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Abstract

Advances in computer vision are pushing the limits of image manipulation, with generative
models sampling highly-realistic detailed images on various tasks. However, a specialized
model is often developed and trained for each specific task, even though many image edi-
tion tasks share similarities. In denoising, inpainting, or image compositing, one always
aims at generating a realistic image from a low-quality one. In this paper, we aim at
making a step towards a unified approach for image editing. To do so, we propose Ed-
iBERT, a bidirectional transformer that re-samples image patches conditionally to a given
image. Using one generic objective, we show that the model resulting from a single training
matches state-of-the-art GANs inversion on several tasks: image denoising, image com-
pletion, and image composition. We also provide several insights on the latent space of
vector-quantized auto-encoders, such as locality and reconstruction capacities. The code is
available at https://github.com/EdiBERT4ImageManipulation/EdiBERT.

1 Introduction

Significant progress in image generation has been made in the past few years, thanks notably to Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014). For example, the StyleGAN architecture (Karras
et al., 2019; 2020b) yields state-of-the-art results in data-driven unconditional generative image modeling.
Empirical studies have also shown the usefulness of GANs’ architecture when it comes to image manipulation.
By following specific directions in the latent space, one can modify an image attribute such as gender, age,
the pose of a person (Shen et al., 2020), or the angle (Jahanian et al., 2019). However, since the whole picture
is generated from a Gaussian vector, changing some undesired elements while keeping the others frozen is
difficult. To solve this problem, edition algorithms involving optimization procedures have been proposed
(Abdal et al., 2019; 2020) but with one main caveat: the results are not convincing when manipulating
complex visuals (Niemeyer & Geiger, 2021) (cf. experimental section for visual results).

Independently, Van den Oord et al. (2017) propose VQVAE, a promising latent representation by training an
encoder/decoder using a discrete latent space. The authors demonstrate the possibility to embed images in
sequences of discrete tokens borrowing ideas from vector quantization (VQ), paving the way for the generation
of images with autoregressive transformer models (Ramesh et al., 2021; Esser et al., 2021b). Building on
this litterature, we argue that one of the benefits of this representation is that each token in the sequence
is mostly coding for a localized patch of pixels (see section 3.5), thus opening the possibility for an efficient
localized latent edition.
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Denoising Completion Compositing Scribble-edit Crossover

Figure 1: Using a single and straightforward training, EdiBERT can tackle a wide variety of different tasks
in image editing. In this image, the top row is the input, while the second and third rows are different
samples from EdiBERT, showing realism, consistency, and variety.

Aiming to build a unified approach for image manipulation, we propose a method that leverages both the
spatial property of the discrete vector-quantized representation and the use of model that performs attention
on the whole image. To do so, we train a bi-directionnal transformer network based on ideas from the language
model BERT (Devlin et al., 2019), naming EdiBERT the resulting model. During training, EdiBERT tries
to recover the original tokens of a perturbed sequence through a bidirectional attention schema. In computer
vision, this approach has mainly been studied in the context of self-supervised representation learning (Bao
et al., 2022; He et al., 2022). We advocate that training a single model using this generic objective provides
a sounded way to obtain a model able to tackle several editing tasks. Finally, to practically handle these
tasks, we also derived two different sampling algorithms: one dedicated for image denoising and editing, and
a second one for inpainting.

To better visualize the abilities of EdiBERT after a single training, we show in Figure 1 that the same model
can now be used in many different image manipulation tasks such as denoising, inpainting (or completion),
compositing, and scribble-based editing.

To sum up, our contributions are the following:

+ We analyze the VQ latent representations and illustrate their spatial properties, and show how to
improve the reconstruction capabilities of VQGAN, using a post-processing procedure that better
recovers the pixel content outside of the edited region.
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+ We show how to derive two different sampling algorithms from a single bidirectional transformers:
one for the task of image denoising where the locations of the edits are unknown, and a second one
for inpainting or image compositing where the mask specifying the area to edit is known.

+ Finally, we show that using this generic simple training algorithm along with its companion post-
processing allow us to achieve competitive results on various image manipulation tasks.

2 Related work

We start this section by introducing transformer models for image generation. Then, we motivate the use of
the VQ representation and bidirectional models for image manipulation.

2.1 Autoregressive image generation

The use of autoregressive transformers in the field of generative modeling (Parmar et al., 2018) has been made
possible by two simultaneous research branches. First, the extensive deployment of attention mechanisms
such as non-local means algorithms (Buades et al., 2005), non-local neural networks (Wang et al., 2018), and
also attention layers in GANs (Zhang et al., 2019; Hudson & Zitnick, 2021). Second, the development of
both classifiers and generative models sequentially inferring pixels via autoregressive convolutional networks
such as PixelCNN (Van den Oord et al., 2016a;b). The self-attention mechanism (Vaswani et al., 2017),
which now become ubiquitous in computer vision, is quickly recalled here: a sequence X ∈ RL×d, where L
is length of the sequence, is mapped by a position-wise linear layer to a query Q ∈ RL×dk , a key K ∈ RL×dk

and a value V ∈ RL×dv . The self-attention layer is then:

attn(Q, K, V ) = softmax(QKt

√
dk

)V ∈ RL×dv (1)

If autoregressive transformers allow a principled log-likelihood estimation of the data, attention layers have
a complexity scaling with the square of the sequence length, a clear bottleneck to scale to high-resolution
images. To reduce the size of these sequences, Van den Oord et al. (2017) proposed the use of discrete
representation. In this framework, an encoder E, a decoder D, and a codebook/dictionary Z are learned
simultaneously to represent images with a single sequence of tokens. Esser et al. (2021b) later trained
an autoregressive model on these token sequences, stressing that high-capacity transformers can generate
realistic high-resolution images. The framework consists of three steps:

1. Training simultaneously a set of encoder/decoder/codebook (E, D, Z), by combining reconstruction,
commitment and adversarial losses. The reconstruction loss is a perceptual distance (Zhang et al.,
2018). The commitment loss (Van den Oord et al., 2017) pushes the codebook towards the output
of the encoder using a quantization loss. The adversarial loss is the Vanilla GANs loss defined in
(Goodfellow et al., 2014). The training objective becomes :

E⋆, D⋆, Z⋆ = arg min
E,D,Z

[Lrec.(E, D, Z) + Lcommit.(E, Z) + λLadv.({E, D, Z})]. (2)

2. Training an autoregressive transformer to maximize the log-likelihood of the encoded sequences.

3. At inference, sampling a sequence with the transformer and decoding it with the decoder D.

This vector-quantized representation was later improved by Yu et al. (2021a) and used by Yu et al. (2022) to
create PARTI, a state-of-the-art text-to-image generative model. Interestingly, our work EdiBERT builds on
top of the first step of VQGAN, and also requires the training of the triplet (E, D, Z) following equation 2.

