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Abstract
Warm-starting neural networks by initializing
them with previously learned weights is appealing,
as practical neural networks are often deployed
under a continuous influx of new data. However, it
often leads to loss of plasticity, where the network
loses its ability to learn new information, resulting
in worse generalization compared to training from
scratch. This occurs even under stationary data
distributions, and its underlying mechanism is
poorly understood. We develop a framework emu-
lating real-world neural network training and iden-
tify noise memorization as the primary cause of
plasticity loss when warm-starting on stationary
data. Motivated by this, we propose Direction-
Aware SHrinking (DASH), a method aiming to
mitigate plasticity loss by selectively forgetting
memorized noise while preserving learned fea-
tures. We validate our approach on vision tasks,
demonstrating improvements in test accuracy and
training efficiency.

1. Introduction
When training a neural network on a gradually changing
dataset, the model tends to lose its plasticity, which refers to
the model’s ability to adapt to new information (Lyle et al.,
2023b; Dohare et al., 2021; Nikishin et al., 2022). This
phenomenon is particularly relevant in scenarios with non-
stationary data distributions, such as reinforcement learning
(Igl et al., 2020; Nikishin et al., 2022) and continual learn-
ing (Wu et al., 2021; Chen et al., 2023; Kumar et al., 2023).
A common explanation is that previously learned informa-
tion becomes less relevant over time, necessitating models
to overwrite the existing knowledge (Lyle et al., 2023b).
Under this viewpoint, various efforts have been made to mit-
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igate the loss of plasticity, such as resetting layers (Nikishin
et al., 2022), regularizing weights (Kumar et al., 2023), and
modifying architectures (Nikishin et al., 2023; Dohare et al.,
2021; Sokar et al., 2023; Lyle et al., 2023a; Lee et al., 2023).

Perhaps surprisingly, a similar phenomenon occurs in super-
vised learning settings, even where new data points sampled
from a stationary data distribution keep being introduced
to the dataset during training. It is counterintuitive, as one
would expect advantages in both generalization performance
and computational efficiency when we warm-start from a
model pre-trained on data points of the same distribution.
For a particular example, when a model is pre-trained using
a portion of a dataset and then we resume the training with
the whole dataset, the generalization performance is often
worse than a model trained from scratch (i.e., cold-start),
despite achieving similar training accuracy (Ash & Adams,
2020; Berariu et al., 2021; Igl et al., 2020). Liu et al. (2020)
report a similar observation: training neural networks with
random labels leads to a spurious local minimum which is
challenging to escape from, even when retraining with a cor-
rectly labeled dataset. Interestingly, Igl et al. (2020) found
that pre-training with random labels followed by the cor-
rected dataset yields better generalization performance than
pre-training with a small portion of the (correctly labeled)
dataset and then training with the full, unaltered dataset. It
is striking that warm-starting leads to such a severe loss of
performance, even worse than that of a cold-started model
or a restarted model from a pre-trained one with random
labels, despite the stationarity of the data distribution.

These counterintuitive results prompt us to investigate the
underlying reasons for them. While some studies have
attempted to explain the loss of plasticity in deep neural
networks (DNNs) under non-stationarity (Lyle et al., 2023b;
Sokar et al., 2023; Lewandowski et al., 2023), their em-
pirical explanations rely on various factors, such as model
architecture, datasets, and other variables, making it diffi-
cult to generalize the findings (Lewandowski et al., 2023;
Lyle et al., 2023a). Moreover, there is limited research that
explores why warm-starting is problematic in stationary set-
tings, highlighting the lack of a fundamental understanding
of the loss of plasticity phenomenon in both stationary and
non-stationary data distributions.
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Figure 1. Performance comparison of various methods on Tiny-ImageNet using ResNet-18. The same hyperparameters are used across
all methods. In each experiment, a constant number of data points are added to the existing training dataset. Models are trained until
achieving 99.9% train accuracy before proceeding to the next experiment; the plot on the right reports the number of update steps executed
in each experiment. Results are averaged over three random seeds. ”Cold” refers to cold-starting and ”Warm” refers to warm-starting.
The Shrink & Perturb (S&P) method involves shrinking the model weights by a constant factor and adding noise (Ash & Adams, 2020).
Notably, DASH, our proposed method, achieves better generalization performance compared to both training from scratch and S&P, while
requiring fewer steps to converge.

1.1. Our Contributions

In this work, we aim to explain why warm-starting leads to
worse generalization compared to cold-starting, focusing on
the stationary case. We propose an abstract framework that
combines the popular feature learning framework initiated
by Allen-Zhu & Li (2020) with a recent approach by Jiang
et al. (2024) that studies feature learning in a combinato-
rial and abstract manner. Our analysis suggests that warm-
starting leads to overfitting by memorizing noise present in
the newly introduced data rather than learning new features.

Inspired by this finding, we propose Direction-Aware
SHrinking (DASH), which aims to encourage the model to
forget memorized noise without affecting previously learned
features. This enables the model to learn features that can-
not be acquired through warm-starting alone, enhancing the
model’s generalization ability. We validate DASH using
the online learning setting from Ash & Adams (2020), em-
ploying various models, datasets, and optimizers. As an
example, Figure 1 shows the promising results in terms of
both test accuracy and training time.

1.2. Related Works

Loss of Plasticity. Research has aimed to understand and
mitigate loss of plasticity in non-stationary data distributions.
Lewandowski et al. (2023) explain that loss of plasticity co-
occurs with a reduction in the Hessian rank of the training
objective, while Sokar et al. (2023) attribute it to an increas-
ing number of inactive neurons during training. Lyle et al.
(2023b) find that changes in the loss landscape curvature
caused by non-stationarity lead to loss of plasticity. Meth-
ods addressing this issue in non-stationary settings include
recycling dormant neurons (Sokar et al., 2023), regularizing
weights towards initial values (Kumar et al., 2023), and com-
bining techniques (Lee et al., 2023) like layer normalization
(Ba et al., 2016), Sharpness-Aware Minimization (SAM)

(Foret et al., 2020), resetting layers (Nikishin et al., 2022),
and Concatenated ReLU activation (Shang et al., 2016).

However, these explanations and methods diverge from the
behavior observed in stationary data distributions. Tech-
niques aimed at mitigating loss of plasticity under non-
stationarity are ineffective under stationary distributions, as
shown in Appendix A.1, in line with the observations in Lee
et al. (2023). While some works study the warm-starting
problem in stationary settings, they rely on empirical obser-
vations without theoretical analysis (Ash & Adams, 2020;
Berariu et al., 2021; Achille et al., 2018). The most rele-
vant work by Ash & Adams (2020) introduces the Shrink
& Perturb (S&P) method, which mitigates loss of plasticity
in stationary settings to some extent by shrinking all weight
vectors by a constant factor and adding noise. However, they
do not explain why this phenomenon occurs or why S&P is
effective. We develop and analyze a theoretical framework
to explain why warm-starting suffers even under station-
ary data distribution. Based on our findings, we propose a
method that shrinks the weight vector in a direction-aware
manner to maintain properly learned features.

Feature Learning in Neural Networks. Recent studies
have investigated how training methods and network archi-
tectures influence generalization performance, focusing on
data distributions with label-dependent features and label-
independent noise (Allen-Zhu & Li, 2020; Cao et al., 2022;
Jelassi & Li, 2022; Zou et al., 2023; Deng et al., 2023; Oh &
Yun, 2024). In particular, Shen et al. (2022) examine a data
distribution consisting of varying frequencies of features
and large strengths of noise, emphasizing the significance
of feature frequencies in learning dynamics. Jiang et al.
(2024) propose a novel feature learning framework based
on their observations in real-world scenarios, which also
involves features with different frequencies but considers
the learning process as a discrete sampling process. Our
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proposed framework extends these ideas by incorporating
features with varying frequencies, noise components, and
the discrete learning process while introducing a more intri-
cate learning process that captures the key aspects of feature
learning dynamics in gradually expanding datasets.

2. A Framework of Feature Learning
Shen et al. (2022) consider a neural network trained on data
with features of different frequencies and noise components
stronger than the features. The gradient of the loss for
each single data point aligns more with the noise than the
features due to the larger scale of noise, making the model
more likely to memorize noise rather than learn features.
However, an identical feature appears in many data points,
while noise appears only once and do not overlap across
data points. Thus, if a feature appears in sufficiently high
frequency in the dataset, the model can learn the feature.
Thus, the model’s learning of features or noise depends on
the frequency of features and the strength of noise.

Inspired by Shen et al. (2022), we propose a novel dis-
crete feature learning framework. This section introduces a
framework describing a single experiment, while Section 3
analyzes expanding datasets scenarios. As our focus is on
gradually expanding datasets, carrying out the (S)GD analy-
sis over many experiments as in Shen et al. (2022) is highly
challenging. Instead, we adopt a discrete learning process
similar to Jiang et al. (2024) but propose a more intricate
process reflecting key ideas from Shen et al. (2022). In
doing so, we generalize the concept of plasticity loss and
analyze it without assuming any particular hypothesis class
for a more comprehensive understanding, whereas existing
works are limited to specific architectures.

2.1. Training Process

We consider a classification problem with C classes, and
data are represented as (x, y) ∈ X × [C], where X de-
notes the input space. A data point is associated with a
combination of class-dependent features V(x) ⊂ Sy where
Sc = {vc,1, vc,2, . . . , vc,K} is the set of all features for each
class c ∈ [C]. Also, every data point contains data-specific
noise which is class-independent.

