
Published as a conference paper at ICLR 2025

OSCILLATORY STATE-SPACE MODELS

T. Konstantin Rusch
MIT
tkrusch@mit.edu

Daniela Rus
MIT

ABSTRACT

We propose Linear Oscillatory State-Space models (LinOSS) for efficiently learn-
ing on long sequences. Inspired by cortical dynamics of biological neural net-
works, we base our proposed LinOSS model on a system of forced harmonic os-
cillators. A stable discretization, integrated over time using fast associative paral-
lel scans, yields the proposed state-space model. We prove that LinOSS produces
stable dynamics only requiring nonnegative diagonal state matrix. This is in stark
contrast to many previous state-space models relying heavily on restrictive param-
eterizations. Moreover, we rigorously show that LinOSS is universal, i.e., it can
approximate any continuous and causal operator mapping between time-varying
functions, to desired accuracy. In addition, we show that an implicit-explicit dis-
cretization of LinOSS perfectly conserves the symmetry of time reversibility of
the underlying dynamics. Together, these properties enable efficient modeling of
long-range interactions, while ensuring stable and accurate long-horizon forecast-
ing. Finally, our empirical results, spanning a wide range of time-series tasks from
mid-range to very long-range classification and regression, as well as long-horizon
forecasting, demonstrate that our proposed LinOSS model consistently outper-
forms state-of-the-art sequence models. Notably, LinOSS outperforms Mamba
and LRU by nearly 2x on a sequence modeling task with sequences of length 50k.
Code: https://github.com/tk-rusch/linoss.

1 INTRODUCTION

State-space models (Gu et al., 2021; Hasani et al., 2022; Smith et al., 2023; Orvieto et al., 2023) have
recently emerged as a powerful tool for learning on long sequences. These models posses the state-
fullness and fast inference capabilities of Recurrent Neural Networks (RNNs) together with many of
the benefits of Transformers (Vaswani, 2017; Devlin, 2018), such as efficient training and competi-
tive performance on large-scale language and image modeling tasks. For these reasons, state-space
models have been successfully implemented as foundation models, surpassing Transformer-based
counterparts in several key modalities, including language, audio, and genomics (Gu & Dao, 2023).

Originally, state-space models have been introduced to modern sequence modelling by leveraging
specific structures of the state matrix, i.e., normal plus low-rank HiPPO matrices (Gu et al., 2020;
2021), allowing to solve linear recurrences via a Fast Fourier Transform (FFT). This has since been
simplified to only requiring diagonal state matrices (Gu et al., 2022a; Smith et al., 2023; Orvi-
eto et al., 2023) while still obtaining similar or even better performance. However, due to the linear
nature of state-space models, the corresponding state matrices need to fulfill specific structural prop-
erties in order to learn long-range interactions and produce stable predictions. Consequently, these
structural requirements heavily constrain the underlying latent feature space, potentially impairing
the model’s expressive power.

In this article, we adopt a radically different approach by observing that forced harmonic oscillators,
the basis of many systems in physics, biology, and engineering, can produce stable dynamics while at
the same time seem to ensure expressive representations. Motivated by this, we propose to construct
state-space models based on stable discretizations of forced linear second-order ordinary differential
equations (ODEs) modelling oscillators. Our additional contributions are:

• we introduce implicit and implicit-explicit associative parallel scans ensuring fast training
and inference.

1

https://github.com/tk-rusch/linoss

Published as a conference paper at ICLR 2025

• we show that our proposed state-space model yields stable dynamics and is able to learn
long-range interactions only requiring nonnegative diagonal state matrix.

• we demonstrate that a symplectic discretization of our underlying oscillatory system con-
serves its symmetry of time reversibility.

• we rigorously prove that our proposed state-space model is a universal approximator of
continuous and causal operators between time-series.

• we provide an extensive empirical evaluation of our model on a wide variety of sequential
data sets with sequence lengths reaching up to 50k. Our results demonstrate that our model
consistently outperforms or matches the performance of state-of-the-art state-space models,
including Mamba, S4, S5, and LRU.

2 THE PROPOSED STATE-SPACE MODEL

Our proposed state-space model is based on the following system of forced linear second-order
ODEs together with a linear readout,

y′′(t) = −Ay(t) +Bu(t) + b,

x(t) = Cy(t) +Du(t),
(1)

with hidden state y(t) ∈ Rm, output state x(t) ∈ Rq , time-dependent input signal u(t) ∈ Rp,
weights A ∈ Rm×m, B ∈ Rm×p, C ∈ Rq×m, D ∈ Rq×p, and bias b ∈ Rm. Note that A is a
diagonal matrix, i.e., with non-zero entries only on its diagonal. We further introduce an auxiliary
state z(t) ∈ Rm, with z = y′. We can thus write (1) (omitting the bias b and linear readout x)
equivalently as,

z′(t) = −Ay(t) +Bu(t),

y′(t) = z(t).
(2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tim
e
t

In
pu

tS
eq

ue
nc

e
u
(t
)

O
ut

pu
tS

eq
ue

nc
e

LinOSS layer nonlinear layer LinOSS layer nonlinear layer

LinOSS block LinOSS block

z(t)y(t) z(t)y(t)

Figure 1: Schematic drawing of the proposed Linear Oscillatory State-Space model (LinOSS).
The input sequences are processed through multiple LinOSS blocks. Each block is composed of
a LinOSS layer (2) (y(t) plotted using orange solid lines and z(t) using blue dashed lines) followed
by a nonlinear transformation, specifically a Gated Linear Units (Dauphin et al., 2017) (GLU) layer
in our case. After passing through several LinOSS blocks, the latent sequences are decoded to pro-
duce the final output sequence.

2.1 MOTIVATION AND BACKGROUND

To demonstrate that the underlying ODE in (1) models a network of forced harmonic oscillators, we
begin with the scalar case by setting p = m = 1 in (1). Choosing B = b = 0, we obtain the classic

2

Published as a conference paper at ICLR 2025

ODE, y′′ +Ay = 0, which describes simple harmonic motion with frequency A > 0, such as that
of a simple pendulum (Guckenheimer & Holmes, 1990). Now, allowing B ̸= 0 introduces external
forcing proportional to the input signal u(t), where B modulates the effect of the forcing. Finally,
setting p,m > 1 yields an uncoupled system of forced harmonic oscillators.

Neuroscience inspiration. Our approach is inspired by neurobiology, where the periodic spiking
and firing of action potentials in individual neurons can be observed and analyzed as oscillatory phe-
nomena. Furthermore, entire networks of cortical neurons exhibit behavior-dependent oscillations,
reviewed in Buzsaki & Draguhn (2004). Remarkably, despite their complexity, these neural oscil-
lations share characteristics with harmonic oscillators, as described in Winfree (1980). Building on
this insight, we distill the core essence of cortical dynamics and aim to construct a machine learn-
ing model following the motion of harmonic oscillations. Finally, we note that our focus is on the
theoretical and empirical aspects of the proposed oscillatory state-space model in this manuscript.
However, our model can be further used in the context of computational neuroscience emulating
characteristic phenomena of brain oscillations, such as frequency-varying oscillations, transient syn-
chronization or desynchronization of discharges, entrainment, phase shifts, and resonance, while at
the same time being able to learn non-trivial input-output relations.

2.2 COMPARISON WITH RELATED WORK

State-space models have seen continuous advancements since their introduction to modern sequence
modeling in Gu et al. (2021). The original S4 model (Gu et al., 2021), along with its adaptations
(Gu et al., 2022a; Nguyen et al., 2022; Goel et al., 2022), utilized FFT to solve linear recurrences.
More recently, a simplified variant, S5 (Smith et al., 2023), was introduced, which instead employs
associative parallel scans to achieve similar computational speed. Another advancement to S4 have
been Liquid Structural State-Space models (Hasani et al., 2022) which exchanged the static state
matrix with an input-dependent state transition module. While all aforementioned models rely on
the HiPPO parameterization (Gu et al., 2020), Linear Recurrent Units (LURs) (Orvieto et al., 2023)
demonstrated that even simpler parameterization yield state-of-the-art performance. Finally, selec-
tive state spaces have been introduced in Gu & Dao (2023) in order to further close the performance
gap between state-space models and Transformers utilized in foundation models.

