
QUT-DV25: A Dataset for Dynamic Analysis of
Next-Gen Software Supply Chain Attacks

Sk Tanzir Mehedi1,∗, Raja Jurdak1, Chadni Islam2, and Gowri Ramachandran1

1Queensland University of Technology, Brisbane, Australia
2Edith Cowan University, Joondalup, Australia

Abstract

Securing software supply chains is a growing challenge due to the inadequacy of
existing datasets in capturing the complexity of next-gen attacks, such as multiphase
malware execution, remote access activation, and dynamic payload generation.
Existing datasets, which rely on metadata inspection and static code analysis, are
inadequate for detecting such attacks. This creates a critical gap because these
datasets do not capture what happens during and after a package is installed. To
address this gap, we present QUT-DV25, a dynamic analysis dataset specifically
designed to support and advance research on detecting and mitigating supply chain
attacks within the Python Package Index (PyPI) ecosystem. This dataset captures
install and post-install-time traces from 14,271 Python packages, of which 7,127
are malicious. The packages are executed in an isolated sandbox environment using
an extended Berkeley Packet Filter (eBPF) kernel and user-level probes. It captures
36 real-time features, that includes system calls, network traffic, resource usages,
directory access patterns, dependency logs, and installation behaviors, enabling the
study of next-gen attack vectors. ML analysis using the QUT-DV25 dataset identified
four malicious PyPI packages previously labeled as benign, each with thousands
of downloads. These packages deployed covert remote access and multi-phase
payloads, were reported to PyPI maintainers, and subsequently removed. This
highlights the practical value of QUT-DV25, as it outperforms reactive, metadata,
and static datasets, offering a robust foundation for developing and benchmarking
advanced threat detection within the evolving software supply chain ecosystem.

1 Introduction

The exponential growth of Open-Source Software (OSS) has introduced significant cybersecurity
challenges, particularly in detecting sophisticated software supply chain attacks targeting ecosystems
like the Python Package Index (PyPI) [1, 2]. PyPI hosts over 620,000 packages and facilitates
billions of daily downloads, underscoring its central role in modern software development [3, 4].
However, its open nature and rapid scalability have made it a prime target for adversaries [5]. As
of July 2024, 1.2% of total PyPI packages have been identified as malicious, highlighting growing
security concerns [6–9]. These attacks are becoming more common as multi-stage threats that exploit
vulnerabilities in the OSS ecosystem, including typosquatting, malware execution, remote access,
and dynamic payload generation [10–12]. Such threats compromise the core security principles of
confidentiality, integrity, and availability [2, 13]. Existing defense mechanisms, such as host-based
firewalls and signature or rule-based malware scanners, struggle to counter these threats due to their
inability to adapt to evolving, multi-stage adversarial tactics and their limited capacity for granular
behavioral code analysis [14–16]. As a result, Malicious Detection Systems (MDS) have emerged as
critical safeguards for the OSS ecosystem, using Machine Learning (ML) or Deep Learning (DL)
models to identify and mitigate next-gen attacks [17–19].

∗Corresponding author: tanzir.mehedi@hdr.qut.edu.au

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

The effectiveness of MDSs relies on their detection performance metrics, which require evaluation
against comprehensive datasets containing both benign and malicious package behaviors [17, 5].
Widely adopted metadata and static dataset benchmarks, such as the PyPI Malware Registry [20],
Backstabber’s Knife Collection [21], DataDog [22], and PyPIGuard [23], have served as standards
for MDS validation. However, recent studies highlight critical limitations in these datasets [5, 24].
For instance, metadata datasets capture only package details like descriptions and author profiles,
while static datasets focus on code attributes such as function signatures and import statements,
without executing packages during installation or post-installation [17, 5]. This omission severely
limits their ability to detect dynamic threats such as typosquatting, remote access activation, and
install-time-specific payload generation [14–16]. Hybrid datasets, which combine static and metadata
features, partially address some threats but still fail to detect most of these threats, as they lack
visibility into complex behaviors that occur during install-time and post-install-time [19, 24]. These
limitations in existing datasets undermine the reliability of performance metrics, raising concerns
about the generalizability of MDS evaluations to next-gen OSS supply chain attacks.

To address these challenges, this study introduces the QUT-DV25 dataset, specifically designed to
facilitate dynamic analysis of next-gen OSS software supply chain attacks within the PyPI ecosystem.
QUT-DV25 captures behavioral traces from 14,271 Python packages, 7,127 of which exhibit malicious
behavior, through install and post-install-time in a controlled, isolated sandbox environment using
an extended Berkeley Packet Filter (eBPF) kernel and user-level probes. A subset of high-value
probes is selected from an initial pool of over 105 eBPF-based probes, focusing on those most
effective for capturing behaviors relevant to malware execution. This tool enables real-time tracing
without kernel modification and supports flexible, programmable monitoring in C or Python [25].
The dataset records 36 real-time features for each package, including system calls, network traffic,
resource consumption, directory access patterns, dependency resolution, and installation behaviors.
These features enable comprehensive analysis of dynamic attack vectors such as multiphase malware
execution, remote access activation, and post-install-time-specific payload generation. A detailed
characterization of the dataset’s structure, threat coverage, and example is also provided. Furthermore,
the performance of MDSs is evaluated based on this dataset as a binary classification task using
multiple supervised ML and DL models. By bridging the gap between static and dynamic analysis,
QUT-DV25 empowers cybersecurity researchers to develop robust defenses against evolving OSS
supply chain threats. The dataset2, source code, and execution instructions 3 are publicly available,
ensuring reproducibility and enabling further research. The key contributions of this study include:

• A controlled, isolated testbed framework to generate and collect datasets by installing
and executing packages and capturing behaviors such as typosquatting, dynamic payload
generation, and multiphase malware execution.

• QUT-DV25, a dataset of 14,271 packages, including 7,127 malicious ones, with 36 features
across six categories that capture install-time and post-install-time behaviors previously
unexplored for malicious package detection.

• A first-hand evaluation of four popular machine learning and two deep learning models on
the proposed dataset is also provided as a baseline for further research.

This study is organized as follows: Section 2 reviews existing datasets. Section 3 outlines the dataset
construction and details of the dataset. Section 4 presents technical validation and benchmarks.
Section 5 discusses limitations and usage examples, and Section 6 addresses safety and ethical
considerations. Finally, Section 7 concludes the study and outlines future directions.

2 Existing Datasets
The effectiveness of MDS datasets depends on two factors: coverage of modern threats and diversity
of benign behaviors to reduce false positives [5]. Datasets lacking realistic adversarial contexts risk
misleading evaluations [24]. Existing benchmarks are categorized as metadata, static, hybrid, and
dynamic, each with limitations in modeling next-gen multi-stage attacks.

Metadata datasets: Metadata datasets focus on static, non-execution-based features such as package
names, descriptions, version histories, and author profiles [17, 26, 27]. These datasets are widely
adopted in MDSs due to their computational efficiency and ease of analysis, enabling rapid screening

2Dataset: https://doi.org/10.7910/DVN/LBMXJY; Package List: https://qut-dv25.dysec.io
3Code URL: https://github.com/tanzirmehedi/QUT-DV25

2

https://doi.org/10.7910/DVN/LBMXJY
https://qut-dv25.dysec.io
https://github.com/tanzirmehedi/QUT-DV25

of large package repositories [17]. For example, Guo et al. [20] proposed the PyPI Malware Registry
dataset, and Marc et al. [21] proposed the Backstabber’s Knife Collection dataset to flag suspicious
packages based on anomalies such as mismatched author credentials or irregular update patterns.
However, metadata datasets fail to capture dynamic behaviors-such as system interactions during
install-time or post-install-time-that are critical for detecting sophisticated threats like typosquatting,
multiphase malware execution, and dynamic payload generation [14–16]. Attackers can exploit
this limitation by crafting packages with plausible metadata while embedding malicious logic that
activates post-deployment [24]. Consequently, MDSs relying solely on metadata suffer from high
false positive rates, as benign packages with irregular metadata are misclassified, and malicious ones
evade detection through metadata obfuscation [18].

