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ABSTRACT

Diffusion probabilistic models (DPMs) have recently achieved state-of-the-art
performance in generative tasks, surpassing traditional approaches such as GANs
and VAEs in both sample quality and training stability. Despite their success,
DPMs suffer from high computational cost and slow sampling, since they require
sequential denoising across many timesteps. Existing acceleration methods pri-
marily focus on reformulating the reverse process as an ODE/SDE and applying
advanced numerical solvers. While effective, these approaches largely overlook
the geometric properties inherently induced by the Gaussian process in DPMs. In
this work, we investigate the geometric behavior of DPMs in the latent variable
manifold, revealing an overlooked isotropic property derived from their Gaussian
formulation. Building on this characteristic, we introduce a lightweight test-time
refinement that can be seamlessly embedded into existing samplers. Our method
reduces the discretization error of sequential sampling methods and accelerates
the convergence of parallel sampling strategies, without requiring extra training
or additional model evaluations. Extensive experiments across multiple datasets
demonstrate that our approach consistently improves both generation quality and
efficiency, while remaining fully compatible with existing methods. By uncover-
ing and exploiting the isotropic nature of DPMs, this work provides a new perspec-
tive on the geometric foundations of DPMs and offers a complementary direction
for advancing their efficiency. As a snapshot result, when integrated into UniPC,
our method improves the FID score on LSUN bedroom from 39.89 to 20.08 with
4 function evaluations.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have rapidly become a dominant paradigm for high fidelity
data generation Sohl-Dickstein et al. (2015); Ho et al. (2020), following their introduction into the
field of generative modeling. Compared to conventional approaches such as Generative Adversar-
ial Networks (GANs) Goodfellow et al. (2014) and Variational Autoencoders (VAEs) Kingma &
Welling (2013), DPMs offer several advantages that they are more robust during training, produce
samples of superior quality, and provide a controllable generation process. These strengths have
enabled DPMs to be successfully deployed in diverse applications, including image synthesis Song
et al. (2021); Ho et al. (2020), path planning Yu et al. (2024); Ren et al. (2025), and other complex
generative tasks Chen et al. (2024b).

Despite these advantages, DPMs remain computationally intensive, incurring long generation times
due to the large number of sequential denoising steps (i.e., many function evaluations) Ho et al.
(2020). Unlike one-shot generators such as GANs Goodfellow et al. (2014), sampling from DPMs
requires sequentially evaluating the model across many timesteps. This computational bottleneck
originates from the Gaussian forward process assumed in DPMs, which in turn requires an iterative
reverse process to progressively denoise a signal from pure Gaussian noise back to data Song et al.
(2021). As a result, the deployment of DPMs is limited on computationally constrained platforms,
restricting their broader adoption.

To reduce this cost, existing research has primarily focused on reformulating the diffusion process
in terms of ordinary or stochastic differential equations (ODE/SDE) Song et al. (2020; 2021). This
connection enables the use of advanced numerical solvers in ODE/SDE to accelerate sampling e.g.,
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high-order solvers Lu et al. (2022); Liu et al. (2022); Zhang & Chen (2023), and Picard iterations are
introduced to parallel the reverse process Shih et al. (2023). While these approaches substantially
reduce generation time, most prior work has focused primarily on solver design.

In contrast, comparatively less attention has been paid to the geometric characteristics of DPMs.
Understanding and exploiting the geometry of DPMs offers a complementary avenue for improving
both efficiency and fidelity of DPMs. A small but growing number of works have begun to ex-
plore geometric structures in DPMs. Prior studies impose geometric perspectives in time space to
reformulate trajectories, regularize training, or redesign noise schedules for improved stability and
fidelity Chen et al. (2024a); Song et al. (2023); Karras et al. (2022); Karczewski et al. (2025). For
example, flattening trajectories and carefully designing noise schedules have been shown to acceler-
ate the reverse process by reducing the number of timesteps required in the sampling process Song
et al. (2023); Karras et al. (2022), while recent geometric on spacetime manifold approaches speed
up sampling by approximating geodesic flows on learned manifolds Karczewski et al. (2025).

Complementary to ODE/SDE solvers and time space geometric approaches (e.g., flatten trajectories,
etc.), this work adopts a distinct geometric viewpoint on the latent-variable manifold in DPMs. In
particular, we identify an isotropic structure induced by the Gaussian process underlying these mod-
els. Building on this insight, we propose a zero-cost, test-time refinement that integrates seamlessly
with existing sampling frameworks. The plug-in refinement reduces discretization error in sequential
sampling methods and accelerates the convergence of Picard iterations in parallel samplers, without
any additional model evaluations or training.

Our key contributions can be summarized as follows:

• Geometric perspective on latent manifold of DPMs. We reveal and formalize an isotropic
property inherent in the Gaussian process of DPMs, providing a new geometric viewpoint
on their latent manifold.

• Lightweight zero-cost, test-time refinement. Leveraging this property, we design a zero-
cost, test-time refinement method that can be seamlessly integrated into existing solvers,
reducing the discretization error of sequential sampling methods without extra training or
additional model evaluations.