The model f : X → [C] sequentially learns features based
on their frequency. The training process is described by
the set of learned features L ⊂ S ≜

⋃
c∈[C] Sc and the

set of data points with non-zero gradients N ⊂ T , where
T = {(xi, yi)}i∈[m] denotes a training set. The set N ,
representing the data points with non-zero gradients, will be
defined below. The frequency of a feature v in data points
belonging to N is denoted by

g(v; T ,N ) =
1

|T |
∑

(x,y)∈N

1(v ∈ V(x)),

where 1(·) is the indicator function, which equals 1 if
the condition inside the parentheses is true and 0 other-
wise. At each step of training, if L and N are given,
the model chooses the most frequent feature among the
features not yet learned, i.e., arbitrarily choose v ∈
argmaxu∈S\L g (u; T ,N ).

The model decides whether to learn a selected feature
v by comparing its signal strength, represented by |T | ·
g(v; T ,N ), with the signal strength of noise, given by γ,
which reflects the key ideas of Shen et al. (2022). If the fre-
quency of the selected feature v is no less than the threshold
γ/|T |, i.e., g(v; T ,N ) ≥ γ/|T |, the model learns v and
adds it to its set of learned features L. The feature learning
process continues until the model reaches a point where
the selected feature v has g(v; T ,N ) < γ/|T |, indicating
that the signal strength of every remaining feature is weaker
than that of noise. At this point, the feature learning process
ends.

We consider a data point x to be well-classified if the
model f has learned at least τ features from V(x), i.e.,
|L ∩ V(x)| ≥ τ , where τ < K. In this case, we consider x
to have a zero gradient, meaning it cannot further contribute
to the learning process. Throughout the feature learning
process, the set N of data points with non-zero gradients
is dynamically updated as new features are learned. At
each step, when the model successfully learns a new fea-
ture, we update N by removing the data points that satisfy
|L ∩ V(x)| ≥ τ , as they become well-classified due to the
newly learned feature.

If the feature learning process ends and the model has
learned as many features as it can, the remaining data points
that have non-zero gradients will be memorized by fitting
the random noise present in them and will be considered
to have zero gradients. This step concludes the training
process. A detailed algorithm of the learning process can be
found in Algorithm 2 in Appendix D.

2.2. Discussion on Training Process

In our framework, the model selects features based on their
frequency in the set of unclassified data points N . The intu-
ition behind this approach is that features appearing more
frequently in the set of data points will have larger gradients,
leading to larger updates, and we treat g(v; T ,N ) as a proxy
of the gradient for a particular feature v. As a result, the
model prioritizes learning these high-frequency features in a
sequential manner. However, if the frequency g(v; T ,N ) of
a particular feature v is not sufficiently large, such that the
total occurrence of v is less than the strength of the noise,
i.e., |T | · g(v; T ,N ) < γ, the model may struggle to learn
that feature. Consequently, the model will prioritize learning
the noise over the informative features. When this situation
arises, the learning procedure becomes sub-optimal because
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the model fails to capture the true underlying features of the
data and instead memorizes the noise.

The threshold τ determines when a data point is consid-
ered well-classified and acts as a proxy for the dataset’s
complexity. A higher τ requires the model to learn more
features for correct predictions, while a lower τ allows ac-
curate predictions with fewer learned features. Experiments
in Appendix B Figure 13 and 14 support this interpretation.

2.3. Prediction Process and Training Time

The model predicts on unseen data points by comparing
the learned features with features present in a given data
point x. If the overlap between the learned feature set L
and the features in x, denoted as V(x), is at least τ , i.e.,
|V(x) ∩ L| ≥ τ , the model correctly classifies the data
point. Otherwise, the model resorts to random guessing.

Accurately measuring training time within our discrete learn-
ing framework is challenging. To address this, we introduce
an alternative for training time based on empirical obser-
vations. We consider the number of training data points
with non-zero gradients at the initial stage of training as
a proxy for training time, which represents the amount of
“learning” required for the model to classify all data points
correctly. To verify this, we conducted experiments with
CIFAR-10 on ResNet-18. We used the gradient norm as
a proxy for the number of data points with non-zero gra-
dients and investigated its correlation with the number of
training steps required to achieve 99.9% training accuracy.
Figures 10 and 11 in Appendix B show that larger initial
gradient norms correlate with longer convergence times in
real-world neural network training. Therefore, we consider
|N | at the initial state of training as a proxy for the training
time until the model perfectly fits the training data, which
represents the number of training data points that need to be
newly well-classified throughout the training procedure.
Remark 2.1. Nakkiran et al. (2021) also observe that in real-
world neural network training, when other components are
fixed, the training time increases with the number of data
points to learn.

3. Warm-Starting vs. Cold-Starting
3.1. Experiments with Expanding Dataset

In this section, we establish the setup where the dataset
grows after each j-th experiment, with j ∈ N to com-
pare warm-start and cold-start within our proposed learning
framework. To better understand the loss of plasticity under
stationary data distribution, we consider an extreme form
of stationarity where the frequency of each feature combi-
nation remains constant in each chunk. We investigate if
the loss of plasticity can manifest even under this strong
stationarity. The detailed description of the dataset across

the entire experiment is as follows:
Assumption 3.1. In each j-th experiment, we are provided
with a training dataset Tj := {(xi,j , yi,j)}i∈[n] with n sam-
ples. For each class c ∈ [C] and each possible feature combi-
nation A ⊂ Sc, we assume that Tj contains exactly nA ≥ 1
data points with associated feature setA, where the values of
nA are independent of j. Note that

∑
c∈[C],A⊂Sc

nA = n.
When training in the j-th experiment, we use the cumulative
dataset T1:j :=

⋃
l∈[j] Tl, the union of all training datasets

up to the j-th experiment.
Remark 3.2. In each experiment, the feature combinations
remain the same across the dataset, but the individual data
points differ. This is because each data point is associated
with its own specific noise, which varies across samples.
Although the underlying features are the same, the noise
component of each data point is unique. This approach
ensures that the model is exposed to a diverse set of samples.

We define a technical term h(v;L) ≜ 1
n

∑
c∈[C],A⊂Sc

nA ·
1 (v ∈ A ∧ |A ∩ L| < τ) which denotes the portion of data
points containing v that cannot be well-classified by a
learned feature set L. This leads to technical assumptions:
Assumption 3.3. For any learned feature set L ⊂ S, if
v1, v2 ∈ Sc for some class c ∈ [C] and h(v1;L) = h(v2;L),
then v1 = v2. Also, we assume for any class c ∈ [C]
there exists some τ distinct features v1, . . . , vτ ∈ Sc
such that g(v1; Tj , Tj), . . . , g(vτ−1; Tj , Tj) ≥ γ/n and
g(vτ ; Tj , Tj) < γ/n.

This assumption leads to Lemma C.2, stating that the order
in which features are learned within a class is deterministic.
This is just for simplicity of presentation and can be relaxed.
The last assumption is justified by the moderate number of
data points in each chunk Tj , ensuring the existence of both
τ −1 learnable features and a non-learnable feature within a
class. Throughout the following discussion, we will proceed
under above assumptions unless otherwise specified.

3.2. Comparison Between Warm-Starting and
Cold-Starting in Our Framework

Now we analyze the warm-start and cold-start initialization
methods within our framework, focusing on test accuracy
and training time. In our learning framework, we denote
a model at step s of the j-th experiment as f (j,s). We
denote the set of learned features and the set of memorized
data for the model f (j,s) as L(j,s) andM(j,s), respectively.
We also denote the set of data points that have non-zero
gradients at step s of the j-th experiment as N (j,s). We
define two respective versions of these sets and the model,
one for warm and cold, denoted by the subscripts (e.g.,
f
(j,s)
warm and f

(j,s)
cold ). We note that, by definition, L(j,0)

cold and
M(j,0)

cold are both empty sets, while L(j,0)
warm = L(j−1,sj−1)

warm

andM(j,0)
warm =M(j−1,sj−1)

warm , where sj denotes the last step
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of j-th experiment. Besides, we use a shorthand notation
for step sj of the experiment j that we drop s if s = sj (e.g.,
L(j) := L(j,sj)). For the detailed algorithms based on our
learning framework, see Algorithms 3 and 4 in Appendix D.

In the test data, a feature combination A ⊂ Sc of data point
with class c ∈ [C] appears with probability nA/n along
with data-specific noise. By Section 2.3, test accuracy for a
learned set L and training time are defined as:

ACC(L) ≜ 1− C−1
C · 1n

∑
c∈[C],A⊂Sc

nA · 1 (|A ∩ L| < τ)

T (J)
warm ≜

∑
j∈[J]

∣∣∣N (j,0)
warm

∣∣∣ , T (J)
cold ≜

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣
Based on these definitions, the following theorem holds:

Theorem 3.4. There exists nonempty G ⊊ S such that we
always obtain L(1)

warm = L(1)
cold = G. For all J ≥ 2, the

following inequalities hold:

ACC
(
L(J)
warm

)
≤ ACC

(
L(J)
cold

)
T (J)
warm < T

(J)
cold

Furthermore, ACC(L(J)
warm) < ACC(L(J)

cold) holds when
J > γ

δn where δ ≜ max
v∈S\G

h(v;G) > 0.

Proof Idea. After the first experiment, the data points in T1
cannot further contribute to the learning process of the warm-
started model. Consequently, even when a new data chunk is
provided in subsequent experiments, the feature frequencies
are too small, resulting in a weak signal strength of features
that cannot overcome the noise signal strength. As a result,
the model memorizes individual noise components of the
new data points. This procedure is repeated with every
experiment, causing the learned feature set to remain the
same as at the end of the first experiment. In contrast, when
receiving T1:j at once (cold-starting), the signal strength
of features is large enough to overcome the noise signal
strength, allowing the model to learn many more features.