Static datasets: Static datasets analyze code attributes such as function signatures, import statements,
and control flow structures to identify malicious patterns without executing packages [5, 18, 28].
Datasets such as DataDog [22], developed by Datadog Security Labs, detect known threats-including
hardcoded backdoors and command-and-control (C2) functionalities, matching code artifacts against
curated malicious signature patterns. These datasets excel at identifying obvious malicious code
and are computationally lightweight, making them scalable for large-scale repository scans [18, 28].
Static analysis, however, cannot detect install-time and post-install-time-specific threats such as
multi-stage malware or environment-triggered malicious behavior [5]. For instance, a package with
innocuous static code may execute a hidden script during installation to exfiltrate sensitive data
scenario invisible to static inspection [18, 29, 14]. Additionally, techniques like code obfuscation or
encryption easily bypass static detection, as they mask malicious intent until installation [30].

Hybrid datasets: Hybrid datasets integrate metadata and static code features to balance efficiency
and depth, aiming to detect threats that evade single-mode analysis [19, 24]. For example, Samaana
et al. [5] developed a hybrid dataset by combining metadata attributes with static code features to
improve malicious package detection. Similarly, the PyPIGuard dataset, proposed by Iqbal et al. [23],
combines package metadata with static code attributes to flag packages that may appear benign in
isolation but exhibit suspicious patterns when analyzed holistically. This dataset improves detection of
contextual threats, such as dependency confusion attacks, where malicious packages mimic legitimate
names but contain altered code [24]. Despite their advantages, hybrid datasets remain limited by their
lack of install-time behavioral data. For instance, they cannot model indirect dependency hijacking
or post-deployment behaviors [14]. Advanced threats like polymorphic malware, which alters its
code or behavior based on environmental cues, further evade hybrid detection due to the absence
of dynamic execution traces [31]. These gaps undermine hybrid datasets’ ability to address multi-
stage attacks, where malicious activity unfolds progressively across install-time and post-install-time
phases. Table 1 presents the existing datasets for detecting malicious packages in PyPI.

eBPF-based dynamic datasets: eBPF offers a powerful framework for real-time system monitoring,
providing fine-grained visibility into install-time and post-install-time behaviors with low over-
head [32, 25]. This capability has been used in security applications, such as ransomware detection
through system call trace analysis and network anomaly identification [33, 34]. However, existing
eBPF-based implementations predominantly rely on rule-based threat detection methodologies. For
instance, Higuchi and Kobayashi [35] developed a ransomware detection system using eBPF-traced
system call patterns, while Zhuravchak and Dudykevych [33] employed predefined behavioral rules
for real-time ransomware analysis. Such rule-based approaches, though effective for known threats,
lack adaptability to zero-day attacks due to their dependence on static signatures.

Table 1: Existing datasets for PyPI malicious package detection.

Datasets Detect
manipulate
metadata

Detect
encoding
technique

Dynamic
payload

generation

Detect
typo-

squatting

Remote
access

activation

Detect
indirect de-
pendencies

Metadata [20]
Static [22]
Hybrid [23]
QUT-DV25

Note: Malicious package detection - possible, partially possible, not possible.

To enhance flexibility, tools like bpftrace, bpftool, and bcc-tools extend eBPF’s utility by
enabling dynamic tracing of low-level kernel and user-space events without kernel modifications [32].
These tools support programmable tracing in C or Python, facilitating the extraction of behavioral

3

signals such as system calls, network traffic, resource consumption, and directory access patterns [25].
While these traces provide a foundation for behavioral analysis, current ML- or DL-based MDSs
often lack datasets that capture such dynamic, real-time system-level behaviors.

3 QUT-DV25 Dataset Construction
In this section, we first discuss the testbed configuration, followed by the dataset collection methodol-
ogy and an overview of the dataset, including feature sets.

3.1 Testbed Configuration
The experimental testbed setup involves 16 Raspberry Pi devices DRPi = {dk}16k=1, each running
Ubuntu 24.4 LTS with Python 3.8-3.12 in isolated virtualized environments. A private network
Npriv = {Router,Switch,Raspberry Pi} ensures secure traffic flow. Behavioral monitoring is imple-
mented using eBPF integrated into the Linux kernel K = v6.8.0-1012-raspi, with real-time tracing
tools Tbcc = {bcc-tools, bpftool, bpftrace}. Figure 1 shows a visualization of the isolated testbed
configuration. To validate and scale the resulting dataset for ML and DL models, a high-performance
computing cluster CHPC = {ck}mk=1 is employed, where each node features 16-core CPUs, NVIDIA
A100 GPUs, and 128 GB of RAM.

192.168.0.5*

192.168.0.1

TruNETs
Router Switch

Firewall

Mobile
Network

Inbound
Traffic

Outbound
Traffic C

on
tro

lle
r

19
2.

16
8.

0.
2 Controlled

Traffic

RPIs Cluster

Tr
af

fic
 Is

ol
at

io
n

Zo
ne

FirewallFi
re

w
al

l

Secure SSL
Connection

Controlled
Traffic

Figure 1: The isolated testbed configuration visualization for QUT-DV25.

3.2 Collection Methodology
We propose the QUT-DV25 Dataset Framework, a structured methodology for constructing a dataset
that captures both install-time and post-install-time behaviors of software packages. This framework
is designed to meet the growing need for dynamic datasets in detecting multi-stage, next-gen software
supply chain attacks, particularly within ecosystems such as PyPI. The framework systematically
integrates three phases: (i) dataset collection, (ii) labeling and validation, and (iii) trace extraction, as
illustrated in Figure 2.

Phase (i) Dataset Collection Phase (ii) Dataset Labeling and Validation Phase (iii) Trace Extraction

Staticdata

Combined
Dataset

Benign or
Malicious?

No

Scripts

QUT-DV25
Dataset

Isolated
Env with RPIs

eBPF Program
Linux Kernel

Install
Packages

Scripts

Similarity
Algorithms

 Similarity ≥
threshold

No

Yes

Malicious
and

Counterpart
Benign

Packages

C
ou

nt
er

pa
rt

B
en

ig
n

C
ol

le
ct

io
n

Malicious Package
Incidents or Info

Search

NoData
Found?

Malicious
Packages Dataset

Yes

Check
Different
Sources

M
al

ic
io

us
 P

ac
ka

ge
 C

ol
le

ct
io

n

Scripts

Tr
ac

es

Metadata

Existing
Validator

Figure 2: The overall framework for collecting the QUT-DV25 dataset.

Dataset collection: In the absence of a centralized repository of malicious PyPI packages, we
collect data from multiple threat intelligence sources denoted by S = {S1, . . . , SK}, where each
Sk corresponds to a source such as GitHub advisories or malware databases, and K is the total
number of such sources. The combined set of malicious packages is defined as M =

⋃K
k=1 Sk =

{(ni
m, vim)}Ni=1, where ni

m and vim denote the name and version of the i-th malicious package
and N is the total number of malicious samples collected. To enable comparative analysis and

4

support downstream classification tasks, we extract benign counterparts by defining the universe of
benign packages as U = {(nj

b, v
j
b)}Mj=1, where nj

b and vjb denote the name and version of the j-th
benign package, and M is the total number of benign packages. We apply similarity algorithms
sim(ni

m, nj
b) ∈ [0, 1] to compute name-based similarity between malicious and benign packages.