• Faster parallel sampling. We demonstrate that our approach accelerates the convergence
of Picard-iteration–based parallel samplers via a dual-update mechanism, improving both
efficiency and image quality.

• Experiments across multiple datasets and baselines demonstrate consistent gains in both
sample quality and generation speed, highlighting the effectiveness and generalization of
our method. As a snapshot result, when integrated into UniPC, our method reduces the
Fréchet inception distance (FID) score on LSUN bedroom from 39.89 to 20.08 with 4
function evaluations.

We believe that uncovering and systematically leveraging the isotropic structure inherent in
the Gaussian process underlying DPMs can pave the way for future advances in diffusion
modeling.

2 RELATED WORK

The practical deployment of diffusion probabilistic models (DPMs) is often limited by their com-
putational expense, as the reverse process requires many sequential function evaluations and con-
sequently long runtimes. Following the introduction of denoising diffusion probabilistic models
(DDPM) Ho et al. (2020), efforts to accelerate sampling emerged almost immediately. DDIM Song
et al. (2021) addressed this by breaking the Markov chain in the reverse process, enabling large sam-
pling step sizes and substantially reducing the number of iterations needed for image generation. It
also introduced a quadratic, non-uniform timestep schedule that further mitigates discretization er-
ror. In addition, DDIM highlighted a connection between discrete-time denoising processing and
continuous-time ordinary differential equations (ODE) Song et al. (2021). At the same time, re-
lated work established a link between DDPM and stochastic differential equations (SDE) Song et al.
(2020). This ODE/SDE viewpoint opens the door to high-order solvers that control discretization
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error at large step sizes without increasing the number of function evaluations Karras et al. (2022);
Dormand & Prince (1980). Pseudo-Numerical Methods for Diffusion Models (PNDM) Liu et al.
(2022) propose a pseudo-function to approximate the behavior of differential equations. Based on
this perspective, DPM-Solver Lu et al. (2022) and its variants Lu et al. (2023); Zheng et al. (2023)
employ high-order exponential integrators tailored to DPMs, and DEIS Zhang & Chen (2023) simi-
larly applies an exponential integrator to accelerate sampling.

Classic ODE correction techniques have been adapted to diffusion sampling to refine predictor up-
dates and improve image quality Zhao et al. (2023); Xue et al. (2024). Complementary scheduling
strategies include adaptive step-size control based on scaled error estimates to balance local errors
across steps Jolicoeur-Martineau et al. (2021), as well as auxiliary networks that predict timesteps
during sampling Zhou et al. (2024).

Large sampling steps inherently increase discretization error, motivating knowledge distillation ap-
proaches that transfer the behavior of a high-fidelity teacher requiring many timesteps to a student
model that achieves comparable performance with fewer steps Salimans & Ho (2022); Berthelot
et al. (2023); Song et al. (2023). Despite reducing the number of inference steps, distillation meth-
ods require additional training and thus introduce substantial cost overhead.

A small but growing body of work explores geometric structure in diffusion, shaping trajectories
and schedules in time–state space to improve stability and fidelity Chen et al. (2024a); Song et al.
(2023); Karras et al. (2022); Karczewski et al. (2025). For example, trajectory flattening and sched-
ule redesign can shorten the effective integration path and better align the reverse dynamics with
the target distribution Song et al. (2023); Karras et al. (2022), while recent perspectives accelerate
sampling by approximately following geodesic flows on learned manifolds Karczewski et al. (2025).

To exploit hardware efficient utilization, Shih et al. (2023); Lu et al. (2025) proposed a parallel
sampling method based on Picard iteration, enabling concurrent computation across timesteps. Al-
though this approach can yield speedups, it often requires additional model evaluations to ensure
convergence, and the overall runtime depends on the convergence rate of iterations.

Complementary to existing methods, we adopt a latent manifold perspective. We identify an
isotropic structure induced by the Gaussian process and leverage it to derive a zero-cost, test-time
refinement that integrates seamlessly with existing sampling methods. The proposed plug-in method
reduces discretization error in sequential sampling methods and accelerates the convergence of Pi-
card iterations in parallel sampling methods. Importantly, our method does not require any additional
model evaluations or training.

3 PRELIMINARY
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Figure 1: Cosine similarity between the input perturbation δ and the
resulting change in predicted noise ∆ϵ for stable diffusion v1-4. ∆ϵ
and δ are shown in Equation (8). High values indicate strong align-
ment between input changes and output changes.

Figure 2: Predictor-
corrector procedure,
corrector refines latent
variables, ours refines
predicted noise

Diffusion Probabilistic Model. Let qdata(x) denote the data distribution. DPMs assume a forward
Gaussian process, where at t = 0 we have q0(x0) = qdata(x) with x0 = x being the clean samples.
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The forward process is defined as a Gaussian transition Lu et al. (2022):

q0t(xt | x0) = N
(
xt | αtx0, σ

2
t I
)
, (1)

where t ∈ [0, T ], and αt, σt form the noise schedule. This schedule is designed such that the
marginal distribution at the terminal time satisfies p(xT ) ≈ N (0, σ̃2I) for T > 0 and σ̃ > 0. More-
over, the signal-to-noise ratio α2

t

σ2
t

decreases monotonically with respect to t, ensuring the Gaussian
process Lu et al. (2022).