Oscillatory dynamics as a neural computational paradigm has been originally introduced via Cou-
pled Oscillatory RNNs (CoRNNs) (Rusch & Mishra, 2021a). In this work, it has been shown that
recurrent models based on nonlinear oscillatory dynamics are able to learn long-range interactions
by mitigating the exploding and vanishing gradients problem (Pascanu, 2013). This approach was
later refined for handling very long sequences in Rusch & Mishra (2021b), which utilized uncoupled
nonlinear oscillators for fast sequence modeling by adopting a diagonal hidden-to-hidden weight
matrix. Interestingly, this method resembles modern state-space models but distinguishes itself by
employing nonlinear dynamics. Since then, this concept, generally termed as neural oscillators
(Lanthaler et al., 2024), has been extended to other areas of machine learning, e.g., Graph-Coupled
Oscillator Networks (GraphCON) (Rusch et al., 2022) for learning on graph-structured data, and
RNNs with oscillatory dynamics combined with convolutions leading to locally coupled oscillatory
RNNs (Keller & Welling, 2023). Our proposed LinOSS model differs from all these methods by its
explicit use of harmonic oscillators via a state-space model approach.

2.3 DISCRETIZATION

Our aim is to approximately solve the linear ODE system (2) as fast as possible, while at the same
time being able to guarantee stability over long time-scales. To this end, we suggest to leverage the
following two time integration schemes.

Implicit time integration. We fix a timestep 0 < ∆t ≤ 1 and define our proposed state-space
model hidden states at time tn = n∆t as the following implicit discretization of the first order
system (2):

zn = zn−1 +∆t(−Ayn +Bun),

yn = yn−1 +∆tzn.

3

Published as a conference paper at ICLR 2025

This can be written in matrix form by introducing xn = [zn,yn]
⊤,

Mxn = xn−1 + Fn,

with

M =

[
I ∆tA
−∆tI I

]
, Fn =

[
∆tBun

0

]
.

We can now solve our discretized oscillatory system by simply inverting matrix M and computing
the induced recurrence. Note that inverting matrices typically requires O(m3) operations (where
m is the number of rows or columns of the matrix) using methods like Gauss-Jordan elimination,
making it computationally expensive. However, by leveraging the Schur complement, we can obtain
an explicit form of M−1 that can be computed inO(m), thanks to the diagonal structure of A. More
concretely,

M−1 =

[
I−∆t2AS −∆tAS

∆tS S

]
=

[
S −∆tAS

∆tS S

]
, (3)

with the inverse of the Schur complement S = (I + ∆t2A)−1 which itself is a diagonal matrix and
can thus be trivially inverted. We point out that among other choices, a straightforward condition
that ensures S is well-defined is Ak ≥ 0 for all k = 1, . . . ,m. The recurrence of the proposed
model is then given as,

xn = MIMxn−1 + FIM
n , (4)

with MIM = M−1, and FIM
n = M−1Fn. As we will show in the subsequent section, this discretiza-

tion leads to a globally asymptotically stable discrete dynamical system.

Implicit-explicit time integration (IMEX). Another discretization yielding stable dynamics that,
however, do not converge exponentially fast to a steady-state can be obtained by leveraging symplec-
tic integrators. To this end, we fix again a timestep 0 < ∆t ≤ 1 and define our proposed state-space
model hidden states at time tn = n∆t as the following implicit-explicit (IMEX) discretization of
the first order system (2):

zn = zn−1 +∆t(−Ayn−1 +Bun),

yn = yn−1 +∆tzn.
(5)

The only difference compared to the previous fully implicit discretization is the explicit treatment
of the hidden state y (i.e., using yn−1 instead of yn) in the first equation of (5). As before, we can
simplify this system in matrix form,

xn = MIMEXxn−1 + FIMEX
n , (6)

with

MIMEX =

[
I −∆tA

∆tI I−∆t2A

]
, FIMEX

n =

[
∆tBun

∆t2Bun

]
.

Interestingly, ODE system (2) represents a Hamiltonian system (Arnold, 1989), with Hamiltonian,

H(y, z, t) =
1

2

m∑
k=1

Aky
2
k + z2k − 2

(
p∑

l=1

Bklu(t)l

)
yk. (7)

The numerical approximation of this system using the previously described IMEX discretization
is symplectic, i.e., it preserves a Hamiltonian close to the Hamiltonian of the continuous system.
Thus, by the well-known Liouville’s theorem (Sanz Serna & Calvo, 1994), we know that the phase
space volume of (2) as well as of its symplectic approximation (6) is preserved. This gives rise to
invertible model architectures leading to memory efficient implementations of the backpropagation
through time algorithm, similar as in (Rusch & Mishra, 2021b). This denotes the most significant
difference between the two different discretization schemes, i.e., the IMEX integration-based model
is volume preserving, while IM integration-based model introduces dissipative terms. We will see
in subsequent sections that both models have their own individual advantages depending on the
underlying data. Finally, we note that stable higher-order time integration schemes (such as higher-
order symplectic splitting schemes) can be used in this context as well. An example of leveraging
the second-order symplectic velocity Verlet method can be found in Appendix Section D.

4

Published as a conference paper at ICLR 2025

2.4 FAST RECURRENCE VIA ASSOCIATIVE PARALLEL SCANS

Parallel (or associative) scans, first introduced in Kogge & Stone (1973) and reviewed in Blelloch
(1990), offer a powerful method for drastically reducing the computational time of recurrent op-
erations. These scans have previously been employed to enhance the training and inference speed
of RNNs (Martin & Cundy, 2017; Kaul, 2020). This technique was later adapted for state-space
models in Smith et al. (2023), becoming a crucial component in the development of many state-of-
the-art sequence models, including Linear Recurrent Units (LRUs) (Orvieto et al., 2023) and Mamba
models (Gu & Dao, 2023).

A parallel scan operates on a sequence [x1, . . . , xN] with a binary associative operation •, i.e., an
operation satisfying (x • y) • z = x • (y • z) for instances x, y, and z, to return the sequence
[x1, x1 • x2, . . . , x1 • x2 • · · · • xN]. Under certain assumptions, this operation can be performed in
computational time proportional to ⌈log2(N)⌉. This is in stark contrast to the computational time of
serial recurrence that is proportional to N . It is straightforward to check that the following operation
is associative:

(a1,a2) • (b1,b2) = (b1 •◦ a1,b1 •◦ a2 + b2),

where •◦, •◦ are the matrix-matrix and matrix-vector products for matrices a1,b1 and vectors a2,b2.
Note that both products can be computed in O(m) time leveraging 2 × 2 block matrices with only
diagonal entries in each block, e.g., matrices MIM and MIMEX in (4),(6). Clearly, applying a parallel
scan based on this associative operation on the input sequence [(M,F1), (M,F2), . . .] yields an
output sequence [(M,F1), (M

2,MF1 +F2), . . .] where the solution of the recurrent system xn =
Mxn−1 + Fn (with initial value x0 = 0) is stored in the second argument of the elements of
this sequence. Thus, we can successfully apply parallel scans to both discretizations (4)(6) of our
proposed system in order to significantly speed up computations. We refer to the application of this
parallel scan to implicit formulations as implicit parallel scans. When applied to implicit-explicit
formulations, we describe it as implicit-explicit parallel scans.

We term our proposed sequence model, which efficiently solves the underlying linear system of har-
monic oscillators (2) using fast parallel scans, as Linear Oscillatory State-Space (LinOSS) model.
To differentiate between the two discretization methods, we refer to the model derived from im-
plicit discretization as LinOSS-IM, and the model based on the implicit-explicit discretization as
LinOSS-IMEX. A schematic drawing of our proposed state-space model can be seen in Fig. 1.
Moreover, a full description of a multi-layer LinOSS model, including specific nonlinear building
blocks, can be found in Appendix A.

