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Abstract

Recent advancements in Transformer-based language models have spurred interest
in their use for biological sequence analysis. However, adapting models like BERT
is challenging due to sequence length, often requiring truncation for proteomics
and genomics tasks. Additionally, advanced tokenization and relative positional
encoding techniques for long contexts in NLP are often not directly transferable
to DNA/RNA sequences, which require nucleotide or character-level encodings
for tasks such as 3D torsion angle prediction, distance map prediction or sec-
ondary structure prediction. To tackle these challenges, we propose an adaptive
dual tokenimzation scheme for bioinformatics that utilizes both nucleotide-level
(NUC) and efficient BPE tokenizations. Building on the dual tokenization, we
introduce BiRNA-BERT, a 117M parameter Transformer encoder pretrained with
our proposed tokenization on 28 billion nucleotides across 36 million coding
and non-coding RNA sequences. The learned representation by BiRNA-BERT
generalizes across a range of applications. The BiRNA-BERT model achieves
state-of-the-art results in long-sequence downstream tasks, performs comparably
well in short-sequence tasks, and matches the performance in nucleotide-level
structural prediction tasks, of models six times larger in parameter size, while
requiring 27 times less pre-training compute. In addition, our empirical experi-
ments and ablation studies demonstrate that NUC is often preferable over BPE
for bioinformatics tasks, given sufficient VRAM availability. We further demon-
strate the applicability of the dual-pretraning and adaptive tokenization strategy
employing this concept on a DNA language model which provides comparable
performance to 66X compute heavy DNA language models. BiRNA-BERT can
dynamically adjust its tokenization strategy based on sequence lengths, utilizing
NUC for shorter sequences and switching to BPE for longer ones, thereby offering,
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for the first time, the capability to efficiently handle arbitrarily long DNA/RNA
sequences. 2

1 Introduction

Figure 1: Overview of BiRNA, which processes a given RNA sequence through nucleotide and BPE
tokenization. The resulting tokens, which vary in tokenization precision, are mixed and utilized
to pretrain the masked language model. A number of downstream tasks are conducted to validate
BiRNA’s performance under different conditions.

The introduction of encoder-only transformer models has revolutionized Natural Language Processing
(NLP) by significantly improving our ability to extract deep semantic representations from text which
can be used for a wide range of downstream tasks [4, 12]. This success has inspired researchers to
apply the pretraining-finetuning paradigm to a wide range of topics beyond NLP, including protein
language models [11], biological sequence modeling[8, 25, 2, 13, 5], and single cell language
models[1] with remarkable success . However, transferring improvements from natural language
processing (NLP) to biological sequences is not always straightforward. A key challenge arises from
the need to model extremely long sequences for certain tasks, as biological sequences can range from
tens to millions of nucleotides or amino acids [17]. The standard transformer encoder architecture
(e.g., BERT [4]) uses positional embeddings that limit the maximum input length to usually 512
or 1024, requiring truncation or inefficient workarounds for biological sequences (truncate at 1024
length for ProtTrans [5], and 5120 in EMS-2 [11]). Longer sequence lengths also result in the loss of
attention a transformer architecture with fixed positional encoding, like cosine positional embeddings.
The limited number of approaches to adopting new positional encoding for larger context window
handling and improved pretraining developed in NLP often fall short in biological sequencing. For
example, Nucleotide Transformers (NT) [3] replace nucleotide-level tokenization (NUC) with non-
overlapping k-mers, where k-mers represent subtokens of fixed length k, enabling the model to handle
sequences that are k times longer while sacrificing granularity. This limitation is acknowledged in
DNABERT-2 [25], where they demonstrate the poor sample efficiency of k-mer tokenization and
propose adapting BPE tokenization (concatenating statistically significant nucleotides into a single
token) for DNA sequences. However, in domains like RNA or protein sequences where residue
level tasks (per residue/nucleotide embedding) are important, simply using BPE tokenization would
prevent the trained foundation model from generating nucleotide- or amino acid-level predictions,
which are essential for these additional tasks.

