t

σ̂2
t
Σt−1|t(x)− I

)
, by using Laplace approximation Bishop (2006).

∇2
x log qt(x) ≈

α̂2
t

σ̂4
t

(
−Hm(xt−1|t) +

α̂2
t

σ̂2
t

I
)−1 − 1

σ̂2
t

I, (16)

where m(x) is the maximum a posteriori (MAP) estimate of xt−1 for a given xt. As the sampling
methods reverse toward the data distribution, the geometry of x reflects the natural anisotropy of the
data. Hence, isotropy is progressively lost as t approaches zero. For example, the isotropy of Stable
diffusion is decreasing as shown in Figure 1.

Since the isotropy of the Hessian matrix varies throughout the sampling process, as shown in Fig-
ure 1, the reverse process maintains a high degree of isotropy for the majority of its duration. This
property can therefore be exploited as a “free lunch” adjustment to refine latent variables, inte-
grating seamlessly with existing sampling methods. Importantly, this plug-in refinement incurs no
additional computational cost. In the following sections, we demonstrate how this characteristic can
be applied to two types of sampling methods: sequential sampling methods and parallel sampling
methods.

4.2 ALLEVIATING THE ERROR IN SEQUENTIAL SAMPLING METHODS

Score-based MCMC approaches have been proposed to address the reverse process of DPMs within
the predictor-corrector framework Song et al. (2020); Zhao et al. (2023). This framework consists
of two components: Predictor and Corrector. Predictor estimates the latent variable at the next time
step, and corrector is used to mitigate the discretization error introduced during prediction. Together,
these components enhance the accuracy and efficiency of the sampling process.

By integrating our proposed method into this framework, we further improve sampling efficiency
by reducing the discrepancy between the refined latent variable and the predicted noise from the un-
refined latent variable. This alignment leads to more consistent updates across iterations, improved
sample quality.

The corrector refines the latent variable at timestep t via Equation (7) However, in the stan-
dard predictor-corrector framework, the subsequent predictor still uses the noise predicted at the
unrefined latent variable, xt−1 ← Predictor

(
xc
t , ϵθ(xt, t), Q

)
. Rather than re-evaluating the

model at the corrected variable. For comparison, a recomputed variant would use xt−1 ←
Predictor

(
xc
t , ϵθ(x

c
t , t), Q

)
, where the noise is updated by the refined latent variable xc

t . The differ-
ence between ϵ(xt, t) and ϵ(xc

t , t) introduces additional error into the sampling process, particularly
when the corrector significantly adjusts the latent variable. This inconsistency may undermine the
benefits of the corrector and reduce overall sampling fidelity.

Motivated by the geometric properties revealed in our analysis, we propose a method that leverages
the difference between the refined and unrefined latent variables to adjust the predicted noise. This
adjustment effectively alleviates the additional error introduced by the mismatch between the la-
tent variables used in the corrector and the predictor steps without any extra computational cost or
requiring changes to the training process. Specifically, we modify the predictor step as follows:

xt−1 ← Predictor
(
xc
t , ϵθ(xt, t) + λt

(
xc
t − xt

)
, Q

)
, (17)

where λt is a coefficient that controls the correction term and ϵct = ϵθ(xt, t) + λt

(
xc
t − xt

)
in

Figure 2. The pseudo code is shown in Algorithm 1.

4.3 ACCELERATING THE CONVERGENCE OF PARALLEL SAMPLING

Conventional sampling methods for DPMs process through all timesteps sequentially, which limits
hardware utilization. To better leverage multiple GPUs, parallel sampling methods are proposed
by Shih et al. (2023) that reformulate sequential sampling by applying Picard iteration so that many
timesteps can be processed in parallel. However, such parallel sampling typically requires additional
evaluations of the DPMs to reach convergence. We accelerate this approach with a dual-update for
each model call, improving convergence speed and reducing the total number of evaluations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Free Lunch for Sequential Methods
Input: A diffusion model ϵθ(xt, t), an initial random noise xT ∼ N (0, I), Total timesteps of
DPMs T , any solver P for predictor and C for corrector, query Q = {ϵi} for containing previous
predicted noise.