3 THEORETICAL INSIGHTS

3.1 STABILITY AND LEARNING LONG-RANGE INTERACTIONS

Hidden states of classical nonlinear RNNs are updated based on its previous hidden states pushed
through a parametric function followed by a (usually) bounded nonlinear activation function such as
tanh or sigmoid. This way, the hidden states are guaranteed to not blow up. However, this is not true
for linear recurrences, where specific structures of the hidden-to-hidden weight matrix can lead to
unstable dynamics. The following simple argument demonstrates that computing the eigenspectrum
(i.e., set of eigenvalues) of the hidden-to-hidden weight matrix of a linear recurrent system suffices
in order to analyse its stability properties. To this end, let us consider a general linear discrete
dynamical system with external forcing given via the recurrence xn = Mxn−1 +Bun, and initial
value x0 = 0. Assuming M is diagonalizable (if not, one can make a similar argument leveraging
the Jordan normal form), i.e., there exists matrix S such that M = SΛS−1, where Λ is a diagonal
matrix with the eigenvalues of M on its diagonal. The dynamics of the transformed hidden state
x̄n = S−1xn evolve according to x̄n = S−1xn = S−1Mxn−1 + S−1Bun = Λx̄n−1 + B̄un with
initial value x̄0 = S−1x0, where B̄ = S−1B. Unrolling the dynamics (assuming x0 = 0) yields,

x̄1 = B̄u1, x̄2 = ΛB̄u1 + B̄u2, ... ⇒ xn =

n−1∑
k=0

ΛkB̄un−k.

Clearly, if all eigenvalues Λ have magnitude less or equal than 1 the hidden states will not blow up.
In addition to stability guarantees, eigenspectra with unit norm allow the model to learn long-range

5

Published as a conference paper at ICLR 2025

interactions (Arjovsky et al., 2016; Gu et al., 2022b; Orvieto et al., 2023) by avoiding vanishing and
exploding gradients (Pascanu, 2013). Therefore, it is sufficient to analyse the eigenspectra of our
proposed LinOSS models in order to understand their ability to generate stable dynamics and learn
long-range interactions. To this end, we have the following propositions.
Proposition 3.1. Let MIM ∈ Rm×m be the hidden-to-hidden weight matrix of the implicit model
LinOSS-IM (4). We assume that Akk ≥ 0 for all diagonal elements k = 1, . . . ,m of A, and further
that ∆t > 0. Then, the complex eigenvalues of MIM are given as,

λj =
1

1 +∆t2Akk

+ i(−1)⌈ j
m ⌉∆t

√
Akk

1 + ∆t2Akk

, for all j = 1, . . . , 2m,

with k = j mod m. Moreover, the spectral radius ρ(MIM) is bounded by 1, i.e., |λj | ≤ 1 for all
j = 1, . . . , 2m.

Proof.

det(MIM − λI) =

∣∣∣∣S− λI −∆tAS
∆tS S− λI

∣∣∣∣ = ∣∣∣∣S− λI −∆tAS
0 S− λI + ∆t2AS2(S− λI)−1

∣∣∣∣
=

m∏
k=1

(Skk − λ)

(
Skk − λ+

∆t2AkkS
2
kk

Skk − λ

)
=

m∏
k=1

[(Skk − λ)2 +∆t2AkkS
2
kk].

Setting k = j mod m, the eigenvalues of MIM are thus given as,

λj = Skk + i(−1)⌈ j
m ⌉∆tSkk

√
Akk, for all j = 1, . . . , 2m.

In particular, assuming Akk ≥ 0 for all k = 1, . . . ,m, the magnitude of the eigenvalues λj are given
as,

|λj |2 = S2
kk +∆t2S2

kkAkk = S2
kk(1 + ∆t2Akk) = Skk ≤ 1,

for all j = 1, . . . , 2m, with k = j mod m.

This proof reveals important insights into our proposed LinOSS-IM model. First, the magnitude
of the eigenvalues at initialization can be controlled by either specific initialization of A, or al-
ternatively through a specific choice of the timestep parameter ∆t. Moreover, LinOSS-IM yields
asymptotically stable dynamics for any choices of positive parameters A. This denotes a significant
difference compared to previous first-order system, where the values of A (and thus its eigenval-
ues) have to be heavily constrained for the system to be stable. We argue that this flexibility in the
parameterization of our model benefits the optimizer potentially leading to better performance in
practice.
Remark 1. A straightforward adaptation of Proposition 3.1 can also be derived for the implicit-
explicit version of the model, LinOSS-IMEX (6). The detailed proposition is given in Appendix
Proposition E.1. In particular, the analysis shows that all eigenvalues λj of MIMEX in (6) satisfy
|λj | = 1. This result underscores the key distinction between the two models: LinOSS-IM incor-
porates dissipative terms, whereas LinOSS-IMEX denotes a conservative system. Following the
argument at the beginning of Section 3.1, one can interpret the dissipative terms in LinOSS-IM
as forgetting mechanisms, which are considered crucial for expressive modeling of long sequences.
This makes LinOSS-IM a more flexible model version compared to LinOSS-IMEX. Finally, we note
that explicit discretization schemes lead to exploding hidden states returning NaN output values in
practice during training. For this reason, we focus solely on stable methods in this context.

Initialization and parameterization of weights. Proposition 3.1 and Remark 1 reveal that both
LinOSS models exhibit stable dynamics as long as the diagonal weights A in (1) are non-negative.
This condition can easily be fulfilled via many different parameterizations of the diagonal matrix A.
An obvious choice is to square the diagonal values, i.e., a parameterization A = ÂÂ, with diagonal
matrix Â ∈ Rm×m. Another straightforward approach is to apply the element-wise ReLU nonlinear
activation function to A, i.e., A = ReLU(Â), with ReLU(x) = max(0, x) and Â as before. The
latter results in a LinOSS model where specific dimensions can be switched off completely by setting
the corresponding weight in Â to a negative value. Due to this flexibility, we decide to focus on the
ReLU-parameterization of the diagonal weights A in this manuscript.

6

Published as a conference paper at ICLR 2025

After discussing the parameterization of A, the next step is to determine an appropriate method for
initializing its weights prior to training. Since we already know from Remark 1 that all absolute
eigenvalues of the hidden matrix MIMEX of LinOSS-IMEX are exactly one, the specific values of
A are irrelevant for the model to learn long-range interactions. However, according to Proposition
3.1, A highly influences the eigenvalues of the hidden matrix MIM of LinOSS-IM (4). As discussed
in the previous section, high powers of the absolute eigenvalues of the hidden matrix are of partic-
ular interest when learning long-range interactions. To this end, we have the following Proposition
concerning the expected powers of absolute eigenvalues for LinOSS-IM.
Proposition 3.2. Let {λj}2mj=1 be the eigenspectrum of the hidden-to-hidden matrix MIM of the
LinOSS-IM model (4). We further initialize Akk ∼ U([0, Amax]) with Amax > 0 for all diagonal
elements k = 1, . . . ,m of A in (2). Then, the N -th moment of the magnitude of the eigenvalues are
given as,

E(|λj |N) =
(∆t2Amax + 1)1−

N
2 − 1

∆t2Amax(1− N
2)

, (8)

for all j = 1, . . . , 2m, with k = j mod m.

The proof, detailed in Appendix Section E.2, is a straight-forward application of the law of
the unconscious statistician. Proposition 3.2 demonstrates that while the expectation of |λi|N
might be much smaller than 1, it is still sufficiently large for practical use-cases. For instance,
even considering ∆t = Amax = 1 and an extreme sequence length of N = 100k still yields
E(|λj |N) = 1/49999 ≈ 2 × 10−5. Based on this and the fact that the values of A do not af-
fect the eigenvalues for LinOSS-IMEX, we decide to initialize A according to Akk ∼ U([0, 1]) for
both LinOSS models, while setting ∆t = 1.

3.2 UNIVERSALITY OF LINOSS WITHIN CONTINUOUS AND CAUSAL OPERATORS

While trainability is an important aspect of learning long-range interactions, it does not demonstrate
why LinOSS is able to express complex mappings between general (i.e., not necessarily oscillatory)
input and output sequences. Therefore, in this section we analyze the approximation power of our
proposed LinOSS model. Following the recent work of Lanthaler et al. (2024) we show that LinOSS
is universal within the class of continuous and causal operators between time-series. To this end, we
consider a full LinOSS block,

z(t) = Wσ(W̃y(t) + b̃), (9)

with weights W ∈ Rq×m̃, W̃ ∈ Rm̃×m, bias b̃ ∈ Rm̃, element-wise nonlinear activation function
σ (e.g., tanh or ReLU), and solution y(t) of the LinOSS differential equations (2).