For each malicious package, we form a candidate set Ci = {(nj
b, v

j
b) ∈ U | sim(ni

m, nj
b) ≥ τ},

where τ ∈ [0, 1] is a similarity threshold. If Ci ̸= ∅, we select the most similar benign package
(n∗i

b , v∗ib) = argmax(nb,vb)∈Ci sim(ni
m, nb) and fetch the release date r∗ib . The final similarity score

is recorded as s∗i = sim(ni
m, n∗i

b). Then, construct the final malicious-benign dataset Dmb =
{(ni

m, vim, n∗i
b , v∗ib , r∗ib , s∗i) | s∗i ≥ τ} which serves as input for validation and dynamic trace

extraction phases. Algorithm 1 outlines the process for retrieving counterpart benign packages.

Algorithm 1: Lexical Similarity-Based Benign Package Retrieval

Input: Malicious setM = {(ni
m, vim)}Ni=1; benign universe U = {(nj

b, v
j
b)}

M
j=1; threshold τ ∈ [0, 1]

Output: Malicious-benign dataset Dmb = {(ni
m, vim, n∗i

b , v∗ib , r∗ib , s∗i)}
1 Precondition: Similarity metric; PyPI API accessible
2 foreach (ni

m, vim) ∈M do
3 Ci ← {(nj

b, v
j
b , sij) | (n

j
b, v

j
b) ∈ U , sij = sim(ni

m, nj
b) ≥ τ}

4 if Ci ̸= ∅ then
5 (n∗i

b , v∗ib , s∗i)← argmax Ci

6 r∗ib ← QueryPyPI(n∗i
b)

7 Dmb ← Dmb ∪ {(ni
m, vim, n∗i

b , v∗ib , r∗ib , s∗i)}
8 end
9 end

10 Export Dmb to file
11 Postcondition: Only pairs with s∗i ≥ τ retained

Dataset labeling and validation: For each package (n, v) ∈ Dmb, where n and v denote
the package name and version respectively, a set of external threat intelligence validators V =
{VirusTotal,NDV, Snyk} is queried. Each validator returns a label labelk(n, v) ∈ {0, 1,⊥}, in-
dicating whether the package is malicious (1), benign (0), or inconclusive (⊥). The final label
is determined as follows: Label(n, v) = 1 (malicious) if at least two validators return 1, i.e.,∑

k∈V I[labelk(n, v) = 1] ≥ 2; Label(n, v) = 0 (benign) only if all validators agree the package
is benign, i.e.,

∑
k∈V I[labelk(n, v) = 0] = |V|. If neither condition holds, due to inconclusive

results, the label is assigned through manual inspection: Label(n, v) = ManualInspect(n, v). The
validated dataset is defined as Dvalid = {(n, v,Label(n, v)) | (n, v) ∈ Dmb}.

In parallel, metadata features X (n, v) (e.g., author, version history, description) and static features
Y(n, v) (e.g., import statements, function definitions) are extracted for each package. These are
combined to construct the final labeled dataset Dfinal = {(n, v,Label(n, v),X (n, v),Y(n, v)) |
(n, v) ∈ Dvalid}. The dataset Dvalid serves as the input to the next trace extraction step, while Dfinal

is used as a benchmark for evaluating existing MDS models.

Trace extraction: The validated package set Dvalid = {(nj , vj ,Label(nj , vj))}mj=1 serves as input
for this phase. Each package archive is denoted by πj = (nj , vj) ∈ Dvalid, and it is deployed to
a uniformly random device dk = f(πj) from the set of Raspberry Pi devices DRPi = {dk}nk=1.
Two binary indicators are defined: Deploy(πj , dk) and Install(πj , dk), which take the value 1 if the
transfer and installation of πj on dk succeed, respectively. In cases where Install(πj , dk) = 0, partial
installation of dependencies is occasionally observed. These cases form a subset Dpartial ⊂ Dvalid
and are of particular interest, as malicious payloads may persist through successfully installed
subcomponents. Additionally, dependency resolution may implicitly introduce malicious variants:
a benign package version vj of nj may cause the installation of a related version v′j such that
(nj , v

′
j) ∈ Dvalid and Label(nj , v

′
j) = Malicious. To account for such behavioral variability, these

cases are retained for analysis.

During the install and post-install phases of each package, eBPF captures kernel- and user-space event
sequences. However, at post-install-time, dormant malicious code can indefinitely delay execution,
making open-ended runtime monitoring infeasible. To address this, we empirically tested 64 high-risk
packages with observation windows from 60-600s and found no additional behavioral divergence

5

beyond 120s. Accordingly, we adopt a fixed post-installation tracing window of ∆ = 120 s, which
generates a sequence Trace(πj , dk) ∈ S∗, where S∗ denotes the space of trace sequences.

The trace extraction function Extract(πj , dk) returns Trace(πj , dk) only if both deployment and
installation succeed, i.e., Deploy(πj , dk) = Install(πj , dk) = 1; otherwise, it outputs the empty set
∅. If Extract(πj , dk) = ∅, the environment on dk is reset and the process repeats with the same
package until a valid trace is collected. The resulting valid trace is denoted Tj = Trace(πj , dk), and
the complete trace set is defined as T = {Tj}mj=1. This trace set provides isolated and reproducible
dynamic behavioral profiles for each package, supporting subsequent analysis (cf. Algorithm 2).

Algorithm 2: QUT-DV25 Dynamic Trace Extraction
Input: Validated dataset Dvalid = {(n, v,Label(n, v))}mj=1; Raspberry Pi devices DRPi = {dk}nk=1

Output: Traces T = {Tj}mj=1

1 Precondition: Each dk runs an isolated Python 3.8–3.12 environment with eBPF support.
2 Definitions:
3 f : Dvalid → DRPi (uniform random device assignment)
4 Deploy(πj , dk) = 1 iff package πj is successfully transferred to dk
5 Install(πj , dk) = 1 iff package πj installs successfully on dk
6 Trace(πj , dk) ∈ S∗ captures the eBPF event sequence during install-time and post-install-time (120s)
7 Extract(πj , dk) = Trace(πj , dk) if Deploy(πj , dk) = 1 ∧ Install(πj , dk) = 1, else ∅
8 for j ← 1 to m do
9 dk ← f(πj)

10 if Deploy(πj , dk) = 0 or Install(πj , dk) = 0 then
11 Tj ← ∅
12 continue
13 end
14 Tj ← Trace(πj , dk)
15 end
16 return T = {Tj}mj=1

3.3 QUT-DV25 Data Records

This study analyzes a corpus of |Dvalid| = 14, 271 Python packages, of which 7, 127 are la-
beled as malicious. Approximately 88% of these packages yielded successful installations, i.e.,
Install(πj , dk) = 1, while the remaining packages triggered direct install-time anomalies, such as sys-
tem crashes, infinite loops, forced shutdowns, or authentication prompts-despite Install(πj , dk) = 0.
To characterize behavioral variability across the dataset, a classification function Classify(πj) ∈
B = {normal, compatibility, system} is introduced, mapping each package πj to a behavioral cate-
gory based on its install-time and post-install-time outcomes in the isolated environment. Table 2
summarizes the characteristics of packages during install-time and post-install-time analysis.

Table 2: Characteristics of packages during install-time and post-install-time analysis.