1: Q← {ϵθ(xT , T)}
2: t← T − 1
3: xt+1 ← xT

4: while t > 0 do
5: xt ← P(xt+1, Q) ▷ Use predictor to get the predicted latent variable at timestep t.
6: ϵt ← ϵθ(xt, t)
7: Q← {ϵt, Q} ▷ Append the predicted noise to the Q
8: xc

t ← C(xt+1, Q) ▷ Use corrector to correct predicted latent variable at timestep t.
9: Q← {ϵt + λt(x

c
t − xt), Q\{ϵt}} ▷ Update the predicted noise at timestep t in Q

10: end while

Following Shih et al. (2023), one Picard iteration of parallel sampling updates

xk+1
t = xk

T +

t+1∑
i=T

Predictor
(
xk
i , ϵθ(x

k
i , i), Q

)
− xk

i , (18)

where t = 0, . . . , T − 1.

Dual-update. We perform a second update that reuses the latent variables predicted at iteration
k + 1:

xk+2
t = xk+1

T +

t+1∑
i=T

Predictor
(
xk+1
i , ϵθ(x

k
i , i) + λi(x

k+1
t − xk

i), Q
)
− xk+1

i . (19)

We refer to this as a dual-update because it performs two iterations of updates per DPMs evaluation.
In the appendix, we explore multi-update cases and show that after the dual-update, the displacement
between iterations is small. Pseudocode for our parallel sampling method based on ParaDiGMS Shih
et al. (2023) is provided in Algorithm 2.

Algorithm 2 Free Lunch for Parallel Methods by Dual-Update
Input: Diffusion model ϵθ(xt, t), initial random noise xT ∼ N (0, I), Total time steps of DPMs is
T , any solver P for predictor, tolerance τ , window size p.

1: t← T
2: k ← 0
3: xk

t−i ← xT ∀i ∈ [0, p)
4: while t > 0 do
5: ϵkt−i ← ϵθ(x

k
t−i, t− i) ∀i ∈ [0, p) ▷ Get the predicted noise in parallel.

6: yt−i ← P(xk
t−i, ϵ

k
t−i)− xk

t−i ∀i ∈ [0, p) ▷ Compute drifts in parallel.
7: xk+1

t−i−1 ← xk
t +

∑t−i
j=t yj ∀i ∈ [0, p) ▷ Picard iteration.

8: ỹt−i ← P
(
xk+1
t−i , ϵ

k
t−i + λt−i(x

k+1
t−i − xk

t−i)
)
− xk+1

t−i ∀i ∈ [0, p) ▷ Dual-update.
9: xk+2

t−i−1 ← xk+1
t +

∑t−i
j=t ỹj ∀i ∈ [0, p)

10: errori ← 1
D∥x

k+2
t−i − xk

t−i∥22 for all i ∈ [1, p)

11: stride← min
(
{i : errori > τ2σ2

t−i} ∪ {p}
)

▷ Slide window until tolerance.
12: xk+2

t−i ← xk+2
t−i for all i ∈ [1, stride] ▷ Start new coverage.

13: t← t− stride; k ← k + 2; p← min(p, T − t)
14: end while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we integrate our method with several state-of-the-art (SOTA) sampling algorithms to
evaluate its effectiveness and efficiency. Notably, our method requires neither preparation overhead
nor additional evaluations of DPMs. For sequential sampling methods, our technique enhances
image quality as a plug-in refinement. For parallel sampling methods, we propose dual-update to
accelerate convergence without degrading sample quality. We use −Hm(xt−1|t) = 1/σ2

t−1 in
Equation (16) as the default setting of λ in Algorithm 1 and Algorithm 2.