Based on this, we are now interested in approximating operators Φ : C0([0, T];Rp) →
C0([0, T];Rq) with the full LinOSS model (9), where

C0([0, T];Rp) := {u : [0, T]→ Rp | t 7→ u(t) is continuous and u(0) = 0},
i.e., operators between continuous time-varying functions with values in Rp. As pointed out in
Lanthaler et al. (2024), the condition u(0) = 0 is not restrictive and can directly be generalized to
the case of any initial condition u(0) = u0 ∈ Rp simply by introducing an arbitrarily small warm-
up phase [−t0, 0] with t0 > 0 of the oscillators to synchronize with the input signal u. In addition
to these function spaces, we pose the following conditions on the underlying operator Φ,

1. Φ is causal, i.e., for any t ∈ [0, T], if u,B ∈ C0([0, T];Rp) are two input signals, such
that u|[0,t] ≡ B|[0,t], then Φ(u)(t) = Φ(B)(t).

2. Φ is continuous as an operator

Φ : (C0([0, T];Rp), ∥ · ∥L∞)→ (C0([0, T];Rq), ∥ · ∥L∞),

with respect to the L∞-norm on the input-/output-signals.
Theorem 3.3. Let Φ : C0([0, T];Rp) → C0([0, T];Rq) be a causal and continuous operator. Let
K ⊂ C0([0, T];Rp) be compact. Then for any ϵ > 0, there exist hyperparameters m, m̃, diagonal
weight matrix A ∈ Rm×m, weights B ∈ Rm×d, W̃ ∈ Rm̃×m, W ∈ Rq×m̃ and bias vectors
b ∈ Rm, b̃ ∈ Rm̃, such that the output z : [0, T]→ Rq of the LinOSS block (9) satisfies,

sup
t∈[0,T]

|Φ(u)(t)− z(t)| ≤ ϵ, ∀u ∈ K.

7

Published as a conference paper at ICLR 2025

The proof can be found in Appendix Section E.3. The main idea of the proof is to encode the
infinite-dimensional operator Φ with a finite-dimensional operator that makes use of the structure of
the LinOSS ODE system (1), and that can further be expressed by a (finite-dimensional) function.
This theorem rigorously shows that LinOSS can approximate any causal and continuous operator
between continuous time-varying functions with values in Rp to any desired accuracy.

4 EMPIRICAL RESULTS

In this section, we empirically test the performance of our proposed LinOSS models on a variety of
challenging real-world sequential datasets, ranging from scientific datasets in genomics to practical
applications in medicine. We ensure thereby a fair comparison to other state-of-the-art sequence
models such as Mamba, LRU, and S5.

4.1 LEARNING LONG-RANGE INTERACTIONS

In the first part of the experiments, we focus on a recently proposed long-range sequential benchmark
introduced in Walker et al. (2024). This benchmark focuses on six datasets from the University of
East Anglia (UEA) Multivariate Time Series Classification Archive (UEA-MTSCA) (Bagnall et al.,
2018), selecting those with the longest sequences for increased difficulty. The sequence lengths
range thereby from 400 to almost 18k. We compare our proposed LinOSS models to recent state-of-
the-art sequence models, including state-space models such as Mamba and LRU. Table 1 shows the
test accuracies averaged over five random model initialization and dataset splits of all six datasets
for LinOSS as well as competing methods. We note that all other results are taken from Walker et al.
(2024). Moreover, we highlight that we exactly follow the training procedure described in Walker
et al. (2024) in order to ensure a fair comparison against competing models. More concretely,
we use the same pre-selected random seeds for splitting the datasets into training, validation, and
testing parts (using 70/15/15 splits), as well as tune our model hyperparameters only on the same
pre-described grid. In fact, since LinOSS does not possess any model specific hyperparameters –
unlike competing state-space models such as LRU or S5 – our search grid is lower-dimensional
compared to the other models considered. As a result, the hyperparameter tuning process involves
significantly fewer model instances.

Table 1: Test accuracies averaged over 5 training runs on UEA time-series classification datasets. All
models are trained based on the same hyper-parameter tuning protocol in order to ensure fair com-
parability. The dataset names are abbreviations of the following UEA time-series datasets: Eigen-
Worms (Worms), SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2), EthanolConcentration
(Ethanol), Heartbeat, MotorImagery (Motor). The three best performing methods are highlighted in
red1 (First), blue2 (Second), and violet3 (Third).

Worms SCP1 SCP2 Ethanol Heartbeat Motor Avg
Seq. length 17,984 896 1,152 1,751 405 3,000
#Classes 5 2 2 4 2 2

NRDE 83.9± 7.3 80.9± 2.5 53.7± 6.93 25.3± 1.8 72.9± 4.8 47.0± 5.7 60.6
NCDE 75.0± 3.9 79.8± 5.6 53.0± 2.8 29.9± 6.52 73.9± 2.6 49.5± 2.8 60.2
Log-NCDE 85.6± 5.13 83.1± 2.8 53.7± 4.13 34.4± 6.41 75.2± 4.6 53.7± 5.33 64.33

LRU 87.8± 2.82 82.6± 3.4 51.2± 3.6 21.5± 2.1 78.4± 6.71 48.4± 5.0 61.7
S5 81.1± 3.7 89.9± 4.61 50.5± 2.6 24.1± 4.3 77.7± 5.52 47.7± 5.5 61.8
S6 85.0± 16.1 82.8± 2.7 49.9± 9.4 26.4± 6.4 76.5± 8.33 51.3± 4.7 62.0
Mamba 70.9± 15.8 80.7± 1.4 48.2± 3.9 27.9± 4.53 76.2± 3.8 47.7± 4.5 58.6

LinOSS-IMEX 80.0± 2.7 87.5± 4.03 58.9± 8.11 29.9± 1.02 75.5± 4.3 57.9± 5.32 65.02

LinOSS-IM 95.0± 4.41 87.8± 2.62 58.2± 6.92 29.9± 0.62 75.8± 3.7 60.0± 7.51 67.81

We can see in Table 1 that on average both LinOSS models outperform any other model we consider
here by reaching an average (over all six datasets) accuracy of 65.0% for LinOSS-IMEX and 67.8%
for LinOSS-IM. In particular, the average accuracy of LinOSS-IM is significantly higher than the
two next best models, i.e., Log-NCDE reaching an average accuracy of 64.3%, and S6 reaching an
accuracy of 62.0% on average. It is particularly noteworthy that LinOSS-IM yields state-of-the-art
results on the two datasets with the longest sequences, namely EigenWorms and MotorImagery.

8

Published as a conference paper at ICLR 2025

4.2 VERY LONG-RANGE INTERACTIONS

In this experiment, we test the performance of LinOSS in the case of very long-range interactions.
To this end, we consider the PPG-DaLiA dataset, a multivariate time series regression dataset de-
signed for heart rate prediction using data collected from a wrist-worn device (Reiss et al., 2019). It
includes recordings from fifteen individuals, each with approximately 150 minutes of data sampled
at a maximum rate of 128 Hz. The dataset consists of six channels: blood volume pulse, electro-
dermal activity, body temperature, and three-axis acceleration. We follow Walker et al. (2024) and
divide the data into training, validation, and test sets with a 70/15/15 split for each individual. After
splitting the data, a sliding window of length 49920 and step size 4992 is applied. As in previous
experiments, we apply the exact same hyperparameter tuning protocol to each model we consider
here to ensure fair comparison. The test mean-squared error (MSE) of both LinOSS models as well
as other competing models are shown in Table 2. We can see that both LinOSS models significantly
outperform all other models. In particular, LinOSS-IM outperforms Mamba and LRU by nearly a
factor of 2. This highlights the effectiveness of our proposed LinOSS models on sequential data
with extreme length.

Table 2: Average test mean-squared error over 5 training runs on the PPG-DaLiA dataset. All models
are trained following the same hyper-parameter tuning protocol in order to ensure fair comparability.
The three best performing methods are highlighted in red1 (First), blue2 (Second), and violet3
(Third).

Model MSE ×10−2

NRDE (Morrill et al., 2021) 9.90± 0.97
NCDE (Kidger et al., 2020) 13.54± 0.69
Log-NCDE (Walker et al., 2024) 9.56± 0.593

LRU (Orvieto et al., 2023) 12.17± 0.49
S5 (Smith et al., 2023) 12.63± 1.25
S6 (Gu & Dao, 2023) 12.88± 2.05
Mamba (Gu & Dao, 2023) 10.65± 2.20
LinOSS-IMEX 7.5± 0.462

LinOSS-IM 6.4± 0.231

4.3 LONG-HORIZON FORECASTING

Inspired by Gu et al. (2021), we test our proposed LinOSS on its ability to serve as a general
sequence-to-sequence model, even with weak inductive bias. To this end, we focus on time-series
forecasting which typically requires specialized domain-specific preprocessing and architectures.
We do, however, not alter our LinOSS model nor incorporate any inductive biases. Thus, we simply
follow Gu et al. (2021) by setting up LinOSS as a general sequence-to-sequence model that treats
forecasting as a masked sequence-to-sequence transformation. We consider a weather prediction
task introduced in Zhou et al. (2021). In this task, several climate variables are predicted into the
future based on local climatological data. Here, we focus on the hardest task in Zhou et al. (2021) of
predicting the future 720 timesteps (hours) based on the past 720 timesteps. Table 3 shows the mean
absolute error for both LinOSS models as well as other competing models. We can see that both
LinOSS models outperform Transformers-based baselines as well as the other state-space models.

