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Figure 1: An overview of our motion prior distillation. (a) Ideal case of inbetweening task. (b)
Motion prior conflict coming from existing time reversal sampling. (c) The proposed motion prior
distillation. (d) A video generated by Stable Video Diffusion model conditioned on the start frame,
and (e) conditioned on the end frame and temporally flipped. (f) A result from time reversal sam-
pling. We can observe ghosting artifact (yellow) and reverse play (pink) caused by the motion con-
flict. (g) Our result from the proposed method.

ABSTRACT

Recent progress in image-to-video (I2V) diffusion models has significantly ad-
vanced the field of generative inbetweening, which aims to generate semanti-
cally plausible frames between two keyframes. In particular, inference-time sam-
pling strategies, which leverage the generative priors of large-scale pre-trained
I2V models without additional training, have become increasingly popular. How-
ever, existing inference-time sampling, either fusing forward and backward paths
in parallel or alternating them sequentially, often suffers from temporal disconti-
nuities and undesirable visual artifacts due to the misalignment between the two
generated paths. This is because each path follows the motion prior induced by its
own conditioning frame. We thus propose Motion Prior Distillation (MPD), a sim-
ple yet effective inference-time distillation technique that suppresses bidirectional
mismatch by distilling the motion residual of the forward path into the backward
path. MPD alleviates the misalignment by reconstructing the denoised estimate of
the backward path from distilled forward motion residual. With our method, we
can deliberately avoid denoising the end-conditioned path which causes the am-
biguity of the path, and yield more temporally coherent inbetweening results with
the forward motion prior. Our method can be applied to off-the-shelf inbetween-
ing works without any modification of model parameters. We not only perform
quantitative evaluations on standard benchmarks, but also conduct extensive user
studies to demonstrate the effectiveness of our approach in practical scenarios.
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1 INTRODUCTION

Recent advances in diffusion models have significantly improved the performance of image and
video generation tasks. In particular, image-to-video (I2V) diffusion models (Blattmann et al.,
2023a; Xing et al., 2024b; Bar-Tal et al., 2024; Yang et al., 2025b) demonstrate strong capabil-
ities across diverse applications, as they can generate temporally coherent videos from a single
conditioning frame. From a generative perspective, this progress has extended video frame interpo-
lation to generative inbetweening, which aims to generate natural intermediate frames between two
keyframes (See Fig. 1 (a)). However, I2V diffusion models are not directly applicable to bounded
generation where both start and end frames serve as a dual-constraint.

To address this, recent studies have explored time reversal sampling, which employs the temporally
forward / backward denoising paths conditioned on the start / end frames during the iterative reverse
denoising process (See Fig. 1 (b)). This can be categorized into two approaches, namely parallel
and sequential, according to how these two paths are integrated. In the parallel approach (Feng
et al., 2024; Wang et al., 2025b; Zhu et al., 2025), samples from the forward and backward paths
are denoised simultaneously at each denoising step, and then linearly interpolated to form the input
for the next denoising step. In contrast, the sequential approach (Yang et al., 2025a) samples two
denoising paths sequentially by inserting a single re-noising step between them.

However, simply connecting the two temporal paths does not guarantee a single coherent motion
during the sampling process because each sample is obtained with the motion prior of its condition-
ing frame (See Fig. 1 (d) and (e)). Particularly, as shown in Fig. 1 (e), a backward path initialized at
the end frame tends to generate forward-looking sequences, instead of faithfully reconstructing his-
torical frames. This forward-generation bias commonly arises from I2V models which are trained to
predict forward consecutive frames. As shown in Fig. 1 (f), the generated frames noticeably follow
different routes and even disagree on the car’s destination, which we refer to as a motion conflict
between the two paths. This highlights that the fundamental challenge lies not merely in how to
connect the forward and backward paths, but in how to align their conflicting motion priors induced
by the forward-generation bias.

To this end, we aim to overcome this fundamental misalignment between two temporal paths by
proposing a novel inference-time distillation approach, called Motion Prior Distillation (MPD).
Our key intuition is that the residual of the denoised estimates contains motion information induced
by a given start frame. Inspired by this, during early denoising steps, our method distills the motion
residual induced by the start frame into the backward path (See Fig. 1 (c)). Since our approach delib-
erately avoids denoising the end-conditioned path, we can drive the backward path to follow the time
reversed motion residual of the forward path, thereby achieving bidirectional path alignment (See
Fig. 1 (g)). This single path design effectively removes conflicting motion priors while preserving
endpoint consistency, allowing two temporal paths to converge into coherent motions.

Through extensive evaluations, we demonstrate that our method consistently outperforms relevant
methods including existing time reversal sampling strategies. In addition, since conventional metrics
are not fully capable of evaluating temporal coherence and human preference, we further conduct
user studies to validate its robustness under practical scenarios in the presence of complex motion
patterns and large temporal displacements.

