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Abstract

The availability of large amounts of user-provided data has been key to the success
of machine learning for many real-world tasks. Recently, an increasing aware-
ness has emerged that users should be given more control about how their data is
used. In particular, users should have the right to prohibit the use of their data for
training machine learning systems, and to have it erased from already trained sys-
tems. While several sample erasure methods have been proposed, all of them have
drawbacks which have prevented them from gaining widespread adoption. In this
paper, we propose an efficient and effective algorithm, SSSE, for samples erasure
that is applicable to a wide class of machine learning models. From a second-
order analysis of the model’s loss landscape we derive a closed-form update step
of the model parameters that only requires access to the data to be erased, not to
the original training set. Experiments on CelebFaces attributes (CelebA) and CI-
FAR10, show that in certain cases SSSE can erase samples almost as well as the
optimal, yet impractical, gold standard of training a new model from scratch with
only the permitted data.

1 Introduction
One of the main reasons for the recent success of deep learning for many computer vision tasks is
the availability of large user-provided datasets. For example, the popular ImageNet dataset consists
of over 14 million images that were publicly accessible on the Internet [DDS+09]. More recently,
Facebook disclosed the existence of an in-house dataset which consists of 3.5 billion Instagram
images [MGR+18]. For a long time, when users uploaded their data to online services they silently
agreed on transferring a broad range of usage rights to the service. However, several legal initiatives,
such as the European Union’s General Data Protection Regulation (GDPR) [Man13], have been
proposed in the recent years, to give users more control over their data, for example the right to
withdraw it from the online services at any time. While the legal consequences of such a requirement
are so far unclear when it comes to machine learning models, it is a realistic possibility that it would
imply that the withdrawn data also has to be erased from already-trained models.

Despite the fundamental nature of the problem of erasing certain training examples from an al-
ready trained machine learning model, no satisfactory general-purpose solution exists so far. The
gold standard of simply training a new model on all data except the withdrawn part implies storing
and reprocessing all samples whenever a single example should be erased, which is not practical
for most real-world problems. Although several alternative approaches have been proposed, none
of them has found widespread adoption, either in the research community or in commercial ap-
plications. A possible explanation is that the proposed methods are either not efficient enough to
be practical, or not powerful enough to provide satisfactory results. For example, machine un-
learning methods designed to accelerate the (re)training of models from subsets of the training
data [BCCC+21, CY15, DCL+19, GGVZ19, IASCZ21, LMLM20, WDD20] are typically limited
to specific model classes, or they invoke substantial changes to the original training step. Methods
using differential privacy [DR14] can provide strong guarantees, but typically come with the draw-
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backs of more difficult interpretability and reduced prediction accuracy. A method closer to ours
consists of the use of influence functions [KL17], which quantify the importance of each training
sample to the overall model. Despite being a generic and deterministic method, a major challenge
is computational tractability, since determining the influence of any sample requires computing and
inverting the Hessian matrix of the model’s loss, which can be extremely costly for high-dimensional
models. Consequently, efficient influence-based data removal has so far only been demonstrated for
low-dimensional models [GGHvdM20].

In this work, we aim at closing this gap, by introducing a new method which we call Single-Step
Sample Erasure (SSSE). We study the scenario of updating a trained model, to reflect the removal
of a subset of training samples. To address the intractability of computing and inverting the Hessian
matrix, we approximate it with the empirical Fisher Information Matrix (FIM), which allows easy
computation, and fast matrix inversion using rank-one updates. Most related to our work is [GAS20],
where the authors also discuss a second-order update step for sample removal, which uses the FIM
in place of the Hessian. However, there the FIM is approximated by its diagonal, and an additional
noise term is used to ensure the updated model has a similar statistical behaviour to that of one
trained from scratch without the removed samples.

SSSE can be used for both convex and non-convex models, as well as for removing a single sample
or entire subsets from the training set. Moreover, SSSE is broadly applicable to a wide variety of
existing machine learning models, as it puts only minor restriction on how the original model was
trained. In addition to being analytically justified by means of a Taylor expansion of the model’s loss
landscape, SSSE is also deterministic. Consequently, it is easy to apply and understand, including
for practitioners, allowing them to, for example, check how far their model of choice fulfills SSSE’s
underlying assumptions. Moreover, SSSE has an important practical advantage, as it only requires
access to the data to be deleted, not the original training set, and is also efficient, as samples are
erased by simple closed-form updates of the model parameters.