4.4 ADDITIONAL EXPERIMENTS AND ABLATIONS

Our proposed LinOSS model is the result of several design choices, such as the state matrix pa-
rameterization, state matrix initialization, and the numerical value of the discretization timestep ∆t.
In this section, we empirically analyze how these choices affect the performance of LinOSS by
providing ablations and sensitivity studies.

We start by evaluating the performance of LinOSS under different parameterizations and initializa-
tions of the state matrix A. Specifically, we examine LinOSS-IM within the experimental framework
described in Section 4.1. For this analysis, we parameterize A using one of the two approaches pro-
posed in Section 3.1: A = ÃÃ or A = ReLU(Ã), where Ã ∈ Rm×m is a diagonal matrix. The

9

Published as a conference paper at ICLR 2025

Table 3: Mean absolute error on the weather dataset predicting the future 720 time steps based on
the past 720 time steps. The three best performing methods are highlighted in red1 (First), blue2
(Second), and violet3 (Third).

Model Mean Absolute Error

Informer (Zhou et al., 2021) 0.731
LogTrans (Li et al., 2019) 0.773
Reformer (Kitaev et al., 2020) 1.575
LSTMa (Bahdanau et al., 2016) 1.109
LSTnet (Lai et al., 2018) 0.757
S4 (Gu et al., 2021) 0.5783

LinOSS-IMEX 0.5081

LinOSS-IM 0.5282

results, presented in Appendix Table 6 show that the ReLU parameterization leads to slightly better
performance on average over all six datasets. However, the squared parameterization yields better
performance on three out of six datasets. Thus, including different state matrix parameterization
choices in the hyperparameter optimization can help achieve improved performance. We further test
the performance of LinOSS-IM using a standard normal random initialization of the state matrix
instead of the uniform initialization. The results of the standard normal initialization of the state
matrix are shown in Appendix Table 6. We can see that this initialization yields similar performance
to a uniform initialization on almost all considered datasets, except the EigenWorms dataset, where
it obtains a lower mean test accuracy and a much higher standard deviation. This indicates that
the performance of LinOSS-IM with a standard normal initialization for the state matrix is highly
sensitive to the random seed used during initialization. This sensitivity arises because normal dis-
tributions do not have bounded support, allowing for the possibility of large matrix entries. These
large entries result in small eigenvalues, which in turn lead to vanishing gradients.

Another natural question in this context concerns the sensitivity of performance to variations in
the timestep ∆t used in the underlying discretization scheme. To investigate this, we train several
LinOSS-IM models using different values of ∆t spanning three orders of magnitude, i.e., ranging
from 10−3 to 1. The average test error, along with the standard deviation, is plotted for three different
datasets in Appendix C.3. We can see that while the choice of ∆t does influence performance, the
variations are not substantial.

Finally, we empirically analyze the roles of dissipation and conservation in LinOSS-IM and LinOSS-
IMEX. As rigorously demonstrated in Section 3.1, LinOSS-IM introduces dissipative terms, whereas
LinOSS-IMEX denotes a conservative system. While our earlier experiments examined the differ-
ences between these models using real-world data, we now focus on their performance for predicting
energy-conserving dynamical systems to highlight their contrasting behaviors. To this end, we sim-
ulate the energy-conserving simple harmonic motion with various initial positions and velocities.
The test error over time for both models is plotted in Appendix Fig. 2. The results show that the er-
ror in LinOSS-IM grows over time, whereas the error in LinOSS-IMEX remains constant. Notably,
by the end of the time interval, LinOSS-IMEX outperforms LinOSS-IM by a factor of more than
8. This stark contrast underscores the fundamental difference between the two models: LinOSS-IM
introduces dissipative terms, making it more effective for dissipative systems, while LinOSS-IMEX,
being fully conservative, excels in energy-conserving systems.

5 CONCLUSION

In this paper, we introduce LinOSS, a state-space model based on harmonic oscillators. We rigor-
ously show that LinOSS produces stable dynamics and is able to learn long-range interactions only
requiring a nonnegative diagonal state matrix. In addition, we connect the underlying ODE system
of the LinOSS model to Hamiltonian dynamics, which, discretized using symplectic integrators, per-
fectly preserves its symmetry of time reversibility. Moreover, we show that LinOSS is a universal
approximator of continuous and causal operators between time-series. Together, these properties en-
able efficient modeling of long-range interactions, while ensuring stable and accurate long-horizon
forecasting. Finally, we demonstrate that LinOSS outperforms state-of-the-art state-space models,
such as Mamba, LRU, and S5.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors would like to thank Dr. Alaa Maalouf (MIT) and Dr. T. Anderson Keller (Harvard
University) for their insightful feedback and constructive suggestions on an earlier version of the
manuscript. This work was supported in part by the Postdoc.Mobility grant P500PT-217915 from
the Swiss National Science Foundation, the Schmidt AI2050 program (grant G-22-63172), and the
Department of the Air Force Artificial Intelligence Accelerator and was accomplished under Coop-
erative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Department of the Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120–1128. PMLR, 2016.

V. I. Arnold. Mathematical methods of classical mechanics. Springer Verlag, New York, 1989.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2016.

Guy E Blelloch. Prefix sums and their applications. 1990.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Gyorgy Buzsaki and Andreas Draguhn. Neuronal oscillations in cortical networks. science, 304
(5679):1926–1929, 2004.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

Published as a conference paper at ICLR 2025

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train
your hippo: State space models with generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022b.

J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of
vector fields. Springer Verlag, New York, 1990.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2023.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em Kar-
niadakis. State-space models are accurate and efficient neural operators for dynamical systems.
arXiv preprint arXiv:2409.03231, 2024.

Shiva Kaul. Linear dynamical systems as a core computational primitive. Advances in Neural
Information Processing Systems, 33:16808–16820, 2020.

T Anderson Keller and Max Welling. Neural wave machines: learning spatiotemporally structured
representations with locally coupled oscillatory recurrent neural networks. In International Con-
ference on Machine Learning, pp. 16168–16189. PMLR, 2023.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in neural information processing systems, 33:6696–6707,
2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient solution of a general class
of recurrence equations. IEEE transactions on computers, 100(8):786–793, 1973.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Samuel Lanthaler, T Konstantin Rusch, and Siddhartha Mishra. Neural oscillators are universal.
Advances in Neural Information Processing Systems, 36, 2024.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. arXiv
preprint arXiv:1709.04057, 2017.

Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic dy-
namics with rnns. Advances in Neural Information Processing Systems, 35:11297–11312, 2022.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equa-
tions for long time series. In International Conference on Machine Learning, pp. 7829–7838.
PMLR, 2021.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
Advances in neural information processing systems, 35:2846–2861, 2022.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

12

Published as a conference paper at ICLR 2025

R Pascanu. On the difficulty of training recurrent neural networks. arXiv preprint arXiv:1211.5063,
2013.

Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. Deep ppg: Large-scale
heart rate estimation with convolutional neural networks. Sensors, 19(14):3079, 2019.

T. Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network (cornn):
An accurate and (gradient) stable architecture for learning long time dependencies. In Interna-
tional Conference on Learning Representations, 2021a.

T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very long
time dependencies. In International Conference on Machine Learning, pp. 9168–9178. PMLR,
2021b.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In International Conference on Machine Learning, pp.
18888–18909. PMLR, 2022.

J.M. Sanz Serna and M.P. Calvo. Numerical Hamiltonian problems. Chapman and Hall, London,
1994.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Benjamin Walker, Andrew D. McLeod, Tiexin Qin, Yichuan Cheng, Haoliang Li, and Terry Lyons.
Log neural controlled differential equations: The lie brackets make a difference. International
Conference on Machine Learning, 2024.