Install-time and post-install-time characteristics Malicious Benign
Normal: Successfully installed, metadata issues, setup/wheel issues 6,864 6,905
Compatibility: Mismatch, version issues, auth, naming, module issues 236 202
System: Freezing, infinity waiting, looping, shutdown, prerequisites 27 37

Total: 7,127 7,144

Feature sets and annotations: To analyze install-time and post-install-time behaviors comprehen-
sively, the system is instrumented using eBPF-based monitoring, which enables real-time capture
of both kernel-space and user-space activity for each execution trace Tj ∈ T . The feature set for
each trace is denoted as Tj = {F (i)

j }qi=1, where each F
(i)
j corresponds to a category of behavioral

signals derived from eBPF probes. The observed traces are categorized into six primary trace types
F , mapping the raw trace Tj into structured components F (i)

j , each capturing a distinct dimension of
install-time or post-install-time activity. Table 3 summarizes these eBPF-derived feature sets for each
package πj , describing their analytical focus and relevance to threat detection.

These features collectively define the vectorized representation Tj = Φ(Tj) ∈ Rq , where Φ denotes
the eBPF-based feature extraction operator and q represents the dimensionality across all trace types.
Unlike static or metadata-based approaches, this approach captures latent behaviors that manifest

6

only during install-time and post-install-time, allowing for the detection of advanced threats such as
ransomware, backdoors, and privilege escalation. A detailed description of QUT-DV25 feature types,
along with representative examples, is provided in Appendix Table 7.

Table 3: Definitions of eBPF-based feature sets for package πj .

Feature Sets Description

F
(ft)
j = FiletopTraces(πj) File I/O process; detects abnormal file access or missing files.

F
(it)
j = InstallTraces(πj) Dependency logs; indirect malicious installs.

F
(ot)
j = OpensnoopTraces(πj) File open attempts; flags access to protected directories.

F
(tt)
j = TCPTraces(πj) TCP flows; identifies connections to suspicious endpoints.

F
(st)
j = SysCallTraces(πj) System call activity; indicates sabotage or privilege misuse.

F
(pt)
j = PatternTraces(πj) Behavioral sequences; detects loops, or payload triggers.

4 Technical Validation and Benchmarks of QUT-DV25
This section presents the technical validation and performance benchmarking of candidate ML and
DL models for MDS, using the proposed QUT-DV25 dataset.

Data preparation: The trace set T = {Tj}mj=1 underwent preprocessing to ensure compatibility
with ML and DL models. Duplicate packages were removed, incomplete traces discarded, and all
installations were aligned to a uniform directory structure across devices to eliminate identifier bias.
Each trace Tj ∈ T was transformed into a feature vector xj ∈ Rd, where categorical features were
encoded as n-gram [36] frequency vectors ϕcat(Tj) → Rdc , and numerical features were scaled
via min-max normalization: x′

j,i = (xj,i −min(xi))/(max(xi)−min(xi)), for all i in numerical
features [37]. The final feature vector is xj = [ϕcat(Tj), ϕnum(Tj)] ∈ Rd, suitable for training ML
and DL models.

Feature extraction and selection: From the trace set T , 62 candidate features were extracted,
forming the set CF = {fi}62i=1, where each fi denotes an attribute derived from the traces. To
eliminate redundancy, features with a Pearson correlation coefficient [38] |rij | > 0.50 for any
pair (fi, fj) ∈ CF were pruned, resulting in an independent feature subset IDF ⊂ CF with
|IDF | = 40. For each feature f ∈ IDF , an importance score IMSm(f) ∈ [0, 1] was com-
puted using each model m ∈ MML = {RF,DT, SVM,GB}. This approach aligns conceptually
with the feature-ranking mechanism [39]. The selected engineered feature set was defined as
SEF = {f ∈ IDF | maxm∈M IMSm(f) > 0.08}, yielding |SEF | = 36, which corresponds
to a 58% reduction in the original feature set. Also, to assess generalizability, H2O AutoML was
used, and 32 of its top 36 features (89%) overlapped with our selected features, confirming the
robustness of the feature selection approach. Subsequently, ML models were trained with the follow-
ing hyperparameters: RF with n_estimators=100 and max_depth=8; DT with max_depth=8
and min_samples_split=10; SVM with a linear kernel; and GB with n_estimators=100,
max_depth=5, and learning_rate=0.1. The dataset D was divided into training, validation,
and testing subsets in the ratio Dtrain : Dval : Dtest = 70:15:15. Five-fold stratified cross-validation
was employed for hyperparameter tuning, and final evaluation was conducted on Dtest. Furthermore,
we evaluated the dataset using two widely used DL models, m ∈ MDL = {CNN,Transformer},
configured with their standard baseline hyperparameter settings [40].

4.1 Experiments with ML Models
Each ML model m ∈ MML was evaluated using accuracy A, precision P , recall R, and F1-score F1,
capturing overall detection correctness, robustness to false positives/negatives, and class imbalance.

The impact of trace-derived feature subsets T = {Tj}mj=1 and their union CombinedTraces = ∪ T
on model performance was evaluated, as presented in Table 4. For each model m ∈ MML, fea-
tures from CombinedTraces consistently yielded the highest performance (e.g., ARF = 95.99%,
PRF = 96.00%, F1,RF = 66.47%), outperforming any individual trace subset Tj ∈ T . This
improvement is attributed to feature complementarity: FiletopTraces captures resource I/O pat-
terns; OpensnoopTraces, file access anomalies; TCPTraces, suspicious netflows; SysCallTraces,
syscall anomalies; and PatternTraces, multi-stage attack sequences. Although InstallTraces
alone show limited discriminative power (ARF = 69.45%, F1,RF = 66.47%) due to overlapping
installation metadata, their inclusion in CombinedTraces enhanced attack coverage.

7

For standalone trace evaluation, performance varied across trace subsets Tj ∈ T . PatternTraces
demonstrated the highest effectiveness (ARF = 94.62%, F1,RF = 94.61%), reflecting its capacity
to capture high-level behavioral signatures. SysCallTraces achieved strong performance (ARF =
88.51%), while FiletopTraces and TCPTraces showed moderate results (ARF = 92.01% and
ARF = 83.74%, respectively). InstallTraces remained the least informative (ARF = 69.45%),
reinforcing their limited standalone utility. These findings highlight that combining heterogeneous
trace types enables cross-domain behavioral reasoning and maximizes detection capability.

Table 4: Performance of ML models across features: bold indicates the best, ↑ second-best, ↓
third-best, and underline denotes the lowest value.

Metrics Filetop Install Opensnoop TCP SysCall Pattern Combined

R
F

A 92.01 69.45 93.55 83.74 88.51 94.62 95.99
P 92.10 80.28 93.62 83.74 88.51 94.95 96.00
R 92.01 69.45 93.55 83.74 88.51 94.62 95.99
F1 92.00 66.47 93.55 83.74 88.51 94.61 96.02

D
T

A 86.87 69.50 91.35 81.13 88.41 94.62 ↓ 94.02
P 86.87 80.84 91.36 81.21 88.41 94.95 ↓ 94.36
R 86.87 69.50 91.35 81.13 88.41 94.62 ↓ 94.02
F1 86.87 66.43 91.35 81.11 88.41 94.61 ↓ 94.28

SV
M

A 89.77 68.65 80.05 80.47 85.56 94.53 95.28 ↑
P 89.85 80.65 81.65 80.55 85.57 94.87 95.30 ↑
R 89.77 68.65 80.05 80.47 85.56 94.53 95.28 ↑
F1 89.76 65.39 79.79 80.46 85.56 94.52 95.23 ↑

G
B

A 87.38 67.16 91.54 80.47 85.61 94.58 94.11
P 87.42 79.31 91.67 80.72 85.62 94.88 94.42
R 87.38 67.16 91.54 80.47 85.61 94.58 94.61
F1 87.38 63.39 91.53 80.43 85.61 94.57 94.35

4.2 Experiments with DL Models

In addition to ML models, several DL models were also evaluated, m ∈ MDL =
{CNN,Transformer}, using the same performance metrics {A,P,R,F1}. Each model m ∈ MDL

was trained and validated on CombinedTraces for up to 200 epochs, denoted as E = {ei}200i=1. The
CNN model achieved its optimal performance at e∗ = 72, where the test accuracy and loss were
Atest

CNN = 95.28% and Ltest
CNN = 0.2460, respectively, as shown in Figures 3(a) and 3(b). Across

epochs ei ∈ E , the evaluation metrics remained approximately stable, indicating limited performance
gains from extended training or the use of more complex architectures.