We evaluate our method on CIFAR-10 Krizhevsky et al. (2009), ImageNet 256 × 256 Deng et al.
(2009), and LSUN Bedroom 256 × 256 Yu et al. (2015). Our baselines include UniPC Zhao et al.
(2023), DPM-Solver-v3 Zheng et al. (2023), AMED-Plugin Zhou et al. (2024), and ParaDiGMS
Shih et al. (2023).

5.1 SEQUENTIAL SAMPLE METHOD

We first evaluate our method in the sequential sampling method. We deploy it as a plug-in to existing
solvers neither preparation overhead nor additional evaluations (e.g. UniPC Zhao et al. (2023) and
DPM-Solver-v3 Zheng et al. (2023)). On ImageNet 256 × 256 and LSUN Bedroom 256 × 256,
it consistently improves the quality of generated images at a fixed number of function evaluations
(NFE). Moreover, the execution time of image generation remains unchanged after integrating our
method.

Table 1 shows the results on LSUN bedroom 256×256. Following the setting in DPM-Solver-
v3 Zheng et al. (2023), we use a stable diffusion model to generate 50k images for evaluation.
Table 2 reports results on ImageNet 256×256. Using a guided diffusion model, we generate 50k
images for evaluation. Across both benchmarks, our method consistently improves the image quality
over SOTA baselines. In tables, we refer to DPM-Solver-v3 as DPM-v3. Notably, our method is
zero-cost and operates as a test-time plug-in. Additional experiments are provided in the Appendix.

Table 1: Experiments on LSUN bedroom
256×256 guided with various NFE. The qual-
ity of images is measured by FID. We use the
implementation from the DPM-v3 repository.

NFE 3 4 5

UniPC 109.31 39.89 13.99
+ Ours 59.27 20.08 8.96
∆ (-50.04) (-19.81) (-5.03)

DPM-v3 64.43 19.17 8.96
+ Ours 54.41 15.49 6.77
∆ (-10.02) (-3.68) (-2.19)

Table 2: Experiments on ImageNet 256×256
guided with various NFE. The quality of im-
ages is measured by FID. We use the imple-
mentation from the DPM-v3 repository.

NFE 3 4 5

UniPC 52.21 24.53 15.62
+ Ours 50.79 22.60 14.38
∆ (-1.42) (-1.93) (-1.24)

DPM-v3 65.38 26.37 15.10
+ Ours 60.80 24.34 14.53
∆ (-4.58) (-2.03) (-0.57)

Figure 3 shows generated images using the UniPC and DPM-Solver-v3, both in its vanilla form and
combined with our refinement method. As illustrated, our approach produces samples with sharper
details, while maintaining the overall style and diversity of the baseline solver. These qualitative
results complement our quantitative evaluation, confirming that integrating our method into existing
solvers improves visual quality without additional computational cost.

5.2 PARALLEL SAMPLE METHOD

For parallel sampling based on Picard iteration, we introduce a dual-update mechanism within each
iteration to accelerate convergence. Specifically, we integrate our method into the ParaDiGMS
framework Shih et al. (2023). After the standard Picard update, we apply an additional refine-
ment step that yields extra improvement per DPMs evaluation. As demonstrated in Table 3, this
dual-update strategy consistently reduces both the number of iterations and the overall sampling
time, while maintaining comparable sample quality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Following ParaDiGMS Shih et al. (2023), we compute CLIP scores using ViT-b-14 Dosovitskiy
et al. (2021) from the Hugging Face implementation (checkpoint openai/clip-vit-base-patch16). In
the original ParaDiGMS setup, the stopping tolerance is set to 0.1. For a fair comparison, we adjust
the tolerance in our method to achieve a comparable CLIP score, and report the corresponding
iteration counts and times needed for each sample. As shown in Table 3, integrating our method
reduces computational cost and sampling time by over 10% while achieving results comparable to
the original ParaDiGMS.

Table 3: Experiments on COCO Lin et al. (2014). Using Stable Diffusion v2, we generate images
conditioned on the 1,000 captions from the COCO 2017 annotations. Image quality is measured by
the CLIP score, computed with the implementation provided in the ParaDiGMS repository. We use
ParaDiGMS (500) indicates 500 timesteps.