Arthur T Winfree. The geometry of biological time, volume 2. Springer, 1980.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

13

https://openreview.net/forum?id=Ai8Hw3AXqks

Published as a conference paper at ICLR 2025

Supplementary Material for:
Oscillatory State-Space Models

A FULL ARCHITECTURE DETAILS

In this section, we outline the detailed architecture of a full multi-layer LinOSS model. To this
end, the full LinOSS model starts by encoding an input sequence u = [u1,u2, . . . ,uN] with
ui ∈ Rq for all i = 1, . . . , N via an affine transformation. After that, several blocks are ap-
plied consisting of a LinOSS layer (i.e., solving (1) with either IM or IMEX associative parallel
scans) directly followed by a nonlinear layer using the Gaussian error linear unit activation function
(GELU) (Hendrycks & Gimpel, 2023), the Gated Linear Unit (GLU) (Dauphin et al., 2017), i.e.,
GLU(x) = sigmoid(W1x) ◦W2x, where W1,2 are learnable weight matrices, and a skip connec-
tion. Finally, the output of the final LinOSS block gets decoded by an affine transformation. The
full LinOSS model is further presented in Algorithm 1. Note that weight matrices and bias vectors
are applied parallel in time whenever possible (i.e., outside the recurrence). We are thus omitting
subscript i in Algorithm 1.

Algorithm 1 Full LinOSS model

Input: Input sequence u
Output: L-block LinOSS output sequence o
u0 ←Wencu+ benc ▷ Encode input sequence
for l = 1, . . . , L do

yl ← solution of ODE in (1) with input ul−1 via parallel scan
xl ← Cyl +Dul−1 ▷ Linear readout in (1)
xl ← GELU(xl)
ul ← GLU(xl) + ul−1

end for
o←Wdecy

L + bdec ▷ Decode final LinOSS block output

A.1 SEQUENCE-TO-SEQUENCE LINOSS ARCHITECTURE FOR TIME-SERIES FORECASTING

While in sequence regression and sequence classification tasks we simply take the final output of the
full LinOSS model at final time T as the model prediction, we have to slightly adapt our architecture
to handle time-series forecasting problems. To this end, we follow common practice for state-space
models suggested in Gu et al. (2021) and generate train, validation, and test sequences of length
L1 + L2, where L1 is the number of the past sequence entries used for forecasting and L2 are the
number of future steps we aim to predict. Note that for the input sequences, we simply mask out the
last L2 entries of the sequence (i.e., with zero entries). Moreover, for the LinOSS output sequence,
we only use the final L2 entries for the future predictions.

B TRAINING DETAILS

The code to run the experiments is implemented using the JAX auto-differentiation framework
(Bradbury et al., 2018). All experiments were conducted on Nvidia Tesla V100 GPUs and Nvidia
RTX 4090 GPUs, with the exception of the PPG experiment, which was run on Nvidia Tesla A100
GPUs due to higher memory demands.

B.1 HYPERPARAMETERS

The hyperparameters of the models were optimized with the same grid search approach from
Walker et al. (2024) for the six datasets in Section 4.1 and the PPG dataset of Section 4.2
to ensure perfect comparability with competing methods, i.e., using the grid: learning rate =
{0.00001, 0.0001, 0.001}, number of layers = {2, 4, 6}, number of hidden neurons = {16, 64, 128},
state-space dimension = {16, 64, 256}, include time dimension {True,False}. Note that for the
weather dataset, we performed a random search instead of grid search using the same hyperparame-
ter bounds as before, except that we increased the maximum number of LinOSS blocks from 6 to 8.

14

Published as a conference paper at ICLR 2025

The hyperparameters yielding the best performance can be seen in Table 4 for both LinOSS-IM and
LinOSS-IMEX for each experiment in the main paper.

Table 4: Best hyperparameters
Model lr hidden dim state dim #blocks include time

Worms IM 0.001 128 64 2 True
IMEX 0.0001 64 16 2 False

SCP1 IM 0.0001 128 256 6 True
IMEX 0.0001 64 256 6 False

SCP2 IM 0.0001 128 64 6 False
IMEX 0.00001 64 256 6 True

Ethanol IM 0.00001 16 16 4 False
IMEX 0.00001 16 256 4 False

Heartbeat IM 0.001 16 16 6 True
IMEX 0.00001 64 16 2 True

Motor IM 0.00001 128 16 2 False
IMEX 0.0001 16 256 6 True

PPG IM 0.001 16 64 6 True
IMEX 0.0001 64 16 2 True

Weather IM 0.0006 64 32 8 True
IMEX 0.0007 256 128 5 False

B.2 MEMORY REQUIREMENTS, RUNTIMES, AND NUMBER OF PARAMETERS

In this section, we present the number of parameters, GPU memory usage (in MB), and run time (in
seconds) for every considered model on all datasets from Section 4.1. The GPU memory and run
time results for the other models are taken from Walker et al. (2024). Note that we used exactly the
same GPU architecture as well as the same code and python libraries as in Walker et al. (2024) to
ensure fair comparability, i.e., GPU memory usage and run time was measured on an Nvidia RTX
4090 GPU for all models. The run time was measured as the average run time for 1000 training
steps. Table 5 comprehensively shows the number of parameters, GPU memory usage, and run time
for all models. Note that we further follow Walker et al. (2024) and report these results for the best
performing model identified during the previously described hyperparameter optimization process.
Both LinOSS models exhibit comparable GPU memory usage and run time performance to other
state-space models. Notably, LinOSS achieves the fastest runtime on two out of six datasets and
ranks as the second fastest on another two datasets.

C ADDITIONAL EXPERIMENTS

C.1 ON THE STATE MATRIX PARAMETERIZATION AND INITIALIZATION

In the main paper, we have focused on parameterizing the state matrix A in (1) according to
A = ReLU(Â), with diagonal matrix Â ∈ Rm×m. This was due to the fact that LinoSS requires
the state matrix to be nonnegative in order to produce stable dynamics. However, another viable
parameterization choice would be A = ÂÂ. In this section, we test how the squared parameteri-
zation influences the performance of LinOSS on six long-range datasets taken from Section 4.1 of
the main paper. Table 6 shows the average test accuracies of LinOSS-IM using a ReLU parameter-
ization as well as using a squared parameterization together with the same baselines taken from the
main paper. We can see that on average, the ReLU parameterization performs better. However, since
the squared parameterization performs better on SCP2, Ethanol and Heartbeat (i.e., on three out of
six datasets), we conclude that including the two parameterization choices in the hyperparameter
optimization process will lead to even better performance.

15

Published as a conference paper at ICLR 2025

Table 5: Number of parameters, GPU memory usage (in MB) and run time (in seconds) for every
considered model on all long-range datasets from Section 4.1.

NRDE NCDE Log-NCDE LRU S5 Mamba S6 LinOSS-IMEX LinOSS-IM

Worms
#parameters 105110 166789 37977 101129 22007 27381 15045 26119 134279

GPU memory (MB) 2506 2484 2510 10716 6646 13486 7922 6556 10654
run time (s) 5386 24595 1956 94 31 122 68 37 90

SCP1
#parameters 117187 166274 91557 25892 226328 184194 24898 447944 991240

GPU memory (MB) 716 694 724 960 1798 1110 904 4768 4772
run time (s) 1014 973 635 9 17 7 3 42 38

SCP2
#parameters 200707 182914 36379 26020 5652 356290 26018 448072 399112

GPU memory (MB) 712 692 714 954 762 2460 1222 4772 2724
run time (s) 1404 1251 583 9 9 32 7 55 22

Ethanol
#parameters 93212 133252 31452 76522 76214 1032772 5780 70088 6728

GPU memory (MB) 712 692 710 1988 1520 4876 938 4766 1182
run time (s) 2256 2217 2056 16 9 255 4 48 8

Heartbeat
#parameters 15657742 1098114 168320 338820 158310 1034242 6674 29444 10936

GPU memory (MB) 6860 1462 2774 1466 1548 1650 606 922 928
run time (s) 9539 1177 826 8 11 34 4 4 7

Motor
#parameters 1134395 186962 81391 107544 17496 228226 52802 106024 91844

GPU memory (MB) 4552 4534 4566 8646 4616 3120 4056 12708 4510
run time (s) 7616 3778 730 51 16 35 34 128 11

Table 6: Test accuracies averaged over 5 training runs on UEA time-series classification datasets.
All models are trained based on the same hyper-parameter tuning protocol in order to ensure fair
comparability. The dataset names are abbreviations of the following UEA time-series datasets:
EigenWorms (Worms), SelfRegulationSCP1 (SCP1), SelfRegulationSCP2 (SCP2), EthanolConcen-
tration (Ethanol), Heartbeat, MotorImagery (Motor).