Theorem 3.4 highlights a trade-off between cold-starting
and warm-starting. Regarding test accuracy, the theorem
concludes that cold-starting can achieve strictly higher accu-
racy than warm-starting. However, warm-starting requires
strictly shorter training time compared to cold-starting.

Detailed proof is provided in Appendix C. Theorem 3.4
suggests that the loss of plasticity in the incremental set-
ting under the stationary assumption can be attributed to the
noise memorization process. Actually, a similar observation
is made in real-world neural network training. It is widely
believed that during the early stages of training, neural net-
works primarily focus on learning features from the dataset,
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Figure 2. The plot shows the test accuracy (left y-axis) when the
model is pre-trained for varying epochs (x-axis) and then fine-
tuned on the full data, along with the pre-train accuracy (right
y-axis) plotted in brown. The left figure shows results from a three-
layer MLP, while the right figure presents results from ResNet-18.
Each transparent line and point corresponds to a specific random
seed, and the median value is clearly displayed. The ‘Random’
corresponds to training from random initialization (cold-start).

and after learning these features, the model starts to mem-
orize data points that it fails to classify correctly using the
learned features. To investigate this phenomenon, we con-
ducted an experiment where CIFAR-10 was divided into two
chunks, each containing 50% of the training dataset. The
model was pre-trained on one chunk and then further trained
on the full dataset for 300 epochs. We used three-layer MLP
and ResNet-18 with 10 random seeds.

Figure 2 shows the change in the model’s performance
based on the duration of pre-training. When pre-training
is stopped at a certain epoch and the model is then trained
on the full dataset, test accuracy is maintained. However,
if pre-training continues beyond a specific threshold (ap-
proximately 50% pre-training accuracy in this case), warm-
starting significantly impairs the model’s performance as it
increasingly memorizes training data points. We attribute
this phenomenon to the neural network’s memorization pro-
cess after learning features. This is consistent with reports
of a critical learning period where neural networks learn
useful features in the early phase of learning (Achille et al.,
2018; Frankle et al., 2020; Kleinman et al., 2024), and with
findings that neural networks tend to learn features followed
by memorizing noises (Arpit et al., 2017; Jiang et al., 2020).

Remark 3.5. Igl et al. (2020) find that training a model on
random labels followed by corrected labels results in bet-
ter generalization compared to pre-training on a subset of
correctly labeled data and then further training on the full
dataset with the same distribution. Achille et al. (2018)
also observe that pre-training with slightly blurred images
followed by original images yields worse test accuracy than
pre-training with random label or random noise images.
These findings align with our observations: re-training with
corrected labels after random label learning “revives” gradi-
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ents for most memorized data points, enabling new feature
learning. Conversely, with static distributions, gradients
for memorized data points remain suppressed, leading to
learning from only a few data points with active gradients,
causing memorization.

4. Proposed Method
4.1. Motivation: An Idealized Method

In Section 3, we observed a trade-off between warm-starting
and cold-starting. Cold-starting often achieves better test
accuracy compared to warm-starting, while warm-starting
requires less time to converge. The results suggest that
neither retaining all learned information nor discarding all
learned information is ideal. To address this trade-off and
get the best of both worlds, we consider an idealized algo-
rithm where we retain all learned features while forgetting
all memorized data points. For any experiment J ≥ 2, if
we consider the ideal initialization, learned features L(J−1)

ideal

are retained, and memorized data pointsM(J−1)
ideal are reset

to an empty set. Pseudo-code for this method is given in
Algorithm 5, which can be found in Appendix D. We de-
fine T

(J)
ideal ≜

∑
j∈[J]

∣∣∣N (j,0)
ideal

∣∣∣ as the training time with the

idealized method, where N (j,0)
ideal represents the set of data

points having a non-zero gradient at the initial step of the
j-th experiment. Then, we have the following theorem:
Theorem 4.1. For any experiment J ≥ 2, the following
holds:

ACC
(
L(J)
cold

)
= ACC

(
L(J)
ideal

)
T (J)
warm <T

(J)
ideal < T

(J)
cold

The detailed proof is provided in Appendix C. The idealized
algorithm addresses the trade-off between cold-starting and
warm-starting. We conducted an experiment to investigate
the performance gap between these initialization methods.

Synthetic Experiment. To see if our theoretical inves-
tigation applies more robustly to more realistic scenarios
within our framework, we conducted an experiment that
more closely resembles real-world settings. Instead of fix-
ing the frequency of each feature set, we sampled each
feature’s existence from a Bernoulli distribution to construct
V(x). This ensures that the experiment is more representa-
tive of real-world scenarios. Specifically, for each data point
(x, y), we uniformly sampled y ∈ {0, 1}. From the feature
set Sy corresponding to the sampled class y, we sampled
features where each feature’s existence follows a Bernoulli
distribution, 1 (vy,k ∈ V(x)) ∼ Ber(pk), for all vy,k ∈ Sy .
This approach allows us to model the variability in feature
occurrence that is commonly observed in real-world datasets
while still maintaining the core principles of our learning
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Figure 3. Comparison of random, warm, and ideal initialization
methods across 10 random seeds (mean ± std dev). The test ac-
curacy (left) and the number of learned features across all classes
(middle) are nearly identical for random and ideal initializations,
causing their plots to overlap. Warm initialization, however, ex-
hibits lower test accuracy compared to both methods. Regarding
training time (right), there is a significant gap between random and
warm initialization, which the ideal method addresses.

framework. We set the number of features, K = 50, where
each pk is sampled from a uniform distribution, U(0, 0.2).
In each chunk, we sampled 1000 data points and set the total
number of experiments to 50, with γ = 50 and τ = 3. We
sampled 10000 test data from the same distribution.

As shown in Figure 3, the results align with the above the-
orems. Random initialization, i.e. cold-starting, and ideal
initialization achieve almost identical generalization perfor-
mance, outperforming warm initialization. However, with
warm initialization, model converges faster, as evidenced by
the number of non-zero gradient data points, which serves
as a proxy for training time. Ideal initialization requires
less time compared to cold-starting, which is also consistent
with Theorem 4.1. Due to the sampling process in our ex-
periment, we observe a gradual increase in the number of
learned features and test accuracy in warm-starting, mirror-
ing real-world observations. We verified that these results
are consistent across a wide range of hyperparameter values
(see Figure 14-16 in Appendix B).

4.2. DASH: Direction-Aware SHrinking

The aforementioned ideal method recycles memorized train-
ing samples by forgetting noise while retaining learned fea-
tures. This raises the question of whether such an ideal-
ized method can be implemented in real-world neural net-
work training. To address this, we propose our algorithm,
Direction-Aware SHrinking (DASH), which intuitively
captures this idea in practical training scenarios. The out-
lined behavior is illustrated in Figure 4. In simple terms,
DASH shrinks each weight vector proportionally to the co-
sine similarity between the weight vector and the negative
gradient of the loss calculated with train data, with more
emphasis on newer data. If the degree of alignment is small
(i.e., the cosine similarity is close to or below 0), we con-
sider that the weight vector has not learned a proper feature
and shrink it significantly to make it “forget” learned infor-
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Figure 4. Illustration of DASH. We compute the loss L with train-
ing data T1:j and obtain the negative gradient. Then, we shrink the
weights proportionally to the cosine similarity between the current
weight θ and ∇θL, resulting in θ̃.

mation. This allows weights to forget memorized noises
and easily change its direction. Conversely, if the weight
vector and negative gradient are well-aligned (i.e., the co-
sine similarity is close to 1), we shrink the weight vector to
a lesser degree to maintain the learned information. This
intuitive method aligns with the aforementioned idea of the
algorithm, as it allows us to shrink weights that have not
learned proper information while retaining weights that have
learned commonly observed features.

The shrinking is done per neuron, where the incoming
weights are grouped into a weight vector denoted as θ. For
convolutional filters, the height and width of the kernel are
flattened to form a single weight vector θ for each pair of
input and output filters. DASH has two hyperparameters: λ
and α. Hyperparameter λ is the minimum shrinkage thresh-
old since each weight vector is shrunk by max{λ, cos sim}.
α is the exponential moving average coefficient for each
chunk’s gradient. Lower α values emphasize previous gra-
dients, indicating less shrinkage, suitable for less complex
datasets where retaining learned features is crucial, and vice
versa. The algorithm is presented in Algorithm 1.

To validate whether our intuition aligns well with DASH,
we plotted the accuracy on previously learned data points in
Figure 12, Appendix B. As experiments progress, when ap-
plying DASH, the training accuracy of the previous dataset
recovers faster than other methods. We argue that this is due
to the nature of our algorithm, which forgets memorized
noise while preserving learned features. As the number of
experiments increases, the number of learned features also
grows. Consequently, we can retain more features compared
to previous experiments, resulting in an increase in training
accuracy across experiments after applying DASH.