2The code and model weights are available at https://github.com/buetnlpbio/BiRNA-BERT
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Thus the challenges with biological language models are threefold. First, handling the longer
sequences without the loss of attention. It is essential to make sure that even if during the training we
train the model with short sequences, the model can extrapolate for much longer sequences during a
downstream inference task. Secondly, it is preferable to avoid truncation of the sequences which is
commonly done in most of the biological language models to fit into the available computing memory.
Thus we need to make sure we use utilize the complete sequence length and in the same time make
the computation efficient to be fitted in available computing resources. Finally, it is essential to ensure
that any compression technique such as k-mer compression of statistical compression of tokens with
BPE tokenization do not sacrifice the capability to generate token-wise embedding when necessary
for residue/nucleotide level tasks such as structural properties prediction.

Given the above-mentioned limitations, we propose Bi-tokenization RNA BERT (BiRNA-BERT) a
Transformer encoder model for RNA sequences pretrained on both NUC and BPE tokens of the same
RNA sequences simultaneously. BiRNA-BERT uses Attention with Linear Biases (ALiBi) which
allows the context window to be extended without retraining and can dynamically choose between
NUC and BPE tokenization based on the input sequence length. For shorter sequences, it utilizes
NUC to capture fine-grained patterns, and for longer sequences, it switches to more efficient BPE
tokenization to reduce memory requirements without truncating the input. This dynamic tokenization
and context length expansion allows BiRNA-BERT to enable downstream tasks with arbitrarily long
sequences and set state-of-the-art results on the miRNA-lncRNA interaction dataset [23]. Along with
sequence-level tasks, the dual tokenization approach allows us to conduct nucleotide-level analyses,
such as RNA 3D torsion angle prediction [19], 3D distance map prediction [21], secondary structure
prediction [9] , as additional concurrent downstream tasks.

Our main contributions can therefore be summarized as follows:

1. We present an effective approach - dual tokenization pretraining - that extends the effective
context window of biological foundation models with efficient tokenization while retaining
the ability to generate character-level embeddings. Shorter sequences are tokenized at
nucleotide level ( each nucleotide is considered one single token) and for longer sequences
BPE tokenization is used (compressing statistically significant nucleotides into a single
token) instead of truncation.

2. Using dual tokenization and ALiBi, we train BiRNA-BERT which achieves absolute state-
of-the-art results on long-sequence tasks and is comparable to 6× larger models on short-
sequence and nucleotide-level tasks while being trained with 27× less pretraining compute.
BiRNA-BERT can dynamically adjust the tokenization algorithm based on the sequence
length and the available computing resource. BiRNA-BERT can also achieves very com-
parable performance for various downstream tasks with structural prediction such as 3D
torsion angle prediction, 3D distance map prediction , and secondary structure prediction.

3. Through information theoretic analysis we demonstrate the information loss that occur
during BPE tokenization compared to nuclotide level tokenization. To validate this result,
we also conduct an empirical study on several tasks to show that NUC outperforms BPE on
tasks where sequences are short enough to fit into GPU memory.

4. The training and adaptive tokenization approach that BiRNA-BERT proposes can be seam-
lessly integrated to any other biological language modeling tasks. Do demonstrate that, we
also propose BiDNA-BERT which is a significantly smaller DNA language model compared
to DNABERT-2, however provides comparable performance with magnitude times larger
and compute heavy models.

2 Methods

In this section, we first describe the applicability and methodology of using BPE tokenization for
BiRNA-BERT (Subsection 2.1). Then we describe the motivation behind using relative positional
encoding (ALiBi) for extrapolating the trained model to longer sequences in downstream tasks
(Section 2.2). In 2.3, we discuss the dual tokenization pretraining approach and its motivation.
Finally, we describe the pretraining configurations and datasets used in Section 2.4. The overall
training approach of BiRNA-BERT is shown in Figure 1.
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2.1 Byte-Pair Encoding

Byte-Pair Encoding (BPE) [6, 18] is a subword tokenization technique that iteratively merges the
most frequent pairs of bytes or characters to create new tokens, thereby reducing the vocabulary size
to a fixed number.