Worms SCP1 SCP2 Ethanol Heartbeat Motor Avg
Seq. length 17,984 896 1,152 1,751 405 3,000
#Classes 5 2 2 4 2 2

NRDE 83.9± 7.3 80.9± 2.5 53.7± 6.9 25.3± 1.8 72.9± 4.8 47.0± 5.7 60.6
NCDE 75.0± 3.9 79.8± 5.6 53.0± 2.8 29.9± 6.5 73.9± 2.6 49.5± 2.8 60.2
Log-NCDE 85.6± 5.1 83.1± 2.8 53.7± 4.1 34.4± 6.4 75.2± 4.6 53.7± 5.3 64.3
LRU 87.8± 2.8 82.6± 3.4 51.2± 3.6 21.5± 2.1 78.4± 6.7 48.4± 5.0 61.7
S5 81.1± 3.7 89.9± 4.6 50.5± 2.6 24.1± 4.3 77.7± 5.5 47.7± 5.5 61.8
S6 85.0± 16.1 82.8± 2.7 49.9± 9.4 26.4± 6.4 76.5± 8.3 51.3± 4.7 62.0
Mamba 70.9± 15.8 80.7± 1.4 48.2± 3.9 27.9± 4.5 76.2± 3.8 47.7± 4.5 58.6

LinOSS-IM (ReLU) 95.0± 4.4 87.8± 2.6 58.2± 6.9 29.9± 0.6 75.8± 3.7 60.0± 7.5 67.8
LinOSS-IM (squared) 88.9± 2.5 86.6± 1.8 59.3± 7.8 32.7± 6.2 76.8± 2.2 58.2± 8.4 67.1
LinOSS-IM (squared + Gaussian init) 74.4± 31.3 87.3± 1.7 60.7± 4.1 31.4± 4.8 73.9± 4.0 56.5± 3.0 64.0

Another important question arises in the context of the state matrix initialization. While we argue in
the main paper that initializing the state matrix using a simple random uniform distribution in [0, 1]
leads to models that are able to learn long-range interactions, we are interested in exploring other
choices in this context. To this end, we train LinOSS-IM models and initialize their state matrix
using a standard normal distribution. Note that we need to use the squared parameterization in this
case, as ReLU would lead to switching off approximately half of the dimensions. The results for the
six datasets from Section 4.1 of the main paper are shown in Table 6. We can see that initializing
the state matrix using standard normal distribution leads to competitive results on almost all datasets
except EigenWorms. Note that the standard deviation is very high on this dataset, suggesting that
the performance is very sensitive to the random seed of the initialization. Therefore, the subpar
performance on EigenWorms can be explained by the possibility of this initialization to produce
large matrix entries that lead to small eigenvalues and thus vanishing gradients.

C.2 DISSIPATIVE VS CONSERVATIVE LINOSS MODELS

In this section, we empirically analyze the dissipative behavior of LinOSS-IM and compare it to
the conservative behavior of LinOSS-IMEX. To this end, we aim to predict an energy-conserving
dynamical system. More concretely, we train our two LinOSS models to predict simple harmonic
motion for different initial positions and velocities, i.e., the solution of,

y′′(t) = y(t),

y(0) = A, y′(0) = B,
(10)

16

Published as a conference paper at ICLR 2025

for A,B ∈ [0, 1]. We construct train, validation, and test sets by solving (10) for uniform randomly
chosen A,B, with 2000 train sequences, 500 validation sequences, and 500 test sequences. We set
the stepsize for solving y(t) to ∆t = 0.1 and predict y(t) for 1000 steps, i.e., for the time interval
[0, 100]. Clearly, (10) is energy-conserving with the Hamiltonian given as H(y, y′) = y2 + y′

2.

Since state-space models are sequence-to-sequence models, we follow common practice and con-
struct the input sequences as two-dimensional sequences of length 1000, where all entries of the first
dimension are set to A and the second dimension is set to B. The resulting test mean-squared error
(MSE) is shown in Fig. 2 for each point in time. We can see that LinOSS-IMEX keeps the error
constant, while the error for LinOSS-IM grows over time. This can be explained by the dissipative
nature of LinOSS-IM, which forces the predicted trajectories to slowly converge to a steady-state,
i.e., LinOSS-IM would go to zero in the asymptotic case of t→∞.

0 20 40 60 80 100
Time t

0.0000

0.0002

0.0004

0.0006

M
S

E

LinOSS-IMEX

LinOSS-IM

Figure 2: Mean squared error over time of LinOSS-IMEX and LinOSS-IM on predicting simple
harmonic motion for different initial positions and velocities.

C.3 ON THE SENSITIVITY OF ∆t IN LINOSS

While we set the timestep ∆t of the underlying time integration schemes to ∆t = 1 for all our
experiments in this paper, it is natural to ask whether different choices of ∆t will lead to different
performance. To analyze this, we train LinOSS-IM models on three datasets from Section 4.1 of
the main paper, i.e., SelfRegulationSCP1, Heartbeat, and MotorImagery dataset. We further vary
∆t between 10−3 and 1, i.e., spanning three orders of magnitude. We plot the average test accuracy
(with standard deviation) in Fig. 3 for all three datasets. From this, we can conclude that while the
choice of ∆t does influence performance, the variations are not substantial.

10−3 10−2 10−1 100

Time step ∆t

20

40

60

80

T
es

t
ac

cu
ra

cy
in

%

SelfRegulationSCP1

Heartbeat

MotorImagery

Figure 3: Test accuracies (mean and standard deviation over five different seeds) of LinOSS-IM
on three different datasets from Section 4 of the main paper, i.e., SelfRegulationSCP1, Heartbeat,
and MotorImagery, for varying values of the timestep ∆t of the underlying implicit time integration
scheme of LinOSS (4).

17

Published as a conference paper at ICLR 2025

D HIGHER-ORDER INTEGRATION SCHEMES

As outlined in the main text, higher-order discretization schemes can be readily applied in the context
of oscillatory state-space models. Here, we provide an example on how to leverage the second-order
velocity Verlet method as the underlying discretization method of LinOSS. To this end, applying the
velocity Verlet integration scheme to our underlying system of ODEs (2) yields,

yn = yn−1 +∆tzn−1 +
∆t2

2
(−Ayn−1 +Bun),

zn = zn−1 +
∆t

2
(−Ayn +Bun+1 −Ayn−1 +Bun),

This can be rewritten in matrix form as,

xn = MVVxn−1 + FVV
n , (11)

with xn = [yn, zn]
⊤, and,

MVV =

[
I− ∆t2

2 A ∆tI

−∆tA(I− ∆t2

4 A) I− ∆t2

2 A

]
, FVV

n =

[
∆t2

2 Bun

−∆t3

4 ABun + ∆t
2 B(un+1 + un)

]
.

Equation (11) can be efficiently solved using fast associative parallel scans, as described in Section
2.4, leading to an alternative model architecture we refer to as LinOSS-VV. The key distinction from
the symplectic LinOSS-IMEX lies in the discretization order: LinOSS-VV employs a second-order
scheme, yielding more accurate approximations of the underlying ODE system compared to the
first-order IMEX approach. However, this comes at the cost of greater computational complexity.
We aim to explore the role of higher-order discretization schemes within the LinOSS framework in
future research.

E SUPPLEMENT TO THE THEORETICAL INSIGHTS

E.1 EIGENSPECTRUM OF LINOSS-IMEX

Proposition E.1. Let MIMEX ∈ Rm×m be the hidden-to-hidden weight matrix of the implicit-explicit
model LinOSS-IMEX (6). We assume that Akk > 0 for all diagonal elements k = 1, . . . ,m of A,
and further that 0 < ∆t ≤ max

k=1,...,m
(2√

Akk
). Then, the eigenvalues of MIMEX are given as,

λj =
1

2
(2−∆t2Akk) + i(−1)⌈ j

m ⌉ 1

2

√
∆t2Akk(4−∆t2Akk), for all j = 1, . . . , 2m,

with k = j mod m. Moreover, all absolute eigenvalues of MIMEX are exactly 1, i.e., |λj | = 1 for all
j = 1, . . . , 2m.