Window Size Model Evals Parallel Iters Clip Score Time/Sample

ParaDiGMS (500) 5 561 113 31.78 20.93s
+ Ours 5 507 102 31.78 18.78s
ParaDiGMS (500) 10 652 66 31.76 23.47s
+ Ours 10 548 55 31.75 19.51s
ParaDiGMS (200) 5 243 49 31.75 9.17s
+ Ours 5 217 44 31.75 7.84s
ParaDiGMS (200) 10 286 30 31.74 10.41s
+ Ours 10 250 26 31.73 8.58s

UniPC UniPC + Ours DPM-v3 DPM-v3 + Ours

3
N

FE
4

N
FE

Figure 3: Visualization of generated images using Stable-Diffusion-v1.4 of UniPC, DPM-Solver-v3,
and our method integrated with 3 and 4 NFEs. Prompt: “A beautiful castle beside a waterfall in the
woods, by Josef Thoma, matte painting, trending on ArtStation HQ.”. We refer to DPM-Solver-v3
as DPM-v3.

6 CONCLUSION

In this work, we shift the focus from solver design to the underlying geometry of DPMs. By uncov-
ering and formalizing an isotropic property induced by the Gaussian process of DPMs, we provide a
new perspective on the latent manifold of DPMs. Building on this insight, we propose a lightweight
test-time refinement method that integrates seamlessly into existing sampling frameworks, reduc-
ing discretization error and improving stability without extra training or computational overhead.
Moreover, we demonstrate that our approach accelerates parallel sampling methods such as Picard
iteration, yielding consistent gains in both efficiency and fidelity. We hope that this work encourages
further research into the geometric foundations of DPMs. A deeper understanding of these structures
may lead to new algorithms that better balance sample quality with generation cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

C.M. Bishop. Pattern Recognition and Machine Learning by Christopher M. Bishop. Springer
Science+Business Media, LLC, 2006. URL https://books.google.com.au/books?
id=Y44SyAEACAAJ.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ode-based diffusion sampling. Proc. Int. Conf. on Machine Learning (ICML), 2024a.

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion mod-
els: Applications, guided generation, statistical rates and optimization, 2024b. URL https:
//arxiv.org/abs/2404.07771.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255. Ieee, 2009.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In Proc. Int. Conf. on Learning Representation (ICLR), 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106(496):1602–1614, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Proc. Advances in Neural
Information Processing Systems (NeurIPS), 27, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Proc. Ad-
vances in Neural Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Rafał Karczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, and Vikas Garg. Spacetime
geometry of denoising in diffusion models, 2025. URL https://arxiv.org/abs/2505.
17517.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/
1405.0312.

10

https://books.google.com.au/books?id=Y44SyAEACAAJ
https://books.google.com.au/books?id=Y44SyAEACAAJ
https://arxiv.org/abs/2404.07771
https://arxiv.org/abs/2404.07771
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2505.17517
https://arxiv.org/abs/2505.17517
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. Proc. Int. Conf. on Learning Representation (ICLR), 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver++:
Fast solver for guided sampling of diffusion probabilistic models, 2023. URL https://
openreview.net/forum?id=4vGwQqviud5.

Jianrong Lu, Zhiyu Zhu, and Junhui Hou. Parasolver: A hierarchical parallel integral solver for
diffusion models. In Proc. Int. Conf. on Learning Representation (ICLR), 2025. URL https:
//openreview.net/forum?id=2JihLwirxO.