BPE Tokenization in RNA Sequence Modeling In the context of RNA sequences, the variability
and complexity of the nucleotide sequences pose a challenge for traditional tokenization methods.
Fixed k-mer-based tokenization can result in an excessively large and sparse vocabulary of size
4k + 5 [24], as it captures all possible k-mers regardless of their biological significance or frequency.
BPE tokenization, on the other hand, leverages the statistical frequency of sub-sequences to create a
more compact and meaningful vocabulary. By iteratively merging the most frequent pairs of sub-
sequences, BPE ensures that commonly occurring patterns are represented by single tokens, while
less frequent patterns are broken down into smaller units. This process is particularly beneficial for
RNA sequences, where certain motifs and regions (e.g. hairpin loops, binding sites) occur frequently
and are biologically significant.

2.2 Positional Encoding in the Transformer Architecture

Since the attention mechanism is permutation-invariant, positional information must be explicitly
added. There are two main strategies for encoding positional information - fixed and relative. In
fixed positional encoding schemes such as sinusoidal [22] or learned embeddings [4], the positional
information is a vector function of the position index within some predefined context length. Since the
positional information is explicit in the form of a vector, these methods cannot extrapolate to context
lengths beyond those seen in pretraining. Popular algorithms for relative positional embeddings are
T5 Bias [16], Rotary Positional Embedding (RoPE) [20], and Attention with Linear Biases (ALiBi)
[15]. Recently, RiNALMo [13] utilized Rotary Positional Embedding (RoPE) but still truncated
sequences to 1022 nucleotides since extending the context window using RoPE requires additional
training to preserve performance.

Attention with Linear Biases (ALiBi) In contrast to complex methods such as T5 Bias and RoPE
which are hard for models to extrapolate without continued pretraining, ALiBi simply reduces the
attention score between two tokens by a scaler function of their distance.

2.3 Dual Pretraining and Adaptive Tokenization

To address the limitations of BPE for shorter sequences and nucleotide-specific tasks, we introduce
a dual pretraining and adaptive tokenization strategy. During pretraining, each RNA sequence is
tokenized using both nucleotide-level (NUC) and Byte Pair Encoding (BPE). The model is trained
simultaneously on both token types, with 30% of tokens masked in each set, allowing it to learn from
both granular and compressed representations. During inference, we adopt an adaptive tokenization
approach: BPE is used for longer sequences to enhance memory efficiency, while NUC is applied to
shorter sequences for more accurate nucleotide-specific processing. This combined strategy enables
the model to handle diverse sequence lengths effectively, improving generalization and computational
efficiency. These two phases are described in Algorithm 1, and 2.

We train a BPE tokenizer on the whole collection of RNAcentral database with around 36 million
non-coding RNA sequences and 530K mRNA sequences from RefSeq database. With a maximum
vocabulary size of 4096, we find the statistically most frequent RNA subsequences which we refer
as the BPE vocabulary. This collection of BPE tokens follows an exponential distribution which is
described in detail in the Appendix/Supplementary material. On our pretraining data mixture, we
determine that P (A) ≈ 0.2726, P (U) ≈ 0.2144, P (C) ≈ 0.26642, and P (G) ≈ 0.2465. With
this nucleotide level tokens distribution, we analyze the information loss during BPE compression
compared to nucleotide level tokenization.

Performing BPE tokenization on long sequences effectively compresses the sequence with an average
BPE token length L̄ ≈ 6.0768. We show in the subsequent sections that the empirical per-character
entropy ratio is Ĥe(XBPE)

Ĥe(XNUC)
≈ 0.7514 < 1, where Ĥe(XBPE) is the average character-level entropy

of the BPE representation of a sequence and Ĥe(XNUC) is the per-character entropy for nucleotide
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Algorithm 1 Pretraining Phase
Require: Set of RNA sequences {seq1, . . . , seqn}, where n ≈ 36 million
Ensure: Pretrained Model