2.2 Bidirectional attention

The main property of autoregressive models is that they only perform attention on previous tokens, making
them inadequate when dealing with image manipulation (Esser et al., 2021a). Some works alleviate this bias
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in different ways. Yang et al. (2019) learn an autoregressive model on random permutations of the ordering.
Cao et al. (2021) propose a model where missing tokens are inferred autoregressively, conditionally to the
set of kept tokens. Similarly, Wan et al. (2021) use an auto-regressive procedure conditioned on the masked
image, while Yu et al. (2021b) use BERT training with [MASK] tokens and Gibbs sampling. If this setting is
ideal for tasks with masked tokens such as inpainting, it makes it ill-posed for scribble-editing and insertion
without existing paired datasets. On the opposite, our EdiBERT tackles all tasks without any need for
supervision. Finally, Esser et al. (2021a) train ImageBART, a multinomial diffusion process (Hoogeboom
et al., 2021) in the discrete latent space of VQGAN. Each generated sequence is conditioned on the previous
one and performs attention to the whole image. However, this method is computationally heavy since it
requires making N × L inferences, where N is the number of generated sequences and L is the number of
tokens in the sequence. A more efficient way to perform bidirectional attention for image generation has
been proposed in MaskGIT (Chang et al., 2022). MaskGIT consists of training with a BERT-like objective
(Devlin et al., 2019) on sequences randomly perturbed with [MASK] tokens, and generating images with
a parallel decoding scheme. Similarly, Zhang et al. (2021) propose to use a masking-based strategy to
perform conditional image editing with bidirectional attention mechanisms. However, they still require
specific conditional data to learn their model editing model. In this paper, we argue that by performing
bidirectional attention over all the tokens and learning with a denoising objective (tokens perturbed by
randomization, not with [MASK] tokens), it is possible to train a single model tackling many editing tasks.

2.3 Unifying image manipulation

Initially, image manipulation methods were implemented without any trainable parameters. Image comple-
tion was tackled using nearest-neighbor techniques along with a large dataset of scenes (Hays & Efros, 2007).
As to image insertion, blending methods were widely used, such as the Laplacian pyramids (Burt & Adelson,
1987). In recent years, image manipulation has benefited from the advances of deep generative models. A
first line of work has consisted of gathering datasets of corrupted and target images to train conditional
generative models. By doing so, one can therefore learn a mapping from any corrupted image to a real one.
For example, Liu et al. (2021) proposes an encoder-decoder architecture for sketch-guided image inpainting.
However, in all cases, a dataset with both types of images is required, therefore limiting the applicability.

To avoid this dependency, a second idea - known as GAN inversion methods - leverages pre-trained un-
conditional GANs. They work by projecting edited images on the manifold of real images learned by the
pre-trained GAN. It can be solved either by optimization (Abdal et al., 2019; 2020; Daras et al., 2021), or
with an encoder mapping to the latent space (Chai et al., 2021; Richardson et al., 2021; Tov et al., 2021).
Pros of these GAN-based methods are that one benefits from the outstanding properties of StyleGan, state-
of-the-art in image generation. However, these methods rely on a task-specific loss function that needs to be
defined and optimized. More recently, another line of research is based on the development of score-based
models (Song et al., 2020): Meng et al. (2022) use Langevin’s dynamics for image edition and, (Esser et al.,
2021a) combine discrete diffusion models (Hoogeboom et al., 2021; Austin et al., 2021) with the discrete
vector-quantized representations from VQGANs.

3 Motivating EdiBERT for image editing

This section gives a global description of the proposed EdiBERT model. We start with notations before
describing the different steps leading to the BERT-based edition.

3.1 Discrete auto-encoder VQGAN

Let I be an image with width w, a height h, and a number c of channels. I thus belongs to Rh×w×c. Let
(E, D, Z) be respectively the encoder, decoder, and codebook defined in VQVAE and VQGAN (Van den
Oord et al., 2017; Esser et al., 2021b). The codebook Z consists of a finite number of tokens with fixed
vectors in an embedding space: Z = {t1, . . . , tN} with tk ∈ Rd and N being the cardinality of the codebook.
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For any given image I, the encoder E outputs a vector E(I) ∈ RL×d, which is then quantized and reshaped
into a sequence s of length L as follows:

s = (arg min
z∈Z

∥E(I)1 − z∥, . . . , arg min
z∈Z

∥E(I)L − z∥)) = QZ(E(I)), (3)

where E(I)l = E(I)l,: ∈ Rd is the feature vector of E(I) at position l, and QZ refers to the quantization
operation using the codebook Z. Recall that, after the quantization step, one gets a sequence composed
of L codebook elements, thus s ∈ ZL. After we feed the codebook embeddings to the decoder D, the
reconstructed image becomes Î = D(QZ(E(I))).

Let’s note D, the available image dataset. From a pre-trained encoder E and codebook Z, one can transform
the image datasetD into a dataset of token-sequencesDS := {QZ(E(I)), I ∈ D}. When learning transformers
on sequences of tokens, the practitioner is directly working with DS .

3.2 Learning sequences with autoregressive models

The following sections aim at motivating the training objective for the EdiBERT model. To begin with, let
pθ be a transformer model parameterized with Θ trained on DS . For each position i in s, we note pi

θ(.|s),
the modeled distribution of tokens conditionally to s.