2 RELATED WORKS

Video Frame Interpolation. Video frame interpolation (VFI) aims to synthesize intermediate
frames between two input frames while maintaining spatial and temporal coherence (Lyu et al.,
2024; Kye et al., 2025). Supervised methods (Bao et al., 2019; Niklaus & Liu, 2018; Park et al.,
2020; Lei et al., 2023; Kong et al., 2022; Li et al., 2023; Huang et al., 2022; Lu et al., 2022; Reda
et al., 2022) that rely on estimating optical flows have been practically adopted due to their robust
performance and interpretable motion trajectories. However, errors in estimated flows often lead to
failures particularly under the scenes with occlusion or non-linear motion (Long et al., 2024). Re-
cently, diffusion-based VFI methods (Danier et al., 2024; Voleti et al., 2022) attempt to leverage
generative capabilities of diffusion models to improve the perceptual quality of interpolated frames.
While these methods enhance perceptual fidelity, their performance still degrades under large tem-
poral displacements between two frames.

2
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Figure 2: Denoising process of our MPD. Existing methods simply connect the two temporal paths
either by (a) linearly fusing them or (b) alternatively denoising each path. (c) Our method is em-
ployed on time reversal sampling framework to distill forward motion prior into the backward path,
thereby achieving motion alignment.

Generative Video Inbetweening. With the advancement of video diffusion models (Ho et al.,
2022b;a; Blattmann et al., 2023b;a), VFI has broadened into generative inbetweening, which is
interested in the set of semantically plausible interpolations. Some approaches (Jain et al., 2024;
Xing et al., 2024a;b; Wang et al., 2025a; Zhang et al., 2025) train diffusion models to condition
on two input frames for interpolation, yielding greater robustness to ambiguous and large motion
where traditional methods have struggled. While effective, they typically require substantial train-
ing resources. Other approaches leverage pre-trained large-scale I2V diffusion models and achieve
remarkable performances by incorporating new sampling techniques. TRF (Feng et al., 2024) pro-
poses a time reversal sampling strategy that fuses forward and backward denoising paths in parallel,
each conditioned on the start and end frames. Building on this strategy, GI (Wang et al., 2025b)
enhances reverse motion fidelity by fine-tuning a diffusion model through rotation of temporal self-
attention maps to generate temporally reversed frames. Similarly, FCVG (Zhu et al., 2025) proposes
a method that injects line correspondences as frame-wise conditions to alleviate the ambiguity of
inbetweening path. Meanwhile, ViBiDSampler (Yang et al., 2025a) introduces a new time reversal
strategy that employs sequential sampling along forward and backward paths to achieve on-manifold
generation of intermediate frames. However, all of them still operate with two independent motion
priors from the start and end frames, so convergence to a single coherent trajectory is not guaranteed.

3 PRELIMINARIES

3.1 STABLE VIDEO DIFFUSION

We base our explanation on Stable Video Diffusion (SVD) (Blattmann et al., 2023a), which is widely
adopted in time reversal sampling based methods. Specifically, SVD is a UNet-based latent video
diffusion model that is built on EDM framework (Karras et al., 2022). At a reverse denoising step
t ∈ {T, ..., 1} with the noise level σt, the denoiser Dθ predicts both the unconditional estimate x̂0,∅
and the conditional estimate x̂0,c from the current noisy latent xt:

x̂0,∅ = Dθ(xt;σt) and x̂0,c = Dθ(xt;σt, c), (1)

3
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where c is the input condition. In EDM framework, the corresponding noise prediction model ϵθ
and score prediction model sθ have the following relationship with the denoiser Dθ:

sθ(xt;σt) = −
ϵθ(xt;σt)

σt
=

Dθ(xt;σt)− xt

σ2
t

. (2)

To guide the sample toward the condition c, the classifier-free guidance (CFG) (Ho & Salimans,
2021) mixes unconditional estimate x̂0,∅ with the conditional estimate x̂0,c:

x̂0,c ← (1 + w)x̂0,c − wx̂0,∅, (3)

where w ≥ 0 is a guidance strength. At each iteration, we can denoise the sample with Euler step,
progressively denoising from Gaussian noise xT to sample x0:

xt−1 = x̂0,c +
σt−1

σt

(
xt − x̂0,c

)
. (4)

In particular, I2V models take the initial starting frame condition as input and generate videos with its
motion prior. To reflect both start and end frame conditions, time reversal sampling process involves
denoising two temporal paths with each corresponding frame condition.

