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ABSTRACT

The sparsity of team rewards poses a significant challenge that hinders the ef-
fective learning of optimal team policies in cooperative multi-agent reinforcement
learning. One common approach to mitigate this issue involves augmenting sparse
rewards with individual rewards to guide policy training. However, a significant
drawback of such approaches is that modifying the reward function can potentially
alter the optimal policy. To tackle this challenge, we propose a novel multi-agent
policy optimization approach that ensures consistency between the mixed policy
(learned from a combination of individual and team rewards) and the team pol-
icy (based solely on team rewards), through a new policy consistency constraint
that aligns the returns of both policies in policy optimization model. We fur-
ther develop an iterated policy optimization procedure to solve the formulated
problem, deriving an approximate optimization objective for each iteration of the
mixed and team policies. Experimental evaluation conducted in the StarCraft II
Multi-Agent Challenge Environment (SMAC), Multi-Agent Particle Environment
(MPE), and Google Research Football (GRF) environments demonstrate that our
proposed approach effectively addresses the policy inconsistency problem, i.e., it
evenly outperforms strong baseline methods.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has attracted significant interest due to its
potential in solving complex decision-making tasks (Yan & Xu, 2020; Chen et al., 2024). Despite
advancements in MARL algorithms, the issue of sparse team rewards remains a major obstacle, lim-
iting the practical application of these algorithms in real-world scenarios such as power grids (Titta-
ferrante & Yassine, 2021), aerial vehicles (Du et al., 2021), and robotics (Sun et al., 2020).

Previous research addressing the issue of sparse rewards commonly relies on additional individual
dense rewards. These approaches can be categorized into three main types: utilizing expert knowl-
edge (Kurach et al., 2020; Lowe et al., 2017; Huang et al., 2022; Zhu & Zhao, 2021), exploring
the state space (Strehl & Littman, 2008; Bellemare et al., 2016; Liu et al., 2023; Jeon et al., 2022;
Liu et al., 2021; Xu et al., 2024), and action exploration (Li et al., 2021; Xu et al., 2023a). While
incorporating individual rewards have shown promise in addressing sparse rewards, recent studies
highlight a critical issue: learned policies may deviate from optimal policies due to modifications
in the reward function, especially in multi-agent environments (Wang et al., 2022). For instance, in
a cooperative battle simulation, agents incentivized by individual rewards may prioritize individual
skills (such as shooting or escaping) over the collective goal of winning the battle.

The motivation of the our research is illustrated in Figure 1. While team rewards are expected to
guide agents towards the optimal policy (orange dashed line), the sparsity of the reward function
often hinders the policy learning process (orange solid line). Shaping mixed rewards (through a
combination of team and individual rewards) can facilitate more efficient policy learning but may
lead to suboptimal policies due to alterations in the reward function (green line). This highlights
the need to maintain consistency between the learned policy and the optimal team policy when
incorporating mixed rewards.

While IRAT (Wang et al., 2022) mitigates the policy inconsistency issue through improving policy
similarity between learned and team policies, our approach completely eliminates this issue by deriv-
ing exact policy objectives from a constrained Lagrangian dual optimization model. By maximizing
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Figure 1: Sparse team rewards often
hinders the policy learning process
(orange solid line) despite the expec-
tation of guiding agents towards the
optimal team policy (orange dashed
line). Shaping mixed rewards allows
for more efficient policy learning,
but it may lead to suboptimal policy
due to changes in the reward func-
tion (green line). Our approach in-
troduces mixed rewards to efficiently
develop policy while ensuring con-
sistency with the optimal team pol-
icy (red line). Detailed test results
are provided in Section 5.

mixed rewards subject to consistency constraints between
learned and team policies’ cumulative rewards, we derive an op-
timization objective with an extended TD error. Unlike IRAT’s
standard TD error using only individual rewards, CMT incor-
porates team rewards with a Lagrangian multiplier λ. Team re-
wards provide a more comprehensive metric for policy evalua-
tion, while λ enforces policy consistency constraints in the dual
optimization problem. These innovations yield policies with
higher team rewards and reduced variance. Moreover, unlike
IRAT’s focus on individual rewards, our approach incorporates
mixed rewards during training, better balancing individual skill
execution and group collaboration.