5. Experiments
5.1. Experimental Details

Our online learning setup is similar to the one described in
Ash & Adams (2020). We divided the training dataset into

Algorithm 1 Direction-Aware SHrinking (DASH)
Require:

• Model fΘ with list of parameters Θ
• Training data points T1:j
• Averaging coefficient 0 < α ≤ 1
• Threshold λ > 0
Initialize:

G
(0)
θ ← 0,∀θ in Θ

for i in 1 : j do
ℓ← Loss(fΘ, Ti)
UΘ ← Gradient of loss ℓ
for θ in Θ do
G

(i)
θ ← (1− α)×G

(i−1)
θ + α× Uθ

end for
end for
for θ in Θ do

sθ ← CosineSimilarity
(
−G(j)

θ , θ
)

θ ← θ ⊙max{λ, sθ}
end for
return: fΘ

50 chunks, and at the beginning of each experiment, new
data is combined with the existing training data. Models
were considered converged and each experiment was ter-
minated when training accuracy reached 99.9%, aligning
with our learning framework. Results were averaged over
three random seeds. We conducted experiments with vanilla
training, i.e., without any data augmentations, weight decay,
learning rate scheduling, etc. Additionally, we performed
experiments with state-of-the-art (SoTA) settings that in-
clude aforementioned techniques. We evaluated DASH on
Tiny-ImageNet, CIFAR-10, CIFAR-100, and SVHN using
ResNet-18 (He et al., 2016), VGG-16 (Simonyan & Zisser-
man, 2014), and three-layer MLP architectures with batch
normalization layer. Models were trained using Stochastic
Gradient Descent (SGD) and SGD based Sharpness-Aware
Minimization (SAM), both with momentum.

DASH was compared against baselines (cold-starting, warm-
starting, and S&P (Ash & Adams, 2020)) and methods
addressing plasticity loss under non-stationarity (L2 INIT
(Kumar et al., 2023) and Reset (Nakkiran et al., 2021)).
Layer normalization (Ba et al., 2016) and SAM (Foret et al.,
2020), known to mitigate plasticity loss in reinforcement
learning (Lee et al., 2023), were applied to both warm and
cold-starting. Consistent hyperparameters were used across
all methods, with details provided in Appendix A.4. S&P,
Reset, and DASH were applied whenever new data was
introduced. We report two metrics for both test accuracy
and steps required for convergence: the value from the final
experiment and the average across all experiments.

7



Warm-Starting Neural Network Training Without Loss of Plasticity Under Stationarity

Table 1. Results of training with various datasets using ResNet-18. Bold values indicate the best performance. For the number of steps,
bold formatting is used for all methods except warm-starting. Results are averaged over three random seeds, with standard deviations
provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
ResNet-18 Last Experiment Last Experiment across All Experiments across All Experiments
T-ImageNet SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 25.69 (0.13) 31.30 (0.09) 30237 (368) 40142 (368) 17.37 (0.06) 21.95 (0.11) 17503 (53) 22513 (74)
Warm Init 9.57 (0.24) 13.94 (0.37) 3388 (368) 5474 (0) 6.70 (0.04) 9.88 (0.21) 1785 (5) 2773 (7)
S&P 34.34 (0.48) 37.39 (0.18) 13815 (368) 26066 (1606) 25.43 (0.02) 28.47 (0.08) 7940 (15) 13172 (182)
DASH 46.11 (0.34) 49.57 (0.36) 8341 (368) 12251 (368) 33.06 (0.15) 35.93 (0.17) 4439 (48) 7900 (136)
CIFAR-10
Random Init 66.75 (0.55) 75.55 (0.18) 5213 (184) 17734 (184) 57.82 (0.04) 66.19 (0.01) 2889 (24) 8100 (7)
Warm Init 64.10 (0.12) 70.56 (0.30) 1173 (0) 4040 (184) 55.11 (0.10) 62.94 (0.47) 726 (29) 2160 (11)
S&P 81.27 (0.03) 85.98 (0.18) 5865 (319) 32453 (1392) 71.66 (0.06) 75.95 (0.13) 2777 (45) 15178 (1462)
DASH 84.28 (0.38) 86.88 (0.15) 6516 (487) 13946 (1475) 75.01 (0.10) 77.93 (0.27) 3450 (54) 10691 (217)
CIFAR-100
Random Init 35.52 (0.10) 40.16 (0.33) 10426 (184) 14336 (184) 25.65 (0.08) 29.87 (0.05) 5762 (76) 7619 (36)
Warm Init 25.38 (0.64) 32.02 (0.31) 1173 (0) 2346 (0) 19.34 (0.62) 24.01 (0.33) 866 (22) 1294 (12)
S&P 49.90 (0.09) 52.94 (0.20) 4952 (184) 12251 (1574) 37.26 (0.15) 40.27 (0.06) 2916 (29) 5896 (162)
DASH 57.79 (0.22) 60.67 (0.20) 3519 (0) 11339 (0) 43.88 (0.05) 45.69 (0.12) 2027 (58) 7184 (641)
SVHN
Random Init 86.49 (0.45) 89.89 (0.29) 5474 (0) 10948 (0) 77.99 (0.07) 83.33 (0.17) 3099 (14) 5545 (56)
Warm Init 84.11 (0.22) 89.03 (0.22) 1042 (184) 1303 (184) 75.67 (0.27) 81.30 (0.52) 630 (6) 993 (11)
S&P 92.58 (0.17) 94.29 (0.06) 3519 (0) 11599 (184) 87.42 (0.13) 89.37 (0.06) 1861 (15) 5573 (109)
DASH 93.62 (0.03) 95.27 (0.02) 5083 (844) 14467 (1105) 89.63 (0.07) 91.69 (0.01) 2591 (75) 9180 (130)

5.2. Experimental Results

We first experimented with CIFAR-10 on ResNet-18 to
determine if methods from previous works for mitigating
plasticity based on non-stationarity can be a solution to our
incremental setting with stationarity. Appendix A.1 shows
that L2 INIT, Reset, layer normalization, SAM, and reviving
dead neurons, are not effective in our setting. Thus, we con-
ducted the remaining experiments without these methods.
Table 1 shows that DASH surpasses cold-starting (Random
Init) and S&P in most cases. Training times were often
shorter compared to training from scratch, and when longer,
the performance gap in test accuracy was more pronounced.
Omitted results are in Tables 3-6 located in Appendix A.2.

We argue that S&P can cause the model to forget learned
information, including important features, due to shrinking
every weight uniformly and perturbing weights. This leads
to increased training time and relatively lower test accuracy,
especially in SoTA settings (see Appendix A.3). In contrast,
DASH preserves properly learned features through direction-
aware weight vector shrinkage, addressing these issues.

Theorem 4.1 concludes that ideal initialization can achieve
the same test accuracy as cold-starting. However, in real
world, DASH surpasses cold-starting in test accuracy. This
could be due to the difference between the discrete learn-
ing process in our framework and the continuous learning
process in real-world neural network training. Even if fea-
tures have already been learned, DASH can learn them in
greater strength compared to learning from scratch, because
it preserves the learned features during training. However,
in the SoTA setting, different observations are made, which
align more closely with our theoretical analysis. These
discussions are presented in Appendix A.3.

6. Discussion and Conclusion
In this work, we defined an abstract framework for feature
learning and discovered that warm-starting benefits from
reduced training time compared to random initialization but
can hurt the generalization performance of neural networks
due to the memorization of noise. Motivated by these obser-
vations, we proposed Direction-Aware SHrinking (DASH),
which shrinks weights that learned data-specific noise while
retaining weights that learned commonly appearing features.
We validated DASH in real-world model training, achieving
promising results for both test accuracy and training time.

Loss of plasticity is problematic in situations where new
data is continuously added daily, which is the case in many
real-world application scenarios. Our research aimed to in-
terpret and resolve this issue, preventing substantial wastes
in energy, time, and the environment. By elucidating the loss
of plasticity phenomenon in stationary data distributions, we
have taken a crucial step towards addressing challenges that
may emerge in real-world AI, where the continuous influx
of additional data is inevitable. We believe our findings con-
tribute to the development of more efficient and sustainable
AI that can adapt to ever-increasing real-world data.

We hope our fundamental analysis of the loss of plasticity
phenomenon sheds light on understanding this issue as well
as providing a remedy. To generalize our findings to any
neural network architecture, we treated the learning process
as a discrete abstract procedure and did not assume any hy-
pothesis class. Future research could focus on understanding
the loss of plasticity phenomenon via optimization or the-
oretically analyzing it in non-stationary data distributions,
such as in reinforcement learning.
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A. Experiments
This section provides omitted experiments and hyperparameters used in these experiments. Section A.1 presents the results
using non-stationary solutions. The following section compares the experiment results with other baselines, except for
those discussed in Appendix A.1. Additionally, we include results conducted on the state-of-the-art (SoTA) setting with
CIFAR-10, CIFAR-100 on ResNet-18, in Appendix A.3. In the Appendix A.4, we include hyperparmeters used in these
experiments.

The same experimental settings as in Section 5.1 are used. We conducted an experiment with an incremental training dataset
comprised of 50 chunks. At the start of each experiment, a new chunk is provided and added to the existing training dataset.
Before proceeding to the next experiment, the model is trained until achieving 99.9% train accuracy. Including several
baselines, we compared DASH with warm-starting while resetting the momentum at the start of every experiment. We found
that this approach cannot be a solution either, as shown in Tables 3-6.

All experiments are conducted using NVIDA-A6000 (48GB VRAM) GPU with two AMD EPYC 7763 64-Core Processor.
Number of steps required to converge are provided in each table.

A.1. Solutions in Non-Stationary Data Distribution

In this subsection, we describe solutions that aim to mitigate plasticity loss under non-stationarity, which cannot remedy the
loss of plasticity in an incremental setting with a stationary data distribution. Table 2 shows L2 INIT (Kumar et al., 2023)
and Reset (Nikishin et al., 2022) cannot be a solution in our setting.