Hao Ren, Yiming Zeng, Zetong Bi, Zhaoliang Wan, Junlong Huang, and Hui Cheng. Prior does mat-
ter: Visual navigation via denoising diffusion bridge models. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 12100–12110, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
Proc. Int. Conf. on Learning Representation (ICLR), 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Proc. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. Proc. Int.
Conf. on Learning Representation (ICLR), 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2023.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Proc. Advances in
Neural Information Processing Systems (NeurIPS), 36, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Xinyao Yu, Sixian Zhang, Xinhang Song, Xiaorong Qin, and Shuqiang Jiang. Trajectory diffu-
sion for objectgoal navigation. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2024. URL https://openreview.net/forum?id=1GpY0hsv2w.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
Proc. Int. Conf. on Learning Representation (ICLR), 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. DPM-solver-v3: Improved diffusion ODE
solver with empirical model statistics. In Proc. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023. URL https://openreview.net/forum?id=9fWKExmKa0.

11

https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=2JihLwirxO
https://openreview.net/forum?id=2JihLwirxO
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=1GpY0hsv2w
https://openreview.net/forum?id=9fWKExmKa0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Acknowledgment of LLM Usage 13

B Proof 13

C More experiments 15

D Multi update 15

E Ablation study 15

F Checkpoints 16

G More Visualization 16

A ACKNOWLEDGMENT OF LLM USAGE

We used a large language model (ChatGPT) to polish this paper. Its use was limited to grammar
checking, fixing typos, rephrasing sentences for clarity, and improving word choice. All conceptual
contributions, methodological designs, experiments, and analyses were carried out entirely by the
authors. The use of an LLM does not affect the reproducibility or scientific validity of our work.

B PROOF

Proof of Equation (11) . For a Gaussian distribution q(x) ≈ N (µ,Σ), where µ ∈ Rn and
Σt ∈ Rn×n.

log q(x) = log
(
(2π)

−n
2

)
+ log

(
det(Σt)

− 1
2

)
− 1

2
(x− µ)⊤Σ−1

t (x− µ). (20)

The Jacobian matrix and Hessian matrix are

∇ log q(x) = −Σ−1
t (x− µ),∇2 log q(x) = Σ−1

t . (21)

Proof of Equation (15) As µt−1|t(x) = E(xt−1|xt) =
∫
xt−1q(xt−1|xt)dxt−1, the derivative

of µt−1|t is

∇xtµt−1|t(xt) = ∇xt

∫
xt−1q(xt−1|xt)dxt−1 =

∫
xt−1∇xtq(xt−1|xt)dxt−1 (22)

For∇xtq(xt−1|xt) part, using bayes rule to get

∇xt
q(xt−1|xt) = ∇xt

(
q(xt|xt−1)q(xt−1)

q(xt)
) (23)

= q(xt−1)∇xt
(
q(xt|xt−1)

q(xt)
)

= q(xt−1)
(∇xt

q(xt|xt−1)

q(xt)
− q(xt|xt−1)∇xt

q(xt)

q(xt)2
)

=
q(xt−1)q(xt|xt−1)

q(xt)

(∇xt
q(xt|xt−1)

q(xt|xt−1)
− ∇xt

q(xt)

q(xt)

)
= q(xt−1|xt)(∇xt

log q(xt|xt−1)−∇xt
log q(xt))

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Substitude∇xt
q(xt−1|xt) in Equation (22)

∇xt
µt−1|t(xt) =

∫
xt−1q(xt−1|xt)∇xt

log q(xt|xt−1)dxt−1 (24)

−
∫

xt−1q(xt−1|xt)∇xt
log q(xt)dxt−1

As forward diffusion process is Gaussian process q(xt;xt−1) = N (xt|α̂txt−1, σ̂
2
t I), the partial

derivative of log q(xt|xt−1) with respect to latent variable xt is

∇xt
log q(xt|xt−1) = −

xt − α̂txt−1

σ̂2
t

. (25)

The first term of Equation (24) can be calculated by∫
xt−1q(xt−1|xt)∇x log q(xt|xt−1)dxt−1 =

∫
xt−1(

α̂txt−1 − xt

σ̂2
t

)q(xt−1|xt)dxt−1 (26)

=
α̂t

σ̂2
t

∫
xt−1(xt−1 −

xt

α̂t
)q(xt−1|xt)dxt−1

Decompose the term xt−1(α̂txt−1 − xt) in Equation (26) by

xt−1(xt−1 −
xt

α̂t
) (27)

= (xt−1 − xt−1 + xt−1)(xt−1 − xt−1 + xt−1 −
xt

α̂t
)

= (xt−1 − xt−1)(xt−1 − xt−1) + xt−1(xt−1 − xt−1)

+ (xt−1 − xt−1)(xt−1 −
xt

α̂t
) + xt−1(xt−1 −

xt

α̂t
).