Furthermore, the forward process shares the same transition with stochastic differential equation
(SDE) Kingma et al. (2021):

dxt = f(t)xt dt+ g(t) dwt,x0 ∼ q0(x0), (2)

where wt ∈ Rd is the standard Wiener process, f(t) = dlogαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

The corresponding reverse process of the forward diffusion from timestep T to 0, are given by Song
et al. (2021):

dxt = [f(t)xt − g2(t)∇x log qt(xt)] dt+ g(t) dw̄t, (3)

where w̄t denotes a standard Wiener process in reverse time and pT (xT ) ≈ N (0, σ̃2I).

The training objective of DPMs is to approximate the scaled score function −σt∇x log qt(xt) with
a neural network ϵθ(xt, t) parameterized by θ. For a well-trained network,

ϵθ(xt, t) ≈ −σt∇x log qt(xt). (4)

The Reverse Process. In contrast to the forward process, which drives samples away from the
data manifold, the reverse process removes noise to trace a trajectory back toward it by solving
SDE/ODE

dxt

dt
= f(t)xt +

g2(t)

2σ2
t

ϵθ(xt, t),xT ∼ N (0, σ̃2I), (5)

where f(t) = dlogαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t .

For a given latent variable xs at time s, using the half log-SNR(λ) replace the α and σ, λt = log(αt

σt
).

The analytical solution for latent variable at time t for a given latent variable at time s is Lu et al.
(2022); Zhao et al. (2023)

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵθ(xλ, λ)dλ. (6)

ODE/SDE solvers serve as the Predictor, approximating the integral in Equation (6) via a truncated
series expansion, which introduces local discretization error. To mitigate this, a Corrector is applied
at each step to refine the predicted latent state, as shown in Figure 2 Zheng et al. (2023). The
Predictor and Corrector can be any ODE/SDE solver:

xt ← Predictor
(
xs, ϵθ(xs, s), Q

)
, x c

t ← Corrector
(
xs, ϵθ(xt, t), Q

)
, (7)

where Q is the query of previously predicted noise. Leveraging intrinsic characteristics of DPMs,
our method provides an extra refinement step on the predicted noise.

4 METHODOLOGY

4.1 OVERLOOKED CHARACTERISTIC OF DIFFUSION MODELS

Existing training-free methods primarily focus on improving ODE/SDE solvers to reduce sampling
time or enhance image quality. However, these approaches often overlook a key geometric property
induced by the Gaussian process in DPMs that the variations in the model’s output are inherently
aligned with variations in its input. In this section, we formalize this property and demonstrate that
it arises directly from the Gaussian process underlying diffusion models.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1.1 ALIGNMENT IN THE LATENT-VARIABLE MANIFOLD

For a timestep t, let ϵθ(x, t) denote the noise predicted from the DPMs. For a perturbation δ applied
to the input latent variable x, the first-order Taylor expansion of the corresponding change in the
predicted noise satisfies

∆ϵ = ϵθ(x+ δ)− ϵθ(x) ≈ ∇xϵθ(x, t)δ. (8)

From Equation (4), when the DPMs are well trained, the prediction of the the DPMs is the ideal
scale score function, where ϵθ(x, t) ≈ −σt∇x log qt(x). Hence

∆ϵ ≈ ∇xϵθ(x, t)δ ≈ −σt∇2
x log qt(x)δ (9)

Gaussian regime. When t → T , the marginal distribution qt(x) approaches a Gaussian distribu-
tion:

qt(x) = N (µt,Σt) ≈ N (0, σ2
t I). (10)

For a Gaussian distribution, the Hessian matrix of the log-density equals

Ht(x) = ∇2
x log qt(x) = −Σ−1

t = −(σ2
t I)

−1, (11)

more details are shown in appendix.

Substituting this expression into Equation (9), the change in the predicted noise under a small input
perturbation δ becomes

∆ϵ ≈ σt Σ
−1
t δ =

σt

σ2
t

I δ =
1

σt
δ. (12)

Thus, when the timestep t is close to T , the latent variable distribution lies in the Gaussian regime.
In this case, the change in the model’s output is exactly aligned with the input perturbation. As a
result, for any perturbation introduced to the input of DPMs, the corresponding predicted noise can
be obtained without re-evaluating the DPM.

No Gaussian regime. When t → 0, the marginal distribution qt(x) approaches the true data dis-
tribution. For a given forward process of DPMs q(xt|x0) = N (xt|αtx0, σ

2
t I), The latent variable

xt at timestep t from a given latent variable xt−1 at timestep t− 1 is calculated by

xt =
αt

αt−1
xt−1 +

(√
σ2
t −

αt

αt−1
σ2
t−1

)
ϵ, (13)

where ϵ ∼ N (0, I). Let σ̂2
t = σ2

t −
α2

t

α2
t−1

σ2
t−1 and α̂t =

αt

αt−1

By using Tweedie’s formula Efron (2011)

∇x log qt(x) =
∇xqt(x)

qt(x)
=

α̂tµt−1|t(x)− x

σ̂2
t

, (14)

Where µt−1|t = E(xt−1|xt) =
∫
xt−1p(xt−1|xt)dxt−1.