More specifically, our approach begins with the presented con-
strained policy optimization problem, which is transformed into
its Lagrangian dual form, allowing us to solve it with the un-
known optimal team policy. Furthermore, we establish the
equivalence between the solutions of the original problem and
its dual counterpart.

We propose the Consistency between Mixed and Team policies
(CMT) algorithm, which iteratively updates both policies for
each agent to solve the Lagrangian dual problem. Using perfor-
mance difference lemma (Kakade & Langford, 2002) and pol-
icy approximation techniques, we simplify the objective func-
tion with an extended TD error, while avoiding data inefficiency
from simultaneous sampling of both mixed and team policies. Further, we reconstruct the objective
with KL terms between policies, maintaining objective equivalence while constraining policy gaps.

Extensive experiments across SMAC, MPE, and GRF environments demonstrate the effectiveness of
our proposed approach. Specifically, the proposed approach achieves a 28.5 percentage point higher
winning rate and 4.2 percentage point lower standard deviation compared to IRAT across 11 maps
of SMAC environments. Furthermore, our approach outperforms other state-of-the-art baselines,
including MAPPO, QMIX, MASER, and LAIES, across nearly all tasks. Overall, CMT achieved
the best performance in 20 out of 21 tasks across all benchmarks.

2 RELATED WORK

Individual Rewards in MARL: Introducing individual rewards has become one of the most preva-
lent and effective strategies to mitigate the sparse reward issue in MARL. Existing research in this
area can be broadly categorized into three groups: expert knowledge-based, state space exploration-
based, and action space exploration-based approaches.

External expert knowledge plays a crucial role in formulating individual rewards by leveraging prior
understanding of environmental dynamics (Kurach et al., 2020; Lowe et al., 2017; Huang et al.,
2022; Zhu & Zhao, 2021). For example, a simple design rewards the elimination of enemies and
the health of teammates in SMAC (Samvelyan et al., 2019). Further, MAPPER algorithm utilizes
expert knowledge to decompose tasks and construct sub-tasks with dense rewards (Liu et al., 2020).
However, relying solely on external knowledge can be impractical, as obtaining such knowledge is
prohibitively expensive in real-world environments (Zhang et al., 2021a; Ryu et al., 2022).

To address the aforementioned challenge, some works incorporate individual rewards based on ac-
quired transactional information. One straightforward approach is to explore novel states by count-
ing visited states (Strehl & Littman, 2008; Bellemare et al., 2016). However, this approach faces
difficulties in complex environments with vast state spaces. Recently, methods such as EDTI/EITI
have been developed to promote the exploration of novel states that significantly influence agents’
actions (Wang et al., 2019). LAIES partitions the state space into internal and external states, con-
structing individual rewards to promote exploration of external states (Liu et al., 2023). MASER
formulates individual rewards based on the distance between the current state and a target state
chosen by the Q-value of visited states and actions (Jeon et al., 2022). Furthermore, DIFFER de-
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composes team experience into individual experience for constructing individual rewards (Hu et al.,
2023). Additionally, Liu et al. (2021) and Xu et al. (2024; 2023b) exploit prior structural knowledge
to encourage agents to explore subsets of the state space.

In contrast to state exploration, another line of research focuses on constructing individual rewards
by exploring the action space. One example is the CDS approach (Li et al., 2021), which aims
to maximize the mutual information between agent identities and trajectories, thereby encouraging
more diverse actions. Xu et al. (2023a) introduce individual rewards based on the concept of joint
policy diversity, which quantifies the disparity between the current policy and previous policies.

Policy consistency in RL: While previous studies have shown promising results in addressing re-
ward sparsity, the policy inconsistency issue (resulting from the introduction of individual rewards)
is often overlooked. To the best of our knowledge, there are two works focusing on this inconsis-
tency issue. The first work proposes a constrained policy optimization method within a single-agent
environment (Chen et al., 2022). This method iteratively updates the extrinsic policy and the actual
policy using lower bounds of dual objectives as optimization objectives. In contrast, our approach
leverages transformed dual optimization objectives to train policies directly, thereby avoiding the
bias introduced by lower bounds of the objective function.