1: for each seqi in {seq1, . . . , seqn} do
2: Generate NUC Tokens: tokensNUC ← NUC Tokenization(seqi) ▷ Tokenize at the

nucleotide level
3: Generate BPE Tokens: tokensBPE ← BPE Tokenization(seqi) ▷ Apply BPE tokenization
4: Simultaneous Masking:
5: Randomly mask 30% of tokensNUC and 30% of tokensBPE

6: rmask
NUC ← Masked NUC tokens

7: rmask
BPE ← Masked BPE tokens

8: Compute Losses:
9: LNUC ← −

∑
i∈MNUC

logP (νi|rmask
NUC) ▷ NUC loss

10: LBPE ← −
∑

i∈MBPE
logP (βi|rmask

BPE ) ▷ BPE loss
11: Total Loss:

Ltotal = LNUC + LBPE

12: Optimize Parameters:
13: Update model parameters Θ← Θ− η∇Ltotal ▷ Optimize with gradient descent
14: end for
15: return Pretrained Model

Algorithm 2 Inference Phase
Require: RNA Sequence seq, Max Token Limit MAX_TOKENS, Trade-off Hyperparameter k
Ensure: Tokenized Sequence

1: if len(seq) > k ×MAX_TOKENS then
2: tokens← BPE Tokenization(seq) ▷ Use BPE for long sequences
3: else
4: tokens← NUC Tokenization(seq) ▷ Use NUC for short sequences
5: end if
6: return tokens ▷ Tokenized sequence for inference

tokenization. Therefore, BPE tokenization is essentially a trade-off between information compression
and computational efficiency. Although compressed information is likely more difficult for language
models to process, it is well-compensated by the ability to process sequences up to 6 times longer
than the original input with the same GPU memory constraints.

2.4 Pretraining Configuration and Dataset

We pretrain the BiRNA model, which simultaneously uses both Byte Pair Encoding (BPE) and
nucleotide-level (NUC) tokenizations. This configuration processes 32.254 billion tokens over 48.42
hours of training. The model is trained using MosaicML [14] with a learning rate of 2 × 10−4, a
warmup ratio of 0.06, and a batch size of 200 per device across eight Nvidia RTX 3090 GPUs.

The pretraining datasets include both non-coding RNA (ncRNA) and coding RNA (mRNA) sequences.
ncRNA data were sourced from RNAcentral, comprising 36 million sequences and 26.42 billion
nucleotides. mRNA sequences were obtained from RefSeq, totaling 532,852 sequences and 2.22
billion nucleotides. This comprehensive dataset enables the model to capture the functional diversity
of RNA sequences across various biological contexts.

3 Results

This section highlights the results from pretraining BiRNA-BERT and its performance on various
downstream tasks. Section 3.1 covers the results of the base pretrained model and unsupervised
species clustering. In Section 3.2, we demonstrate that BiRNA sets new state-of-the-art results
on RNA-RNA interaction by leveraging dynamic tokenization. In Section 3.3, we demonstrate
that nucleotide embeddings from BiRNA have identical performance to a BERT trained solely on
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nucleotides. We cover other short sequence downstream tasks in Section 3.4 to establish that dual
tokenization training has no drawbacks over conventional training. BiRNA-BERT even significantly
surpasses similar-sized models such as RNA-FM and BERTRBP on short-sequence tasks.

3.1 Unsupervised Clustering Performance

To understand BiRNA-BERT’s capacity of unsupervised representation of the embedding space for
RNA sequences from different structural families, we perform unsupervised clustering on 9 RNA
structural families: 16s, 23s, 5s, RNaseP, grp1, srp, tRNA, telomerase, tmRNA. Upon extracting the
embeddings with BPE tokenization we perform a TSNE dimensionality reduction and plot the 2D
embedding space in Figure 2. Comparing the clustering performance with Rinalmo, we can visualize
that different families are more distinctly clustered with BiRNA-BERT. This comparison indicates
the better expressive capacity of BiRNA-BERT with BPE tokenization.

