Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

ALIGNING MODALITIES IN VISION LARGE LANGUAGE
MODELS VIA PREFERENCE FINE-TUNING

Anonymous authors
Paper under double-blind review

1 INTRODUCTION

Vision Large Language Models (VLLMs) have achieved significant success in various vision under-
standing tasks, such as image captioning [Vinyals et al.| (2015)); [Li et al.| (2022} |2023c)) and vision
question answering |Ye et al.| (2023); |/Antol et al.| (2015)). These VLLM models fuse larger-scale
pre-trained vision models into the representation space of a large language models (LLM), allowing
the LLM access to the visual representations. However, such VLLMs are not perfect and even suffer
from “hallucinations”, a phenomenon in which the language model generates content that is not
grounded in the image, such as imagined objects and even scenes, wrong spatial relationships or
categories, etc. Such artifacts are present even when both the vision backbone produces high-quality
visual features and the language model itself is factual and accurate. These issues can pose significant
risks when VLLMs are deployed in high-stakes scenarios, such as medical domains Li et al.| (2023b)
or autonomous driving |Dewangan et al.| (2023)).

As discussed by |Cui et al.| (2023)), the potential reason for hallucinations in VLLMs lies in their
tendency to prioritize common sense or stereotypes present in the training language data, often
disregarding the actual visual input information. In this paper, we attribute this issue to the lack
of alignment between the image and text modalities, resulting in a reduced focus on input image
information. Recent research efforts have sought to enhance the alignment between modalities
through preference fine-tuning techniques, such as reinforcement learning from human feedback
(RLHF) |Sun et al.| (2023). Concurrent works |Li et al.| (2023d); Zhao et al.|(2023) also use the Direct
Preference Optimization (DPO) framework, but they rely on the traditional preference data generation
process in LLMs, where both preferred and dispreferred responses may potentially be incorrect.
However, in VLLMEs, the produced responses are centered around the image data rather than being
generated freely like in LLMs. When comparing two responses, both of which may be incorrect
for the given task, the model may struggle to accurately align the image with the correct generated
response. In|Yu et al.|(2023a)) the authors propose to solve this issue by collection corrective feedback,
which shows strong results, but relies on costly human data gathering.

Unlike prior works that generate both preferred and dispreferred data, we propose Preference
Optimization in VLLM with AI-Generated Dispreferences (POVID) framework, aiming to exclu-
sively generate dispreferred feedback data using AI models. In POVID we employ a high-quality
ground truth multi-modal instruction as the preferred answer and employ two strategies to generate
dispreferred responses. First, we utilize GPT-4V to introduce plausible hallucinations into the answer,
which we then use as the dispreferred response. Second, we aim to provoke inherent hallucination
patterns and subsequently correct them within the target VLLM that requires fine-tuning. We achieve
this goal by introducing noise, triggering inherent hallucination patterns within the VLLMs. The
introduction of noise disrupts the VLLM’s comprehension of the image, leading it to generate uncer-
tain responses that rely more on textual context or the knowledge it has acquired from the training
data. Given that the inherent hallucination patterns of the target VLLM evolve during the training
process, the response generation with the noisy image occurs in real-time during training, and this is
treated as dispreference. Finally, we integrate both forms of dispreference into the DPO optimization
framework, specifically targeting the alignment of language generation with the image.

The primary contribution of this paper is POVID, which utilizes Al-generated dispreference to
align the image and text modalities in VLLMSs. This approach explicitly contrasts a hallucinatory
answer with a truthful one, eliminating the need for gathering human feedback and making it easily
deployable at scale. Our empirical results demonstrate the promise of our framework in reducing
hallucinations and enhancing other VLLM-related tasks. In particular, we visualized the experimental
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Figure 1: The framework of POVID. The preference generation process is divided into two steps:
hallucinating textual responses and trigger dispreference during training. Here, different types of
triggered hallucinations are labeled in (types of hallucinations).

results in the appendix as shown in Figure [ our approach significantly improves performance
compared to other preference tuning methods in VLLMs, achieving an average improvement of
12.4% improvements on average. Additionally, we demonstrate that POVID can redirect the attention
of VLLMs towards the image modality, resulting in better modality alignment.