3.2 TIME REVERSAL SAMPLING

Parallel Method. As illustrated in Fig. 2 (a), parallel time reversal methods denoise the tempo-
rally forward/backward path conditioned on the start/end frame, and then fuse them to produce the
intermediate frames (Feng et al., 2024; Wang et al., 2025b; Zhu et al., 2025). Let’s denote cstart and
cend as the encoded latent conditions of the start and end frame, respectively. We can express the
denoising step as:

xt−1 = αxt−1,cstart
+ (1− α)(x′

t−1,cend
)′ (5)

s.t. xt−1,cstart
= x̂0,cstart

+
σt−1

σt
(xt − x̂0,cstart

) (6)

and x′
t−1,cend

= x̂′
0,cend

+
σt−1

σt

(
x′
t − x̂′

0,cend

)
, (7)

where (·)′ indicates a temporal flip along the time dimension and α ∈ [0, 1] refers to the interpolation
weight. However, this method can suffer from off-manifold issues, where samples deviate from the
learned data manifold. As a result, their linearly interpolated results often lead to oscillations and
undesirable artifacts. Furthermore, they do not resolve the conflicting motion priors induced by the
two conditions, so motion fidelity can still degrade.

Sequential Method. An alternative approach adopts the sequential time reversal sampling strat-
egy (Yang et al., 2025a). Instead of fusing two temporal paths in parallel, this method sequentially
denoises the forward and backward paths as Fig. 2 (b). On-manifold generation can be achieved by
inserting a single re-noising step before switching from the forward to the backward path:

xt−1,cstart
= x̂0,cstart

+
σt−1

σt
(xt − x̂0,cstart

) , (8)

xt,cstart
= xt−1,cstart

+
√
σ2
t − σ2

t−1 ε, ε ∼ N (0, I), (9)

xt−1 = (x̂0,cend
+

σt−1

σt
(xt,cstart

− x̂0,cend
))′. (10)

Unlike the parallel approach, this sequential structure maintains a more consistent and manifold-
aligned path. Nevertheless, alternating two denoised paths results in conflicting motion priors, as
each path relies on its own conditioning frame. This highlights the need to align two temporal paths
without the motion prior conflicts.

4 METHOD

Given a pair of two frames {Istart, Iend}, our goal is to align two temporal paths with both temporal
coherence and visual fidelity. Fig. 2 (c) provides an overview of our method. To begin with, we
recast the time reversal sampling process as an optimization problem to solve a bidirectional path
misalignment problem. In this work, we present a simple yet effective approach, called Motion Prior
Distillation (MPD) which propagates a motion residual from a forward path into a backward path.

4
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4.1 MOTIVATION

The existing time reversal sampling methods can be interpreted as a sampling procedure in which
each denoising path approximately minimizes the following loss function L:

L(x; θ, cstart, cend, σ) = ∥ϵθ(x;σ, cstart)− ϵθ(x
′;σ, cend)

′∥22

=

∥∥∥∥x− x̂0,cstart

σt
−

(x′)′ − (x̂′
0,cend

)′

σt

∥∥∥∥2
2

=
1

σ2
t

∥∥x̂0,cstart − (x̂′
0,cend

)′
∥∥2
2
.

(11)

Here, the objective of Eq. (11) is to enforce the consistency between one path and a temporally
reversed path in both directions by optimizing the noisy samples x as follows:

x̄ = argmin
x
L(x; θ, cstart, cend, σ), (12)

where x̄ denotes the latent that minimizes the discrepancy between the two temporal paths. However,
incompatible motion priors induced by two frame conditions introduce the ambiguity between the
two denoising paths, especially in early denoising steps. Without resolving this problem, the loss L
is optimized to make the misaligned path worse, causing implausible motions in generated videos.
When there is a significant gap between two motion priors, we could observe unrealistic motions
like reverse play. Note that various types of visual artifacts come from incompatible motion priors,
which will be discussed in Sec. 5.2.

4.2 BIDIRECTIONAL PATH ALIGNMENT WITH MOTION PRIOR DISTILLATION

Since subsequent denoising steps primarily focus on restoring high-frequency details, the previous
works (Feng et al., 2024; Yang et al., 2025a) often fail to correct this misaligned trajectory. To
resolve this issue, we introduce a single path sampling scheme that distills the motion prior induced
by the start conditioning frame cstart into the backward path.

Here, our key intuition is that the forward motion residual ∆ of the denoised estimates x̂0,cstart

contain useful motion information, which can be written as:

∆x̂0,cstart

(i) := x̂
(i)
0,cstart

− x̂
(i−1)
0,cstart

, (13)

where i ∈ {2, ...N} denotes the frame index, given N frames. Then, using the relation between Dθ

and ϵθ in Eq. (2), the residual of noise from the forward path ∆ϵfwd is given as:

∆ϵfwd =
∆xt −∆x̂0,cstart

σt
, (14)

where ∆xt = x
(i)
t −x

(i−1)
t represents the residual of the noisy sample xt. Now, given the encoded

latent zend of the end frame Iend, we initialize the first index of the backward denoised estimate
x̂′
0,cend

(1) with zend as:

ϵ
(1)
bwd =

(x′
t)

(1) − zend
σt

. (15)

Next, we reconstruct the backward noise residual ϵbwd by cumulatively subtracting the forward
noise residual from the initial backward noise ϵ

(1)
bwd:

ϵ
(i)
bwd = ϵ

(1)
bwd −

i∑
k=2

∆ϵ
(k)
fwd. (16)

It is noteworthy that we should ignore the end frame condition cend. Therefore, we reformulate
Eq. (2) as follows:

x̂′
0,c∗

start
= xt − σt ϵbwd. (17)

Here, the reconstructed ϵbwd from the residual of the forward noise ∆ϵfwd provides us with a de-
noised estimate x̂′

0,c∗
start

from c∗start, which implies the flipped motion prior of cstart. To curb off-
manifold behaviors, we adopt CFG++ (Chung et al., 2025).

5
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Algorithm 1 MOTION PRIOR DISTILLATION

Input: xT ∼ N (0, σ2
T I), zstart, zend, {σt}Tt=1, Guidance scale λ, Renoising steps k, Distillation

ratio γ
Output: Improved inbetweening results x0

1: cstart, cend ← encode(zstart, zend)
2: for t = T to (1− γ)T do
3: for j = 0 to k − 1 do
4: x̂0,∅, x̂0,cstart

← Dθ(xt;σ, cstart) ▷ denoise forward path with cstart (Eq. (1))

5: ∆x
(i)
t ← x

(i)
t − x

(i−1)
t ▷ forward path residuals

6: ∆x
(i)
0,cstart

← x̂
(i)
0,cstart

− x̂
(i−1)
0,cstart

▷ forward denoised estimate residuals (Eq. (13))
7: ∆ϵfwd ← (∆xt −∆x̂0,cstart)/σt ▷ forward noise residuals (Eq. (14))
8: x′

t ← flip(xt) ▷ temporal flip

9: ϵ
(1)
bwd ← ((x′

t)
(1) − zend)/σt ▷ initialize first index of ϵbwd (Eq. (15))

10: ϵ
(i)
bwd ← ϵ

(1)
bwd −

∑i
k=2 ∆ϵ

(k)
fwd ▷ reconstruct ϵbwd (Eq. (16))

11: x̂′
0,c∗

start
← xt − σtϵbwd ▷ reconstruct x̂′

0,c∗start
(Eq. (17))

12: x̃0,cstart ← (1− λ)x̂0,cstart + λ(x̂′
0,c∗

start
)′ ▷ fuse two estimates (Eq. (18))

13: xt−1 ← x̃0,cstart
+ σt−1

σt
(xt − x̂0,∅) ▷ update with Euler step (Eq. (19))

14: xt = xt−1 +
√
σ2
t − σ2

t−1ε ▷ re-noise

15: end for
16: end for

Consequently, the Euler step of SVD in Eq. (4) denoises the sample xt:

x̃0,cstart = (1− λ)x̂0,cstart + λ(x̂′
0,c∗

start
)′, (18)

xt−1 = x̃0,cstart +
σt−1

σt
(xt − x̂0,∅), (19)

where λ ∈ [0, 1] serves as the interpolation scale. Note that during this process, we do not denoise
the temporally backward path with the end frame condition cend. This enables the direct transfer of
the forward motion prior toward the end-frame constraint without introducing additional sources of
misalignment. In addition, the proposed update in Eq. (19) can be seen as satisfying the proposed
objective in Eq. (11) in a relaxed form. In our single-path update, the end-conditioned estimate is
effectively replaced with the reconstructed estimate x̂′

0,c∗
start

distilled from the forward motion prior.
Thus, the loss that we define in Eq. (11) is simplified as:

L(x; θ, cstart, c∗start, σ) =
1

σ2
t

∥∥∥x̂0,cstart − (x̂′
0,c∗

start
)′
∥∥∥2
2
. (20)

By replacing the end frame condition cend with c∗start, we can reduce the gap between the two
temporal paths only with the start frame condition cstart:

x̄ = argmin
x
L(x; θ, cstart, c∗start, σ), (21)

This reformulated loss shows that the backward path no longer introduces independent motion prior;
instead, it is aligned through the forward motion prior. This gives the denoiser Dθ the opportunity
that reconciles the original denoised path with its reconstructed counterpart within a timestep, pro-
ducing a more stable trajectory.