(a) BiRNA-BERT-BPE (Ours) (b) RINALMo

Figure 2: Comparison of unsupervised RNA structural family classification.

3.2 Long-Sequence Task with Dynamic Tokenization: miRNA-lncRNA Interaction Prediction

Long non-coding RNA (lncRNA) related studies frequently involve much longer sequences which
necessitated task-specific architectures such as PmliPred [10] and CORAIN [23]. We evaluate
miRNA-lncRNA interaction to verify the impact of sequence truncation during feature embedding
by previous models and compare it with our approach, which avoids sequence cropping to fit
computational memory. Instead, we dynamically compress sequence information using our adaptive
tokenization scheme. We use three benchmarking datasets for the RNA-RNA interaction prediction
task compiled by (author?) [10]. This is a binary classification task to determine whether a miRNA-
lncRNA pair interacts or not. We test two strategies using BiRNA: BPE and NUC with truncation,
named BiRNA-BPE and BiRNA-NUC. Both strategies use the same BiRNA models and only the
input tokenization scheme differs. We always encode miRNA using NUC due to their short lengths.
We use NUC with truncation for lncRNA for RNA-FM, RiNALMo, and BiRNA-NUC. We truncate
all inputs to 1022 tokens due to the context window limitation of RNA-FM and RiNALMo even
though BiRNA-NUC can process longer sequences due to ALiBi. We do not truncate input sequences
to BiRNA-BPE since after BPE tokenization the maximum sequence length is 807, still lower than
NUC.

The results in Table 1 offer several interesting insights: RNA-FM performs significantly worse than
the non-LM-based approach in 4 of 6 test datasets. However, RiNALMo outperforms the current
state-of-the-art in all datasets despite sequence truncation. This is noteworthy, as RiNALMo is a
six times larger language model than RNA-FM, significantly enhancing its expressive capability.
BiRNA-NUC outperforms RNA-FM in 5 out of 6 datasets and provides comparable performance
to RiNALMo, despite being the same size as RNA-FM. BiRNA-BPE outperforms RiNALMo by
a substantial margin, with improvements of 4.74%, 5.54%, 3.35%, and 3.16% on the ATH-GMA,
ATH-MTR, GMA-MTR, and MTR-GMA datasets. It also offers comparable performance in the
GMA-ATH and GMA-MTR datasets, within 0.51% and 1.2% margins. An intuitive way to compare
NUC and BPE tokenization is by considering information loss. NUC explicitly truncates sequences
to 1022 nucleotides, losing all subsequent information. BPE, on the other hand, compresses the entire
sequence (See Appendix). In miRNA-lncRNA interaction tasks, we demonstrate that compression
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Table 1: Accuracy of different models on miRNA-lncRNA dataset. CORAIN [23] is a task-specific
CNN-autoencoder and the current state-of-the-art. We fine-tuned RNA-FM, RiNALMo, and both
variants of BiRNA-BERT with optimal hyperparameters found using grid search.

Model Train-Test Dataset
ATH-GMA ATH-MTR GMA-ATH GMA-MTR MTR-ATH MTR-GMA

CORAIN 69 74 67 93 58 84
RNA-FM 68.56 71.68 69.90 94.68 57.15 83.92
RiNALMo 72.14 75.38 70.93 95.08 65.55 85.82
BiRNA-NUC 72.56 77.90 66.01 94.94 61.05 84.18
BiRNA-BPE 75.52 79.56 70.55 93.84 67.75 88.54

Table 2: Performance analysis of RNA structural properties prediction by BiRNA-BERT, RNA-FM,
and RiNALMO. BiRNA-BERT is 6X smaller and uses 27X less compute compared to RINALMo.

Method
3D Torsion Angle

( Mean Absolute Error)
3D Distance Map

(R2 Score)
Secondary Structure

(F1 Score)
VL TS1 TS2 TS3 Validation Validation TS0

BiRNA-BERT 28.085 28.181 26.704 31.979 0.82 0.694 0.700
RNA-FM 28.333 29.916 27.710 32.000 0.71 0.657 0.685
RINALMo 27.888 28.622 25.915 31.513 0.81 0.712 0.701

(BPE) is preferable to explicit information loss (NUC), while also being more computationally
efficient (807 tokens versus 1024 tokens).