When training an autoregressive transformer on the discrete sequences of tokens DS (Esser et al., 2021b),
one needs to compute the likelihood pθ(s) of each given sequence s = (s1, . . . , sL) ∈ DS as follows:

pθ(s) =
L∏

i=1
pi

θ(si|s<i), with s<i = (s1, . . . , si−1). (4)

Conditional distributions pi
θ(si|s<i) are computed using a causal left-to-right attention mask. The final

objective of the autoregressive model is to find the best set of parameters within Θ:

arg max
θ∈Θ

Es∈Ds log pθ(s). (5)

Limitations of the model. If this setting is well suited for unconditional image generation, it is ill-posed
for image manipulation tasks, as shown by Esser et al. (2021a). In the case of scribble-based editing, or
inpainting, one wants to resample tokens conditionally to the whole image, so that the model has all the
information at its disposal.

3.3 A unique training objective for EdiBERT.

Let us define the training objective for EdiBERT. For a sequence s = (s1, ..., sL), a function φ randomly
selects a subset of k indices {φ1, ..., φk} where φk < L. At each selected position φi, a perturbation is applied
on the token sφi . We attribute a random token with probability p, or keep the same token with probability
1− p. Consequently, the perturbed token s̃φi

becomes:

s̃φi
= U(Z) with probability p,

s̃φi
= sφi

with probability 1− p,

where U(Z) refers to the uniform distribution on the space of tokens Z. Similarly to Bao et al. (2022),
the sampling function φ is defined with a 2D selection strategy, and the positions are selected by drawing
random 2D rectangles, see in Figure 2. Contrarily to Bao et al. (2022) and Devlin et al. (2019), we only
use random tokens from the codebook but no [MASK] tokens. We argue this setting corresponds more to
the cases of denoising and editing, where tokens have to be sampled conditionally to an entire perturbed
sequence.

Let us now call s̃ = (s1, . . . , s̃φ1 , . . . , s̃φk
, . . . , sL) the perturbed sequence, and D̃s = {s̃, s ∈ D} the perturbed

dataset. The training of EdiBERT optimizes the following objective :

arg max
θ∈Θ

Es̃∈D̃s

1
k

k∑
i=1

log pi
θ(sφi

|s̃). (6)
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Figure 2: The 2D selection and randomization strategy for the training of our bidirectional transformer:
EdiBERT is trained on sequences where localized patch of tokens have been perturbed.

Contrary to equation 5, we note that the objective in equation 6 does not require a causal left-to-right
attention. Instead, the attention can be performed over the whole input sequence.

Sampling from EdiBERT: Wang & Cho (2019) show that it is possible to generate realistic samples
with a BERT model starting with random initialization. However, compared with standard autoregressive
language models, the authors stress that BERT generations are more diverse but of slightly worse quality.
Building on the findings of Wang & Cho (2019), we do not aim to use BERT for pure unconditional sequence
generation but rather improve an already existing sequence of tokens. In our defined EdiBERT model, for
any given position i ∈ s, a token will be sampled according to the multinomial distribution pi

θ(.|s).

3.4 On the locality of Vector Quantization encoding

In this paper, we argue that one of the main advantages of EdiBERT comes from the VQ latent space
proposed by Van den Oord et al. (2017) where each image is encoded in a discrete sequence of tokens. In
this section, we illustrate with simple visualizations the property of this VQGAN encoding. We explore
the spatial correspondence between the position of the token in the sequence and a set of pixels for the
encoded image. We aim at answering the following question: do local modifications of the image lead to
local modifications of the latent representation and vice versa?

Modifying the image. To answer this question, images are voluntarily perturbed with grey masks (i −→
im). Then, we encode the two images, quantize their representation using a pre-trained codebook, and plot
the distance between the two latent representations: ∥QZ(E(i)) − QZ(E(im))∥2

2. The results are shown in
the first row in Figure 3. Due to the large receptive field of the encoder, tokens can be influenced by distant
parts of the image: the down-sampled mask does not recover all of the modified tokens. However, tokens
that are largely modified are either inside, or very close to the down-sampled mask.

Modifying the latent space. To understand the correspondence between tokens and pixels, we stress
how one can easily manipulate images using the discrete latent space. In Figure 3, we show that cutting a
specific area of a source image to insert it in a different location of another image is possible only by replacing
the corresponding tokens in both sequences. This spatial correspondence between VQGANs’ latent space
and the image is interesting for localized image editing tasks, i.e. tasks that require modifying only a subset
of pixels without altering the other ones.
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Modifying the latent space via the image

Modifying the image via the latent space

Figure 3: Each token in the sequence is tied to a small spatial area in the decoded image. In the 1st
row: we voluntarily perturb images and display the variations among the tokens in the latent space. The
heatmaps represent the distance (red is high) between the tokens of the original image and the tokens of
the perturbed image. In the 2nd row: we stress how collages of images can easily be done with this discrete
latent representation: third and fourth images are generated by the decoder from a latent space collage.

3.5 On the reconstruction capabilities of Vector Quantization encoding

A limit of the framework resides in the use of the vector quantization operation and the induced loss of
information. Indeed, we observe in Figure 4 that VQGAN struggles to reconstruct high-frequency details,
for example complex backgrounds on FFHQ dataset (Karras et al., 2019). To improve the reconstruction
capabilities of VQGANs, we propose a simple optimization procedure over the latent space vectors.

The objective is to find the latent vectors that minimize the LPIPS (Zhang et al., 2018) between the target
image and the decoded reconstruction. We initialize the procedure from the output of the encoder E(I),
and optimize the objective with gradient descent. Figure 4 shows how this procedure improves the inversion
capabilities of VQGAN to make it better than GAN inversion methods (Abdal et al., 2020). A potential
explanation of the limited reconstruction capabilities of VQGAN is displayed in Figure 5: the latent vectors
of the codebook might suffer from a very low rank. The optimization procedure seems to solve this since the
latent vectors span much more dimensions of the embedding space after a few hundred optimization steps.