The work closest to ours is IRAT (Wang et al., 2022). While IRAT focuses on reshaping the opti-
mization objective to enhance the policy similarity between individual and team policies, Figure 4
in Appendix A shows that merely maximizing policy similarity does not necessarily lead the learned
policy to converge towards an optimal team policy. Besides, the oversight of mixed rewards prevents
IRAT from achieving a balance between individual skill execution and collaborative team objec-
tives. This work therefore derives the optimization objective precisely by solving the Lagrangian
dual optimization problem under a policy consistency constraint, which ensures the equivalence of
cumulative team rewards obtained by the learned mixed policy and the optimal team policy.

3 PRELIMINARIES

In a cooperative multi-agent decision task, the decentralized partially observable Markov decision
process (Dec-POMDP) framework defined as G =< N ,S, {Ai}i∈N , P,R, {Zi}i∈N ,O, γ > is
commonly used to model the problem. Herein, N = {1, 2, . . . , n} denotes the set of agents. S
represents the global state space, with s ∈ S denoting the environmental state. Ai is the action
space of agent i, and ai ∈ {Ai} denotes the action taken by agent i. P denotes the transition
probability, specifying the probability of transitioning from state s to state s′ under a joint action
a = (a1t , a

2
t , . . . , a

n
t ). R represents the reward function, with rE ∈ R denoting the shared team

rewards received by all agents. oi ∈ Zi represents the local observation by agent i based on the
observation function O : S × N → Zi, where Zi denotes the observation space of agent i. Given
the observation-action history τ i ∈ T i = ({Zi} × {Ai}), agent i learns a team policy πi

E

(
ai|τ i

)
with the aim to maximize the following cumulative team reward:

max JE
(
πi
E

)
= E

[ ∞∑
t=0

γtrEt

]
, (1)

where γ ∈ [0, 1] is the discount factor used to weigh the importance of future rewards. The optimal
team policy is defined as πi

E
∗
= argmaxπi

E
JE
(
πi
E

)
.

Sparse reward presents a common challenge in MARL. To mitigate this issue, individual reward
functions are often introduced into policy learning process. In this setting, at each time step t, agents
select a joint action a, and the environment returns a reward r = (r1t , r

2
t , . . . , r

n
t , r

E
t ), consisting of

individual reward rit and a shared team reward rEt for each agent i. Consequently, agent i learns a
mixed policy πi

E+i with the aim to maximize the following cumulative mixed reward:

max ĴE+i

(
πi
E+i

)
= E

[ ∞∑
t=0

γt
(
rEt + rit

)]
, (2)

where r̂it = rEt + rit is the mixed reward for each agent i. Note that reward shaping, including
the determination of the importance of individual reward in mixed reward, plays a crucial role in
exploration of RL. This is not the primary focus of this paper. For further insights on this topic,
readers are referred to Chen et al. (2022) and Yuan et al. (2023).
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4 METHOD

With a team reward-oriented objective, the optimal team policy for each agent i is denoted as πi
E
∗
=

argmaxπi
E
JE
(
πi
E

)
, as defined in Equation 1. However, when introducing a mixed reward-oriented

objective, the optimal mixed policy shifts to πi
E+i

∗
= argmaxπi

E+i
ĴE+i

(
πi
E+i

)
according to

Equation 2. It is evident that, at convergence, the optimal mixed policy must deviate from the
optimal team policy due to the change in the reward function.

To resolve this inconsistency issue, we first present a consistency constrained policy optimization
model, which defines the research target of our work. Then, we propose a dual policy optimization
procedure to solve the optimization model. Finally, we integrate our approach into the centralized
training with decentralized execution (CTDE) framework and outline the implementation of our
CMT algorithm.

4.1 CONSISTENCY CONSTRAINED POLICY OPTIMIZATION MODEL

In the environment incorporating mixed rewards, the policy optimization problem with policy con-
sistency constraint for each agent i is given by:

max
πi
E+i

ĴE+i

(
πi
E+i

)
subject to JE

(
πi
E+i

)
−max

πi
E

JE
(
πi
E

)
= 0. (3)

As the performance is often evaluated by the cumulative team rewards JE , the difference between
the cumulative team rewards achieved by the learned mixed policy and that learned by the optimal
team policy is constrained by Eq. 3. Moreover, the objective function in Eq. 3 remains consistent
with the optimization objective introduced in Eq. 2 evaluated by the cumulative mixed rewards ĴE+i.
As such, the formulated policy optimization problem aims to find a mixed policy that maximizes the
mixed rewards while maintaining consistency with the optimal team policy.