Proof. Following the same procedure outlined in the proof of Proposition 3.1, the eigenvalues of
MIMEX are given as,

λj =
1

2
(2−∆t2Akk) + i(−1)⌈ j

m ⌉ 1

2

√
∆t2Akk(4−∆t2Akk), for all j = 1, . . . , 2m,

with k = j mod m. To calculate their absolute value, we must consider two distinct cases.

1. ∆t2Akk = 4: it follows directly that |λj |2 = (12 (−4 + 2))2 = 1.

2. ∆t2Akk < 4: With this assumption, we can compute the absolute value of λj as,

|λj |2 =

(
2−∆t2Akk

2

)2

+
∆t2

4
Akk(4−∆t2Akk)

=
4− 4∆t2Akk +∆t4A2

kk

4
+

4∆t2

4
Akk −

∆t4A2
kk

4
= 1.

18

Published as a conference paper at ICLR 2025

E.2 PROOF OF PROPOSITION 3.2

Proposition. Let {λj}2mj=1 be the eigenspectrum of the hidden-to-hidden matrix MIM of the LinOSS-
IM model (4). We further initialize Akk ∼ U([0, Amax]) with Amax > 0 for all diagonal elements
k = 1, . . . ,m of A in (2). Then, the N -th moment of the magnitude of the eigenvalues are given as,

E(|λj |N) =
(∆t2Amax + 1)1−

N
2 − 1

∆t2Amax(1− N
2)

, (12)

for all j = 1, . . . , 2m, with k = j mod m.

Proof. By the law of the unconscious statistician together with the identity |λj | =
√
Sk from the

proof of Proposition 3.1 it follows that,

E(|λj |N) =
1

Amax

∫ Amax

0

(1 + ∆t2x)−
N
2 dx =

1

∆t2Amax

∫ ∆t2Amax+1

1

u−N
2 du

=
(∆t2Amax + 1)1−

N
2 − 1

∆t2Amax(1− N
2)

,

where we substituted u = ∆t2x+ 1.

E.3 PROOF OF THEOREM 3.3

Theorem. Let Φ : C0([0, T];Rp) → C0([0, T];Rq) be a causal and continuous operator. Let
K ⊂ C0([0, T];Rp) be compact. Then for any ϵ > 0, there exist hyperparameters m, m̃, diagonal
weight matrix A ∈ Rm×m, weights B ∈ Rm×d, W̃ ∈ Rm̃×m, W ∈ Rq×m̃ and bias vectors
b ∈ Rm, b̃ ∈ Rm̃, such that the output z : [0, T]→ Rq of the LinOSS model (9) satisfies,

sup
t∈[0,T]

|Φ(u)(t)− z(t)| ≤ ϵ, ∀u ∈ K.

Proof. We begin by considering the simple forced harmonic oscillator,

y′′(t) = −A2y(t) + u(t), (13)

where u(t) ∈ Rp is an external forcing and we assume A ̸= 0. We further introduce the time-
windowed sine transform for the input signal u(t),

Ltu(A) =

∫ t

0

u(t− τ) sin(Aτ)dτ.

Then, a straightforward calculation shows that the solution y(t) to (13) computes (up to a constant)
a time-windowed sine transform, i.e.,

y(t) = A−1

∫ t

0

u(τ) sin(A(t− τ))dτ. (14)

This can easily be verified by differentiating y,

y′(t) =

∫ t

0

u(τ) cos(A(t− τ))dτ +A−1[u(τ) sin(A(t− τ))]τ=t

=

∫ t

0

u(τ) cos(A(t− τ))dτ.

Differentiating one more time yields,

y′′(t) = −A
∫ t

0

u(τ) sin(A(t− τ))dτ + [u(τ) cos(A(t− τ))]τ=t

= −A
∫ t

0

u(τ) sin(A(t− τ))dτ + u(t)

= −A2y(t) + u(t).

19

Published as a conference paper at ICLR 2025

We will now make use of the fundamental Lemma in Lanthaler et al. (2024) that provides a finite-
dimensional encoding of the operator Φ we wish to approximate, i.e., for any ϵ > 0, there exists
N ∈ N, weights A1, . . . , AN and a continuous mapping Ψ : Rp×N × [0, T 2/4]→ Rq , such that

|Φ(u)(t)−Ψ(Ltu(A1), . . . ,Ltu(AN); t2/4)| ≤ ϵ,

for all u ∈ K and t ∈ [0, T].

Using the result in (14) we can then construct the input vector [Ltu(A1), . . . ,Ltu(AN), t2/4]⊤ ∈
RpN × [0, T 2/4] based on the ODE system (1) underlying our LinOSS model:

Ltu(A1)
Ltu(A2)

...
Ltu(AN)

t2/4

 = Ãy(t), (15)

where y(t) ∈ RpN solves the system,

y′′(t) = −A2y +Bu(t) + b, (16)

with

A = diag([A1, . . . , A1︸ ︷︷ ︸
p−times

, A2, . . . , A2︸ ︷︷ ︸
p−times

, , AN , . . . , AN︸ ︷︷ ︸
p−times

, 0]),

B = [Ip, . . . , Ip︸ ︷︷ ︸
N−times

, 0]⊤, b = [0, . . . , 0, 1/2]⊤

where Ip ∈ Rp×p is the identity matrix and Ã equals A, except that ÃpN,pN = 1. Thus, Ãy(t)
computes exactly the input to the finite-dimensional operator Ψ. By the universal approximation
theorem for ordinary neural networks there exist weight matrices W,Ŵ and bias b̃, such that,

|Ψ(Ltu(A1), . . . ,Ltu(AN); t2/4)−Wσ(Ŵ[Ltu(A1), . . . ,Ltu(AN), t2/4]⊤ + b̃)| < ϵ.

Thus, for every u ∈ K we have,

|Φ(u(t))− z(t)| ≤|Φ(u(t))−Ψ(Ltu(A1), . . . ,Ltu(AN); t2/4)|
+ |Ψ(Ltu(A1), . . . ,Ltu(AN); t2/4)−Wσ(W̃y(t) + b̃)|
< 2ϵ,

with W̃ = ŴÃ. Since ϵ > 0 was arbitrary, we conclude that for any causal and continuous operator
Φ : C0([0, T];Rp) → C0([0, T];Rq), compact set K ⊂ C0([0, T];Rp) and ϵ > 0, there exists a
LinOSS model of form (9), which uniformly approximates Φ to accuracy ϵ for all u ∈ K. This
completes the proof.

Remark 2. A natural question arises regarding the performance of LinOSS and other state-space
models when learning chaotic dynamical systems. A key issue in the context of learning chaotic
systems with recurrent models is the inevitability of exploding gradients during training, as rigor-
ously demonstrated in Mikhaeil et al. (2022). While our universality result, Theorem 3.3, still holds
assuming the assumptions stated are fulfilled, it can be seen that the Lipschitz constant of the read-
out MLP (i.e., approximation of Ψ in the proof of Theorem 3.3) would blow up, thereby enabling
exploding gradients. However, it is crucial to emphasize that this issue persists with all recurrent
models and is not unique to LinOSS or other state-space models. Interestingly, it has already been
empirically shown in Hu et al. (2024) that state-space models (i.e., models based on linear dynam-
ics) vastly outperform chaotic RNNs such as LSTMs (Hochreiter, 1997) and GRUs (Chung et al.,
2014) for learning chaotic dynamical systems.

20

	Introduction
	The proposed State-Space Model
	Motivation and background
	Comparison with related work
	Discretization
	Fast recurrence via associative parallel scans

	Theoretical insights
	Stability and learning long-range interactions
	Universality of LinOSS within continuous and causal operators

	Empirical Results
	Learning Long-Range Interactions
	Very long-range interactions
	Long-horizon forecasting
	Additional experiments and ablations

	Conclusion
	Full architecture details
	Sequence-to-sequence LinOSS architecture for time-series forecasting

	Training details
	Hyperparameters
	Memory requirements, runtimes, and number of parameters

	Additional experiments
	On the state matrix parameterization and initialization
	Dissipative vs conservative LinOSS models
	On the sensitivity of t in LinOSS

	Higher-order integration schemes
	Supplement to the theoretical insights
	Eigenspectrum of LinOSS-IMEX
	Proof of proposition 3.2
	Proof of Theorem 3.3