Specifically, we disable our proposed process in later denoising steps. This choice follows the obser-
vation that diffusion sampling proceeds in a coarse-to-fine manner: early denoising steps with large
σ primarily represent global and low-frequency structure, whereas later denoising steps refine high
frequency details (Rissanen et al., 2023; Kim et al., 2023; Wu et al., 2025). Complementary stud-
ies (Lee et al., 2025b;a; Park et al., 2025) further demonstrate that focusing guidance on these early
steps yields better visual quality. Thus, modifying the motion prior is most effective when the trajec-
tory is still being shaped globally. Motivated by these findings, we apply our method during the early
denoising stage with additional re-noising steps k > 0 to steer the trajectory onto the correct direc-
tion. Then, we switch to existing time reversal sampling to enhance endpoint consistencies, which
will be discussed in Sec. 5.3. The details of this distillation process are provided in Algorithm 1.
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Table 1: Quantitative comparison results on DAVIS and Pexels dataset. We compare against six
baselines. Ours + TRF and Ours + ViBiD refer to our method applied to the parallel and sequential
time reversal sampling schemes, respectively. Best is bold, and second best is underlined.

Method
DAVIS Pexels

LPIPS ↓ FID ↓ FVD ↓ VB ↑ VB++ ↑ LPIPS ↓ FID ↓ FVD ↓ VB ↑ VB++ ↑

FILM 0.2946 55.160 1058.0 0.7978 0.9740 0.1157 43.935 761.60 0.8231 0.9734
DynamiCrafter 0.3158 46.739 678.92 0.7475 0.8735 0.2397 62.598 809.53 0.8211 0.9213

TRF 0.3127 56.894 674.31 0.7618 0.9352 0.2044 59.185 796.48 0.8008 0.9487
GI 0.2432 48.427 654.91 0.7747 0.9320 0.1114 47.990 476.93 0.8211 0.9566

FCVG 0.2347 38.997 621.82 0.7904 0.9353 0.1160 35.269 525.08 0.8245 0.9701
ViBiD 0.2492 39.883 559.49 0.7733 0.9387 0.1447 39.002 641.30 0.8130 0.9488

Ours + TRF 0.2212 34.910 612.17 0.7992 0.9330 0.1149 34.470 460.99 0.8503 0.9862
Ours + ViBiD 0.2220 37.241 527.05 0.7845 0.9474 0.1028 34.775 412.66 0.8235 0.9605

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Evaluation Dataset. Following the previous works (Yang et al., 2025a; Wang et al., 2025b), we
compare our method with relevant SOTA methods on two representative datasets. Specifically, we
utilize 100 video-keyframe pairs from DAVIS dataset (Pont-Tuset et al., 2017), and 45 from Pex-
els 1. To simulate typical inbetweening conditions where long-range temporal reasoning is required
between sparsely spaced keyframes, those videos exhibit diverse and large motions such as driving,
dancing, and so on.

Implementation Details. We plug our method into both TRF (parallel) and ViBiD (sequential)
building on SVD-XT model of SVD (Blattmann et al., 2023a) on a single NVIDIA RTX 4090 GPU.
For the sampling process, we use the Euler scheduler with 25 timesteps with the default settings of
SVD. Additionally, we configure each TRF and ViBiD with our settings: interpolation scale λ as 1.0
and 0.5, the number of re-noising steps k as 2 and 3, and the distillation step ratio γ as 0.3 and 0.2.

5.2 COMPARATIVE RESULTS

As comparison methods, we choose representative time reversal sampling-based methods:
TRF (Feng et al., 2024), GI (Wang et al., 2025b), FCVG (Zhu et al., 2025), and ViBiD (Yang et al.,
2025a). We also include a flow-based VFI model, FILM (Reda et al., 2022), and a recent generative
VFI model, DynamiCrafter (Xing et al., 2024b), for a broader comparison.

Quantitative Results. For quantitative evaluations, we use metrics for video frame interpolation,
including FID (Heusel et al., 2017), FVD (Unterthiner et al., 2019), LPIPS (Zhang et al., 2018). FID
and FVD measure the distances of generated frames/videos over ground-truth sequences. LPIPS as-
sesses perceptual similarity at frame level. We also evaluate the overall quality of the videos using
VBench (Huang et al., 2024a) and VBench++ (Huang et al., 2024b). VBench provides a compre-
hensive assessment across multiple dimensions such as subject consistency, background consistency,
aesthetic quality, image quality, motion smoothness, and temporal flickering. VBench++ typically
evaluates comprehensive performance of videos with a single reference frame. Because inbetween-
ing must treat both endpoints symmetically, we compute VBench++ for start and end frame each,
then average them.

As shown in Tab. 1, our method consistently outperforms the time reversal sampling-based methods,
TRF and ViBiD, across all metrics. In particular, our method achieves significant improvements in
terms of FID and FVD scores, highlighting its ability to produce temporally coherent sequences
with smooth motion. For VBench++, FILM gets slightly better scores than our methods in DAVIS
dataset. However, this can be attributed to flow-based warping that preserves local structures near
each endpoint. This comes with blurry artifacts and weaker long-range temporal consistency, which
yields the lower FVD score. Overall, our method effectively addresses the issue of conflicting motion
priors and achieves both fidelity and perceptual quality over SOTA methods.