To tackle the intractability of directly solving the policy optimization problem with the unknown
term maxπi

E
JE(π

i
E) in the consistency constraint, we transform the problem into its Lagrangian

dual. The Lagrangian dual problem is given by:

min
λ

[
max
πi
E+i

ĴE+i

(
πi
E+i

)
+ λ

(
JE
(
πi
E+i

)
−max

πi
E

JE
(
πi
E

))]
, (4)

where λ represents the Lagrangian multiplier associated with the consistency constraint.

To establish the equivalence between the original problem and its Lagrangian dual, we make the
following assumption.
Assumption 1. There exists a policy πi

E+i such that JE
(
πi
E+i

)
−maxπi

E
JE
(
πi
E

)
= 0.

Assumption 1 requires that there exists a mixed policy πi
E+i (developed by the mixed reward in

Eq. 2), the performance of which can match that of optimal team policy πi
E
∗ (defined in Eq. 1)

concerning the cumulative team rewards JE . This assumption is commonly observed in RL (Sun &
Xu, 2023; Wang et al., 2022). During the initial stage of policy training process, the policy πi

E+i

yields lower cumulative team reward JE compared to the optimal team policy πi
E
∗. However, guided

by individual rewards, πi
E+i is expected to improve its performance as the training proceeds, and

finally approaches or even matches πi
E
∗. Given this continuous learning process, we can reasonably

assume the existence of a policy πi
E+i that satisfies JE

(
πi
E+i

)
−maxπi

E
JE
(
πi
E

)
= 0.

Under Assumption 1, the Slater’s condition (Ding et al., 2020; Zhang et al., 2021b) holds. Conse-
quently, we conclude that the solution to Eq. 3 is equivalent to the solution of its Lagrangian dual
problem.

4.2 MIN-MAX DUAL POLICY OPTIMIZATION

To find the optimal solution of Eq. 4, we first rewrite it for each agent i as follows:

min
λ

[
min
πi
E

max
πi
E+i

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)]
(5)
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where Ĵλ
E+i

(
πi
E+i

)
:= ĴE+i

(
πi
E+i

)
+ λJE

(
πi
E+i

)
.

In Eq. 5, we observe that there is an opposing optimization objective between the mixed policy πi
E+i

and the team policy πi
E . For the mixed policy πi

E+i, the objective is to maximize Ĵλ
E+i

(
πi
E+i

)
−

λJE
(
πi
E

)
, which is minimized in the optimization objective of the team policy πi

E . Next, we discuss
procedures to optimize the mixed and team policies with the proposed dual objective through an
iterated optimization approach.

Optimizing mixed policy: The optimizing objective of mixed policy πE+i for agent i is

max
πi
E+i

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
. (6)

We first expand the objective in Eq. 6 based on the performance difference lemma (Kakade &
Langford, 2002) (details are provided in Appendix B.1):

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
= −Eπi

E

[ ∞∑
t=0

λrEt − V
πi
E+i,λ

E+i

(
τ it
)
+ γV

πi
E+i,λ

E+i

(
τ it+1

)]
= −

∑
τ i∈T i

d
πi
E ,γ

ρ0

(
τ i
)∑
a∈A

πi
E

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
,

(7)

where V
πi
E+i,λ

E+i = Eπi
E+i

[ ∞∑
t=0

γt
[
ri + (1 + λ) rE

]]
and d

πi
E ,γ

ρ0

(
τ i
)
=

∞∑
t=0

γtP
(
τ it = τ i|ρ0, πi

E

)
.

UE+i is a extended TD error for evaluating mixed policy under the environment with policy consis-
tency requirement. It is defined as:

UE+i := λrEt − V
πi
E+i,λ

E+i

(
τ it
)
+ γV

πi
E+i,λ

E+i

(
τ it+1

)
. (8)

A significant challenge arises from data inefficiency when directly optimizing policies according to
Eq. 7, primarily due to the impracticality of sampling from both policies πE+i and πE simultane-
ously. To overcome this challenge, we draw inspiration from the approach proposed in Chen et al.
(2022), which leverages trajectories from one policy to approximate another similar policy. Specifi-
cally, we approximate the team policy by utilizing trajectories generated by the mixed policy, based
on the assumption that mixed and team policies are similar (similarity assumption) (Schulman et al.,
2017; Kakade & Langford, 2002; Schulman et al., 2015). As a result, the optimization objective can
be approximated as follows by changing team policy into mixed policy:

−Eπi
E

[ ∞∑
t=0

UE+i (τt, at)

]
= −

∑
τ i∈T i

d
πi
E ,γ

ρ0

(
τ i
)∑
a∈A

πi
E+i

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
= −

∑
τ i∈T i

d
πi
E ,γ

ρ0

(
τ i
)∑
a∈A

πi
E

(
ait|τ it

)πi
E+i

(
ait|τ it

)
πi
E

(
ait|τ it

) UE+i

(
τ it , a

i
t

)
.

(9)

It is worth noting that the similarity assumption holds true particularly when the mixed and team
policies networks share the same initialized parameters, leading to the minimal disparity between
the two types of policies.

To further simplify the computation process while preventing the mixed policy from deviating from
the team policy, we introduce a transformation of the objective by incorporating the KL divergence
between the mixed and team policies. This transformation maintains the equality between the orig-
inal objective and the transformed objective. The derivation process for this transformation can be
found in Appendix B.1. The final optimization objective for mixed policy is expressed as follows:

−Eπi
E

[
min

{
πi
E+i

(
ait|τ it

)
πi
E

(
ait|τ it

) UE+i, clip

(
πi
E+i

(
ait|τ it

)
πi
E

(
ait|τ it

) , 1− ϵ, 1 + ϵ

)
UE+i

}]
−DKL

(
πi
E+i||πi

E

)
.

(10)

Optimizing team policy: The optimizing objective of team policy πi
E in Eq. 5 can be rewritten as

max
πi
E

λJE
(
πi
E

)
− Ĵλ

E+i

(
πi
E+i

)
. (11)
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Algorithm 1 CMT algorithm
Input:

For each agent i, initialize parameters θiE+i for actor network of mixed policy, ϕi
E+i for critic network of

mixed policy, θiE for actor network of team policy, ϕi
E for critic network of team policy.

Initialize the Lagrangian multiplier λ and learning rate α.
1: Initialize empty data buffer Dm and Dt for mixed policy and team policy, respectively.
2: while training step ≤ stepmax do
3: for step = 1, 2, . . . , stepmax do
4: Initialize empty trajectories lists Dm and Dt for mixed policy and team policy, respectively.
5: Generate mixed action, team action from mixed policy and team policy, respectively.
6: Interact with environment with mixed action.
7: Compute the extended TD error UE+i and UE .
8: Store state, mixed action, reward, termination information and UE+i into Tm.
9: Store state, team action, reward, termination information and UE into Tt.

10: Incorporate Tm and Tt into Dm and Dt, respectively.
11: end for
12: Sample training data from Dm.
13: Update actor network of mixed policy according to Eq. 10 and Eq. 29.
14: Update critic network of mixed policy according to Eq. 31.
15: Sample training data from Dt.
16: Update actor network of team policy according to the Eq. 13 and Eq. 30.
17: Update critic network of team policy according to Eq. 32.
18: Update Lagrangian multiplier according to Eq. 28.
19: end while
Output:

Learned policy πE+i

Similar to the optimization of mixed policy, we transform the optimizing objective as follows (details
can be found in Appendix B.2):

λJE
(
πi
E

)
− Ĵλ

E+i

(
πi
E+i

)
= Eτ i

0

[
V

πi
E

E

(
τ i0
)]
− λEπi

E+i

[ ∞∑
t=0

γtrE+i
t

]

= −Eπi
E+i

[ ∞∑
t=0

γt
(
(1 + λ) rEt + rit − λV

πi
E

E

(
τ it
)
+ γλV

πi
E

E

(
τ it+1

))]

: = −Eπi
E+i

[ ∞∑
t=0

γtUE

(
τ it , a

i
t

)]
.

(12)

Based on the same technique of introducing KL divergence term and policy ratio clip during mixed
policy optimization, the final optimization objective of team policy is given by:

−Eπi
E+i

[
min

{
πi
E

(
ait|τ it

)
πi
E+i

(
ait|τ it

)UE , clip

(
πi
E

(
ait|τ it

)
πi
E+i

(
ait|τ it

) , 1− ϵ, 1 + ϵ

)
UE

}]
−DKL

(
πi
E ||πi

E+i

)
).