(a) (b)

Figure 3: Training and validation (a) accuracies and (b) losses of the CNN model across epochs.

Furthermore, a comparative evaluation of all ML and DL models was conducted based on model
complexity, computational efficiency, and deployability. As summarized in Table 5, each model
m ∈ {MML,MDL} was assessed using performance metrics and timing parameters {ttrain, tval, ttest}.
Although DL models achieved comparable accuracy (ADL ≈ AML), they required significantly
higher computational cost (tDL ≫ tML), limiting real-time deployability. ML models offered a
better trade-off between accuracy and efficiency (AML ≃ ADL, tML ≪ tDL), and thus four ML
models were selected as the primary benchmarks.
4.3 Comparison with Baseline Datasets
An effective MDS dataset must balance accuracy, efficiency, and generalization. The proposed
QUT-DV25 was compared against two ML-based baselines: (i) MetadataDataset, based on the

8

Table 5: Performance comparison of the selected ML and DL models; bold indicates the best values.

Selected Models Accuracy (%) Training Time (s) Validation Time (s) Test Time (s)

M
L

RF 95.99 0.4940 0.1512 0.1183
DT 94.02 6.3058 0.0413 0.0388
SVM 95.28 35.1509 0.4374 0.4151
GB 94.11 46.9630 0.0277 0.0255

D
L CNN 95.28 5155.12 0.6954 0.5723

Transformer 94.50 5532.74 0.7743 0.6505

method by Halder et al. [17], and (ii) StaticDataset, following the approach of Samaana et al. [5].
To ensure fairness, the original models, feature selection strategies, and hyperparameters were applied
to features derived from the common corpus. As shown in Table 6, QUT-DV25 with CombinedTraces
and RF achieved the highest performance across all metrics: ARF = 95.99% and F1,RF = 96.02%.
Confusion matrix analysis further confirms its robustness with TPR = 96.36%, TNR = 98.26%,
FPR = 1.74%, and FNR = 3.64%.

Table 6: Performance comparison with existing datasets; bold indicates the overall best values.

Dataset M A (%) F1 (%) TPR (%) TNR (%) FPR (%) FNR (%)

Metadata
Dataset [20]

RF 84.44 84.81 82.98 86.10 13.90 17.02
DT 83.93 84.36 82.26 85.76 14.24 17.74

SVM 80.47 81.60 77.26 84.59 15.41 22.74
GB 83.46 84.25 80.52 87.04 12.96 19.48

Static
Dataset [22]

RF 95.14 95.24 93.37 97.06 2.94 6.63
DT 95.14 95.29 92.45 98.20 1.80 7.55

SVM 95.32 95.30 96.01 94.65 5.35 3.99
GB 94.90 95.08 92.06 98.19 1.81 7.94

QUT-DV25

RF 95.99 96.02 95.26 96.77 3.23 4.74
DT 94.02 94.28 90.48 98.26 1.74 9.52

SVM 95.28 95.23 96.36 94.24 5.76 3.64
GB 94.11 94.35 90.71 98.16 1.84 9.29

In contrast, MetadataDataset exhibited high false positives (FPR = 13.90%), attributable
to its dependence on superficial package attributes, leading to poor generalization. Similarly,
StaticDataset lacked install-time and post-install-time features, resulting in elevated false neg-
atives (FNR = 6.63%). Both baselines struggled with previously unseen samples. QUT-DV25
outperforms both meta and static dataset baselines across A, F1, and confusion matrix dimensions.

This dataset also enables the distinction between benign and malicious system call patterns [41].
By facilitating the differentiation of these patterns, it supports a more robust evaluation of their
discriminative power in classification tasks. We also analyzed cases where ML models made mistakes.
The RF model flagged 11 packages out of 1,000 recent PyPI packages that were originally labeled as
benign. After review, six packages exhibited clear malicious behaviors such as data exfiltration, port
scanning, and unauthorized remote access. These findings were reported to PyPI with supporting
evidence from the QUT-DV25 dataset, leading to the removal of four flagged packages (vermillion-0.5,
eth-abcde-0.2.3, Pytonlib-0.0.0, and infoind-3897) from the platform. Two other flagged packages,
PySocks-1.7.1 and escposprinter-6.2, are examples of dual-use tools. These packages can be used
for both benign and malicious purposes. For instance, PySocks can hide network traffic, and
escposprinter includes NetCat, which is often used to open backdoors. Although PyPI did not remove
these packages and provided justification, the flagged behavior still raised important alerts. These
are not simple classification mistakes; they highlight ambiguous, high-risk behaviors that require
human judgment. Such cases demonstrate the limitations of binary labels in the real world. The
remaining five packages were confirmed as FPs, but this number is small. These findings demonstrate
the dataset’s real-world effectiveness with low FNR and high precision.

5 Technical Limitations and Other Applications
Technical limitations: The performance of MDS depends on the quality and representativeness
of the proposed dataset D, where each sample comprises install-time and post-install-time traces
Tj ∈ T . These traces may include noise that obscures discriminative patterns. To mitigate this, all

9

Tj were collected using eBPF within isolated Linux-based sandboxes, ensuring clean environments
but also introducing package dependency issues, environment sensitivity, and setup overhead. To
prevent inconsistencies due to package dependency reuse, each package was installed in a fresh
virtual environment. However, the current setup may not capture environment-sensitive attacks
(e.g., activate only on Windows or macOS) due to the lack of hardware and OS diversity. In
particular, it may overlook actions triggered by user interaction, command-line arguments, or specific
runtime conditions. Despite this limitation, the setup was deliberately chosen to prioritize safety,
reproducibility, and cost-efficiency in managing the overhead of package execution. Moreover, since
full support for eBPF is currently available only on Linux, our approach remains well representative
of Linux-based systems, including widely used server and desktop distributions.

In addition, the extracted feature vectors ϕ(Tj) = xj ∈ Rd were high-dimensional, increasing
dataset processing complexity. Dimensionality reduction techniques were applied to obtain a selected
embedding SEFj ⊂ Rd, which preserves relevant semantics while improving efficiency. Since D is
collected from PyPI packages, generalization to other ecosystems (e.g., NPM, Maven, RubyGems)
may require retraining or domain adaptation. Furthermore, reliance on ϕ(Tj) may limit detection of
delayed or obfuscated threats. To address this, future work will incorporate runtime traces and extend
ϕpost-install-time(T

>120s
j) to enhance dataset detection robustness.