1https://www.pexels.com/
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Figure 3: Qualitative baseline comparisons. TRF and ViBiD suffer from back-and-forth motion
and intermittent disappearance, while GI and FCVG exhibit noticeable artifacts and ghosting effects.
Our method yields more temporally consistent motion than the comparison methods. Additional
examples are provided in the supplementary videos.

Qualitative Results. As shown in Fig. 3, our method produces a more temporally consistent mo-
tion than the comparison methods. In the first group, TRF and ViBiD fail to preserve the child’s
forward-walking trajectory. Near the end frames, the child appears to walk backward or partially
vanish, indicating the misalignment issue between the two paths. In the second group, GI and FCVG
exhibit oscillations and ghosting artifacts. In particular, FCVG, relying on line matching, results in
ambiguous artifacts, which is observed with the skier. In common, the comparison methods en-
counter difficulties when subjects’ motion orientations are similar in both the start frame and end
frame. In contrast, we validate that injecting forward motion residual into the backward path is
enough to represent desirable object motions with fewer artifacts.

User Study. To further evaluate human preference beyond the quantitative metrics, we conduct a
comprehensive user study via Amazon Mechanical Turk (M-Turk) (Crowston, 2012). Each partic-
ipant is presented with pairs of the start and end frames, followed by randomly 8 candidate videos
generated by different methods. To avoid ordering bias, the display order of the videos is randomized
for every sequence.

Our user study is designed with three types of questionnaires: (1) Ranking: participants are asked
to rank videos in order of overall naturalness and temporal coherence, focusing on how plausibly
the generated sequence links the start and end frames. These rankings are converted into scores in

8
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Table 2: Comparison results of user study. Best results are bold, and second-best are underlined.

Method Alignment ↑ Artifact ↓ Unrealistic ↓ Method Alignment ↑ Artifact ↓ Unrealistic ↓

FILM - 0.4060 62.74% 54.76% FCVG 0.0988 20.36% 19.17%
DynamiCrafter 0.0190 34.64% 37.14% ViBiD - 0.0678 28.10% 25.24%

TRF - 0.3119 28.09% 25.24% Ours + TRF 0.3060 20.36% 22.62%
GI 0.1179 22.26% 13.57% Ours + ViBiD 0.2440 8.93% 9.88%

𝐼1 𝐼9 𝐼13 𝐼25
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Figure 4: Ablation study on the effect of distillation ratio γ. We vary the distillation step ratio
γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, where γ = 0.2 corresponds to the default setting and γ = 1 applies our
method at every denoising step.

reciprocal order, ranging from 3.5 to -3.5. (2) Artifact detection: participants are asked to select all
videos that exhibit noticeable visual artifacts, such as distortions, ghosting, or inconsistent textures.
(3) Unrealistic motion identification: participants are asked to choose videos that contain unrealistic
or physically implausible movements, which are closely related to perceptual plausibility.

We collected responses from a total of 30 participants across 28 randomly sampled video groups to
ensure the statistical reliability of the study. As shown in Tab. 2, our method achieves the highest
preference in the ranking task, while being selected least frequently in both the artifact and un-
realistic motion categories. These results demonstrate that our approach outperforms competitive
baselines in terms of perceptual plausibility and human preference, providing strong evidence of its
effectiveness in practical scenarios.

5.3 ABLATION STUDIES

We conduct ablation studies on DAVIS dataset to evaluate the impact of distillation step ratio γ,
re-noising steps k, and interpolation scale λ. The results are summarized in Table 3.

Within the parallel approach, LPIPS / FID are minimized at γ = 0.3 and k = 2, whereas FVD
prefers weaker distillation and fewer re-noising steps. This is because TRF fuses the two conditional
paths at every step, and the opposite motion prior is continually re-introduced after MPD, making
the process more sensitive. Averaging the two paths partially cancels out the conflict and improves
temporal coherence, while stronger MPD process can favor the frame-level fidelity at the cost of
temporal smoothness.

9
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Table 3: Ablation results for distillation steps ratio γ, re-noising steps k, and interpolation scale λ.
(a) - (c) Ours + ViBiD and (d) - (f) Ours + TRF. Best results are bold.