Table 2. Results of training CIFAR-10 dataset trained on various models with solutions proposed to mitigating loss of plasticity in
non-stationary data distributions. Bold values indicate the best performance. For the number of steps, we did not provide bold formatting.
Results are averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
CIFAR-10 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 66.75 (0.55) 75.55 (0.18) 5213 (184) 17734 (184) 57.82 (0.04) 66.19 (0.01) 2889 (24) 8100 (7)
Warm Init 64.10 (0.12) 70.56 (0.30) 1173 (0) 4040 (184) 55.11 (0.10) 62.94 (0.47) 726 (29) 2160 (11)
L2 INIT 64.24 (0.80) 70.32 (0.09) 1173 (0) 4040 (184) 55.47 (0.43) 62.55 (0.19) 648 (14) 2139 (15)
Reset 63.97 (0.45) 72.03 (0.33) 1173 (0) 17986 (1596) 55.55 (0.30) 63.40 (0.26) 976 (51) 7225 (10)

VGG-16
Random Init 84.19 (0.35) 86.64 (0.12) 21375 (1475) 37032 (1243) 75.62 (0.08) 77.01 (0.22) 12743 (280) 12509 (343)
Warm Init 78.93 (0.44) 82.04 (0.04) 1825 (184) 4692 (319) 70.62 (0.24) 74.00 (0.33) 1954 (42) 4277 (315)
L2 INIT 82.79 (0.04) 82.11 (0.19) 193936 (58167) 6126 (665) 72.11 (0.14) 73.77 (0.37) 12489 (443) 4390 (94)
Reset 78.71 (0.26) 81.88 (0.35) 1564 (0) 3910 (552) 70.45 (0.36) 73.31 (0.25) 1814 (30) 3230 (51)

MLP
Random Init 57.54 (0.31) 58.62 (0.13) 13555 (184) 19289 (184) 51.23 (0.42) 52.02 (0.24) 7516 (166) 9794 (127)
Warm Init 56.44 (0.33) 57.67 (0.45) 2346 (0) 2216 (184) 50.60 (0.41) 51.98 (0.14) 2309 (408) 1701 (34)
L2 INIT 56.38 (0.39) 58.24 (0.06) 1955 (0) 2085 (184) 50.56 (0.51) 52.15 (0.33) 2221 (423) 1604 (73)
Reset 53.82 (0.32) 56.42 (0.09) 6125 (487) 3389 (184) 48.89 (0.24) 50.70 (0.25) 5955 (740) 2465 (64)

Furthermore, applying layer normalization cannot close the gap between cold-starting and warm-starting; rather, the
gap increases, as shown in Figure 5. Also, Nikishin et al. (2022) and Sokar et al. (2023) state that loss of plasticity in
non-stationary data distributions arises from inactive neurons in the model. However, this is not the case in our setting, as
demonstrated in Figure 6.
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Figure 5. The figure shows the results of training ResNet-18 on CIFAR-10 with three random seeds. Layer normalization (dashed lines) is
applied in place of batch normalization in ResNet-18, while solid lines represent the use of standard batch normalization. The red lines
denote warm-starting, and the blue lines denote cold-starting. The figure demonstrates that the layer normalization technique cannot
serve as a solution for plasticity loss. Moreover, the gap between warm-starting and cold-starting performance increases when layer
normalization is employed.
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Figure 6. The figure presents the results of training ResNet-18 on CIFAR-10 with three random seeds. The presence of dead neurons
is assessed after each block of ResNet-18 with training dataset, and the analysis reveals that there are no dead neurons in this case.
This finding suggests that techniques designed to revive dead neurons in non-stationary data distributions cannot effectively address the
plasticity loss observed in the incremental learning setting with stationary data, which is the primary focus of our study.
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A.2. Omitted Experiment Results

In this subsection, we provide the previously omitted experimental results in Tables 3-6, where the experimental settings are
described in Section 5.1. As mentioned earlier, we also compared DASH with warm-starting while resetting the momentum
at the start of every experiment, denoted as ”Warm ReM” in the following tables.

Table 3. Results of training Tiny-ImageNet dataset trained on various models. Bold values indicate the best performance, while underlined
values denote the second-best performance in each. For the number of steps, bold formatting is used for all methods except warm-starting.
Results are averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
T-ImageNet last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 25.69 (0.13) 31.30 (0.09) 30237 (368) 40142 (368) 17.37 (0.06) 21.95 (0.11) 17503 (53) 22513 (74)
Warm Init 9.57 (0.24) 13.94 (0.37) 3388 (368) 5474 (0) 6.70 (0.04) 9.88 (0.21) 1785 (5) 2773 (7)
Warm ReM 9.20 (0.16) 13.71 (0.29) 3388 (368) 5474 (0) 6.67 (0.08) 9.93 (0.30) 1787 (17) 2795 (14)
S&P 34.34 (0.48) 37.39 (0.18) 13815 (368) 26066 (1606) 25.43 (0.02) 28.47 (0.08) 7940 (15) 13172 (182)
DASH 46.11 (0.34) 49.57 (0.36) 8341 (368) 12251 (368) 33.06 (0.15) 35.93 (0.17) 4439 (48) 7900 (136)

VGG-16
Random Init 40.26 (0.30) 42.41 (0.13) 92927 (8940) 29976 (664) 28.19 (0.03) 30.40 (0.04) 48878 (799) 17094 (192)
Warm Init 17.11 (0.44) 20.77 (0.32) 1955 (0) 2997 (184) 12.91 (0.18) 15.14 (0.35) 4359 (162) 2513 (13)
Warm ReM 17.51 (0.38) 20.23 (0.06) 2085 (184) 2867 (184) 12.97 (0.24) 14.87 (0.14) 4130 (99) 2472 (8)
S&P 36.56 (0.96) 38.63 (0.73) 59432 (5538) 18898 (368) 23.91 (0.09) 25.98 (0.22) 28747 (366) 10494 (45)
DASH 44.29 (0.55) 44.40 (0.19) 69989 (6215) 22938 (1329) 28.47 (0.49) 29.11 (0.73) 31864 (362) 14258 (149)

MLP
Random Init 9.12 (0.06) 9.19 (0.25) 28934 (0) 42749 (975) 6.94 (0.01) 7.22 (0.03) 13596 (35) 17871 (71)
Warm Init 7.44 (0.18) 7.74 (0.25) 4692 (0) 4952 (368) 6.18 (0.03) 6.41 (0.11) 2437 (17) 2797 (38)
Warm ReM 7.54 (0.19) 7.86 (0.08) 4431 (368) 5474 (0) 6.34 (0.04) 6.23 (0.05) 2411 (35) 2821 (36)
S&P 9.61 (0.22) 10.28 (0.25) 33365 (2879) 55782 (975) 7.27 (0.01) 7.57 (0.04) 16227 (1458) 21126 (94)
DASH 10.17 (0.19) 10.77 (0.12) 30237 (975) 47702 (638) 7.67 (0.02) 8.12 (0.03) 17743 (899) 19455 (212)
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Table 4. Results of training CIFAR-10 dataset trained on various models. Bold values indicate the best performance, while underlined
values denote the second-best performance. For the number of steps, bold formatting is used for all methods except warm-starting. Results
are averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
CIFAR-10 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 66.75 (0.55) 75.55 (0.18) 5213 (184) 17734 (184) 57.82 (0.04) 66.19 (0.01) 2889 (24) 8100 (7)
Warm Init 64.10 (0.12) 70.56 (0.30) 1173 (0) 4040 (184) 55.11 (0.10) 62.94 (0.47) 726 (29) 2160 (11)
Warm ReM 64.46 (0.28) 70.92 (0.39) 1173 (0) 3910 (319) 55.29 (0.43) 62.85 (0.55) 727 (51) 2159 (1)
S&P 81.27 (0.03) 85.98 (0.18) 5865 (319) 32453 (1392) 71.66 (0.06) 75.95 (0.13) 2777 (45) 15178 (1462)
DASH 84.28 (0.38) 86.88 (0.15) 6516 (487) 13946 (1475) 75.01 (0.10) 77.93 (0.27) 3450 (54) 10691 (217)

VGG-16
Random Init 84.19 (0.35) 86.64 (0.12) 21375 (1475) 37032 (1243) 75.62 (0.08) 77.01 (0.22) 12743 (280) 12509 (343)
Warm Init 78.93 (0.44) 82.04 (0.04) 1825 (184) 4692 (319) 70.62 (0.24) 74.00 (0.33) 1954 (42) 4277 (315)
Warm ReM 78.85 (0.40) 81.41 (0.39) 1694 (184) 4692 (319) 71.02 (0.15) 73.05 (0.43) 2097 (123) 4071 (68)
S&P 85.13 (0.50) 88.10 (0.19) 21114 (319) 36624 (8545) 76.52 (0.11) 79.12 (0.24) 11794 (213) 14610 (938)
DASH 87.58 (0.40) 90.52 (0.15) 18057 (803) 47441 (15391) 79.92 (0.33) 82.93 (0.08) 11343 (123) 15618 (1049)

MLP
Random Init 57.54 (0.31) 58.62 (0.13) 13555 (184) 19289 (184) 51.23 (0.42) 52.02 (0.24) 7516 (166) 9794 (127)
Warm Init 56.44 (0.33) 57.67 (0.45) 2346 (0) 2216 (184) 50.60 (0.41) 51.98 (0.14) 2309 (408) 1701 (34)
Warm ReM 56.26 (0.17) 57.47 (0.32) 2215 (184) 2085 (184) 50.38 (0.33) 51.82 (0.33) 2497 (118) 1616 (45)
S&P 57.01 (0.43) 58.03 (0.62) 6647 (553) 7038 (319) 50.98 (0.27) 52.01 (0.19) 8228 (1145) 4262 (83)
DASH 57.20 (0.49) 58.78 (0.18) 6126 (803) 6126 (488) 51.36 (0.21) 52.50 (0.39) 7331 (1497) 3822 (4)