4 Image editing with EdiBERT

Baselines. For each task, we run comparisons with baselines and state-of-the-art models based on GANs
inversion methods. On FFHQ, we compare to ImageStyleGAN2++ (Abdal et al., 2020) on pre-trained
StyleGANs: StyleGAN2 (Karras et al., 2020b) and StyleGAN2-ADA (Karras et al., 2020a). Besides, we
run the solution proposed by Chai et al. (2021) where a StyleGAN2 model is inverted using a trained
encoder. Finally, we use In-Domain GAN (Zhu et al., 2020), a hybrid method combining an encoder with an
optimization procedure minimizing reconstruction losses. We also compare to Co-Modulated GANs (Zhao
et al., 2020), a conditional GAN for inpainting.

Metrics. We follow the work of Chai et al. (2021) and use metrics assessing both fidelity and distribution
fitting. The masked L1 metric (Chai et al., 2021) measures the closeness between the generated image and
the source image outside the edited areas. The density/coverage metrics (Naeem et al., 2020) are robust
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Original. VQGAN + optim.
(av. LPIPS= 0.085)

VQGAN.
(av. LPIPS= 0.232)

Id-GAN
(av.LPIPS = 0.164)

I2SG †++
(av. LPIPS= 0.345)

Figure 4: Comparison of reconstruction capabilities of VQGAN + optimization to two GANs inversion
methods such as Id-GAN (Zhu et al., 2020) and I2SG†++ (Abdal et al., 2020). Averaged LPIPS are
computed on the validation set FFHQ.

Figure 5: Analysis of reconstruction capabilities of VQGAN. On the left, we see that both the L1 and percep-
tual loss (LPIPS) between original and reconstructed images significantly decrease when optimizing LPIPS
over the latent vectors of VQGAN. This may be a consequence of a higher number of dimensions spanned
by the latent vectors (on the right), after the optimization (allowing for more complex reconstructions).

versions of precision/recall metrics. Intuitively, density measures fidelity while coverage measures diversity.
Finally, the FID (Heusel et al., 2017) quantifies the distance between generated and target distributions.
Moreover, we perform a user study on FFHQ image compositing. More details and quantitative results on
LSUN Bedroom are presented in Appendix.

4.1 Localized image denoising

Image denoising aims to improve the quality of a pre-generated image or improve a locally perturbed one.
The model has to work without information on the localization of the perturbations. This means we need
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Figure 6: Image denoising with EdiBERT: the color in the 4 different heatmaps is proportional to the
negative likelihood of the token. Tokens with a lower likelihood appear in red in the heatmap and have a
higher probability of being sampled and edited. Consequently, conditional distributions output by EdiBERT
are an efficient tool to detect anomalies and artifacts in the image.

to find and replace the perturbed tokens with more likely ones to recover a realistic image. Thus, given a
sequence s = (s1, . . . , sL), we want to:

1. Detect the tokens that do not fit properly in the sequence s.

2. Change them for new tokens increasing the likelihood of the new sequence.

We desire a significantly more likely sequence with as few as possible token amendments. To do so, we
measure the likelihood of each token si based on the whole sequence s, aiming to compute p(si|s), and
replace the least-probable tokens considering them independently. That is, we propose to use the conditional
probability output by the model in order to detect and sample the less likely odd tokens. Some examples
of image denoising are presented in Figure 6, and we observe that EdiBERT is able to detect artifacts and
replace them with more likely tokens. The full algorithm is given in the Algorithm 1.

Algorithm 1: Image denoising
Requires: Sequence (s1, . . . , sL), BERT model pθ, number of iterations T ;
for iterations in [0,T] do

Compute pi = logit(−pi
θ(si|s)),∀i ∈ [1, L] ;

Sample p ∼ (p1, . . . , pl) (less likely position);
Sample t ∈ Z ∼ pp

θ(·|s) ;
Insert sampled token: si ← t ;

end
Image← Decoder(s);
Result: Image

4.2 Image inpainting

In this setting, we have access to a masked image im ∈ Rh×w×c along with the location of the binary mask
m ∈ Rh×w. im has been obtained by masking an image i ∈ Rh×w×c as follows: im = i⊙m with ⊙ pointwise
multiplication. The goal of image inpainting is to generate an image î that is both realistic (high density)
and conserves non-masked parts, that is î⊙ (1−m) = i⊙ (1−m).

Among the different tasks in image manipulation, image inpainting stands out. Indeed, when masking a
specific area of an image, one shall not consider the pixels within the mask to recover the target image.
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Ref. image EdiBERT ⋆ LC I2SG † + + Com-GAN

Figure 7: Image inpainting comparisons on FFHQ. EdiBERT performs better than inversion methods such
as LC (Chai et al., 2021) and I2SG (Abdal et al., 2020). Note that Com-GAN (Zhu et al., 2020) is specialized
for image inpainting and was trained on pair datasets (masked image, target image), it can not perform other
image editing tasks.
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The image inpainting task thus requires specific care to reach a state-of-the-art performance; this is why we
added five different elements to our approach, and validated these elements with visual results in Figure 13.

1. Randomization: to erase the mask influence, the tokens within the mask are given random values.

2. Dilation of the mask: as shown in Figure 3, some tokens outside of the down-sampled mask
in the latent space are also impacted by the mask on the image. Modifying only tokens inside the
down-sampled mask might not be enough and could lead to images with irregularities on the borders.
As a solution, we apply a dilation on the down-sampled mask and show in Figure 13 that it helps
better blend the target image’s completion since the boundaries are removed.

3. Spiral ordering: since there is no pre-defined ordering of positions in EdiBERT, one can look
for an optimal sampling of positions. We argue that by sampling positions randomly, one does not
fully leverage the spatial location of the mask. Instead, we propose a spiral ordering that goes from
the border to the inside of the mask. Qualitative and quantitative results in Figure 13 and Table 2
confirm the advantage of this ordering.

4. Periodic image collage: to preserve fidelity to the original image, we periodically perform a
collage between the masked image and the decoded image. We observed in Figure 13, that without
this collage trick, the reconstruction can diverge too much from the input image.