Integrating term by term gives∫
(xt−1 − xt−1)(xt−1 − xt−1)q(xt−1|xt)dxt−1 = Σt−1|t(x), (28)

∫
xt−1(xt−1 − xt−1)q(xt−1|xt)dxt−1 = 0, (29)

∫
(xt−1 − xt−1)(xt−1 − xt)q(xt−1|xt)dxt−1 = 0, (30)

∫
xt−1(xt−1 −

xt

α̂t
)q(xt−1|xt)dxt−1 = xt−1(xt−1 −

xt

α̂t
). (31)

Therefore, the Equation (26), which is the first term of Equation (24):∫
xt−1q(xt−1|xt)∇x log q(xt|xt−1)dxt−1 =

α̂t

σ̂2
t

(
Σt−1|t(x) + xt−1(xt−1 −

xt

α̂t
)
)
. (32)

The second term of Equation (24) is calculated by∫
xt−1q(xt−1|xt)∇xt log q(xt)dxt−1 = xt−1∇xt log q(xt). (33)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Decompose the term∇xt
log q(xt) by

∇x log q(xt) =
∇xt

q(xt)

q(xt)
(34)

=

∫
∇xt

q(xt|xt−1)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)∇xt log q(xt|xt−1)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)

α̂t

σ̂2
t
(xt−1 − xt

α̂t
)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)q(xt−1)

q(xt)

α̂t

σ̂2
t

(xt−1 −
xt

α̂t
)dxt−1

=
α̂t

σ̂2
t

∫
q(xt−1|xt)(xt−1 −

xt

α̂t
)dxt−1

=
α̂t

σ̂2
t

(xt−1 −
xt

α̂t
)

Therefore, the second term of Equation (24)∫
xt−1q(xt−1|xt)∇x log q(xt)dxt−1 =

α̂t

σ̂2
t

xt−1(xt−1 −
xt

α̂t
) (35)

Substitute the first term and second term in Equation (24) by Equation (32) and Equation (35) to
achieve

∇xµt−1|t(x) =
α̂t

σ̂2
t

Σt−1|t(x) (36)

Therefore, the Hessian matrix in Equation (15) is

∇2
x log qt(x) =

α̂2
t

σ̂4
t

Σt−1|t(x)−
1

σ̂2
t

I (37)

C MORE EXPERIMENTS

Table 4 and Table 5 report results on LSUN bedroom 256×256 and ImageNet 256×256 across NEF
from 3 to 20. Our method yields consistent gains at every NEF, improving FID over all baselines
without extra calculation.

Table 4: Experiments on LSUN bedroom 256×256 guided with various NFE. The quality of images
is measured by FID. We use the implementation from the DPM-Solver-v3 repository. ∗ We borrow
results reported in AMED-Plugin, “(NEF)” denotes the actual NEF corresponding to the reported
FID.

NFE 3 4 5 6 8 10 12 15 20

AMED-Plugin∗ 101.5 - 25.68 8.63 (7) 7.82 (9) - - - -
UniPC 109.31 39.89 13.99 6.55 4.00 3.57 3.35 3.18 3.07
+ Ours 59.27 20.08 8.96 5.48 3.79 3.38 3.19 3.08 3.02
DPM-Solver-v3 64.43 19.17 8.96 5.13 3.56 3.20 3.12 3.12 3.10
+ Ours 54.41 15.49 6.77 4.55 3.45 3.14 3.05 3.04 3.04

D MULTI UPDATE

In Table 6, we examine the effect of applying multiple updates within ParaDiGMS. In particular,
we compare the latent variable before each Picard iteration with the updated latent variable after the
iteration when our refinement method is applied.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Experiments on ImageNet 256×256 guided with various NFE. The quality of images is
measured by FID. We use the implementation from the DPM-Solver-v3 repository. ∗ We borrow the
results (NFE∈[5,20]) reported in DPM-Solver-v3.