Table 5. Results of training CIFAR-100 dataset trained on various models. Bold values indicate the best performance, while underlined
values denote the second-best performance. For the number of steps, bold formatting is used for all methods except warm-starting. Results
are averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
CIFAR-100 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 35.52 (0.10) 40.16 (0.33) 10426 (184) 14336 (184) 25.65 (0.08) 29.87 (0.05) 5762 (76) 7619 (36)
Warm Init 25.38 (0.64) 32.02 (0.31) 1173 (0) 2346 (0) 19.34 (0.62) 24.01 (0.33) 866 (22) 1294 (12)
Warm ReM 24.89 (0.78) 31.88 (0.73) 1173 (0) 2346 (0) 19.07 (0.72) 24.03 (0.27) 817 (33) 1291 (21)
S&P 49.90 (0.09) 52.94 (0.20) 4952 (184) 12251 (1574) 37.26 (0.15) 40.27 (0.06) 2916 (29) 5896 (162)
DASH 57.79 (0.22) 60.67 (0.20) 3519 (0) 11339 (0) 43.88 (0.05) 45.69 (0.12) 2027 (58) 7184 (641)

VGG-16
Random Init 54.17 (0.51) 59.14 (0.39) 63603 (3198) 26979 (849) 39.79 (0.11) 43.78 (0.15) 29406 (408) 19153 (217)
Warm Init 36.94 (0.01) 40.15 (0.61) 3519 (0) 4562 (184) 28.85 (1.10) 29.82 (0.52) 4109 (209) 3646 (139)
Warm ReM 38.59 (0.87) 39.47 (0.74) 3388 (184) 4040 (184) 29.58 (0.51) 30.44 (0.51) 4020 (138) 3216 (46)
S&P 59.43 (0.16) 63.50 (0.41) 30237 (184) 11078 (184) 45.29 (0.15) 47.81 (0.13) 14321 (122) 7628 (133)
DASH 59.89 (0.31) 62.79 (0.23) 44704 (567) 21635 (487) 43.84 (0.22) 45.86 (0.36) 22817 (819) 12535 (324)

MLP
Random Init 28.40 (0.38) 29.48 (0.40) 17725 (184) 25415 (845) 22.31 (0.08) 23.56 (0.04) 11922 (2048) 12367 (214)
Warm Init 26.43 (0.23) 27.50 (0.14) 3389 (184) 2998 (184) 21.52 (0.11) 22.44 (0.05) 5147 (756) 2727 (98)
Warm ReM 26.18 (0.33) 27.17 (0.13) 3910 (552) 3258 (184) 21.39 (0.05) 22.5 (0.08) 7374 (2251) 2808 (156)
S&P 30.25 (0.28) 30.18 (0.13) 10818 (184) 24894 (369) 23.43 (0.15) 23.78 (0.08) 40492 (5237) 14400 (502)
DASH 30.31 (0.33) 31.21 (0.57) 16943 (488) 21766 (488) 23.40 (0.06) 24.41 (0.07) 52789 (4943) 13379 (467)
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Table 6. Results of training SVHN dataset trained on various models. Bold values indicate the best performance, while underlined values
denote the second-best performance. For the number of steps, bold formatting is used for all methods except warm-starting. Results are
averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
SVHN last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 86.49 (0.45) 89.89 (0.29) 5474 (0) 10948 (0) 77.99 (0.07) 83.33 (0.17) 3099 (14) 5545 (56)
Warm Init 84.11 (0.22) 89.03 (0.22) 1042 (184) 1303 (184) 75.67 (0.27) 81.30 (0.52) 630 (6) 993 (11)
Warm ReM 83.97 (0.12) 88.89 (0.27) 782 (0) 1564 (0) 75.84 (0.28) 81.14 (0.59) 635 (3) 1010 (7)
S&P 92.58 (0.17) 94.29 (0.06) 3519 (0) 11599 (184) 87.42 (0.13) 89.37 (0.06) 1861 (15) 5573 (109)
DASH 93.62 (0.03) 95.27 (0.02) 5083 (844) 14467 (1105) 89.63 (0.07) 91.69 (0.01) 2591 (75) 9180 (130)

VGG-16
Random Init 93.65 (0.25) 93.93 (0.07) 16552 (1290) 12251 (184) 90.45 (0.03) 90.53 (0.07) 8496 (204) 7441 (311)
Warm Init 92.65 (0.23) 93.20 (0.14) 1694 (737) 1042 (184) 89.60 (0.02) 89.83 (0.11) 1116 (42) 933 (25)
Warm ReM 92.99 (0.16) 93.28 (0.15) 1433 (184) 1042 (184) 89.61 (0.24) 89.82 (0.15) 1116 (22) 956 (28)
S&P 94.48 (0.21) 94.87 (0.20) 9775 (552) 8211 (319) 91.84 (0.03) 91.96 (0.12) 5956 (129) 4898 (13)
DASH 94.75 (0.19) 94.75 (0.17) 11860 (1208) 8602 (552) 91.85 (0.13) 92.05 (0.15) 6696 (157) 5502 (8)

MLP
Random Init 82.90 (0.04) 83.71 (0.32) 33756 (664) 36102 (368) 77.16 (0.15) 78.19 (0.07) 19607 (481) 18312 (331)
Warm Init 81.19 (0.22) 82.37 (0.16) 4692 (319) 2867 (184) 76.44 (0.24) 77.51 (0.08) 6884 (628) 2531 (50)
Warm ReM 81.13 (0.39) 82.25 (0.04) 4301 (552) 3128 (319) 76.49 (0.18) 77.46 (0.05) 6470 (693) 2626 (108)
S&P 82.24 (0.08) 82.72 (0.34) 31280 (638) 16422 (319) 77.11 (0.05) 77.93 (0.16) 20201 (707) 9786 (278))
DASH 82.31 (0.39) 83.18 (0.19) 25545 (1638) 16031 (638) 76.81 (0.03) 77.89 (0.07) 20062 (178) 9005 (305)
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A.3. Experiments on SoTA setting

In the state-of-the-art (SoTA) setting, we employed weight decay and standard data augmentation techniques, such as
horizontal flipping and random cropping. We also used a learning rate scheduler that reduces the learning rate step-wise by
a factor of 0.2 at 60, 120, and 200 epochs. By applying the learning rate scheduler, there is no need to compare training
time since training is completed at roughly the same epoch across all experiments. The weight decay was set to 0.0005,
and the initial learning rate was set to 0.1. All other settings remain the same as mentioned above. We tested this setup on
CIFAR-10 and CIFAR-100 using the ResNet-18 architecture.

The results in Table 7 show that DASH performs similarly to or slightly worse than starting from random initialization. It
appears that this is partly because all hyperparameters are tuned to maximize the performance of cold-starting, to achieve the
(close-to-)SoTA test accuracy numbers. Due to the lack of computational resources, we were unable to tune hyperparameters
specifically for DASH.

Furthermore, we believe this aligns more closely with our theoretical anylsis in Theorem 4.1, as the hyperparameters are
tuned to allow the model to learn as many features as possible, making it difficult for DASH to outperform cold-starting.

Moreover, we observe that S&P cannot be used in these SoTA settings. We believe this is due to the nature of S&P, which
shrinks all weights, while the SoTA setting is likely designed to avoid learning unuseful features, unlike the previous setting.
Consequently, it is plausible that retaining learned features is more important than forgetting them, making S&P unsuitable
for SoTA settings. Although DASH performs slightly worse than cold-starting, it is conceivable that it is better at retaining
features compared to S&P and other warm-starting methods, resulting in better overall performance.

The gap between warm-starting and cold-starting has been significantly reduced, likely due to data augmentation techniques
and the increase in learning rate when new data is introduced. Data augmentation techniques increase the amount of feature
information, allowing warm-starting to learn features that vanilla training (without augmentation) cannot (Shen et al., 2022).
Furthermore, as the learning rate is set to a higher value at the beginning of each new experiment, the model can forget
previously memorized data points and escape spurious minima that were difficult to escape from, which is consistent with
the findings of Berariu et al. (2021). Despite these improvements, a gap still exists between warm-starting and cold-starting.

Table 7. Results of training CIFAR-10, CIFAR-100 dataset trained on ResNet-18 with SoTA settings. Bold values indicate the best
performance, while underlined values denote the second-best performance. For the number of steps, we did not provide bold formatting
since we used learning rate scheduling. Results are averaged over three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
ResNet-18 last experiment last experiment across all experiments across all experiments
CIFAR-10 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 94.73 (0.14) 95.47 (0.17) 50439 (319) 47832 (184) 88.77 (0.04) 89.24 (0.15) 24826 (62) 23751 (34)
Warm Init 94.35 (0.31) 94.80 (0.20) 51221 (552) 47832 (184) 87.94 (0.26) 88.62 (0.57) 23759 (57) 21821 (174)
Warm ReM 94.56 (0.25) 95.00 (0.29) 51612 (319) 47962 (184) 88.20 (0.33) 88.56 (0.60) 23775 (16) 21786 (79)
S&P 94.15 (0.10) 94.73 (0.07) 51351 (184) 48353 (184) 88.38 (0.03) 89.27 (0.26) 25369 (49) 22805 (16)
DASH 94.25 (0.25) 95.06 (0.36) 51872 (487) 48223 (184) 88.65 (0.24) 89.34 (0.40) 24264 (75) 22233 (85)