The Hessian matrix is achieved by differentiating∇x log qt(x), which is

∇2
x log qt(x) =

α̂t

σ̂2
t

∇xµt−1|t(x)−
1

σ̂2
t

I (15)

=
α̂2
t

σ̂4
t

Σt−1|t(x)−
1

σ̂2
t

I,

we show the proof of ∇xµt−1|t(x) =
α̂t

σ̂2Σt−1|t(x) in appendix.

Special case: treating the reverse transition as Gaussian. When the timestep sizes are small,
the reverse transitions are approximated by a Gaussian q(xt−1|xt) = N (µt−1|t(xt),Σt−1|t(xt)),
where Σt−1|t(x) = ηtI Sohl-Dickstein et al. (2015); Ho et al. (2020). Under this assumption, the

Hessian matrix for each timestep is isotropic, where ∇2
x log qt(x) =

( α̂2
t

σ̂4
t
η − 1

σ̂2
t

)
I indicate the

corresponding predicted noise can be achieved by ∆ϵ = σt

(
1
σ̂2
t
− α̂2

t

σ̂4
t
η
)
δ

5
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General case. However, as shown in Figure 1, the cosine similarity is a smooth decrease with
the reverse process. This reveals that the reverse process of DPMs is close to, but not exactly, a
Gaussian process, which indicates the Σt−1|t(x) is not isotropic. Rewrite the Equation (15) to be

∇2
x log qt(x) =

1
σ̂2
t

( α̂2
t

σ̂2
t
Σt−1|t(x)− I

)
, by using Laplace approximation Bishop (2006).

∇2
x log qt(x) ≈

α̂2
t

σ̂4
t

(
−Hm(xt−1|t) +

α̂2
t

σ̂2
t

I
)−1 − 1

σ̂2
t

I, (16)

where m(x) is the maximum a posteriori (MAP) estimate of xt−1 for a given xt. As the sampling
methods reverse toward the data distribution, the geometry of x reflects the natural anisotropy of the
data. Hence, isotropy is progressively lost as t approaches zero. For example, the isotropy of Stable
diffusion is decreasing as shown in Figure 1.

Since the isotropy of the Hessian matrix varies throughout the sampling process, as shown in Fig-
ure 1, the reverse process maintains a high degree of isotropy for the majority of its duration. This
property can therefore be exploited as a “free lunch” adjustment to refine latent variables, inte-
grating seamlessly with existing sampling methods. Importantly, this plug-in refinement incurs no
additional computational cost. In the following sections, we demonstrate how this characteristic can
be applied to two types of sampling methods: sequential sampling methods and parallel sampling
methods.

4.2 ALLEVIATING THE ERROR IN SEQUENTIAL SAMPLING METHODS

Score-based MCMC approaches have been proposed to address the reverse process of DPMs within
the predictor-corrector framework Song et al. (2020); Zhao et al. (2023). This framework consists
of two components: Predictor and Corrector. Predictor estimates the latent variable at the next time
step, and corrector is used to mitigate the discretization error introduced during prediction. Together,
these components enhance the accuracy and efficiency of the sampling process.

By integrating our proposed method into this framework, we further improve sampling efficiency
by reducing the discrepancy between the refined latent variable and the predicted noise from the un-
refined latent variable. This alignment leads to more consistent updates across iterations, improved
sample quality.

The corrector refines the latent variable at timestep t via Equation (7) However, in the stan-
dard predictor-corrector framework, the subsequent predictor still uses the noise predicted at the
unrefined latent variable, xt−1 ← Predictor

(
xc
t , ϵθ(xt, t), Q

)
. Rather than re-evaluating the

model at the corrected variable. For comparison, a recomputed variant would use xt−1 ←
Predictor

(
xc
t , ϵθ(x

c
t , t), Q

)
, where the noise is updated by the refined latent variable xc

t . The differ-
ence between ϵ(xt, t) and ϵ(xc

t , t) introduces additional error into the sampling process, particularly
when the corrector significantly adjusts the latent variable. This inconsistency may undermine the
benefits of the corrector and reduce overall sampling fidelity.

Motivated by the geometric properties revealed in our analysis, we propose a method that leverages
the difference between the refined and unrefined latent variables to adjust the predicted noise. This
adjustment effectively alleviates the additional error introduced by the mismatch between the la-
tent variables used in the corrector and the predictor steps without any extra computational cost or
requiring changes to the training process. Specifically, we modify the predictor step as follows:

xt−1 ← Predictor
(
xc
t , ϵθ(xt, t) + λt

(
xc
t − xt

)
, Q

)
, (17)

where λt is a coefficient that controls the correction term and ϵct = ϵθ(xt, t) + λt

(
xc
t − xt

)
in

Figure 2. The pseudo code is shown in Algorithm 1.

4.3 ACCELERATING THE CONVERGENCE OF PARALLEL SAMPLING

Conventional sampling methods for DPMs process through all timesteps sequentially, which limits
hardware utilization. To better leverage multiple GPUs, parallel sampling methods are proposed
by Shih et al. (2023) that reformulate sequential sampling by applying Picard iteration so that many
timesteps can be processed in parallel. However, such parallel sampling typically requires additional
evaluations of the DPMs to reach convergence. We accelerate this approach with a dual-update for
each model call, improving convergence speed and reducing the total number of evaluations.