(a) Distillation step ratio (γ)

γ LPIPS ↓ FID ↓ FVD ↓
0.3 0.2421 39.855 574.05
0.2 0.2220 37.241 527.05
0.1 0.2374 39.949 545.25

(b) Re-noising steps (k)

k LPIPS ↓ FID ↓ FVD ↓
1 0.2379 39.961 568.06
2 0.2341 39.368 545.25
3 0.2220 37.241 527.05

(c) Interpolation scale (λ)

λ LPIPS ↓ FID ↓ FVD ↓
0.5 0.2242 37.837 539.99
1.0 0.2220 37.241 527.05
- - - -

(d) Distillation step ratio (γ)

γ LPIPS ↓ FID ↓ FVD ↓
0.3 0.2212 34.910 612.17
0.2 0.2238 35.408 576.01
0.1 0.2236 35.268 573.13

(e) Re-noising steps (k)

k LPIPS ↓ FID ↓ FVD ↓
1 0.2246 35.149 588.27
2 0.2212 34.910 612.17
3 0.2248 35.765 662.75

(f) Interpolation scale (λ)

λ LPIPS ↓ FID ↓ FVD ↓
0.5 0.2212 34.910 612.17
1.0 0.2264 35.612 654.72
- - - -

For the sequential time reversal sampling, we observe a clear and consistent optimum at γ = 0.2,
k = 3, and λ = 1.0, achieving the best scores. This indicates that strong early single-prior distillation
with no interpolation is beneficial for the sequential method. Once the backward path is aligned to
the forward motion prior in the early phase, subsequent steps rarely introduce conflicting priors, so
increasing k steadily helps to improve the temporal and perceptual quality of videos.

5.4 THE EFFECT OF DISTILLATION RATIO

Table 4: Effect of the distillation
ratio γ. Best results are bold.

γ LPIPS ↓ FID ↓ FVD ↓
0.2 0.2220 37.241 527.05
0.4 0.2478 45.636 634.11
0.6 0.2562 55.873 813.08
0.8 0.2679 68.007 973.64
1.0 0.2721 75.544 1086.6

We conduct another ablation study on the variation of the dis-
tillation step ratio γ up to 1.0. As shown in Tab. 4, increasing γ
consistently leads to worse scores across all quantitative met-
rics. The cropped examples in Fig. 4 further show that apply-
ing our method with γ > 0.3 does not further improve mo-
tion consistency, but rather introduces undesirable pixel-level
biases and degrades visual fidelity. Both quantitative and qual-
itative studies support our choice to apply our method in the
early stage of sampling, rather than throughout the entire de-
noising process.

6 CONCLUSION

In this work, we analyze the bidirectional path misalignment problem in existing time reversal sam-
pling through the lens of optimization. Based on the analysis, we introduce Motion Prior Distil-
lation (MPD), a training-free sampling method that resolves motion prior conflict in existing time
reversal sampling to enhance generative inbetweening task. MPD replaces two conflicting temporal
priors with a single motion prior from the start frame, and distills it through the backward denoising
path, yielding a coherent trajectory that satisfies both endpoint constraints. By integrating our MPD
into existing time reversal sampling methods, we demonstrate that MPD synergistically reduces
temporal discontinuities and visual artifacts, and achieves more appealing results both quantitatively
and qualitatively than SOTA methods.

Limitations and Future Directions. Our method relies on the assumption that the start frame
provides a reliable motion prior. However, this assumption may weaken in scenarios where motion
contains large non-rigid deformations, or when the end frame introduces new objects or large-scale
scene rearrangements. To overcome this limitation, we plan to introduce a mechanism that adaptively
adjusts the influence of motion prior according to the difficulty and complexity of the motion.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we have included the source code and sample key frames in the supplementary
materials and have provided pseudocode for our method in Algorithm 1. Our code will be publicly
released if the paper is accepted.
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A ANALYSIS ON DENOISED ESTIMATES
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Figure I: At the midpoint of time reversal sampling, we take the forward and backward denoised
estimate, align the latter to the temporal order, and inspect their difference.

For a clearer understanding of our motivation in Sec. 4.1, we conduct an experiment in which the
forward and backward denoised estimates, x̂0,cstart

and x̂′
0,cend

, are obtained at an intermediate time
step (t = 0.5T ), both with and without applying our method. Note that the backward denoised es-
timate is temporally flipped to enable direct comparison. As shown in the first two rows of Fig. I,
existing methods produce intermediate frames with implausible motion. The forward and backward
trajectories attempt to reflect two incompatible motion priors simultaneously, revealing a clear mo-
tion conflict. In contrast, as shown in the last two rows of Fig. I, our method maintains a consistent
trajectory in both temporal paths, generating coherent intermediate frames without such conflicts.

B FINE-TUNING METHODS WITH TIME REVERSAL SAMPLING

In this section, we deeply discuss the fine-tuning methods that incorporate the time reversal sam-
pling strategy. Existing fine-tuning approaches (Wang et al., 2025b; Zhu et al., 2025) share two
major limitations. First, they still rely on incompatible motion priors at inference time, so mis-
matches between forward and backward trajectories are not fundamentally resolved. Second, both
methods require additional fine-tuning, which demands substantial computational cost. In contrast,
our method aligns the two temporal paths without additional training, and integrates into existing
time reversal samplers with only a minor change to the sampling loop.