5. Online optimization on latent sequences: to improve fidelity to the masked image im, the final
stage of the algorithm consists in an optimization procedure on the latent sequence s ∈ Rh×w×d.
The objective function is defined as:

L = Lp

(
(D(s)− im)⊙m

)
+ Lp

(
(D(s)−D(s0))⊙ (1−m)

)
(7)

where Lp is a perceptual loss (Zhang et al., 2018), and s0 is the initial sequence from EdiBERT.
Intuitively, the first term enforces the decoded image to get closer to the masked image im, while the
second term is a regularization enforcing the decoded image to stay similar to the completion pro-
posed by the transformer’s likelihood. We illustrate in Figure 5 and Figure 13 that the optimization
leads to a better-preserved source image.

Analyzing the results: we see from Table 1 and Figure 7 that the specialized method com-GAN (Zhao
et al., 2020) outperforms non-specialized methods on image inpainting. This was expected since it is the only
method that has been trained specifically for this task. Note that the trained model co-mod GAN cannot be
used in any other image manipulation task. Compared with the non-specialized method, EdiBERT always
provides better fidelity to the source image (lower Masked L1) and realism (best FID and top-2 density). An
ablation study is available in Table 2 and validates our choices. Finally, more details regarding the sampling
algorithm for the task of inpainting are given in Appendix.

4.3 Image composition

In this setting, we have access to a non-realistically edited image ie ∈ Rh×w×c. The edited image ie is
obtained by a composition between a source image is ∈ Rh×w×c and a target image it ∈ Rh×w×c. The target
image can be a user-drawn scribble or another real image in the case of image compositing. Besides, pixels
are edited inside a binary mask m ∈ Rh×w, which indicates the areas modified by the user. Thus, the final
edited image is computed pointwise as:

ie = is ⊙m + it ⊙ (1−m). (8)

Image composition aims to transform an edited image ie to make it more realistic and faithful without
limiting the changes outside the mask. We note the source image is outside the mask and the edits of
the target image im for the inserted elements in the edition mask. Three tasks fall under this umbrella:
scribble-based editing, image compositing, and image crossovers.
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Masked EdiBERT (a) (b) (c) (d) (e)

Figure 8: Ablation study for inpainting. Components removed are (a) optimization, (b) dilation, (c) ran-
domization, (d) collage, (e) spiraling (random order instead). Optimization improves fidelity to the source
image, while the other components help increase image quality.

Table 1: Image inpainting and compositing on FFHQ 256 × 256. Com-GAN is a model specific for image
inpainting, ID-GAN handles several editing tasks but not inpainting, while other methods handle both. We
remove I2SG++ from the user study, since I2SG†++ is the same method with a better GAN backbone, i.e.
StyleGAN2-ADA (Karras et al., 2020a). Bold: 1st rank, blue: 2nd rank.

Inpainting Compositing

Masked
L1 ↓ FID ↓ Dens.

↑
Cover.
↑

Masked
L1 ↓

Dens.
↑

User
study
↑

I2SG++ (Abdal et al., 2020) 0.0767 23.6 0.99 0.88 0.0851 0.77 -
I2SG†++ Abdal et al. (2020) 0.0763 22.1 1.25 0.91 0.0866 1.07 8.3%

LC (Chai et al., 2021) 0.1027 27.9 1.12 0.84 0.1116 1.00 14.8%
EdiBERT ⋆ 0.0290 13.8 1.16 0.98 0.0307 0.94 61.2%

Com-GAN (Zhu et al., 2020) 0.0086 10.3 1.42 1.00 - - -
ID-GAN (Zhu et al., 2020) - - - - 0.0570 0.75 15.7%
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Results of image compositing on FFHQ are presented in Table 1 and Figure 9. EdiBERT always has the
lowest masked L1. We also present the results from a user study in Table 1. 30 users were shown 40
original and edited images, along with four results (EdiBERT and baselines). They were asked which one is
preferable, accounting for both fidelity and realism. The survey shows that on average, users prefer EdiBERT
over competing approaches. We give more visual results along with the detailed answers of the user study
in Appendix.

Table 2: Inpainting: Ablation study on the components of EdiBERT sampling algorithm. EdiBERT (1st
row) shows the best tradeoff between fidelity (masked L1) and quality (FID, density/coverage). Bold: 1st

rank, blue: 2nd rank.

OrderingOptim- Random-Collage Dilation Masked FID Density Coverage

ization ization L1 ↓ ↓ ↑ ↑
Spiral ✓ ✓ ✓ ✓ 0.0201 19.4 1.14 0.96

Random ✓ ✓ ✓ ✓ 0.0206 20.7 1.13 0.95
Spiral X ✓ ✓ ✓ 0.0299 20.3 1.20 0.94
Spiral ✓ X ✓ ✓ 0.0198 20.5 1.26 0.92
Spiral ✓ ✓ X ✓ 0.0252 19.9 1.11 0.95
Spiral ✓ ✓ ✓ X 0.0197 23.3 0.96 0.91

5 Discussions

EdiBERT is a bidirectional transformers model that can tackle multiple editing tasks from one single training.
One of the key elements of the proposed method is that it does not require having access to paired datasets
(source, target), or unpaired image datasets. This property shows how flexible EdiBERT is and why it can
be easily applied to different tasks. Overall, the proposed framework is simple and tractable: 1) train a
VQGAN Esser et al. (2021b), 2) train an EdiBERT model following the objective defined in equation 6.

Interestingly, for simple applications, one can directly train EdiBERT based on the representations output
by the VQGAN pre-trained on ImageNet. However, for more complex data or when dealing with multiple
domains, one might have to train a specialized codebook, which requires a large auto-encoder and a lot of
data. Another EdiBERT’s drawback is related to the core interest of image editing. Since the tokens are
predominantly localized, EdiBERT is perfectly suited for small manipulations that only require amending
a few numbers of tokens. However, some manipulations such as zooms or rotations require changing large
areas of the source image. In these cases, modifying a large number of tokens might be more demanding.

Broader Impact Statement

Similarly to other image generative models, EdiBERT might be used to create and propagate fake beliefs
via deepfakes, as discussed in Fallis (2020).