NFE 3 4 5 6 8 10 12 15 20

UniPC∗ 52.21 24.53 15.62 11.91 9.29 8.35 7.95 7.64 7.44
+ Ours 50.79 22.60 14.38 11.07 9.06 8.26 7.97 7.74 7.46
DPM-Solver-v3∗ 65.38 26.37 15.10 11.39 8.96 8.27 7.94 7.62 7.39
+ Ours 60.80 24.34 14.53 10.84 8.86 8.08 7.85 7.55 7.46

Table 6: Experiments on multi-update

Number of Iters 1 2 3 4 5

Difference 51.7352 1.2923 1.2919 1.2919 1.2919

E ABLATION STUDY

Table 7 presents an ablation study on the choice of the parameter λ. We compare different strategies,
including the default setting −Hm(xt−1|t) = 1

σ2
t−1

, fixed constant values, and empirical values
collected from experiments.

Table 7: Experiments on LSUN bedroom 256×256 guided with various NFE. The quality of images
is measured by FID. We use the implementation from the DPM-Solver-v3 repository.

NFE 3 4 5 6 8 10 12 15 20

DPM-Solver-v3 64.43 19.17 8.96 5.13 3.56 3.20 3.12 3.12 3.10
+ Ours 54.41 15.49 6.77 4.55 3.45 3.14 3.05 3.04 3.04
+ Ours λ = 1 63.42 18.71 7.42 4.76 3.52 3.18 3.09 3.08 3.06
+ Ours λ = 0.5 49.44 14.68 6.74 4.37 3.42 3.14 3.05 3.05 3.05
+ Ours empirical 53.17 15.61 6.89 4.61 3.48 3.16 3.07 3.06 3.06

F CHECKPOINTS

For all experiments, we employ publicly released model checkpoints to ensure reproducibility and
fair comparison. In particular, we reference the official implementations of DPM-Solver-v3 and
ParaDiGMS, and list the specific checkpoints used in Table 8.

G MORE VISUALIZATION

Figure 4 presents additional visualizations of generated images on the LSUN Bedroom 256×256.
Integrating our plug-in refinement yields images with richer details and improved semantic coher-
ence compared to the baselines.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Checkpoints of models in experiments

Datasets URL

ImageNet 256×256 guided https://openaipublic.blob.core.windows.
net/diffusion/jul-2021/256x256_
diffusion.pt

LSUN bedroom 256×256 https://openaipublic.blob.core.windows.
net/diffusion/jul-2021/lsun_bedroom.pt

Stable Diffusion https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original/
resolve/main/sd-v1-4.ckpt

Stable Diffusion v2 https://huggingface.co/stabilityai/
stable-diffusion-2

UniPC UniPC + ours DPM-v3 DPM-v3 + ours

3
N

FE
3

N
FE

4
N

FE
4

N
FE

Figure 4: Visualization of generated images using LUSN bedroom 256×256of UniPC, DPM-Solver-
v3, and our method integrated with 3 and 4 NFEs. We refer to DPM-Solver-v3 as DPM-v3.

17

https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
https://huggingface.co/stabilityai/stable-diffusion-2
https://huggingface.co/stabilityai/stable-diffusion-2

	Introduction
	Related Work
	Preliminary
	methodology
	Overlooked characteristic of diffusion models
	Alignment in the Latent-Variable Manifold

	Alleviating the error in sequential sampling methods
	Accelerating the convergence of parallel sampling

	Experiments
	Sequential sample method
	Parallel sample method

	Conclusion
	Appendix
	 Appendix
	Acknowledgment of LLM Usage
	Proof
	More experiments
	Multi update
	Ablation study
	Checkpoints
	More Visualization