2 Method
Background Consider the setting of supervised learning using a dataset D =
{(x1, y1), . . . , (xn, yn)} ⊆ X × Y and a twice differentiable loss function ` : Rd × Y → [0,∞).
For every i ∈ {1, . . . n}, let `i(θ) be the loss of sample (xi, yi). Let θ? = argminθ L(θ), where
L(θ) = 1

n

∑n
i=1 `i(θ). We assume that L is a strictly convex function of θ, with an unique global

minimum θ?. Given S ⊂ D, with |S| = k, we want to update θ? in a single step, such that the new
model behaves as if it had been trained from scratch on D \ S. Let θ?−S = argminθ L−S(θ), where
L−S(θ) = 1

n−k
∑

(xi,yi)/∈S `i(θ). From a first-order Taylor approximation of ∇L−S(θ?−S) = 0

around θ?, with H−S(θ?) = ∇2L−S(θ
?), we obtain the following approximation for θ?−S :

θ?−S ≈ θ? +
1

n− k
H−1−S(θ

?)
∑

(xi,yi)∈S

∇`i(θ?) (1)

This update step has been previously used for convex models in [GGHvdM20], where in addition
a change to the loss function through random perturbations is proposed. Also, Equation (1) has
been used for influence functions [CW80, KL17], except using the Hessian over the full training set
HD(θ

?). For defining SSSE we will assume H−S(θ?) ≈ HD(θ?) and use the latter instead.

Single-Step Sample Erasure For most practical applications, computing and inverting the Hes-
sian is prohibitively expensive. However, when the loss function is the negative log likelihood
(i.e. `i(θ) = − log p(yi|xi; θ)), it is well-known that the expected Hessian over x ∼ p(x) and
y ∼ p(y|x; θ) is equal to the Fisher Information Matrix (FIM): F (θ) = E(x,y)[∇ log p(y|x; θ) ·
∇T log p(y|x; θ)]. When the discriminative model p(y|x; θ) is a good approximation for the true
conditional distribution p(y|x), the Hessian matrix can be estimated using the FIM. Since FIM re-
quires multiple gradient computations for each data sample, a good compromise is the use of the
empirical FIM, which needs only a single gradient computation per sample, by using the true label
of each data point. The empirical FIM is defined as:

F̂D(θ) =
1

n

n∑
i=1

∇ log p(yi|xi; θ) · ∇T log p(yi|xi; θ) (2)

Besides tractability, a major advantage of using the empirical FIM is that it allows efficient in-
verse computation, without having to perform an explicit matrix inversion. This has been ex-
plored in [SA20] for pruning neural networks, and we follow here a similar approach. We con-
struct F̂−1D incrementally from a sequence of rank-1 updates, by employing the Sherman-Morrison
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Figure 1: (CelebA) The similarity ratio γS(θ̂; θ?, θ?−S) and the normalized parameters distance for θ̂ε on the
removed samples S, as a function of the scaling factor ε. The results are averaged across multiple attributes,
removed at different rates.

lemma [SM50]. Initially, we choose λ > 0 and define F̂0(θ) = λId. Afterwards, we incrementally
add the contribution of all (xi, yi) ∈ D, for i = 1, . . . , n, by computing at each step:

F̂−1i = F̂−1i−1 −
F̂−1i−1∇`i · ∇T `iF̂

−1
i−1

n+∇T `iF̂−1i−1∇`i,
(3)

where all gradients and estimates are taken at the fixed θ. The final F̂−1n is identical to the desired
F̂−1D . The value of the dampening factor λ > 0 used for initializing the recurrence for the empirical
FIM ensures that the matrix is invertible. Furthermore, we noticed that the elements of the empirical
FIM may have a different scale than those of the Hessian, and we therefore add an additional scale
hyper-parameter ε. Based on these approximations, for ε > 0, we define a Single-Step Sample
Erasure (SSSE) update for a removed subset S as:

θ̂ε = θ? +
ε

n− k
F̂−1D (θ?) ·

∑
(xi,yi)∈S

∇`i(θ?). (4)

3 Experiments – Convex Multi-Attribute Classification
We examine the task of erasing samples from the large-scale CelebFaces Attributes Dataset (CelebA)
[LLWT15], where the samples are human faces, each with 40 binary attribute annotations. We use
features obtained from a VGG-16 [SZ15] neural network pre-trained on the larger VGGFace dataset
[PVZ15], and randomly subsample 10% of the train set, on which we fine-tune an `2-regularized
linear multi-attribute classifier, with no bias, to predict each of the 40 binary attributes. We remove
different percentages of attributes with at most 20% frequency. Although the weights for each
attribute are independent, removing a group of samples with the same attribute has a non-trivial
effect on the model, since the data available for the remaining attributes also changes.