6 Conclusion

In this paper, we demonstrated the possibility to perform several editing tasks by using the same pre-trained
model. The proposed framework is simple and aims at making a step towards a unified model able to do any
conceivable manipulation task on images. An exciting direction of research would be to extend the editing
capabilities of EdiBERT to global transformations (e.g. zoom, rotation).
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Source Composite EdiBERT (⋆) ID-GAN I2SG†++

Source Composite EdiBERT (⋆) ID-GAN I2SG

Figure 9: Scribble-based editing and image compositing: comparison with ID-GAN (Zhu et al., 2020) and
I2SG (Abdal et al., 2019). EdiBERT preserves better the fidelity to the source image while being also able
to fit the inserted object properly. This confirms the quantitative results in Table 1, EdiBERT seems to be
leading in both fidelity and realism.

14



Published in Transactions on Machine Learning Research (12/2022)

References
Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan

latent space? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4432–
4441, 2019.

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded images? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8296–8305,
2020.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems,
34:17981–17993, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers. In
International Conference on Learning Representations, 2022.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pp.
60–65. IEEE, 2005.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings in
computer vision, pp. 671–679. Elsevier, 1987.

Chenjie Cao, Yuxin Hong, Xiang Li, Chengrong Wang, Chengming Xu, Yanwei Fu, and Xiangyang Xue.
The image local autoregressive transformer. In Advances in Neural Information Processing Systems, 2021.

Lucy Chai, Jonas Wulff, and Phillip Isola. Using latent space regression to analyze and leverage composi-
tionality in gans. arXiv:2103.10426, 2021.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11315–11325, 2022.

Giannis Daras, Joseph Dean, Ajil Jalal, and Alex Dimakis. Intermediate layer optimization for inverse
problems using deep generative models. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 2421–2432. PMLR, 18–24 Jul 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
4171–4186, 2019.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image synthesis. Advances in Neural Information Processing
Systems, 34, 2021a.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–
12883, 2021b.

Don Fallis. The epistemic threat of deepfakes. Philosophy & Technology, pp. 1–21, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

James Hays and Alexei A Efros. Scene completion using millions of photographs. ACM Transactions on
Graphics (ToG), 26(3), 2007.

15



Published in Transactions on Machine Learning Research (12/2022)

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16000–16009, 2022.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems,
pp. 6626–6637, 2017.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows and
multinomial diffusion: Learning categorical distributions. Advances in Neural Information Processing
Systems, 34:12454–12465, 2021.

Drew A Hudson and Larry Zitnick. Generative adversarial transformers. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 4487–4499. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/hudson21a.html.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the "steerability" of generative adversarial networks. In
International Conference on Learning Representations, 2019.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 12104–
12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8110–8119, 2020b.

Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han, Jing Liao, Bin Jiang, and Wei Liu. Defloc-
net: Deep image editing via flexible low-level controls. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10765–10774, 2021.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Guided image synthesis and editing with stochastic differential equations. In International Conference on
Learning Representations, 2022.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable fidelity
and diversity metrics for generative models. In International Conference on Machine Learning, pp. 7176–
7185. PMLR, 2020.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11453–11464, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. Image transformer. In International Conference on Machine Learning, pp. 4055–4064. PMLR, 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv:2102.12092, 2021.

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-
Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2287–2296, 2021.

16

https://proceedings.mlr.press/v139/hudson21a.html
https://proceedings.mlr.press/v139/hudson21a.html


Published in Transactions on Machine Learning Research (12/2022)

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for semantic
face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9243–9252, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder for
stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

Aaron Van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, pp. 1747–1756. PMLR, 2016a.

Aaron Van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray
Kavukcuoglu. Conditional image generation with pixelcnn decoders. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems, pp. 4797–4805, 2016b.

Aaron Van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6309–
6318, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao. High-fidelity pluralistic image completion with
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4692–
4701, 2021.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random field
language model. arXiv:1902.04094, 2019.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Gen-
eralized autoregressive pretraining for language understanding. Advances in neural information processing
systems, 32, 2019.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021a.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexan-
der Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-
image generation. arXiv preprint arXiv:2206.10789, 2022.

Yingchen Yu, Fangneng Zhan, Rongliang Wu, Jianxiong Pan, Kaiwen Cui, Shijian Lu, Feiying Ma, Xuansong
Xie, and Chunyan Miao. Diverse image inpainting with bidirectional and autoregressive transformers. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 69–78, 2021b.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversar-
ial networks. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 7354–7363, 2019.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 586–595, 2018.

17



Published in Transactions on Machine Learning Research (12/2022)

Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li, Ming Ding, Jie Tang, Jingren Zhou, and
Hongxia Yang. M6-ufc: Unifying multi-modal controls for conditional image synthesis. arXiv preprint
arXiv:2105.14211, 2021.

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, I Eric, Chao Chang, and Yan Xu. Large
scale image completion via co-modulated generative adversarial networks. In International Conference on
Learning Representations, 2020.

Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image editing. In
European conference on computer vision, pp. 592–608. Springer, 2020.

18



Published in Transactions on Machine Learning Research (12/2022)

Appendix

A Implementation details

The code for the implementation of EdiBERT is available on GitHub at the following link
https://github.com/EdiBERT4ImageManipulation/EdiBERT.

A pre-trained model on FFHQ is available on a linked Google Drive. Notebooks to showcase the model have
also been developped.

A.1 Training hyper-parameters

We use the same architecture than Esser et al. (2021b) for both VQGAN and transformer. On LSUN
Bedroom and FFHQ, we use a codebook size of 1024. For the transformer, we use a model with 32 layers of
width 1024.

To train the transformer with 2D masking strategy, we generate random rectangles before flattening Q(E(I)).
The height of rectangles is drawn uniformly from [0.2×h, 0.5×h]. Similarly, the width of rectangles is drawn
uniformly from [0.2× w, 0.5× w]. In our experiments, since we work at resolution 256× 256 and follow the
downsampling factor of 4 from Esser et al. (2021b), we have h = w = 256/16 = 16.