2 CONSTRUCTING PREFERENCES TO ALIGNING MODALITIES IN VLLMS

While preference learning approaches (e.g., DPO) facilitate the lightweight and stable training of
VLLMs, they require data in the form of preferences. In contrast to LLMs, which support more
freestyle generation in many scenarios, VLLMs used in various applications, such as VQA or image
captioning, produce responses linked to input images. This inherent image-centricity presents distinct
challenges in the preference data generation process for VLLMs, setting it apart from the process in
LLMs. Specifically, in VLLMs, when comparing two responses, neither of which is correct for the
required task (e.g., image captioning), the model may not be able to accurately align the image with
the response.

To address this challenge, we propose Preference Optimization in VLLM with AI-Generated
Dispreferences (POVID), a novel approach aimed at better aligning image and text modalities.
As illustrated in Figure[[] POVID leverages Al models to generate dispreferred responses without
the need for human labeling efforts. These generated dispreferred responses, when combined with
groundtruth image descriptions (treated as preferred responses), form the preference data pairs.
Specifically, we employ two strategies to generate the dispreferred response: (1) Firstly, we ma-
nipulate the groundtruth text response by transforming the groundtruth response into hallucinated
response, which serves as the dispreferred response; (2) Secondly, we introduce distortion to the
image input during the training process, intending to trigger inherent hallucination patterns within the
VLLMs. These patterns are then formalized as the dispreferred response, motivating the model to
correct its inherent dispreferred patterns. In the remainder of this section, we will provide detailed
explanations of both strategies and demonstrate how to integrate them into the preference training
framework.

2.1 HALLUCINATING TEXTUAL RESPONSES

In our first strategy, we aim to generate dispreferred hallucinatory responses by hallucinating the
groundtruth correct response. We construct the hallucinatory response based on a subset with 17K
examples that are randomly sampled from LLaVA-Instruct-150K |Liu et al.| (2023b) dataset. Here,
the LLaVA-Instruct-150K datasets is used to train LLaVA LLaVA with supervised fine-tuning. The
17K examples includes various task types, including image captioning, simple VQA and logical
reasoning.
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Figure 2: Illustration of logits for the next token generation with “In the image, there are knife and _”.
This figure shows the predictive uncertainty in token generation, emphasizing the influence of visual
cues from objects identified as “knife”” and “plate”.

To construct the preferences, we treat the original answers in the 17K examples as preferred responses.
In terms of constructing dispreferred responses, we hallucinate the original answers using GPT-
4V |OpenAl| (2023). Here, we adopt two hallucinating approaches tailored to different tasks:

I. Hallucinating Image Captioning Tasks. First, we hallucinate the image captioning tasks by
considering three fundamental causes of hallucination in VLLMSs: (1) Object Co-occurrence: This
phenomenon arises when the training data contains spurious co-occurring patterns between objects,
leading VLLMs to generate objects based on these learned spurious correlations. In this context, we
aim to leverage GPT-4V to deduce object co-occurrence within the given image and subsequently
revise the original responses accordingly; (2) Logical Relationships Between Entities: This involves
using GPT-4V to modify the relationships between the original objects; (3) Incorrect Attributes: In
this case, we employ GPT-4V to alter the attributes of various objects, such as changing their colors.
We illustrate these three distinct hallucination scenarios with an example provided in Figure 5a) in
appendix. In addition, the prompt we used to generate the dispreferred response is in Appendix