6
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Algorithm 1 Free Lunch for Sequential Methods
Input: A diffusion model ϵθ(xt, t), an initial random noise xT ∼ N (0, I), Total timesteps of
DPMs T , any solver P for predictor and C for corrector, query Q = {ϵi} for containing previous
predicted noise.

1: Q← {ϵθ(xT , T )}
2: t← T − 1
3: xt+1 ← xT

4: while t > 0 do
5: xt ← P(xt+1, Q) ▷ Use predictor to get the predicted latent variable at timestep t.
6: ϵt ← ϵθ(xt, t)
7: Q← {ϵt, Q} ▷ Append the predicted noise to the Q
8: xc

t ← C(xt+1, Q) ▷ Use corrector to correct predicted latent variable at timestep t.
9: Q← {ϵt + λt(x

c
t − xt), Q\{ϵt}} ▷ Update the predicted noise at timestep t in Q

10: end while

Following Shih et al. (2023), one Picard iteration of parallel sampling updates

xk+1
t = xk

T +

t+1∑
i=T

Predictor
(
xk
i , ϵθ(x

k
i , i), Q

)
− xk

i , (18)

where t = 0, . . . , T − 1.

Dual-update. We perform a second update that reuses the latent variables predicted at iteration
k + 1:

xk+2
t = xk+1

T +

t+1∑
i=T

Predictor
(
xk+1
i , ϵθ(x

k
i , i) + λi(x

k+1
t − xk

i ), Q
)
− xk+1

i . (19)

We refer to this as a dual-update because it performs two iterations of updates per DPMs evaluation.
In the appendix, we explore multi-update cases and show that after the dual-update, the displacement
between iterations is small. Pseudocode for our parallel sampling method based on ParaDiGMS Shih
et al. (2023) is provided in Algorithm 2.

Algorithm 2 Free Lunch for Parallel Methods by Dual-Update
Input: Diffusion model ϵθ(xt, t), initial random noise xT ∼ N (0, I), Total time steps of DPMs is
T , any solver P for predictor, tolerance τ , window size p.

1: t← T
2: k ← 0
3: xk

t−i ← xT ∀i ∈ [0, p)
4: while t > 0 do
5: ϵkt−i ← ϵθ(x

k
t−i, t− i) ∀i ∈ [0, p) ▷ Get the predicted noise in parallel.

6: yt−i ← P(xk
t−i, ϵ

k
t−i)− xk

t−i ∀i ∈ [0, p) ▷ Compute drifts in parallel.
7: xk+1

t−i−1 ← xk
t +

∑t−i
j=t yj ∀i ∈ [0, p) ▷ Picard iteration.

8: ỹt−i ← P
(
xk+1
t−i , ϵ

k
t−i + λt−i(x

k+1
t−i − xk

t−i)
)
− xk+1

t−i ∀i ∈ [0, p) ▷ Dual-update.
9: xk+2

t−i−1 ← xk+1
t +

∑t−i
j=t ỹj ∀i ∈ [0, p)

10: errori ← 1
D∥x

k+2
t−i − xk

t−i∥22 for all i ∈ [1, p)

11: stride← min
(
{i : errori > τ2σ2

t−i} ∪ {p}
)

▷ Slide window until tolerance.
12: xk+2

t−i ← xk+2
t−i for all i ∈ [1, stride] ▷ Start new coverage.

13: t← t− stride; k ← k + 2; p← min(p, T − t)
14: end while
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5 EXPERIMENTS

In this section, we integrate our method with several state-of-the-art (SOTA) sampling algorithms to
evaluate its effectiveness and efficiency. Notably, our method requires neither preparation overhead
nor additional evaluations of DPMs. For sequential sampling methods, our technique enhances
image quality as a plug-in refinement. For parallel sampling methods, we propose dual-update to
accelerate convergence without degrading sample quality. We use −Hm(xt−1|t) = 1/σ2

t−1 in
Equation (16) as the default setting of λ in Algorithm 1 and Algorithm 2.

We evaluate our method on CIFAR-10 Krizhevsky et al. (2009), ImageNet 256 × 256 Deng et al.
(2009), and LSUN Bedroom 256 × 256 Yu et al. (2015). Our baselines include UniPC Zhao et al.
(2023), DPM-Solver-v3 Zheng et al. (2023), AMED-Plugin Zhou et al. (2024), and ParaDiGMS
Shih et al. (2023).

5.1 SEQUENTIAL SAMPLE METHOD

We first evaluate our method in the sequential sampling method. We deploy it as a plug-in to existing
solvers neither preparation overhead nor additional evaluations (e.g. UniPC Zhao et al. (2023) and
DPM-Solver-v3 Zheng et al. (2023)). On ImageNet 256 × 256 and LSUN Bedroom 256 × 256,
it consistently improves the quality of generated images at a fixed number of function evaluations
(NFE). Moreover, the execution time of image generation remains unchanged after integrating our
method.