Other applications of QUT-DV25: The proposed dataset enables training ML models for malicious
package detection using user and system-level traces and modeling multi-stage attacks such as
dynamic payload execution and covert remote access. It also supports feature attribution studies for
understanding behavioral indicators of compromise and provides a benchmark for evaluating dynamic
detection systems. With eBPF-collected behavioral data from 14,271 PyPI packages, QUT-DV25
offers a practical foundation for advancing dynamic malware analysis in software supply chains. This
study benefits society by enhancing software supply chain security and leading to the removal of four
previously undetected malicious PyPI packages. However, techniques like eBPF tracing, while safely
handled in controlled environments here, could pose risks if misused for surveillance or exploitation.

6 Safety and Ethical Discussion
All benign packages used in this study were collected from publicly available Python packages in
the PyPI repository. and all malicious packages collected from different publicly available websites
based on a details security report. No user-generated or private data were included in the dataset D,
ensuring compliance with privacy norms and ethical research standards. The dynamic analysis was
conducted in isolated, networked-controlled sandboxes to prevent accidental propagation of malicious
behavior and ensure containment. The eBPF monitored only user and kernel-level behaviors Tj ∈ T
within controlled environments, without logging personal or sensitive content. Also, the dataset D
and feature extraction function ϕ(Tj) were designed solely for research purposes to advance open
malware detection techniques. To discourage misuse, any release of D or ϕ(Tj) will undergo related
institutional review and include documentation outlining ethical usage guidelines.

7 Conclusion and Future Works
Existing software supply chain security benchmarks fail to capture evolving threats such as typosquat-
ting, delayed payloads, and covert remote access. To address this gap, QUT-DV25 is introduced as a
dynamic analysis dataset constructed in a controlled sandbox environment using eBPF kernel and
user-level probes. The dataset models real-world PyPI packages by capturing 36 features, includ-
ing system calls, network activity, and installation traces, across 14,271 packages, of which 7,127
exhibited malicious characteristics. Unlike static or metadata-based datasets that only represent
surface-level attributes, QUT-DV25 reflects modern attack behaviors observed during both install-
time and post-install-time execution. Comparative evaluation demonstrates superior performance
in modeling complex, dynamic threat vectors. QUT-DV25 serves as a modern benchmark for dy-
namic malware detection and contributes to the advancement of next-gen software supply chain
threat defenses. Future work includes extending the dataset to additional ecosystems, incorporating
environment-sensitive attacks, and integrating ML frameworks for automated threat hunting across
the open-source software supply chain ecosystem.

8 Acknowledgement
This research was supported by a QUT Postgraduate Research Award Scholarship and a QUT Tuition
Fee Sponsorship. We acknowledge the support of QUT eResearch and Trusted Networks Lab for
providing the computing and hardware facilities required to run our experiments.

10

References
[1] Black Duck Software, “Open source security and risk analysis (ossra) report 2024,” accessed:

December 15, 2024. [Online]. Available: https://www.synopsys.com/software-integrity/
resources/analyst-reports/open-source-security-risk-analysis.html

[2] S. Alder, “Open source security risks,” 2025, accessed: January 1, 2025. [Online]. Available:
https://www.hipaajournal.com/open-source-security-risks/

[3] Python Software Foundation, “Pypi - the python package index,” accessed: July 2, 2024.
[Online]. Available: https://pypi.org/

[4] PyPI Stats, “Pypi download statistics,” accessed: July 2, 2024. [Online]. Available:
https://pypistats.org/packages/__all__

[5] H. Samaana, D. E. Costa, E. Shihab, and A. Abdellatif, A Machine Learning-Based Approach
For Detecting Malicious PyPI Packages. New York, NY, USA: Association for Computing
Machinery, 2025, p. 1617–1626.

[6] Snyk Security, “Snyk security - vulnerability database and security insights,” accessed: May 18,
2024. [Online]. Available: https://security.snyk.io/

[7] National Institute of Standards and Technology (NIST), “National vulnerability database (nvd),”
accessed: June 1, 2024. [Online]. Available: https://nvd.nist.gov/vuln

[8] VirusTotal, “Virustotal - free online virus, malware and url scanner,” accessed: July 12, 2024.
[Online]. Available: https://www.virustotal.com/gui/user/tanzirmehedi.qut

[9] Black Duck Software, “Software composition analysis tools: Languages and package
managers,” accessed: December 15, 2024. [Online]. Available: https://www.blackduck.com/
software-composition-analysis-tools/languages-and-package-managers.html

[10] O. Abramovsky and C. P. R. Team, “Detecting malicious packages on pypi: Malicious
package on pypi use phishing techniques to hide its malicious intent,” Check Point, March
2023, accessed: July 12, 2024. [Online]. Available: https://blog.checkpoint.com/2023/03/18/
detecting-malicious-packages-on-pypi/

[11] R. Lakshmanan, “Pypi attack: Chatgpt, claude impersonators deliver jarkastealer via python
libraries,” The Hacker News, November 2024, accessed: December 8, 2024. [Online].
Available: https://thehackernews.com/2024/11/pypi-attack-chatgpt-claude.html

[12] J. H. Kadouri, “Typosquatting attack on ‘requests’ — one of the most popular python packages,”
May 2022, accessed: December 6, 2024. [Online]. Available: https://zero.checkmarx.com/
typosquatting-attack-on-requests-one-of-the-most-popular-python-packages-3b0a329a892d

[13] W. Enck and L. Williams, “Top five challenges in software supply chain security: Observations
from 30 industry and government organizations,” IEEE Security & Privacy, vol. 20, no. 2, pp.
96–100, 2022.

[14] X. Zheng, C. Wei, S. Wang, Y. Zhao, P. Gao, Y. Zhang, K. Wang, and H. Wang, “Towards robust
detection of open source software supply chain poisoning attacks in industry environments,”
in Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engi-
neering, ser. ASE ’24. New York, NY, USA: Association for Computing Machinery, 2024, p.
1990–2001.

[15] M. Ahuje, “Detecting poisoned python packages: Ctx and phpass,” CrowdStrike, June
2022, accessed: June 3, 2024. [Online]. Available: https://www.crowdstrike.com/en-us/blog/
how-crowdstrike-detects-poisoned-python-packages-ctx-phpass/

[16] L. Martini, “Psa: There is a fake version of this package on pypi with malicious code,” 2019,
accessed: June 3, 2024. [Online]. Available: https://github.com/dateutil/dateutil/issues/984

[17] S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, M. R. Islam, M. Z. Islam, R. H. Ip, M. E.
Ahmed, G. S. Ramachandran, and M. A. Babar, “Malicious package detection using metadata
information,” in Proceedings of the ACM Web Conference 2024 (WWW ’24), 2024, p. 11.

11

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.hipaajournal.com/open-source-security-risks/
https://pypi.org/
https://pypistats.org/packages/__all__
https://security.snyk.io/
https://nvd.nist.gov/vuln
https://www.virustotal.com/gui/user/tanzirmehedi.qut
https://www.blackduck.com/software-composition-analysis-tools/languages-and-package-managers.html
https://www.blackduck.com/software-composition-analysis-tools/languages-and-package-managers.html
https://blog.checkpoint.com/2023/03/18/detecting-malicious-packages-on-pypi/
https://blog.checkpoint.com/2023/03/18/detecting-malicious-packages-on-pypi/
https://thehackernews.com/2024/11/pypi-attack-chatgpt-claude.html
https://zero.checkmarx.com/typosquatting-attack-on-requests-one-of-the-most-popular-python-packages-3b0a329a892d
https://zero.checkmarx.com/typosquatting-attack-on-requests-one-of-the-most-popular-python-packages-3b0a329a892d
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-detects-poisoned-python-packages-ctx-phpass/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-detects-poisoned-python-packages-ctx-phpass/
https://github.com/dateutil/dateutil/issues/984

[18] J. Ruohonen, K. Hjerppe, and K. Rindell, “ A Large-Scale Security-Oriented Static Analysis of
Python Packages in PyPI ,” in 2021 18th International Conference on Privacy, Security and
Trust (PST). Los Alamitos, CA, USA: IEEE Computer Society, Dec. 2021, pp. 1–10.