3.3 Nucleotide-Level Task: Structural Properties Prediction

Along with sequence-level tasks described in the previous sections, BiRNA-BERT can simultaneously
be applied to different nucleotide level tasks where the embedding information per nucleotide
is required. To verify BiRNA-BERT’s capability of such granular-level task, we investigate the
performance of BiRNA-BERT on three structural tasks for RNA: RNA 3d torsion angle prediction,
RNA 3d distance map prediction, and RNA secondary structure prediction. Detail description of
the datasets along with the training and testing data are provided in the Appendix. In Table 2, we
compare the performance of BiRNA-BERT with RiNALMo and RNA-FM. All the models are trained
for 30 epochs with full fine-tuning. On the 3d torsion angle prediction task, out of the three datasets,
BiRNA-BERT outperforms RiNALMo in one dataset and achieves second best performance on
the other two datasets even being a 27X smaller model compared to RiNALMo. BiRNA-BERT
significantly outperforms similar sized model RNA-FM on all the datasets. In the 3d distance map
prediction task, on the independent validation dataset, BiRNA-BERT outperforms RiNALMo and
RNA-FM in terms of R2 score with an score of 0.82. In the secondary structure prediction dataset,

True 3D Distance Map
(C1’ - C1’ Distance)

Predicted Distance Map by
RiNALMo (R2 Score = 0.915)

Predicted Distance Map by
BiRNA-BERT (R2 Score =

0.917)

Figure 3: Visualization of RNA 3d distance map prediction for the longest sequence in the testing
dataset by RiNALMo and BiRNA-BERT.
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True Secondary Structure Secondary Structure Predicted by
RiNALMo (F1 score = 0.92)

Secondary Structure Predicted by
BiRNA-BERT (F1 score = 0.98)

Figure 4: Visualization of RNA secondary structure prediction task for the longest sequence in the
testing dataset by RiNALMo and BiRNA-BERT.

on the independent test dataset (TS0), BiRNA-BERT and RiNALMo perform equally well compared
to RNA-FM. In Figure 3, we show the prediction performance of BiRNA-BERT and RiNALMo
on the longest RNA sequence in the test dataset. We see that, RiNALMo and BiRNA-BERT both
provide very accurate prediction with R2 score of 0.915 and 0.917 by RiNALMo and BiRNA-BERT
accordingly. Similarly, in Figure 4, similar visualization is performed for RNA secondary structure
prediction task for the longest sequence in the TS0 dataset. BiRNA-BERT provides an F1 score of
0.98 whereas RiNAMLo achieves 0.92. These results demonstrate that, BiRNA-BERT can effectively
handle long sequence prediction tasks too. Particularly for the nucleotide level prediction tasks
described in this section, BiRNA-BERT performs equally as good as 27X times compute heavy
RiNAMLo model.

3.4 How Close in Short Sequences? : RNA Splicing Site Prediction

Table 3: F1 Score for RNA Splicing Site Prediction on Independent Test Sets
Model FT Fish Fly Plant
RINALMo ✓ 0.974 0.958 0.953
RNA-FM ✓ 0.937 0.919 0.877
Spliceator × 0.919 0.910 0.908
BiRNA-NUC ✓ 0.993 0.938 0.938

We consider the downstream tasks that can be performed within the computational limit of traditional
BERT-based architecture as short-sequence tasks. We do not need to truncate the sequences in
this case explicitly. We consider the task of binary classification of RNA splicing site prediction
specifically for acceptor sites. We compare our model with RiNALMo, RNA-FM, and non-LM-based
SOTA approaches in Table 3. BiRNA substantially outperforms Spliceator and the similar-sized
RNA-FM (BERT) in all the datasets. Bi-RNA outperforms RiNALMo by 1.6% on the Fish dataset
and is within 1.3% and 1.6% margins on Fly and Plant datasets.