I1. Hallucinating Reasoning Tasks. Secondly, when dealing with tasks involving reasoning, such
as VQA and logical reasoning, we task GPT-4V with modifying the reasoning process. This entails
introducing errors related to logical relationships, entity information, entity attributes, and more.
Additionally, we recommend that GPT-4V attempts to make subtle changes to the reasoning process,
ensuring it remains independent of factual reasoning results, meaning that an incorrect reasoning
process may still yield correct results. However, if the introduction of errors necessitates alterations to
the reasoning results, we instruct GPT-4V to adjust the results accordingly. Likewise, in Figure[5(b)
in appendix, we provide an example to demonstrate both the original and the generated dispreferred
responses. The prompt we used is detailed in Appendix [D]

2.2  MITIGATING INHERENT HALLUCINATION PATTERNS

In addition to generating the dispreferred response using powerful external Al models like GPT-4V,
we also aim to provoke inherent hallucination patterns within the VLLM to be finetuned. Our second
strategy introduces noise into the image to trigger inherent hallucination patterns in the VLLMs. This
noise disrupts the VLLM’s understanding of the image, leading it to produce uncertain responses
that rely more on textual context or acquired knowledge from the training data. This occurs because,
in the presence of noisy images, the model tends to prioritize inherent object associations over
visual information. Notably, the noise step should remain within a reasonable range, ensuring that
the image remains easily recognizable by humans. For example, as depicted in Figure 2] when
presented with the context “There are a knife and _”, under specific noisy conditions, the likelihood
of “fork” surpasses that of “plate” (ground truth). This may occur because “plate” is more likely to
co-occur with “fork” in the training data. With an increase in noise steps, the term “pixel” becomes
predominant, owing to the noticeable noise patterns within the image. Consequently, establishing an
appropriate noise step to activate inherent hallucination patterns is a reasonable approach.

To achieve this goal, we introduce diffusion noise into the original image. We define the noise step as
k, and the noised image with step k can be expressed as follows:

x(k):\/g-x+\/1—gk-e, (1)
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Table 1: Comparison between POVID and other preferences construction approaches in both halluci-
nation and comprehensive evaluation benchmarks. We bold the best results and underline the second
best results.

Comprehensive Benchmark

Hallucination Benchmark

Method | CHAIRs | CHAIR; | POPE{ MMHal 1 | SciQA-IMGT MM-Vett MMBench+ LLaVA-Bench
LLaVA-1.5 66.8 12.7 85.90 242 66.8 30.5 63.0 63.4
+ Vlfeedback 56.3 114 83.72 2.62 66.2 31.2 63.9 62.1
+ Human-Preference 54.0 93 81.50 2.53 65.8 31.1 60.4 63.7
+RLHF-V 44.6 7.9 86.20 2.59 67.1 30.9 63.6 65.4
POVID (ours) | 318 5.4 86.90 269 | 68.8 31.8 64.9 68.7

where & = Hf:o & and & € (0, 1) is a hyperparameter chosen prior to model training. Detailed
settings can be found in Appendix[C] After obtaining the noised image, in order to more effectively
capture changes in inherent hallucination patterns during the fine-tuning process of the VLLM, we
integrate the image noising process into the DPO fine-tuning process. Specifically, for each input
prompt =, we take into account the dispreferred responses from both the hallucinated text responses
discussed in Section and the responses triggered by distorted images. We then reformulate the
DPO loss as follows:

Trret (Y| ) Tret (Y| %) Trer (Y7 [27)

@

t n n
ﬁpowl)(ﬂe; Tef) = _E(z,yw,yl)N'D |:loga<oz log M — (51 log Mltlx) + B2 log M) >:| ,

where «, 41 and j3, are coefficients that balance preferred and dispreferred terms. yj represents
the dispreferred response generated using the approach outlined in Section 2.1} Additionally, ™
represents the noisy image, which triggers the generation of the dispreferred response y;'. It’s
important to note that for each token ¢ in the sequence y;', the value of y;’; is determined by
selecting the maximum probability from the set 7y (- | £, y.y,<;). Here, each generated token in the
dispreferred response y;"; is conditioned on the prior tokens from the preferred response Y., <;. This
conditioning allows us to control the reliability of the triggered dispreferred response. As a result, we
aim to capture the most significant changes between the preferred and dispreferred responses, since a
substantial portion of dispreferred response overlaps with preferred response.