(13)

Optimizing Lagrangian multiplier: To update the Lagrangian multiplier λ, we employ the gradient
descent method, considering the optimization objective defined in Eq. 5. The gradient objective for
updating λ is as follows (cf. Appendix B.3 for the deriving process):

λ← λ− αEπi
E

 ∞∑
t=0

γt min


πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

Aπi
E

(
τ it , a

i
t

)
,

clip

(
πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

, 1− ε, 1 + ε

)
Aπi

E

(
τ it , a

i
t

)

 , (14)

where α is the step size, and Aπi
E

(
τ it , a

i
t

)
denotes the TD error for team policy:

Aπi
E
(
τ it , a

i
t

)
= rEt + γV

πi
E

E

(
τ it+1

)
− V

πi
E

E

(
τ it
)
. (15)
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Table 1: Median winning rate (%) and standard deviation (%) of five MARL algorithms in more than 10 maps
of SMAC environment under rule-based reward setting, using 5 random seeds and at most 10M training steps.

Map Difficulty Rule-based Individual Reward
IRAT MAPPO QMIX Ours MAPPO (Sparse)

2m_vs_1z Easy 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 0.0(0.0)
2s3z Easy 98.9(1.1) 97.2(2.8) 97.2(2.8) 100.0(0.0) 0.0(0.0)
3m Easy 100.0(0.0) 97.3(2.3) 92.6(5.1) 100.0(0.0) 0.0(0.0)

1c3s5z Easy 60.9(13.4) 59.3(13.2) 98.4(1.6) 100.0(0.0) 0.0(0.0)
3s_vs_5z Hard 89.5(4.9) 87.3(4.5) 0.0(0.0) 95.3(1.3) 0.0(0.0)

8m_vs_9m Hard 56.2(15.6) 83.2(3.1) 58.3(24.0) 93.7(6.2) 0.0(0.0)
5m_vs_6m Hard 52.6(20.0) 57.8(8.7) 62.5(6.3) 65(6.7) 0.0(0.0)

3s5z Hard 24.4(22.6) 64.6(8.8) 81.0(12.2) 89.0(9.1) 0.0(0.0)
MMM2 Super Hard 19.1(15.3) 3.6(2.5) 71.8(9.9) 62.5(22.0) 0.0(0.0)

6h_vs_8z Super Hard 37.5(35.0) 10.9(6.6) 49.8(36.1) 89.0(2.2) 0.0(0.0)
3s5z_vs_3s6z Super Hard 10.0(0.8) 34.3(20.6) 42.4(49.1) 64.1(35.9) 0.0(0.0)

4.3 IMPLEMENTATION

CMT is implemented within the CTDE framework, with MAPPO algorithm as the backbone. The
implementation involves two types of policies: mixed policy πi

E+i and team policy πi
E . Each policy

is parameterized by separate networks. During policy execution phase, each agent utilizes the actor
network of mixed policy to interact with environment, while the policy information for mixed policy
and team policy are stored into data buffer Dm and Dt, respectively.

When training, CMT algorithm iteratively updates the policies and the Lagrange multiplier λ. In
each iteration, it optimizes the mixed policy πi

E+i while keeping the team policy πi
E fixed. It then

updates the team policy πi
E based on the optimized mixed policies of all agents. The pseudo-

code of CMT algorithm is summarized in Algorithm 1. For more details about the CMT algorithm
implementation, please refer to Appendix C.

5 EXPERIMENTS

To evaluate the effectiveness of the proposed CMT algorithm, we benchmark it against state-of-
the-art baselines across three widely recognized multi-agent benchmarks: SMAC (Samvelyan et al.,
2019), MPE (Lowe et al., 2017), and GRF (Kurach et al., 2020). Our approach demonstrates superior
performance compared to existing SOTA MARL methods such as IRAT, MAPPO, QMIX, MASER,
and LAIES, excelling in 25 out of 27 tasks. Comprehensive experimental details and hyperparameter
settings are provided in Appendix D.