Table 1 shows the results on LSUN bedroom 256×256. Following the setting in DPM-Solver-
v3 Zheng et al. (2023), we use a stable diffusion model to generate 50k images for evaluation.
Table 2 reports results on ImageNet 256×256. Using a guided diffusion model, we generate 50k
images for evaluation. Across both benchmarks, our method consistently improves the image quality
over SOTA baselines. In tables, we refer to DPM-Solver-v3 as DPM-v3. Notably, our method is
zero-cost and operates as a test-time plug-in. Additional experiments are provided in the Appendix.

Table 1: Experiments on LSUN bedroom
256×256 guided with various NFE. The qual-
ity of images is measured by FID. We use the
implementation from the DPM-v3 repository.

NFE 3 4 5

UniPC 109.31 39.89 13.99
+ Ours 59.27 20.08 8.96
∆ (-50.04) (-19.81) (-5.03)

DPM-v3 64.43 19.17 8.96
+ Ours 54.41 15.49 6.77
∆ (-10.02) (-3.68) (-2.19)

Table 2: Experiments on ImageNet 256×256
guided with various NFE. The quality of im-
ages is measured by FID. We use the imple-
mentation from the DPM-v3 repository.

NFE 3 4 5

UniPC 52.21 24.53 15.62
+ Ours 50.79 22.60 14.38
∆ (-1.42) (-1.93) (-1.24)

DPM-v3 65.38 26.37 15.10
+ Ours 60.80 24.34 14.53
∆ (-4.58) (-2.03) (-0.57)

Figure 3 shows generated images using the UniPC and DPM-Solver-v3, both in its vanilla form and
combined with our refinement method. As illustrated, our approach produces samples with sharper
details, while maintaining the overall style and diversity of the baseline solver. These qualitative
results complement our quantitative evaluation, confirming that integrating our method into existing
solvers improves visual quality without additional computational cost.

5.2 PARALLEL SAMPLE METHOD

For parallel sampling based on Picard iteration, we introduce a dual-update mechanism within each
iteration to accelerate convergence. Specifically, we integrate our method into the ParaDiGMS
framework Shih et al. (2023). After the standard Picard update, we apply an additional refine-
ment step that yields extra improvement per DPMs evaluation. As demonstrated in Table 3, this
dual-update strategy consistently reduces both the number of iterations and the overall sampling
time, while maintaining comparable sample quality.
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Following ParaDiGMS Shih et al. (2023), we compute CLIP scores using ViT-b-14 Dosovitskiy
et al. (2021) from the Hugging Face implementation (checkpoint openai/clip-vit-base-patch16). In
the original ParaDiGMS setup, the stopping tolerance is set to 0.1. For a fair comparison, we adjust
the tolerance in our method to achieve a comparable CLIP score, and report the corresponding
iteration counts and times needed for each sample. As shown in Table 3, integrating our method
reduces computational cost and sampling time by over 10% while achieving results comparable to
the original ParaDiGMS.

Table 3: Experiments on COCO Lin et al. (2014). Using Stable Diffusion v2, we generate images
conditioned on the 1,000 captions from the COCO 2017 annotations. Image quality is measured by
the CLIP score, computed with the implementation provided in the ParaDiGMS repository. We use
ParaDiGMS (500) indicates 500 timesteps.

Window Size Model Evals Parallel Iters Clip Score Time/Sample

ParaDiGMS (500) 5 561 113 31.78 20.93s
+ Ours 5 507 102 31.78 18.78s
ParaDiGMS (500) 10 652 66 31.76 23.47s
+ Ours 10 548 55 31.75 19.51s
ParaDiGMS (200) 5 243 49 31.75 9.17s
+ Ours 5 217 44 31.75 7.84s
ParaDiGMS (200) 10 286 30 31.74 10.41s
+ Ours 10 250 26 31.73 8.58s

UniPC UniPC + Ours DPM-v3 DPM-v3 + Ours

3
N

FE
4

N
FE

Figure 3: Visualization of generated images using Stable-Diffusion-v1.4 of UniPC, DPM-Solver-v3,
and our method integrated with 3 and 4 NFEs. Prompt: “A beautiful castle beside a waterfall in the
woods, by Josef Thoma, matte painting, trending on ArtStation HQ.”. We refer to DPM-Solver-v3
as DPM-v3.

6 CONCLUSION

In this work, we shift the focus from solver design to the underlying geometry of DPMs. By uncov-
ering and formalizing an isotropic property induced by the Gaussian process of DPMs, we provide a
new perspective on the latent manifold of DPMs. Building on this insight, we propose a lightweight
test-time refinement method that integrates seamlessly into existing sampling frameworks, reduc-
ing discretization error and improving stability without extra training or computational overhead.
Moreover, we demonstrate that our approach accelerates parallel sampling methods such as Picard
iteration, yielding consistent gains in both efficiency and fidelity. We hope that this work encourages
further research into the geometric foundations of DPMs. A deeper understanding of these structures
may lead to new algorithms that better balance sample quality with generation cost.

9
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A ACKNOWLEDGMENT OF LLM USAGE

We used a large language model (ChatGPT) to polish this paper. Its use was limited to grammar
checking, fixing typos, rephrasing sentences for clarity, and improving word choice. All conceptual
contributions, methodological designs, experiments, and analyses were carried out entirely by the
authors. The use of an LLM does not affect the reproducibility or scientific validity of our work.