3 EXPERIMENT

In this section, we empirically investigate the effectiveness of POVID in aligning image and text
modalities in VLLMs and reducing hallucination. We aim to answer the following questions: (1)
Can POVID effectively reduce hallucination in VLLMs compared to other preference fine-tuning
strategies? (2) Does POVID improve performance compared to other benchmarks and tasks like
VQAZ? (3) Can hallucinating textual responses and image distortion benefit performance? (4) How
does POVID change attention weights to align image and text modalities? For the experimental
setting and comparison model and benchmark, we have introduced it in detail in Appendix[C] and
we have also supplemented the analytical experiments such as modality alignment and benchmark
fine-grained in Appendix

3.1 RESULTS

Comparison with Different Preferences in VLLMs. In Table |1, we present the results of a
comparison between various VLLM preferences, evaluating both hallucination and comprehensive
benchmarks. Firstly, in the hallucination benchmarks, POVID effectively enhances performance by
creating dispreferred preferences through textual data manipulation and image distortion. We achieve
a significant improvement of 31.78% across all hallucination benchmarks, effectively reducing
hallucinations in the generated responses. This outcome aligns with our expectations, as constructing
dispreferences from the ground-truth correct responses maximally enables the model to discern
differences between correct and incorrect responses while optimizing alignment between the image
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Table 2: Comparison between POVID and other state-of-the-art VLLMs across both hallucination
and comprehensive evaluation benchmarks. We bold the best results and underline the second best
results.

Method ‘ Vision Encoder Language Model ‘ CHAIRs | CHAIR; | POPE 1 MMHal 1 Avg. ranking |
InstructBLIP ViT-g (1.3B) Vicuna (7B) 40.0 8.0 77.83 2.10 3.00
Qwen-VL-Chat | ViT-G (1.9B) Qwen (7B) 48.2 9.1 87.07 2.89 2.50
mPLUG-OwI2 ViT-L (0.3B) LLaMA (7B) 54.4 12.0 86.20 2.17 4.00
POVID (ours) ‘ ViT-L (0.3B) Vicuna (7B) ‘ 31.8 54 86.29 2.69 1.50
Method ‘ Vision Encoder Language Model ‘ SciQA-IMG T MM-Vett MMBench 1 LLaVA-Bench 1 Avg. ranking |
InstructBLIP ViT-g (1.3B) Vicuna (7B) 60.5 26.2 36.0 60.9 4.00
Qwen-VL-Chat | ViT-G (1.9B) Qwen (7B) 68.2 41.2 60.6 67.7 2.25
mPLUG-OwI2 ViT-L (0.3B) LLaMA (7B) 64.5 36.2 64.5 59.9 3.00
POVID (ours) ‘ ViT-L (0.3B) Vicuna (7B) ‘ 68.8 31.8 64.9 68.7 1.75

Table 3: Results of ablation study. Text disprefer means we only using hallucinated textual response
to train DPO. Image distortion means that we use distorted images to trigger inherent hallucination
patterns.

‘ Hallucination Benchmarks ‘ Comprehensive Benchmarks

Text disprefer Image distortion ‘ CHAIRg | CHAIR; | POPE1 MMHal ‘ SciQA-IMG 1T MM-Vet1 MMBench 1 LLaVA-Bench 1

x X 66.8 12.7 85.90 2.42 66.2 31.2 63.9 62.1
v x 39.6 6.3 86.04 2.65 67.2 309 64.7 67.5
x v 504 9.6 85.19 2.54 66.9 30.7 64.3 66.9
v v 318 5.4 86.90 2.69 68.8 318 64.9 68.7

and text modalities within the model. Moreover, in more comprehensive evaluation benchmarks,
which encompass not only factuality and hallucination assessment but also other aspects, POVID
continues to demonstrate superior performance when compared to other preference data collection
methods. This further indicates our model’s capacity to enhance VLLM performance through
improved modality alignment.