5.1 EXPERIMENTS ON SMAC

The experiments on SMAC are conducted using two types of individual reward settings:

• Rule-based Individual Reward: A sparse reward of 20 is awarded for winning a battle, while
a reward of 0 is given otherwise. Additionally, dense individual rewards are allocated to each
agent based on the health of team members and enemies. Specifically, an individual reward of
10 is given for each defeated enemy. Meanwhile, a scaled reward is provided according to the
agent’s remaining health state. Under this reward setting, the CMT algorithm is compared with
IRAT (Wang et al., 2022), MAPPO, and the QMIX algorithm. Additionally, MAPPO (Sparse),
which trains MAPPO without any individual reward, is included in the experiments to demonstrate
the impact of introducing individual rewards. The implementations of IRAT and MAPPO are
consistent with the source code in Wang et al. (2022).

• Heuristic Individual Reward: The team reward is set at 20 for a battle win. LAIES (Liu et al.,
2023) and MASER (Jeon et al., 2022) implement their respective individual rewards, as introduced
in Section 2. Since the individual reward in MASER relies on the mixing network of QMIX,
which is incompatible with other types of MARL algorithms, our approach employs the same
reward setting as LAIES. Under this reward setting, both the proposed and the LAIES algorithms
are implemented with IPPO, ensuring all experimental details align with the source code in Liu
et al. (2023). The MASER algorithm is implemented with QMIX, using the original source code
from Jeon et al. (2022).
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(a) Training curves of five algorithms on four maps of SMAC environments with rule-based individual reward.
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(b) Training curves of three algorithms on four maps of SMAC environments with heuristic individual reward.

Figure 2: Partial training curves on four maps of SMAC environments.

Experimental results for the rule-based individual reward setting are presented in Table 1. As il-
lustrated in Table 1, our approach is the only method that achieves a 100% win rate across all easy
maps, and attains the highest win rates on almost all hard and super hard maps. IRAT secures the
second-best performance in 6 out of 11 maps. QMIX and MAPPO exhibit varied performances
across different maps; In contrast, MAPPO (Sparse), which does not take into account the addi-
tional individual rewards, fails to develop an effective policy on any map. These results highlight the
significance of introducing effective individual rewards and addressing policy inconsistency when
individual rewards are incorporated in sparse reward environments.

We further select four representative maps to display the training curves of five algorithms in Fig-
ure 2a. The figures demonstrate that the proposed CMT algorithm exhibits superior sample effi-
ciency compared to the other four algorithms. CMT requires fewer training steps to converge, and
its converged win rate is either higher or comparable to other algorithms. Training curves on all 11
maps are provided in Appendix D.3.

Table 2: Median winning rate (%) and standard devia-
tion (%) of three MARL algorithms in 5 maps of SMAC
environment under heuristic reward setting, using 5 ran-
dom seeds and at most 5M training steps.

Map Heuristic Individual Reward
MASER Ours LAIES

2m_vs_1z 0.0(0.0) 100.0(0.0) 90.6(5.6)
3m 63.8(35.3) 96.8(3.2) 82.8(2.2)

1c3s5z 0.0(0.0) 72.4(9.9) 49.8(43.2)
5m_vs_6m 15.2(2.8) 27.1(8.9) 0.0(0.0)

MMM2 0.0(0.0) 28.2(15.1) 15.6(6.8)

Experimental results for the heuristic individ-
ual reward setting are presented in Table 2. We
evaluated the CMT, MASER, and LAIES al-
gorithms on two easy maps, two hard maps,
and one super hard map. As shown in Table 2,
our proposed approach achieves the highest win
rate across five maps. This result demonstrates
that our approach enhances algorithm perfor-
mance in both rule-based and heuristic indi-
vidual reward settings. LAIES outperforms
or matches MASER in four out of five maps,
which is consistent with the results reported in
Liu et al. (2023).

We provide training curves for the three algorithms on four selected maps in Figure 2b. It can be
observed that CMT exhibits superior sample efficiency compared to LAIES and MASER. When
comparing algorithm performance between heuristic and rule-based individual reward settings, it
is evident that the algorithm performance under rule-based individual rewards setting significantly
better than that under heuristic individual rewards. This underscores the importance of leveraging
environment knowledge and understanding for effective reward shaping.
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Figure 3: Experimental results on 3 scenarios of MPE and 2 scenarios of GRF

5.2 TEST ON MPE

In the MPE environment, we compare our approach with IRAT, MAPPO, QMIX, and MAPPO
(Sparse) across three types of environments: Spread, Attack, and Predator-Prey.