[19] A. Damodaran, F. DiTroia, C. A. Visaggio, T. Austin, and M. Stamp, “A comparison of
static, dynamic, and hybrid analysis for malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[20] W. Guo, Z. Xu, C. Liu, C. Huang, Y. Fang, and Y. Liu, “An empirical study of malicious
code in pypi ecosystem,” in Proceedings of the 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2023, pp. 166–177, dataset available at
https://github.com/lxyeternal/pypi_malregistry.

[21] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife collection: A review of open
source software supply chain attacks,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2020, pp. 23–43, dataset available at
https://dasfreak.github.io/Backstabbers-Knife-Collection/.

[22] DataDog Security Labs, “Malicious software packages dataset,” 2023, accessed: July 31, 2024.
[Online]. Available: https://github.com/DataDog/malicious-software-packages-dataset

[23] T. Iqbal, G. Wu, Z. Iqbal, M. B. Mahmood, A. Shafique, and W. Guo, “Pypiguard: A novel meta-
learning approach for enhanced malicious package detection in pypi through static-dynamic
feature fusion,” Journal of Information Security and Applications, p. 104032, 2025, dataset
available at https://github.com/tahir-biit/PyPiGuard/blob/main/pypiguard%20dataset.csv.

[24] A. Afianian, S. Niksefat, H. R. Shahriari, and R. Jalili, “Malware dynamic analysis evasion
techniques: A survey,” ACM Computing Surveys, vol. 52, no. 6, pp. 1–28, 2020.

[25] R. Kol, “Detecting ebpf malware with tracee,” Aqua Security, July 2023, accessed: December 15,
2024. [Online]. Available: https://www.aquasec.com/blog/detecting-ebpf-malware-with-tracee/

[26] E. Bommarito and M. J. Bommarito, “An empirical analysis of the python package
index (pypi),” July 2019, sSRN Scholarly Paper 3426281. [Online]. Available: https:
//ssrn.com/abstract=3426281

[27] K. Gao, W. Xu, W. Yang, and M. Zhou, “Pyradar: Towards automatically retrieving and
validating source code repository information for pypi packages,” Proc. ACM Softw. Eng., vol. 1,
no. FSE, Jul. 2024.

[28] J. Zhang, K. Huang, Y. Huang, B. Chen, R. Wang, C. Wang, and X. Peng, “Killing two birds
with one stone: Malicious package detection in npm and pypi using a single model of malicious
behavior sequence,” ACM Trans. Softw. Eng. Methodol., vol. 34, no. 4, Apr. 2025.

[29] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), 2007, pp.
421–430.

[30] D. Vu, Z. Newman, and J. S. Meyers, “A benchmark comparison of python malware detection
approaches,” arXiv:2209.13288, 2022.

[31] A. Sharma, “New ’pymafka’ malicious package drops cobalt strike on macos, windows,
linux,” https://www.sonatype.com/blog/new-pymafka-malicious-package-drops-cobalt-strike-
on-macos-windows-linux, 2022, accessed: June 3, 2024.

[32] D. Bogle, “eBPF: A new frontier for malware,” Red Canary Blog, 2023, accessed: December
15, 2024. [Online]. Available: https://redcanary.com/blog/threat-detection/ebpf-malware/

[33] D. Zhuravchak and V. Dudykevych, “Real-time ransomware detection by using ebpf and natural
language processing and machine learning,” in 2023 IEEE 5th International Conference on
Advanced Information and Communication Technologies (AICT), 2023, pp. 1–4.

[34] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke, T. Feldman-Fitzthum, D. Skar-
latos, and D. Gruss, “Programmable system call security with ebpf,” arXiv:2302.10366, 2023.

12

https://github.com/lxyeternal/pypi_malregistry
https://dasfreak.github.io/Backstabbers-Knife-Collection/
https://github.com/DataDog/malicious-software-packages-dataset
https://github.com/tahir-biit/PyPiGuard/blob/main/pypiguard%20dataset.csv
https://www.aquasec.com/blog/detecting-ebpf-malware-with-tracee/
https://ssrn.com/abstract=3426281
https://ssrn.com/abstract=3426281
https://redcanary.com/blog/threat-detection/ebpf-malware/

[35] K. Higuchi and R. Kobayashi, “Real-time defense system using ebpf for machine learning-based
ransomware detection method,” in 2023 Eleventh International Symposium on Computing and
Networking Workshops, 2023, pp. 213–219.

[36] M. Z. Masud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R. Yusof, “An evaluation of n-gram
system call sequence in mobile malware detection,” ARPN Journal of Engineering and Applied
Sciences, vol. 11, no. 5, pp. 3122–3126, 2016.

[37] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd ed. New York, NY: Springer, 2009.

[38] K. Pearson, “Note on regression and inheritance in the case of two parents,” Proceedings of the
Royal Society of London, vol. 58, pp. 240–242, 1895.

[39] M. Wojtas and K. Chen, “Feature importance ranking for deep learning,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
5105–5114. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/
36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf

[40] S. Roy, R. Mehera, R. K. Pal, and S. K. Bandyopadhyay, “Hyperparameter optimization for
deep neural network models: A comprehensive study on methods and techniques,” Innovations
in Systems and Software Engineering, vol. 21, pp. 789–800, 2023.

[41] S. T. Mehedi, C. Islam, G. Ramachandran, and R. Jurdak, “Dysec: A machine learning-based
dynamic analysis for detecting malicious packages in pypi ecosystem,” IEEE Transactions on
Information Forensics and Security, vol. 21, pp. 1316–1331, 2026.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf

A Supplementary Material

Table 7: Detailed description of QUT-DV-25 features with examples.

Feature Name Description Examples
Package_Name Package Name and Version 1337z-4.4.7, 1337x-1.2.6

Filetop Traces

Read_Processes Processes in reading pip reads setup.py for metadata
Write_Processes Processes in writing writes to site-packages and cached .whl
Read_Data_Transfer Reading data transfer pip reads .whl file from PyPI via HTTPS
Write_Data_Transfer Writing data transfer pip writes downloaded .whl into the local
File_Access_Processes Processes in access files Accesses _init_.py during installation

Install Traces

Total_Dependencies Total number of dependencies 2 (attrs-24.2.0; beautifulsoup4-0.1)
Direct_Dependencies List of direct dependencies 1 (beautifulsoup4-0.1)
Indirect_Dependencies List of indirect dependencies 1 (attrs-24.2.0)

Opensnoop Traces

Root_DIR_Access Root directory access 2 (/root/.ssh/authorized_keys)
Temp_DIR_Access Temp directory access 15 (/tmp/pip-wheel-pzrcqrtt/htaces.whl)
Home_DIR_Access Home directory access 55 (/home/Analysis/Env/1337z-4.4.7.)
User_DIR_Access User directory access 226 (/usr/lib/python3.12/lib-dynload)
Sys_DIR_Access System directory access 12 (/sys/kernel/net/ipv4/ip_forward)
Etc_DIR_Access Etc directory access 116 (/etc/host.conf, /etc/nftables.conf)
Other_DIR_Access Access to other directories 17 (/proc/sys/net/ipv4/conf, /.ssh)