Comparison with Open-Sourced VLLMs Models. We present a comparison between POVID and
other open-sourced VLLMs in Table 2] Although various approaches utilize different image and text
encoders, POVID outperforms other popular VLLMs in five out of eight benchmarks. In contrast,
the second-best baseline, Qwen-VL-Chat, achieves the best performance in only two out of eight
benchmarks. This underscores the superiority of POVID and further corroborates its effectiveness in
aligning image and text modalities to improve the performance of VLLM:s.

Ablation Studies. To further demonstrate the essential role of the key components of POVID in
contributing to performance improvement, we conducted ablation experiments on both hallucination
and comprehensive benchmarks, and present the results in Table[3] In this ablation study, we evaluate
the effectiveness of two aspects: (1) hallucinating groundtruth responses and (2) image distortion.
According to the results, we initially observe that image distortion can enhance performance across
all benchmarks. This indicates its effectiveness in aligning multimodalities by compelling the model
to rectify inherent hallucination patterns. Additionally, generating dispreference from groundtruth
responses significantly enhances performance, underscoring the effectiveness of the Al-generated dis-
preference strategy. Finally, when combining both strategies, POVID achieves the best performance,
further affirming its effectiveness in enhancing VLLMs through improved modality alignment.

4 CONCLUSION

In this work, we introduce a novel approach, Preference Optimization in VLLM with AI-Generated
Dispreferences (POVID) to address the challenges in modality alignment for large vision-language
models. In POVID, we adopt two strategies to generate disprefered responses: first, we use synthetic
data from GPT-4V to inject plausible hallucinations into the correct answer. Second, we use distorted
images to trigger the inherent hallucination behavior of the VLLM. Then both of these answers are
integrated into an RLHF framework via Direct Preference Optimization. Empirical evaluations across
multiple benchmarks reveal that POVID not only mitigates hallucination effectively but boosts the
overall performance of model.
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A RELATED WORK

VLLMs and VLLM Hallucination. The advent of autoregressive large-scale language models
(LLMs), highlighted in works by [Touvron et al. (2023aZb)); Taori et al.| (2023), has led to the
development of Vision-Large Language Models (VLLMs). To align the image and text modalities,
recent research has concentrated on instruction tuning L1 et al.{(2023a), scaling up training dataset Jia
et al.|(2021), and better alignment between image and text with local feature enhancement|Cha et al.
(2023). These advancements have successfully combined LLMs with image inputs and excel in
image comprehension.

However, such VLLMs are not perfect and even suffer from “hallucinations”, generating outputs
that may not accurately or faithfully represent the content of a user-provided image. There are
various sources of hallucinations in VLLMs, including biased data|Chuang et al.| (2023)); Tu et al.
(2023)), insufficient training|Chen et al.| (2023), and imperfect inference Huang et al.|(2023)). Recently,
addressing hallucination in LVLMs is primarily achieved through various techniques such as decoding
approaches [Leng et al.|(2023); Huang et al.|(2023), post-processing |Zhou et al.| (2023)); [Yin et al.
(2023)) and the construction of higher-quality dataset|Liu et al.|(2023al); |Li et al.[(2023e). While these
approaches can mitigate hallucination to some extent, they often fail to directly guide VLLMs to
align image and text modalities.

Preference Alignment Aligning with human preferences for large models has emerged as a critical
issue due to the limitations imposed by safety and ethical considerations in real-world applications.
Preference alignment can be broadly categorized into two main approaches: alignment through
feedback, which encompasses both human Bai et al.[(2022); Rafailov et al.|(2023)) and Al-generated
feedback |Lee et al.|(2023) and alignment via prompt guidance Wei et al.| (2022). Initial investigations
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Captioning Task VQA Task

Prompt: Describe this image. POVID (ours) LLaVA-1.5

Prompt: Is there someone in this picture?