CIFAR-100
Random Init 75.98 (0.01) 76.09 (0.12) 63081 (184) 56825 (184) 61.49 (0.09) 61.81 (0.08) 27536 (194) 25521 (91)
Warm Init 74.10 (0.09) 74.21 (0.26) 69598 (1462) 58128 (921) 58.40 (0.24) 58.44 (0.12) 28012 (114) 24562 (243)
Warm ReM 74.05 (0.13) 74.36 (0.13) 68425 (1689) 57216 (664) 58.32 (0.24) 58.33 (0.15) 27965 (190) 24534 (139)
S&P 72.96 (0.34) 73.71 (0.37) 64775 (664) 61387 (552) 57.33 (0.10) 57.68 (0.06) 28809 (148) 26476 (212)
DASH 74.84 (0.07) 74.98 (0.09) 67121 (1815) 59953 (1208) 60.89 (0.20) 61.29 (0.13) 28746 (306) 25630 (100)
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A.4. Hyperparameters

In this section, we will provide the hyperparameters utilized in our experiments. Additionally, we present heatmaps
illustrating the results for a wide range of two hyperparameters, α and λ, in DASH. The heatmaps in Figures 7 and 8 suggest
that DASH exhibits robustness to hyperparameter variations, indicating that its performance is less affected by the choice of
hyperparameter values.
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Figure 7. Heatmap illustrating the performance of DASH with various hyperparameter values on the CIFAR-10 dataset using a ResNet-18
architecture. Three runs averaged with standard deviation. Darker colors indicate higher values. The first two heatmaps show that higher
values are preferable, while the last heatmap demonstrates that lower values (brighter colors) are preferable.
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Figure 8. Heatmap illustrating the performance of DASH with various hyperparameter values on the CIFAR-100 dataset using a ResNet-18
architecture. Three runs averaged with standard deviation. Darker colors indicate higher values. The first two heatmaps show that higher
values are preferable, while the last heatmap demonstrates that lower values (brighter colors) are preferable.

We fixed the momentum to 0.9 and the batch size to 128. The learning rate is set to 0.001 for training ResNet-18, and for
other models, a learning rate of 0.01 is used. The value of ρ for SAM is chosen based on the performance of cold-starting.
The default value of α = 0.3 is used, and we did not change this value frequently. The perturbation parameter σ used in the
Shrink & Perturb (S&P) procedure is set to 0.01, as this value is considered optimal for perturbation, as described in Ash
& Adams (2020). Initially, we tested σ = 0.1 as the perturbation parameter, since Ash & Adams (2020) reported slightly
better test accuracy compared to σ = 0.01 in some cases. However, we experienced significantly poorer generalization
performance with σ = 0.1 compared to σ = 0.01, as shown in Figure 9. The hyperparameters used in our experiments are
described in Table 8.
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Figure 9. Heatmap showing the performance of S&P on CIFAR-10 using ResNet-18 with varying σ values. While Ash & Adams (2020)
reported better test accuracy when σ = 0.1 compared to σ = 0.01, we exhibited significantly lower performance compared to σ = 0.01.

Table 8. The hyperparameters used in our experiments are shown in the table, where the values on the left side of the ’/’ correspond to
those used for the SGD optimizer, and the values on the right side correspond to those used for the SAM optimizer. In the case of Shrink
& Perturb (S&P), the λ value corresponds to the shrinkage parameter, while the σ parameter controls the magnitude of the noise added to
the weights after shrinking. For L2 INIT, we did not perform experiments except for CIFAR-10, hence the values are omitted for other
datasets.

DASH S&P L2 INIT
ResNet-18 Momentum LR Batch Size ρ λ α λ σ λ

Tiny-Imagenet 0.9 0.001 128 0.05 0.05 0.3 0.05 0.01 -
CIF1R-10 0.9 0.001 128 0.1 0.05/0.3 0.3 0.3 0.01 1e-4

CIF1R-100 0.9 0.001 128 0.05 0.1 0.3 0.3 0.01 -
SVHN 0.9 0.001 128 0.05 0.3 0.3 0.3 0.01 -

VGG16
Tiny-Imagenet 0.9 0.01 128 0.05 0.05 0.3 0.05 0.01 -

CIF1R-10 0.9 0.01 128 0.1 0.05/0.1 0.3 0.1 0.01 1e-4
CIF1R-100 0.9 0.01 128 0.03 0.05 0.9/0.3 0.3 0.01 -

SVHN 0.9 0.01 128 0.05 0.1 0.9/0.3 0.3 0.01 -
MLP

Tiny-Imagenet 0.9 0.01 128 0.1 0.1 0.3 0.3/0.1 0.01 -
CIF1R-10 0.9 0.01 128 0.1 0.7/0.5 0.3 0.7/0.5 0.01 1e-4

CIF1R-100 0.9 0.01 128 0.1 0.1 0.3 0.3/0.1 0.01 -
SVHN 0.9 0.01 128 0.1 0.3 0.3 0.3 0.01 -
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B. Justification of Feature Learning Process
This section justifies our proposed learning framework proposed in Section 2.

Figure 10 shows that the initial gradient norm of training data, |N (j,0)|, can be a proxy for the training time until convergence.
As the initial gradient norm increases, the number of steps required for convergence also increases. While this figure uses
the gradient norm instead of the number of non-zero gradient data points due to the continuous nature of real-world neural
network training, we believe it resembles the behavior of non-zero gradient data points. Additionally, Figure 11 demonstrates
that the number of steps required for convergence increases as the number of data points increases in various datasets.
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Figure 10. Trained on ResNet-18 with five random seeds, where CIFAR-10 is divided into 50 chunks and incrementally increased by
adding new chunks at each experiment. Each point represents an individual experiment. The gradient norm is used as a proxy for the
number of non-zero gradient data points, which in turn serves as a proxy for the training time. A larger gradient norm indicates the model
needs to learn more features or memorize more data points to correctly classify all training data points.
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Figure 11. Figure trained on ResNet-18 with three random seeds. The dataset is divided into 50 chunks, and new chunks are incrementally
added for each experiment. The number of steps required for convergence increases with the amount of data when training a cold-started
neural network, which is a standard training.

To validate whether previously learned/memorized data points do not have large gradients when further trained with a
combined dataset (existing + newly introduced data) using warm-starting, we plotted the train accuracy on the previous
dataset for the first few epochs using CIFAR-10 trained on ResNet-18 (Figure 12). We observe that the newly introduced data
does not substantially affect the previously learned/memorized data points, even when further trained with warm-starting,
supporting the main idea of Theorem 3.4.
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To verify whether DASH truly captures our intuitions from the ideal algorithms, we conducted an experiment using
CIFAR-10 trained on ResNet-18, with the same experimental settings. Figure 12 demonstrates that when applying DASH,
the train accuracy on previous datasets rapidly increases after a few epochs compared to other methods. We argue that this
behavior stems from our algorithm’s ability to forget memorized noise while preserving learned features. As the number
of experiments increases, the number of learned features also grows. For a fair comparison, we used λ = 0.05 for DASH,
and when performing S&P and shrink, we shrank each weight by multiplying 0.05. In the case of S&P, after shrinking, we
added noise sampled from N (0, 0.012).
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Figure 12. The results are averaged over 10 random seeds. The x-axis represents the number of experiments, while the y-axis represents the
training accuracy on previous datasets. Warm-starting can retain previously learned data points when further trained with an incremented
dataset. Additionally, DASH, plotted in green, can retain more information compared to other methods.

As stated in Section 2, we posited that τ could serve as a proxy for dataset complexity. Figure 14 shows that as τ increases,
the threshold for considering a data point well-classified also increases, making it more difficult to correctly predict unseen
data points. This difficulty is particularly pronounced for warm-starting, leading to a widening gap between the random
initialization and warm initialization methods. Additionally, this phenomenon is observed in real-world neural network
training, as depicted in Figure 13. For datasets with higher complexity (from left to right), the gap between the two
initialization methods widens, exhibiting the same trend as an increasing τ .
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Figure 13. The same hyperparameters are used described in Section 5.1 with three random seeds. The gap in test accuracy between the
two initialization methods increases as dataset complexity increases.

We conducted synthetic experiments across a wide range of hyperparameters. Figure 14 uses the same setup as Section 3 but
varies τ . Figure 15 explores different numbers of classes, C, while Figure 16 investigates varying noise signal strengths, γ.
These results align with our findings from Theorems 3.4 and 4.1.
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Figure 14. Results using the same hyperparameters as described in Section 3, except for the threshold for a data point is considered
well-classified (τ ). Experiments were conducted with 10 random seeds. The trend observed in Figure 3 persists across different values of
τ .
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Figure 15. Results using the same hyperparameters as described in Section 3, except for the number of classes (C). Experiments were
conducted with 10 random seeds. The trend observed in Figure 3 persists across different values of C.
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Figure 16. Results using the same hyperparameters as described in Section 3, except for the strength of the noise, γ. Experiments were
conducted with 10 random seeds. The trend observed in Figure 3 persists across different values of γ.
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C. Proof of Theorems
This section provides the proof for Theorems 3.4 and 4.1, stated in Sections 3 and 4, respectively. Before presenting the
main proof, we state some technical lemmas.

Lemma C.1. For any learned feature set A,B ⊂ S that satisfies A ⊊ B and |A ∩ Sc| ≥ τ − 1 for any c ∈ [C], then we
have ACC(A) < ACC(B).

Proof of Lemma C.1. Since A ⊊ B, it is trivial that for any c ∈ [C] and Λ ⊂ Sc, we have

1 (|Λ ∩ A| < τ) ≥ 1 (|Λ ∩ B| < τ) . (1)

From the given condition, we can choose c∗ ∈ [C] such that there exists τ − 1 distinct features v1, . . . , vτ−1 ∈ A∩ Sc∗ and
vτ ∈ (B ∩ Sc∗) \ (A ∩ Sc∗). Our choice of Λ∗ ≜ {v1, . . . , vτ} ⊂ Sc∗ satisfies

1 (|Λ∗ ∩ A| < τ) > 1 (|Λ∗ ∩ B| < τ) . (2)

From (1), (2), and the definition of ACC(·), we have

ACC(A) = 1− C − 1

C
· 1
n

∑
c∈[C],Λ⊂Sc

nΛ ·1 (|Λ ∩ A| < τ) < 1− C − 1

C
· 1
n

∑
c∈[C],Λ⊂Sc

nΛ ·1 (|Λ ∩ B| < τ) = ACC(B).