Tokens outside the rectangle are used as input, to give context to the transformer, but not for back-
propagation. Tokens inside the rectangle are used for back-propagation. prand = 90% of tokens inside
the mask are put to random tokens, while psame = 1 − prand = 10% are given their initial value. Although
we did not perform a large hyper-parameter study on this parameter, we feel it is an important one. The
lower prand, the more the learned distributions pi

θ(.|s) will be biased towards the observed token si. However,
setting prand = 1 leads to a model that diverges too fast from the observed sequence.

A.2 Inference hyper-parameters

A.2.1 Image inpainting.

We set the number of epochs to 2, collage frequency to 4 per epoch, top-k sampling to 100, dilation to 1, and
number of optimization steps to 200. We apply a gaussian filter on the mask for the periodic image collage.

Additionally, we use these two implementation details. 1) We use two latent masks: the latent down-sampled
mask latent_mask1, and the dilated mask latent_mask2, obtained by a dilation of latent_mask1. The
randomization is done with latent_mask1, such that no information from the unmasked parts of the image
is erased. However, the selection of positions that are re-sampled by EdiBERT is done with latent_mask2.
2) At the second epoch, we randomize the token value, at the position that is being replaced. This is only
done for image inpainting.

A.2.2 Image compositing.

We set the number of epochs to 2, collage frequency to 4 per epoch, top-k sampling to 100, dilation to 1,
and number of optimization steps to 200. We apply a gaussian filter on the mask for the periodic image
collage. Contrarily to inpainting, we do not randomize such that EdiBERT samples stay closer to the original
sequence.

The full algorithm is presented below in Algorithm 2.

B Additional experimental results

We give additional comparisons on FFHQ and LSUN Bedroom, for the following tasks: image inpainting
in Table 3, image crossovers in Table 4, and image composition in Table 5. All these experiments are run
on the test-set of EdiBERT. Note that concurrent methods based on StyleGAN2 were trained on the full
dataset, which advantages them.
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Algorithm 2: Image inpainting/composition
Requires: Masked (or edited) image im, mask m, Encoder E, Decoder D, BERT model pθ, epochs
e, periodic collage c, optimization steps optim_steps;

s← Q(E(im));
latent_mask← get_mask_in_latent_space(m);
if task is inpainting then

s← s× latent_mask + rand× (1− latent_mask);
end
for e in [0,epochs] do

for p in chosen_order(latent_mask) do
Sample token t ∈ Z ∼ pp

θ(·|s) ;
Insert sampled token: sp ← t ;
if p%c=0 (collage) then

Encode image post-collage: s← E(im ⊙m + D(s)⊙ (1−m));
end

end
end
s0 ← s ;
for i in [0, optim_steps]: do

L = Lp

(
(D(s)− im)⊙m

)
+ Lp

(
(D(s)−D(s0))⊙ (1−m)

)
;

s← s + ϵ ∗Adam(∇sL, s) ;
end
Image← Decoder(s);
Result: Image

Inpainting. We use 2500 images. On FFHQ, we provide results for free-form masks and rectangular masks.
The height of rectangular masks is drawn uniformly from [0.4 × h, 0.6 × h] with h = 256, and similarly for
the width. For non-rectangular masks generations, we follow the procedure of Chai et al. (2021): we draw a
binary mask at low-resolution 6× 6 and uspsample it to 256× 256 with bilinear interpolation.

The ablation study in Table 2 of main paper is performed on free-form masks. Results in Table 1 of main
paper are on rectangular masks. On LSUN Bedroom, we provide results for rectangular masks.

Crossovers. We generate 2500 crossovers from random pairs of images, on both FFHQ and LSUN
Bedroom.

Editing/Compositing. We create small datasets of 100 images from the test set of EdiBERT for
FFHQ scribble-based editing, FFHQ compositing and LSUN Bedroom compositing. A user study on FFHQ
compositing is presented in main paper with statistically significant number of votes. We also provide some
metrics in 5. Because of the small size of the dataset, we only report masked L1 and density. For density,
the support of the real distribution is estimated with 2500 real points, and density is averaged over the
individual density of the 100 generated images.
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Masked
L1 ↓ FID ↓ Density

↑
Coverage
↑

FFHQ: rect. masks
I2SG++ (Abdal et al., 2020) 0.0767 23.6 0.99 0.88
I2SG†++ (Abdal et al., 2020; Karras et al., 2020a) 0.0763 22.1 1.25 0.91
LC (Chai et al., 2021) 0.1027 27.9 1.12 0.84
EdiBERT (⋆) 0.0290 13.8 1.16 0.98
Co-mod. GAN (Zhao et al., 2020) 0.0128 4.7 1.24 0.99
FFHQ: free-form masks
I2SG++ (Abdal et al., 2020) 0.0440 22.3 0.92 0.89
I2SG†++ (Abdal et al., 2020; Karras et al., 2020a) 0.0435 21.1 1.17 0.91
LC (Chai et al., 2021) 0.0620 27.9 1.22 0.85
EdiBERT (⋆) 0.0201 19.4 1.14 0.96
Com-GAN (Zhao et al., 2020) 0.0086 10.3 1.42 1.00
LSUN Bedroom: rect. masks
I2SG (Abdal et al., 2019) 0.1125 50.2 0.04 0.04
MaskGIT (Chang et al., 2022) 0.0209 11.4 1.09 0.96
EdiBERT (⋆) 0.0288 11.3 0.89 0.97

Table 3: Image inpainting.