Evaluation Method We introduce a method for evaluating how well SSSE removes samples,
based on the intuition that the SSSE update θ̂ε and the retrained model θ?−S are similar if their
performance is close on all data splits. The most informative data subset for establishing the relative
distance from θ̂ε to either θ? or θ?−S is S, since it is part of the train set for θ? and of the test set for
θ?−S . For an attribute a, we define αSi (θ) as the area-under-the-curve (AUC) score corresponding
to the receiver operating characteristic (ROC) curve, computed on S. If an attribute is absent, its
corresponding AUC score will be set, by convention, to 0. AUC scores are preferred for imbalanced
data, and they are also robust against the class threshold. We define the similarity ratio between θ̂ε
and both θ? and θ?−S on the removed subset S, through the following quantity:

γS(θ̂ε; θ
?, θ?−S) =

DS(θ̂ε, θ?)
DS(θ̂ε, θ?) + DS(θ̂ε, θ?−S)

(5)

where by notation DS(θ1, θ2) =
∑|A|
i=1 |αSi (θ1) − αSi (θ2)| for any two models θ1 and θ2. Clearly,

γS(θ̂ε; θ
?, θ?−S) > 0.5 implies θ̂ε is closer to θ?−S than to θ?, in terms or AUC scores. Therefore, we

choose ε? as the value achieving maxε γS(θ̂ε; θ
?, θ?−S). Next, we will see this method of selecting ε

gives SSSE models that are close, in terms of distance in parameter space, to retraining from scratch.
Results We compare SSSE against retraining from scratch without S. Given θ?, we first compute
and store F̂−1D (θ?), and use it later for each sample removal update. We fix the dampening λ = 10−4,
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Figure 2: (CIFAR10) Absolute difference in accuracy between θ̂ε and θ?−S , with different batch sizes for
F̂−1
D (θ?) in SSSE. Average and standard deviations over the first 5 classes are reported.

which is equal to the `2 regularization parameter. In this case, F̂D has a block-diagonal structure,
with 40 equal blocks, corresponding to the individual weights of each attribute. We then simulate the
removal of different ratios of a single attribute by computing the SSSE update, while also retraining
to obtain each θ?−S . This procedure is repeated for all attributes that appear in at most 20% of the
train samples, which consist of almost half of all available attributes. We search the best value of the
scale ε for SSSE using γS(θ̂ε; θ?, θ?−S) as our performance measure.

The results in Figure 1a show the similarity ratio γS(θ̂ε; θ?, θ?−S) averaged over all chosen attributes,
for each scale ε, and for different removal percentages. The maximum average similar similarity
ratio, across the chosen values of ε, is higher than 0.8, which corresponds to SSSE being more than
4 times closer, in terms of AUC scores, to θ?−S than to θ?. Furthermore, the region for ε where
SSSE is closest to θ?−S is consistent across different attributes and removal percentages, which
suggests that in this case ε is indeed a property of FD. As the problem is convex, we can consider

the normalized Euclidean distance in parameter space ‖θ̂ε−θ?−S‖
‖θ̂ε−θ?‖+‖θ̂ε−θ?−S‖

. Figure 1b shows that, in

general, the region with the highest similarity ratio is close to the one where the minimum of the
normalized distance is attained. Although we cannot conclude that θ̂ε converges exactly to θ?−S ,
nonetheless SSSE yields a model that is similar in behavior to retraining from scratch.

4 Experiments – Non-Convex Models

SSSE is equally applicable in the non-convex setting. To see this, we train a ResNet20 [HZRS16]
architecture, on the CIFAR10 [KH09] dataset, optimized without additional data augmentation, us-
ing standard SGD with momentum, for the task of removing either all samples belonging to a single
class, or a chosen percentage. We assume a block diagonal structure for F̂D, and use blocks of size
70000. For a class a, we consider Ta to be all test samples that belong to that class.

Erasing samples from trained deep learning models is difficult, as they can effectively memorize
the training set [ZBH+16]. However, SSSE still results in similar performance to a model trained
from scratch on D \ S , from the same random seed as θ?. In Figure 2 we show the absolute dif-
ferences between the accuracy of SSSE and of θ?−S , computed on the train and test splits of the
available datasets. To improve the efficiency of SSSE, we also approximate FIM using mini-batches
of 10 gradients. Such approximations have been also recently used for neural network compression
[SA20]. With the appropriate scale ε, both methods can achieve similar performance.

We note that the task of erasing all samples from a given class is in fact easier than removing only
a subset; for partial removal, even in the “optimal” region SSSE tends to mis-classify the removed
class samples more aggressively than θ?−S . A similar effect was also noticed in the experiments with
convex models. We believe that improvements could be made to SSSE, to induce more aggressive
perturbations in the higher layers, by, for example, computing FIM only on the leave-k-out samples.

5 Discussion

We proposed SSSE, a method for erasing samples from a trained model. It is inspired by influence
functions and made efficient through the use of FIM in combination with efficient low-rank matrix
updates instead of an intractable Hessian. Our results show that influence-based updates are not
just theoretically a good idea for samples erasure, but that, with the right numerical tools, they can
actually be made practical. We hope that this insight will inspire other researchers to build on our
work and practitioners to add influence-based sample erasure to their toolboxes.
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