POVID (ours) LLaVA-1.5

No. there is o frit Knife in the picture. There are

Visual tokens Textual tokens

LLaVA 1.5

Figure 3: Comparison of attention map between POVID and LLaVA-1.5 at different tasks. The red
box region is labeled with the image attentions that can be significantly improved by POVID.

into preference alignment for VLLMs have recently been conducted. Sun et al.| (2023) introduced
LLaVA-RLHF, which utilizes a preference dataset annotated by humans to decrease hallucinations
in LLaVA. |Li et al.|(2023d) proposed a method for distilling preferences into VLLMs to enhance
their ability to generate relevant and accurate responses based on visual context. |Yu et al.|(2023b)
collected human preferences in the form of segment-level corrections to hallucinatory content and
optimizing the model’s behavior based on dense, direct feedback. While these initial results are
promising, these works heavily rely on the traditional preference data generation process in LLMs,
which generate both preferred and dispreferred responses, but none of them are guaranteed to be
correct. In VLLMs, when both responses prove incorrect for the given task, accurately aligning
the image with the correct generated response becomes challenging. In contrast, POVID directly
generates dispreferred responses, effectively addressing this challenge.

B SUPPLEMENTARY EXPERIMENT & VISUALIZATION

B.1 ANALYSIS

In this section, we provide a comprehensive analysis to demonstrate how different components
contribute to the performance of POVID and illustrate how POVID enhances overall performance.

Table 4: Fine-grained performance comparison of various models on LLaVA-Bench, where we adopt
the following abbreviation: Convo for Conversation, Captioning for Detail description, Reasoning for
Complex reasoning.

Method | Convo Captioning Reasoning Overall
LLaVA-1.5 53.3 53.4 79.6 63.4
+ Vlfeedback 51.3 49.3 78.5 62.1
+ Human-Preference | 49.6 433 81.3 63.7
+ RLHF-V 55.8 56.1 80.3 65.4
POVID (ours) \ 55.9 60.1 81.5 68.7

Fine-grained Performance Analysis. Table [4] presents a fine-grained performance analysis of
different preference collection strategies on the LLaVA-Bench benchmark. This analysis encompasses
a spectrum of multi-modal reasoning and perception dimensions, such as Conversation, Detail
Description, and Complex Reasoning. According to Table [} it is evident that, when compared
with other preference data collection approaches, POVID excels in image captioning and providing
detailed descriptions for a given image. This outcome aligns with our expectations, as our training
data includes various long-form captions, and such comprehensive preference comparisons result
in improved alignment and stronger image captioning results. Moreover, across other categories,
our approach consistently outperforms alternative preference collection strategies, underscoring its
effectiveness across various tasks.
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MMHal

POPE g

SciQA-IMG

MMBench

67.5

LLaVA-1.5
+ Vifeedback

. 71.25 + Human-Preference
100 - CHAIR] LLaVA-Bench + RLHF-V
POVID (ours)
100 - CHAIRS

Figure 4: An overall performance comparison between POVID and other VLLM preference learning

approaches.

Prompt: Describe this image.

a. Hallucinating Image Captioning Tasks

Preferred response

The image shows two men in a small boat on the water. One
man is standing near the center of the boat, while the other is
seated and rowing. The man wearing a headscarf is watching
television, which is placed on the boat, adding an interesting
element to the scene. There are a few other boats visible in the
background, indicating that they might be in a city river or a

Dis-preferred response

The image shows two men in a small boat on the water,
equipped with fishing poles (hallucinatory entity) for their
leisurely activity. One man is sitting near the center of the
boat (entity attributes), fishing with his fishing pole
(hallucinatory entity) , while the other is seated and rowing.
They are both watching a television (logical relationship),
which is placed on the boat, adding an interesting element to

busy waterway. The presence of the television in the boat

adds a unique touch to their leisurely activity. the scene. There are a few other boats visible in the

background, indicating that they might be in a city river or a
busy waterway. The presence of the fishing poles and the
television in the boat adds a unique touch to their relaxing day
on the water.

b. Hallucinating Reasoning Tasks
Prompt: Is there a person standing next
to water in the image?