TCP Traces

State_Transition TCP lifecycle transitions {CLOSE -> ->: 15, SYN_SENT}
Local_IPs_Access Access to local IP addresses 2 (192.168.0.51, 192.168.0.1)
Remote_IPs_Access Access to remote IP addresses 2 (151.101.0.223, 3.164.36.120)
Local_Port_Access Access to local ports 3 (52904, 53158, 34214)
Remote_Port_Access Access to remote ports 3 (443, 23, 6667)

SysCall Traces

IO_Operations I/O operations performed ioctl, poll, readv
File_Operations File-related system calls open, openat, creat
Network_Operations Network-related operations socket, connect, accept
Time_Operations Time-based operations clock_gettime, timer_delete
Security_Operations Security-related sys calls getuid, setuid, setgid
Process_Operations Process management sys calls fork, vfork, clone

Pattern Traces

Pattern_1 File metadata retrieval newfstatat->openat->fstat
Pattern_2 Reading data from a file read->pread64->lseek
Pattern_3 Writing data to a file write->pwrite64->fsync
Pattern_4 Network socket creation socket->bind->listen
Pattern_5 Creating a new process fork->execve->wait4
Pattern_6 Memory mapping mmap->mprotect->munmap->no-fd
Pattern_7 File descriptor management dup->dup2->close->stdout
Pattern_8 Inter-process communication pipe->write->read->pipe-fd
Pattern_9 File locking fcntl->lockf->close->file-fd
Pattern_10 Error handling open->read->error=ENOENT->no-fd

Labels Classification level [1,0]

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the key contributions of our study,
including the development of an isolated testbed framework, the creation of the QUT-DV25
dataset, and the baseline evaluation using multiple ML models. These claims align closely
with the detailed descriptions and results presented in Sections 3 through 6, and we have
made sure not to overstate the scope or generalizability of our findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5, ‘Technical Limitations and Other Applications,’ outlines several
constraints of the study, including the platform dependency of our Linux-based testbed,
potential noise in behavior traces, and the limited post-install-time observation window,
which may overlook delayed or obfuscated threats. We also acknowledge that our dataset is
specific to PyPI and may not generalize to other ecosystems without appropriate domain
adaptation. The high dimensionality of extracted features required dimensionality reduction
for practical model training. Additionally, each package was installed in isolation, which
may not reflect real-world scenarios where dependencies interact. Although the approach
was evaluated on seven datasets to provide broader empirical support, the scope of our claims
is limited by these experimental conditions. Broader validation across multiple ecosystems
and threat models is necessary to fully assess generalizability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

15

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The study does not contain any theoretical results or proofs. This study focuses
on dataset construction, benchmarking, and analysis of malicious behavior in software
packages.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The study provides detailed descriptions of the dataset construction process
(Section 3), including the sandbox environment, data collection methodology, and feature
extraction. Section 4 outlines the experimental setup, including preprocessing steps, the
four ML models used, and their evaluation metrics. To further support reproducibility, we
release the dataset with complete metadata and validation source codes. Additional details
about the dataset are provided in the Appendix to facilitate deeper inspection and reuse.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

16

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to both the dataset and source code, along with detailed
instructions to replicate all experiments. The dataset is hosted at https://doi.org/
10.7910/DVN/LBMXJY and includes a complete Croissant metadata file for standardized
documentation and reproducibility. The technical validation source code is available at
https://github.com/tanzirmehedi/QUT-DV25.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The study provides comprehensive details of the experimental setup in Section
4, including dataset splits, preprocessing steps, model configurations, and training parameters
for each baseline method. Technical validation implementation details and scripts are
available in the GitHub repository (https://github.com/tanzirmehedi/QUT-DV25).

17

https://doi.org/10.7910/DVN/LBMXJY
https://doi.org/10.7910/DVN/LBMXJY
https://github.com/tanzirmehedi/QUT-DV25
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/tanzirmehedi/QUT-DV25

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The study reports standard ML performance metrics such as accuracy, preci-
sion, recall, and F1-score to evaluate the effectiveness of the proposed approach. However,
it does not include error bars, confidence intervals, or statistical significance tests. Future
work could incorporate such analysis to strengthen the statistical rigor of the findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The study describes the computational environment used for dataset gener-
ation and model evaluation, including the use of isolated Linux-based sandboxes, virtual
environments, and a machine with 32-core CPUs and 128GB RAM. Execution times for
key steps such as dynamic tracing and feature extraction are summarized in Section 4.1, and
the GitHub repository code includes runtime details of each algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

18

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies fully with the NeurIPS Code of Ethics. The dataset
was collected from publicly available Python packages on PyPI, and all experiments were
conducted in isolated environments to prevent harm. This ensured that no computing
resources were damaged or disrupted due to malicious packages, and that the broader
institutional network remained unaffected. No personal or sensitive data was used, and no
users were affected. Ethical risks, such as potential misuse, were considered and discussed in
Section 6. The release of the dataset and code follows open science best practices, including
transparency and reproducibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The study has a significant positive societal impact by advancing the detection
of malicious software in open-source ecosystems. ML analysis using the dataset identified
four malicious PyPI packages-previously labeled benign and with thousands of downloads-
which were reported and subsequently removed, showcasing the practical security utility.
However, the techniques, like eBPF tracing, could be misused for invasive monitoring or
surveillance if applied inappropriately. The potential positive and negative impacts of the
dataset are addressed in the final sentences of Section 5 of the study.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

19

https://neurips.cc/public/EthicsGuidelines

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The dataset and feature extraction function were specifically designed for
research purposes to advance open malware detection techniques. To prevent misuse,
any release of these resources will undergo an institutional review and be accompanied
by documentation outlining ethical usage guidelines. The research adheres to privacy
norms, ensuring that no user-generated or private data were included. All testing and
data collection were conducted in isolated, controlled environments, not connected to the
broader institutional network or devices, to mitigate any unintended misuse and to safeguard
organizational infrastructure.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this study, including the dataset and code, are properly
credited and the relevant licenses are respected. The dataset is publicly available under the
Creative Commons CC0 1.0 Universal Public Domain Dedication (CC0 1.0). The code
repository is hosted on GitHub. The terms of use and licenses for all external assets are
clearly stated and adhered to in the study. Additionally, proper citation of the original
sources is provided.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

20

paperswithcode.com/datasets

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new asset introduced in this study, the QUT-DV25 dataset, is well doc-
umented both on GitHub and Dataverse. Comprehensive documentation regarding the
dataset’s structure, usage, and licensing is provided alongside the dataset on both platforms.
The dataset is publicly available under the Creative Commons CC0 1.0 Universal Public
Domain Dedication (CC0 1.0), and all consent and ethical considerations were properly
followed during its creation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The study does not involve any crowdsourcing experiments or research with
human subjects. All data used were sourced from publicly available software repositories and
cybersecurity reports, with no interaction with or data collection from human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve any human subjects or participant data. All datasets
were constructed using publicly available software packages and security reports, with no
interaction or data collection from individuals, thus IRB approval was not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for editing purposes such as grammar correction,
spelling, and formatting. They were not involved in the development of core methods, data
analysis, or scientific contributions of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Existing Datasets
	QUT-DV25 Dataset Construction
	Testbed Configuration
	Collection Methodology
	QUT-DV25 Data Records

	Technical Validation and Benchmarks of QUT-DV25
	Experiments with ML Models
	Experiments with DL Models
	Comparison with Baseline Datasets

	Technical Limitations and Other Applications
	Safety and Ethical Discussion
	Conclusion and Future Works
	Acknowledgement
	Supplementary Material