B PROOF

Proof of Equation (11) . For a Gaussian distribution q(x) ≈ N (µ,Σ), where µ ∈ Rn and
Σt ∈ Rn×n.

log q(x) = log
(
(2π)

−n
2

)
+ log

(
det(Σt)

− 1
2

)
− 1

2
(x− µ)⊤Σ−1

t (x− µ). (20)

The Jacobian matrix and Hessian matrix are

∇ log q(x) = −Σ−1
t (x− µ),∇2 log q(x) = Σ−1

t . (21)

Proof of Equation (15) As µt−1|t(x) = E(xt−1|xt) =
∫
xt−1q(xt−1|xt)dxt−1, the derivative

of µt−1|t is

∇xtµt−1|t(xt) = ∇xt

∫
xt−1q(xt−1|xt)dxt−1 =

∫
xt−1∇xtq(xt−1|xt)dxt−1 (22)

For∇xtq(xt−1|xt) part, using bayes rule to get

∇xt
q(xt−1|xt) = ∇xt

(
q(xt|xt−1)q(xt−1)

q(xt)
) (23)

= q(xt−1)∇xt
(
q(xt|xt−1)

q(xt)
)

= q(xt−1)
(∇xt

q(xt|xt−1)

q(xt)
− q(xt|xt−1)∇xt

q(xt)

q(xt)2
)

=
q(xt−1)q(xt|xt−1)

q(xt)

(∇xt
q(xt|xt−1)

q(xt|xt−1)
− ∇xt

q(xt)

q(xt)

)
= q(xt−1|xt)(∇xt

log q(xt|xt−1)−∇xt
log q(xt))
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Substitude∇xt
q(xt−1|xt) in Equation (22)

∇xt
µt−1|t(xt) =

∫
xt−1q(xt−1|xt)∇xt

log q(xt|xt−1)dxt−1 (24)

−
∫

xt−1q(xt−1|xt)∇xt
log q(xt)dxt−1

As forward diffusion process is Gaussian process q(xt;xt−1) = N (xt|α̂txt−1, σ̂
2
t I), the partial

derivative of log q(xt|xt−1) with respect to latent variable xt is

∇xt
log q(xt|xt−1) = −

xt − α̂txt−1

σ̂2
t

. (25)

The first term of Equation (24) can be calculated by∫
xt−1q(xt−1|xt)∇x log q(xt|xt−1)dxt−1 =

∫
xt−1(

α̂txt−1 − xt

σ̂2
t

)q(xt−1|xt)dxt−1 (26)

=
α̂t

σ̂2
t

∫
xt−1(xt−1 −

xt

α̂t
)q(xt−1|xt)dxt−1

Decompose the term xt−1(α̂txt−1 − xt) in Equation (26) by

xt−1(xt−1 −
xt

α̂t
) (27)

= (xt−1 − xt−1 + xt−1)(xt−1 − xt−1 + xt−1 −
xt

α̂t
)

= (xt−1 − xt−1)(xt−1 − xt−1) + xt−1(xt−1 − xt−1)

+ (xt−1 − xt−1)(xt−1 −
xt

α̂t
) + xt−1(xt−1 −

xt

α̂t
).

Integrating term by term gives∫
(xt−1 − xt−1)(xt−1 − xt−1)q(xt−1|xt)dxt−1 = Σt−1|t(x), (28)

∫
xt−1(xt−1 − xt−1)q(xt−1|xt)dxt−1 = 0, (29)

∫
(xt−1 − xt−1)(xt−1 − xt)q(xt−1|xt)dxt−1 = 0, (30)

∫
xt−1(xt−1 −

xt

α̂t
)q(xt−1|xt)dxt−1 = xt−1(xt−1 −

xt

α̂t
). (31)

Therefore, the Equation (26), which is the first term of Equation (24):∫
xt−1q(xt−1|xt)∇x log q(xt|xt−1)dxt−1 =

α̂t

σ̂2
t

(
Σt−1|t(x) + xt−1(xt−1 −

xt

α̂t
)
)
. (32)

The second term of Equation (24) is calculated by∫
xt−1q(xt−1|xt)∇xt log q(xt)dxt−1 = xt−1∇xt log q(xt). (33)
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Decompose the term∇xt
log q(xt) by

∇x log q(xt) =
∇xt

q(xt)

q(xt)
(34)

=

∫
∇xt

q(xt|xt−1)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)∇xt log q(xt|xt−1)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)

α̂t

σ̂2
t
(xt−1 − xt

α̂t
)q(xt−1)dxt−1

q(xt)

=

∫
q(xt|xt−1)q(xt−1)

q(xt)

α̂t

σ̂2
t

(xt−1 −
xt

α̂t
)dxt−1

=
α̂t

σ̂2
t

∫
q(xt−1|xt)(xt−1 −

xt

α̂t
)dxt−1

=
α̂t

σ̂2
t

(xt−1 −
xt

α̂t
)

Therefore, the second term of Equation (24)∫
xt−1q(xt−1|xt)∇x log q(xt)dxt−1 =

α̂t

σ̂2
t

xt−1(xt−1 −
xt

α̂t
) (35)

Substitute the first term and second term in Equation (24) by Equation (32) and Equation (35) to
achieve

∇xµt−1|t(x) =
α̂t

σ̂2
t

Σt−1|t(x) (36)

Therefore, the Hessian matrix in Equation (15) is

∇2
x log qt(x) =

α̂2
t

σ̂4
t

Σt−1|t(x)−
1

σ̂2
t

I (37)

C MORE EXPERIMENTS

Table 4 and Table 5 report results on LSUN bedroom 256×256 and ImageNet 256×256 across NEF
from 3 to 20. Our method yields consistent gains at every NEF, improving FID over all baselines
without extra calculation.