=

Preferred response Dis-preferred response

Reasoning: The picture depicts a sunset scene in which I see
a lake and open sky.

Answer: Yes, there is a person standing next to some blue
water in the image.

Reasoning: The image depicts a sunset scene with a man
standing on an open ice field (false reasoning, hallucinatory
entities) with what appears to be a few buildings visible in
the distance.

Answer: No, the person is standing next to a vast snowy
field, not water (incorrect answer).

Figure 5: Two examples extracted from hallucinated image captioning tasks and reasoning tasks.
Different types of hallucinations are labeled in (types of hallucinations).

Modality Alignment Analysis. We assess the impact of POVID on modality alignment by comparing
the attention maps generated by POVID with those of the original LLaVA-1.5 model, with a specific
focus on image captioning and VQA tasks. We illustrate two cases in Figure [3] where these attention
maps reveal the distribution of attention scores assigned to generated textual tokens within the input
image-text sequence throughout the VLLM’s output generation phase. Our findings reveal that
the original LLaVA-1.5 model tends to overemphasize the context of the text, which can result in
hallucinations. In contrast, POVID increasingly prioritizes attention towards the image, indicating a
strong alignment between image and text modalities. One potential explanation for this phenomenon
is that, through a comparison between the ground truth and the generated dispreferred data, along
with the mitigation of internal hallucination patterns, POVID redirects the VLLM’s attention, leading
to a greater focus on the image tokens.
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C TRAINING AND EXPERIMENTS SETUP

Training hyperparameters are shown in Table[5] For the first phase, we trained for 3 epochs, and
for the second phase, the training was conducted for 1 epoch. Training for 20 hours on one A100
80G GPU. For the second phase, we adjust the diffusion noise level, symbolized by £ through a
specific formula: & = Sigmoid(l;) x (0.5 x 1072 — 107°) 4+ 10~>, where ¢ is drawn from a normal
distribution.

Implementation Details. Following concurrent VLLM preference tuning studies Yu et al.|(2023b);
L1 et al.|(2023d)), we have chosen LLaVA-1.5 (7B) as our backbone model for all experiments and
have applied POVID to fine-tune LLaVA-1.5 (7B). The overall training process is divided into two
stages. In the first stage, we exclusively utilize the preferences generated through the hallucinating
textual responses, as discussed in Section to fine-tune LLaVA-1.5 using DPO. In the second
stage, we employ image distortion to rectify the model’s inherent hallucinatory behaviors using the
loss defined in Eq. 2] The first stage involves training for 3 epochs, and the second stage for 1 epoch.
The entire training process requires a single A100 80GB GPU and takes approximately 6 hours.

Baseline Approaches. We first compare the proposed approach with other VLLM preference tuning
methods, which include Silkie|[Li et al.|(2023d)), LLaVA-RLHF |Sun et al.| (2023)), and RLHF-V |Yu
et al.|(2023b). These methods share a common goal of enhancing model performance by creating
curated datasets and subsequently applying preference tuning techniques to fine-tune the model based
on these datasets. To ensure a fair and equitable comparison, we utilize the same curated datasets
employed by these approaches and apply DPO to fine-tune LLaVA-1.5 (7B).

Furthermore, we compare the performance with other open source VLLMSs, including InstructBLIP
Dai et al.| (2023)), Qwen-VL-Chat Bai et al.| (2023)) and mPLUG-OwI2 |Ye et al.| (2023).

Evaluation Benchmark. To evaluate the performance of POVID and other baselines, we first adopt
VLLM hallucination evaluation benchmarks, including CHAIR [Rohrbach et al.| (2018)), POPE [Li
et al.[(2023f), and MMHal [Sun et al.[(2023)). Here, CHAIR, including CHAIRg and CHAIR;, is
a metric used in image captioning tasks to evaluate the accuracy of object descriptions in captions.
It compares the objects mentioned in a caption with those present in the image. MMHal Sun et al.
(2023) assesses hallucinations and response informativeness by utilizing GPT-4V to compare model
output with human responses and various object labels, determining the scores accordingly. POPE |Li
et al.| (2023f) uses a set of binary classification tasks, prompting VLLMs with simple Yes-or-No
questions about the existence of certain objects in images.