GI (Wang et al., 2025b) improves backward motion fidelity by fine-tuning SVD through rotated
temporal self-attention maps. While this design encourages consistency between two paths, the
two paths are still driven by different motion priors. Additionally, the backward-motion network
is trained only on a small collection of videos, which may not fully capture the diverse backward
motion patterns. As shown in Fig. VI, this can lead to motion conflicts such as two surfers being
generated, even though there must be one. Instead, our method reconstructs a backward estimate
directly from the forward motion residuals, so that the backward path no longer introduces its own
motion prior but instead follows the time-reversed motion induced by the start frame, leveraging the
faithful forward motion prior of SVD.

FCVG (Zhu et al., 2025) adopts frame-wise conditions by extracting matched line segments from
the two keyframes. Then, they interpolates the frame-wise correspondences over time, and then
feeds them into SVD as the guidance. This works well when scenes contain strong, well-defined
structural edges, but it has practical limitations. The method is highly sensitive to the quality of
the line extraction and matching pipeline. Thus, failures in detection or matching directly lead to
unstable or distorted interpolations. As shown in Fig. IV, such failures appear as noticeable ghosting
artifacts on the carrier.
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C COMPUTATIONAL EFFICIENCY

We compare computational cost with other I2V diffusion based methods, as summarized in Tab. I.
DynamiCrafter requires additional training on a I2V diffusion model for the generative inbetween-
ing task. Likewise, GI and FCVG rely on fine-tuning SVD models, which also require substantial
computational resources. During inference, our method denoises the temporally forward path and
then adds a few extra re-noising steps to make the two paths align. Due to these steps, the infer-
ence time can be slightly longer than FCVG and ViBiD. However, this small extra cost yields better
alignment and fewer artifacts in generated videos.

Table I: Comparisons on computational efficiency.

Method Train Inference VRAM Resolution
time (s) (GB)

DynamiCrafter ✓ 26 11.2 16 × 512 × 320
TRF ✗ 429 13.6 25 × 1024 × 576
GI ✓ 663 23.4 25 × 1024 × 576

FCVG ✓ 134 24.1 25 × 1024 × 576
ViBiD ✗ 108 19.2 25 × 1024 × 576

Ours + TRF ✗ 143 19.2 25 × 1024 × 576
Ours + ViBiD ✗ 141 19.2 25 × 1024 × 576

D ADDITIONAL EXPERIMENTS ON LARGE TEMPORAL GAPS
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Figure II: Interpolation results over a 50-frame gap

We conduct additional experiments on large temporal gaps, where the two keyframes are separated
by 50 frames. In this challenging setting, both the previous time reversal sampling methods and our
method exhibit noticeable degradation in generated videos. However, our method still reduces severe
ghosting and back-and-forth motion compared to the baselines, thereby producing more plausible
intermediate frames. As shown in Fig. II, TRF often yields duplicated or intermittent legs, whereas
incorporating our method with TRF generates more coherent inbetweening results.

E DISCUSSIONS ON EFFECTIVE AND CHALLENGING SCENARIOS

𝐼1 𝐼9 𝐼17 𝐼25

(a)

(b)

Figure III: Failure cases. Our method struggles when (a) the end keyframe introduces entirely new
objects or (b) the scene undergoes large-scale rearrangements between the two keyframes.
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One of the key components of our method is the endpoint initialization in Eq. (15) that initializes
the backward noise ϵbwd using the latent encoding of the end frame zend. This implicitly assumes
that the end frame of the forward path is reasonably consistent with the ground truth end frame.
When the forward trajectory ends far from the ground truth end frame, Eq. (15) may become a less
informative initialization. In such cases, the shared motion prior can be biased toward an inaccurate
end frame, so small residual discrepancies in object placement or appearance may remain.

We experimentally find that our method is most effective when both keyframes contain the same
object and share a semantically coherent motion as presented in Appendix F. In such scenarios, the
forward motion prior provides the reliable global trajectories, and distilling it into the backward path
successfully reduces undesirable artifacts. However, as discussed in the existing methods (Wang
et al., 2025b; Zhu et al., 2025), our method still struggles with the inevitable problems that arise
when the end frame introduces entirely new objects or undergoes large-scale scene rearrangements.
Representative failure cases are presented in Fig. III.
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F ADDITIONAL QUALITATIVE RESULTS

TR
F

G
I

Vi
Bi

D
FC

VG
𝐼1 𝐼7 𝐼13 𝐼19 𝐼25

O
ur

s 
+ 

TR
F

O
ur

s 
+ 

Vi
Bi

D
TR

F
G

I
Vi

Bi
D

FC
VG

𝐼1 𝐼7 𝐼13 𝐼19 𝐼25

O
ur

s 
+ 

TR
F

O
ur

s 
+ 

Vi
Bi

D

Figure IV: Additional comparison results with baseline models.
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Figure V: Additional comparison results with baseline models
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Figure VI: Additional comparison results with baseline models
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