Masked
L1 ↓ FID ↓ Density

↑
Coverage
↑

FFHQ
I2SG++ (Abdal et al., 2020) 0.1141 29.4 0.97 0.78
I2SG†++ (Abdal et al., 2020; Karras et al., 2020a) 0.1133 26.9 1.35 0.82
ID-GAN (Zhu et al., 2020) 0.0631 23.2 0.88 0.83
LC (Chai et al., 2021) 0.1491 31.9 1.17 0.77
EdiBERT (⋆) 0.0364 19.7 1.05 0.88
LSUN Bedroom
I2SG (Abdal et al., 2019) 0.1123 45.7 0.12 0.20
ID-GAN (Zhu et al., 2020) 0.0682 21.4 0.35 0.57
EdiBERT (⋆) 0.0369 12.4 0.64 0.84

Table 4: Image crossover.
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Masked
L1 ↓

Density
↑

FFHQ scribble-edits
I2SG++ (Abdal et al., 2020) 0.7811 0.91
I2SG†++ (Abdal et al., 2020; Karras et al., 2020a) 0.0777 1.11
ID-GAN (Zhu et al., 2020) 0.0461 0.79
LC (Chai et al., 2021) 0.1016 1.14
EdiBERT (⋆) 0.0281 0.96
FFHQ compositing
I2SG++ (Abdal et al., 2020) 0.0851 0.77
I2SG†++ (Abdal et al., 2020; Karras et al., 2020a) 0.0866 1.07
ID-GAN (Zhu et al., 2020) 0.0570 0.75
LC (Chai et al., 2021) 0.1116 1.00
EdiBERT (⋆) 0.0307 0.94
LSUN Bedroom compositing
I2SG (Abdal et al., 2019) 0.1285 0.25
ID-GAN (Zhu et al., 2020) 0.0484 1.45
EdiBERT (⋆) 0.0247 1.49

Table 5: Image editing.
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C Baselines

We use the implementation and pre-trained models from the following repositories.

ID-GAN (Zhu et al., 2020): https://github.com/genforce/idinvert_pytorch, which has pre-trained models
on FFHQ 256x256 and LSUN Bedroom 256x256.

I2SG++ and I2SG†++(Karras et al., 2020b;a; Abdal et al., 2020):
https://github.com/NVlabs/stylegan2-ada-pytorch. We tested projections with the following pre-trained
models on FFHQ: StyleGAN2 (Karras et al., 2020b) at resolution 256x256, and StyleGAN2-Ada (Karras
et al., 2020a) at resolution FFHQ 1024x1024. For evaluation, we downsample the 1024x1024 generated
images to 256x256.

LC (Chai et al., 2021): https://github.com/chail/latent-composition. We use the pre-trained encoder and
StyleGAN2 generator, for FFHQ at resolution 1024x1024. For evaluation, we downsample the 1024x1024
generated images to 256x256.

Com-GAN Zhao et al. (2020): https://github.com/zsyzzsoft/co-mod-gan. We use the pre-trained network
for image inpainting on FFHQ at resolution 512x512. We downsample the generated images to 256x256 for
evaluation.

MaskGIT (Chang et al., 2022): https://github.com/google-research/maskgit. We use the tokenizer and
transformer trained for conditional image generation and editing on ImageNet 256x256. To perform compar-
isons with EdiBERT on LSUN Bedroom Image Inpainting, we condition the transformer to the ImageNet
class ‘843: studio couch, day bed’.

D Qualitative results on image compositon

We present more examples of image compositions, with image compositing and scribble-based editing on
FFHQ and LSUN Bedroom in Figure 9, 10, and 11.

Preservation of non-masked parts. Thanks to its VQGAN auto-encoder, EdiBERT generally better
conserves areas outside the mask than GANs inversion methods. This is particularly visible for images with
complex backgrounds on FFHQ (Figure 10, 5th and last rows).

Insertion of edited parts. Since EdiBERT is a probabilistic model and the tokens inside the modified area
are resampled, the inserted object can be modified and mapped to a more likely object given the context. It
thus generates more realistic images, but can alter the fidelity to the inserted object. For example, on row
1 of Figure 11, the green becomes lighter and the perspective of the inserted window is improved. Although
it can be a downside for image compositing, note that this property is interesting for scribble-based editing,
where the scribbles have to be largely transformed to get a realistic image. Contrarily, GANs inversion
methods tend to conserve the inserted object too much, even if it results in a highly unrealistic generated
image. We can observe this phenomenon on last row of Figure 10.
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Source Composite EdiBERT ID-GAN Zhu et al.
(2020)

I2SG†++ Abdal et al.
(2020); Karras et al.
(2020a)

Figure 10: Image compositing and scribble-based editing on FFHQ.
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Source Composite EdiBERT ID-GAN Zhu et al.
(2020)

I2SG Abdal et al.
(2019)

Figure 11: Image compositing on LSUN Bedroom.
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Source Composite EdiBERT ID-GAN Zhu et al.
(2020)

I2SG Abdal et al.
(2019)

Figure 12: Image compositing on LSUN Bedroom.
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Masked EdiBERT MaskGIT

Figure 13: Comparisons of image inpainting on LSUN Bedroom between EdiBERT and MaskGIT.
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E Survey on FFHQ image compositing

The survey was presented as a Google Form with 40 questions. For each question, the user was shown 6
images: Source, Composite, EdiBERT, ID-GAN Zhu et al. (2020), I2SG†++ Abdal et al. (2019); Karras
et al. (2020a), LC Chai et al. (2021). The different generated images were referred as Algorithm 1, ...,
Algorithm 4. The user was asked to vote for its preferred generated image, by taking into account realism
and fidelity criterions. The user had no time limit for the poll. 30 users answered our poll. We provide the
detailed answers for each image in Table 6.
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EdiBERT ID-GAN Zhu et al. (2020)LC Chai et al. (2021) I2SG†++ Abdal et al. (2019); Karras et al. (2020a)
17 5 7 1
15 1 8 6
22 4 1 3
19 4 5 2
22 0 4 4
6 7 8 9
21 1 5 3
23 1 4 2
20 5 5 0
11 13 6 0
27 0 3 0
12 3 3 12
16 4 6 4
25 2 1 2
18 8 1 3
8 13 9 0
26 0 4 0
7 0 21 2
14 9 1 6
27 0 1 2
11 19 0 0
14 9 4 3
16 14 0 0
21 1 3 5
8 2 18 2
19 3 3 5
22 7 0 1
23 2 1 4
18 0 2 10
27 2 1 0
22 2 1 5
24 0 5 1
3 25 2 0
28 0 2 0
24 0 6 0
27 0 3 0
27 1 2 0
22 7 1 0
9 15 6 0
14 0 14 2

Total735 (61.25%) 189 (15.75%) 177 (14.75%) 99 (0.0825%)

Table 6: Detailed results of the user study. Each line corresponds to an image, with the associated number
of votes per method.
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