We further evaluate all approaches on comprehensive VLLM evaluation benchmarks, including
SciQA-IMG Lu et al.|(2022), MME |Fu et al.| (2023), MMbench |Liu et al.| (2023c)), MM-Vet|Yu et al.
(2023c)) and LLaVA-benchLiu et al.| (2023b). Each benchmark contains tasks to evaluate perception,
cognition, and reasoning abilities of VLLMs.

D CONSTRUCTION OF THE DISPREFERENCE DATASET

This section details the prompts utilized to compile the dataset focusing on dispreferences, specifically
within the realms of image captioning and reasoning tasks. The prompts are designed to elicit
responses that reveal dispreference patterns, categorized into two main types: image captioning tasks
intended to provoke imaginative descriptions, and reasoning tasks aimed at stimulating inferential
thought processes. These prompts, central to our methodology, are enumerated in Table[6] offering a
comprehensive view of the data generation framework.
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Table 5: Training hyperparameters.

Hyperparameters

lora_r 128
lora_alpha 256
lora_target all
mm_projector_lr 2e-5
Batch size 1
Learning rate le-7
model_max_length 1024

noise_step (only for internal preference optimization) 500
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Table 6: Two types of prompts to GPT4V (The format of the obtained data is {image, prefer data,
disprefer data}).

Prompts for hallucinating image captioning tasks:
Help me generate one highly confusing response based on the image and the standard caption in

the Question-Answer Pair.
skeoste ste sk st st she st ste sfe sk e sfe sk st ste she sk sk she sk ke sfe sk st st she st ste sfeske ke sfeskeoste skeskeske skeskeok

Question-answer Pair:

Q: {question}

A: {answer}

Requirements:

(1) The generated caption is generally similar to the given A, with the same main meaning;
(2) You can refer to the following errors to generate the wrong caption (1. The wrong caption
can contain some co-occurring objects, which are prone to appear in such scenarios but do not
appear in the image; 2. The wrong caption can be an error in the number of entities or the
logical relationships between entities; 3. The attributes of entities in the caption can also be
modified, such as color, appearance, etc.) (3) Compared to the original caption A, the caption

you modified is incorrect based on the provided image.
skeoste sk skeoste sk skeosteo st sfeoske sk sk sk st sk skeoske sk skeoskeoske steoskeoste sk skeoste sk sttt stttk skoskokokoskok

Output Format:
Answer: your answer

Prompts for hallucinating reasoning tasks:

Now, please help me generate new answers with hallucination errors based on the image,
question, and answer provided. There are two cases now:

1. If the given question and answer are short and do not require logical reasoning, then modify
the answer to a hallucination error answer, such as some quantity errors or entity and property
errors.

2. If the entire question requires logical reasoning, then help me reorganize the answers based
on the given image, questions, and answers into the format “Reason: xxx, Result: xxx” (Answer
1). Modify the reasons by introducing errors related to logical relationships, entity information,
entity attributes, etc. If the error in the reason would lead to a new result, modify the result
accordingly. If the error does not lead to a new result, keep the original result. Similarly, organize
it in the format “Reason: xxx, Result: xxx” (Answer 2).

s she she sk sk sk sk sk sk sk sk sk sk sk sk sie ste st sfe st sfe sfe sfe sfe sfe s sfe s sfe she sk sk sk sk sk skoskokokokok

Question-answer Pair:

Q: {question}

A: {answer}

Requirements:

(1) The generated wrong answer and reasoning process should be combined with the image and
be misleading..

sk sk sk sk sk sk ske st st sk steosioskoko sk sk sk sk sk sk sk sk sk skosk sk skoskoskoskoskokokokokokolokokoroer

Output Format:

Answer: your answer
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