For ease of presentation, let us say ”a model learns NA” if a model cannot learn any features. For example, if a model learns
u1, · · · , us ∈ S during s steps of training process and feature learning process ends in (s+ 1)-th step, let us say that we
learn u1, · · · , us,NA,NA, · · · .

Using the notion above, we prove that our learning process uniquely determines the behavior within the same class regardless
of the randomness of the training process, where the randomness may come from tie-breaking that can happen in the choice
of the most frequent non-learned feature.

Lemma C.2. Suppose we train two models with different randomness on T1:j for some j ∈ N starting from a learned set
L and without any memorized data. We use us and u′

s to denote features learned in s-th step of training process by two
models, respectively. The i-th learned feature within class c ∈ [C] is denoted as uc,i for the first model and u′

c,i for the
second model. Then, uc,i = u′

c,i for all c ∈ [C] and i ∈ N.

Proof of Lemma C.2. Suppose there exists some class c ∈ [C] and i ∈ N such that uc,i ̸= u′
c,i and choose one with the

smallest i. Without loss of generality, we may assume u′
c,i ̸= NA. Then, we have

max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{u′

c,1,...,u
′
c,i−1}

h(v; {u′
c,1, . . . , u

′
c,i−1})

= h(u′
c,i; {u′

c,1, . . . , u
′
c,i−1})

≥ γ

jn

The first equality holds since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1} from our choice of c, i and the second equality holds

since the second model learns u′
c,i. The last inequality holds since u′

c,i ̸= NA. Hence, uc,i ̸= NA and

h(uc,i; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}).

From our Assumption 3.3 and since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1}, we have uc,i = u′

c,i. This is contradictory
and we have our desired conclusion.

Lemma C.3. Suppose we train two models on T1:j1 and T1:j2 for some j1 > j2 starting from a learned set L and without
any memorized data. We use us and u′

s to denote features learned in s-th step of the training process by two models trained
on T1:j1 and T1:j2 , respectively. The i-th learned feature within class c ∈ [C] is denoted as uc,i for the first model and u′

c,i

for the second model. Then, uc,i = u′
c,i or u′

c,i = NA for all c ∈ [C] and i ∈ N.
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Proof of Lemma C.3. Suppose there exists some class c ∈ [C] and i ∈ N such that uc,i ̸= u′
c,i and u′

c,i ̸= NA. Choose one
with the smallest i. Since u′

c,i ̸= NA and from our choice of c and i, we have

max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{u′

c,1,...,u
′
c,i−1}

h(v; {u′
c,1, . . . , u

′
c,i−1})

= h(u′
c,i; {u′

c,1, . . . , u
′
c,i−1})

≥ γ

j2n
>

γ

j1n
.

Hence, uc,i ̸= NA and

h(uc,i; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}).

From our Assumption 3.3 and since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1}, we have uc,i = u′

c,i. This is contradictory
and we have our desired conclusion.

With above Lemma C.1, C.2 and C.3, we have the following theorems.

C.1. Proof of Theorem 3.4

By Lemma C.2 for the case j = 1, we immediately have our first conclusion by defining G as a learned feature set from
the first experiment. Furthermore, we have G ⊊ Sc and |G ∩ Sc| ≥ τ − 1 for any class c ∈ [C] from our feature learning
framework and Assumption 3.3.

We want to show that for any J ≥ 2, L(J)
warm = G. Since we never forget the learned feature in warm training, it is clear that

G = L(1)
warm ⊂ L(J)

warm. We may assume that the existence of J∗ ≥ 2 such that L(1)
warm ⊊ L(J∗)

warm and choose the smallest
J∗ ≥ 2. Then, in the first step of J∗-th experiment, a model learns some feature u. From our training process, u satisfies

n · h(u;G) = |T1:J∗ | · g(u; T1:J∗ ,N (J∗,0)
warm ) ≥ γ,

and since J∗ denotes the first experiment that can learn beyond G, L(J∗−1)
warm = G and

|T1:J∗−1| · g(u; T1:J∗−1,N (J∗−1,0)
warm ) = n · h(u;G) ≥ γ.

It means that u must have been already learned in the (J∗ − 1)-th experiment and it is contradictory.

Thus, we have L(J)
warm = L(1)

warm = L(1)
cold ⊂ L

(J)
cold for all J ≥ 2 and combining with Lemma C.1, we have

ACC(L(J)
warm) = ACC(L(1)

warm) = ACC(L(1)
cold) ≤ ACC(L(J)

cold).

To show that strict inequality for J > γ
δn , it suffices to show that L(1)

cold ⊊ L(J)
cold for J > γ

δn since we already showed that
G ⊊ S and |G ∩ Sc| ≥ τ − 1 for any class c ∈ [C]. In J-th experiment using cold-starting, by Lemma C.3, a model first
learns features in G, say, in the first s steps. In the (s+ 1)-th step, cold-starting model learns a new feature since

max
v∈S\G

|T1:J | · g(v; T1:J ,N (J,s)
cold ) = max

v∈S\G
Jn · h(v;G) > γ,

from the condition in the theorem statement. Hence, we have our conclusion for the test accuracy.

For the train time, since the following holds, we conclude T
(J)
warm < T

(J)
cold when J ≥ 2:

∑
j∈[J]

∣∣∣N (j,0)
warm

∣∣∣ = T (J)
warm ≤ Jn <

nJ(J + 1)

2
=

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣ = T
(J)
cold.
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C.2. Proof of Theorem 4.1

Recall that the idealized algorithm works by forgetting memorized data points while retaining previously learned fea-
tures. In other words, at the initial step of the (j + 1)-th experiment, we have L(j+1,0)

ideal = L(j)
ideal. Additionally,

g(v; T1:j+1,N (j+1,0)
ideal ) = h(v;L(j+1,0)

ideal ) holds for all v ∈ S sinceM(j+1,0) = ∅.

We will show that L(J)
cold = L(J)

ideal holds for all J ≥ 1 by using induction.

When J = 1, by applying Lemma C.2, it holds since L(1)
cold = L(1)

ideal. Suppose L(J−1)
cold = L(J−1)

ideal for some J ≥ 2 and we
will prove that L(J)

cold = L(J)
ideal. We have the following at the first step of the J-th experiment for all v ∈ S:

g(v; T1:J ,N (J,0)
ideal ) = h(v;L(J−1)

ideal )

For the cold-starting method in the J-th experiment, by Lemma C.2, let s be the step at which the model first finishes
learning features in L(J−1)

cold . Then, at the (s+ 1)-th step for all v ∈ S:

g(v; T1:J ,N (J,s)
cold ) = h(v;L(J−1)

cold ) (3)

Since we assumed h(v;L(J−1)
cold ) = h(v;L(J−1)

ideal ), the cold-starting method starts to behave identically to the ideal method
from the (s+ 1)-th time step onwards, by Lemma C.2, resulting in L(J)

cold = L(J)
ideal.∣∣∣N (J,0)

ideal

∣∣∣ < |T1:J | for J ≥ 1 since
∣∣∣L(J)

ideal ∩ Sc
∣∣∣ ≥ τ for some class c ∈ [C] due to Assumption 3.3. Thus, the training time

of the idealized method, T (J)
ideal, is as follows:

∑
j∈[J]

∣∣∣N (j,0)
ideal

∣∣∣ = T
(J)
ideal < T

(J)
cold =

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣ = nJ(J + 1)

2
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D. Omitted Algorithms
In this section, we provide detailed training algorithms for our proposed learning framework. Algorithm 2 outlines the
standard training method within our learning framework. Subsequently, we compare the Cold-starting, Warm-starting, and
Ideal methods using the given abstract algorithm in the following algorithms.

Algorithm 2 Training Process
Require:

• L: Set of learned features
•M: Set of memorized data points
• T : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified
function TrainingProcess(L,M, T , γ, τ )

Initialize:
N ← {(x, y) ∈ T : |V(x) ∩ L| < τ ∧ (x, y) /∈M}
s← 0

while N ̸= ∅ do
s← s+ 1
g(v; T ,N )← 1

|T |
∑

(x,y)∈N 1(v ∈ V(x)) for v ∈ S
vs ← argmax

u∈S\L
g (u;N ) break ties arbitrarily

if g(vs; T ,N ) ≥ γ/ |T | then
L ← L ∪ {vs}
N ← {(x, y) ∈ N : |V(x) ∩ L| < τ}

else
M←M∪ {(x, y) ∈ N : |V(x) ∩ L| < τ}
N ← ∅

end if
end while
return: L,M

end function

Algorithm 3 Cold-Starting until J-th Experiment
Require:

• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified
Initialize:
L(0) ← ∅
M(0) ← ∅

for j = 1 to J do
L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ)
L(j) ← ∅
M(j) ← ∅

end for
return: L(j)
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Algorithm 4 Warm-Starting until J-th Experiment
Require:

• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified
Initialize:
L(0) ← ∅
M(0) ← ∅

for j = 1 to J do
L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ)

end for
return: L(j)

Algorithm 5 Ideal-Starting until J-th Experiment
Require:

• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified
Initialize:
L(0) ← ∅
M(0) ← ∅

for j = 1 to J do
L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ)
M(j) ← ∅

end for
return: L(j)
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