3.5 Information Theoretic Analysis of Nuelcotide vs BPE Tokenization with Empirical
Validation

We compare the information content of nucleotide and BPE tokens to assess their efficiency in repre-
senting RNA sequences. Nucleotide tokens have a per-token entropy upper bound of H(XNUC) = 2
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bits, assuming a uniform distribution. In contrast, BPE tokens, modeled with exponentially dis-
tributed probabilities P (xi) = C

2ai , have an entropy of H(XBPE) ≈ log2

(
(C+1)(C+1)/C

C

)
. The

character-level entropy for BPE is Ĥ(XBPE) =
H(XBPE)

L̄
, with BPE being more efficient when

Ĥ(XBPE)

Ĥ(XNUC)
< 1. Empirically, He(XNUC) ≈ 1.9939 bits and He(XBPE) ≈ 9.1044 bits, with an

average BPE token length L̄ ≈ 6.0768, yielding a per-character entropy ratio of ≈ 0.7514. While
BPE provides compression, it may lose some information, explaining its lower performance on short
sequences, despite enabling models like BiRNA-BERT to handle longer inputs within the same
computational limits. Full derivations are provided in the Appendix.

Advantages of NUC over BPE for Short Sequences: To validate the results of the information
theoretical analysis discussed above, we compare the performance of BPE and NUC tokenization on
short-sequence binary classification tasks (Table 4)) RNA-Protein interaction prediction and ii) RNA
N6-methyladenosine site prediction. For RNA-Protein interaction, we use datasets from RBPsuit
(AARS, AATF, AKAP1, AGGF1, ABCF1), each with sequence lengths of 101. Results in Table 4
show that BiRNA-NUC consistently outperforms BiRNA-BERT, with improvements ranging from
2.24% (AATF) to 4.30% (ABCF1). BiRNA-NUC also surpasses the current SOTA (BERTRBP [24])
by up to 7.43% (ABCF1).

For RNA N6-methyladenosine site prediction, BiRNA-NUC again outperforms BiRNA-BERT across
human and mouse with average improvements of 3.88%, 2.24%, and 1.68%, respectively. BiRNA-
NUC also outperforms Deepm6A-MT [7], with gains of 0.33% (Human), 0.45% (Mouse), and 0.06%
(Rat). Overall, NUC tokenization offers better performance on short-sequence tasks due to less
information loss, consistent with our information-theoretic analysis.

Table 4: F1 Score for RNA-Protein Interaction Prediction and Accuracy for RNA N6-Methyladenosine
Sites Prediction across different models and datasets.

Model RNA-Protein Interaction RNA N6-Methyladenosine

AARS AATF ABCF1 Human Mouse

Brain Kidney Liver Brain Kidney Liver

BiRNA-BERT 0.6792 0.7014 0.7296 0.714 0.786 0.795 0.779 0.794 0.709

BiRNA-NUC 0.7034 0.7218 0.7599 0.753 0.811 0.823 0.802 0.820 0.747

BERT-RBP 0.6797 0.7016 0.7066 — — — — — —

Deepm6A-MT — — — 0.751 0.809 0.815 0.799 0.816 0.733

4 Conclusions

This study first empirically demonstrates that two popular tokenization approaches, NUC and BPE,
each have their own advantages in RNA sequencing tasks: BPE, along with ALiBi positional encoding,
enables transformer encoder models to process long biological sequences, while NUC enhances
predictions for high-granularity tasks, yielding performance gains over shorter sequences. Given these
observations, we propose a dual tokenization approach and show that pretraining on both NUC and
BPE tokenizations of a sequence allows a single model to support both with no downsides compared
to training on either alone. We release a new RNA foundational model, BiRNA-BERT, trained over
our proposed tokenization approach, which achieves state-of-the-art results in long-sequence tasks
and outperforms similar-sized models in short-sequence and nucleotide-level tasks. We also validate
our methodology on DNA data and provide an information-theoretic analysis comparing NUC and
BPE tokenization.
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