Table 4: Experiments on LSUN bedroom 256×256 guided with various NFE. The quality of images
is measured by FID. We use the implementation from the DPM-Solver-v3 repository. ∗ We borrow
results reported in AMED-Plugin, “(NEF)” denotes the actual NEF corresponding to the reported
FID.

NFE 3 4 5 6 8 10 12 15 20

AMED-Plugin∗ 101.5 - 25.68 8.63 (7) 7.82 (9) - - - -
UniPC 109.31 39.89 13.99 6.55 4.00 3.57 3.35 3.18 3.07
+ Ours 59.27 20.08 8.96 5.48 3.79 3.38 3.19 3.08 3.02
DPM-Solver-v3 64.43 19.17 8.96 5.13 3.56 3.20 3.12 3.12 3.10
+ Ours 54.41 15.49 6.77 4.55 3.45 3.14 3.05 3.04 3.04

D MULTI UPDATE

In Table 6, we examine the effect of applying multiple updates within ParaDiGMS. In particular,
we compare the latent variable before each Picard iteration with the updated latent variable after the
iteration when our refinement method is applied.
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Table 5: Experiments on ImageNet 256×256 guided with various NFE. The quality of images is
measured by FID. We use the implementation from the DPM-Solver-v3 repository. ∗ We borrow the
results (NFE∈[5,20]) reported in DPM-Solver-v3.

NFE 3 4 5 6 8 10 12 15 20

UniPC∗ 52.21 24.53 15.62 11.91 9.29 8.35 7.95 7.64 7.44
+ Ours 50.79 22.60 14.38 11.07 9.06 8.26 7.97 7.74 7.46
DPM-Solver-v3∗ 65.38 26.37 15.10 11.39 8.96 8.27 7.94 7.62 7.39
+ Ours 60.80 24.34 14.53 10.84 8.86 8.08 7.85 7.55 7.46

Table 6: Experiments on multi-update

Number of Iters 1 2 3 4 5

Difference 51.7352 1.2923 1.2919 1.2919 1.2919

E ABLATION STUDY

Table 7 presents an ablation study on the choice of the parameter λ. We compare different strategies,
including the default setting −Hm(xt−1|t) = 1

σ2
t−1

, fixed constant values, and empirical values
collected from experiments.

Table 7: Experiments on LSUN bedroom 256×256 guided with various NFE. The quality of images
is measured by FID. We use the implementation from the DPM-Solver-v3 repository.

NFE 3 4 5 6 8 10 12 15 20

DPM-Solver-v3 64.43 19.17 8.96 5.13 3.56 3.20 3.12 3.12 3.10
+ Ours 54.41 15.49 6.77 4.55 3.45 3.14 3.05 3.04 3.04
+ Ours λ = 1 63.42 18.71 7.42 4.76 3.52 3.18 3.09 3.08 3.06
+ Ours λ = 0.5 49.44 14.68 6.74 4.37 3.42 3.14 3.05 3.05 3.05
+ Ours empirical 53.17 15.61 6.89 4.61 3.48 3.16 3.07 3.06 3.06

F CHECKPOINTS

For all experiments, we employ publicly released model checkpoints to ensure reproducibility and
fair comparison. In particular, we reference the official implementations of DPM-Solver-v3 and
ParaDiGMS, and list the specific checkpoints used in Table 8.

G MORE VISUALIZATION

Figure 4 presents additional visualizations of generated images on the LSUN Bedroom 256×256.
Integrating our plug-in refinement yields images with richer details and improved semantic coher-
ence compared to the baselines.
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Table 8: Checkpoints of models in experiments

Datasets URL

ImageNet 256×256 guided https://openaipublic.blob.core.windows.
net/diffusion/jul-2021/256x256_
diffusion.pt

LSUN bedroom 256×256 https://openaipublic.blob.core.windows.
net/diffusion/jul-2021/lsun_bedroom.pt

Stable Diffusion https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original/
resolve/main/sd-v1-4.ckpt

Stable Diffusion v2 https://huggingface.co/stabilityai/
stable-diffusion-2

UniPC UniPC + ours DPM-v3 DPM-v3 + ours

3
N

FE
3

N
FE

4
N

FE
4

N
FE

Figure 4: Visualization of generated images using LUSN bedroom 256×256of UniPC, DPM-Solver-
v3, and our method integrated with 3 and 4 NFEs. We refer to DPM-Solver-v3 as DPM-v3.
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