In the Attack environment, three agents collaborate to reach and attack a single landmark, earning
a positive reward 20 upon successful completion. Each agent incurs a penalty based on their distance
to the landmark, and a penalty −1 when colliding with other agents. As shown in the first column
of Figure 3, CMT outperforms all other algorithms, achieving a team reward exceeding 20. IRAT
ranks second with a team reward around 7, while MAPPO, QMIX, and MAPPO (Sparse) perform
worse, with team rewards below 5. These results indicate that algorithms assisted by individual
rewards tend to overlook policy inconsistency, which adversely affects their performance. Although
IRAT partially addresses this issue, it fails to achieve consistency between the mixed policy learned
from mixed rewards and the team policy derived from team rewards. In contrast, CMT successfully
establishes this consistency.

In the Spread environment, four agents collaborate to locate two landmarks, receiving a sparse
positive reward 10 when multiple agents simultaneously discover a landmark. Additionally, each
agent earns an individual reward based on its minimum distance to undiscovered landmarks. Ex-
perimental results are presented in the second column of Figure 3. These results demonstrate that
CMT once again achieves the highest team rewards, around 10. IRAT and MAPPO follow closely
with a team reward of 8. MAPPO (Sparse) and QMIX perform the worst among all algorithms.
These findings further show that CMT can identify the sub-optimal policy trap caused by additional
individual rewards.

In the Predator-Prey environment, five predators work together to capture two prey, receiving a
sparse positive reward 20 when multiple agents successfully capture the same prey. Each agent
also earns an individual reward 5 when it successfully hits a prey. The results in the Predator-
Prey environment differ slightly from those in the previous two environments. As shown in the
third column of Figure 3, the CMT and IRAT algorithms perform similarly, with CMT achieving
a slightly higher final team reward. This is because in the Predator-Prey environment, individual
rewards play a more significant role than in the other two environments. The IRAT algorithm focuses
on improving policy performance by fully utilizing individual rewards, whereas the CMT algorithm
also considers the consistency between the team policy and the mixed policy.

5.3 TEST ON GRF

We also benchmark CMT in the widely-used GRF environment. We employ a common setting where
the team reward is defined as +1 when the team scores and−1 when the team is scored against. The
individual reward is based on the default checkpoint, where an agent receives a reward of 0.1 for
possessing the football in a region near the goal. We present the results for the two popular academy
tasks, 3_vs_1 with the keeper and academy counter-attack (easy) (cf. the experimental settings in
Appendix D.4). In the GRF environment, we compare the CMT algorithm with IRAT, MAPPO,
and MAPPO (Sparse) algorithms. We did not test QMIX because the GRF environment does not
provide global status information.

As shown in the fourth and fifth column of Figure 3, the CMT algorithm achieves the highest win
rate, exceeding 60% on both maps. This result demonstrates that CMT can deliver superior per-
formance in environments requiring full collaboration among agents, such as passing and off-ball
movement. Even in sparse reward environments, CMT demonstrates excellent performance in de-
veloping effective strategies through the utilization of mixed rewards.
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Table 3: Average team reward of CMT and five variants, i.e., CMT-TD(w), CMT-SP(w), CMT-KL(w),
CMT(3×), CMT(5×) and CMT(RD) on MPE environment using 5 random seeds and at most 2M training
steps.

Scenario CMT CMT-TD(w) CMT-SP(w) CMT-KL(w) CMT(3×) CMT(5×) CMT(RD)
Spread 9.8(3.9) 7.2(2.3) 9.7(2.5) 7.5(2.5) 9.5(2.0) 12.2(1.7) 0.0(0.0)
Attack 23.7(3.8) 8.5(4.0) 13.0(6.0) 11.0(5.5) 18.5(6.5) 17.2(7.5) 0.0(0.0)

Predator-Pray 112.5(17.5) 14.0(6.0) 106.2(26.5) 22.5(8.0) 80.5(22.5) 107.5(20.0) 7.8(6.0)

5.4 ABLATION STUDIES

It is noteworthy that CMT incorporates three crucial design elements: the extended TD error, policy
approximation based on the similarity assumption, and optimization objective reconstruction with
KL divergence. To assess the impact of all components on CMT’s performance, we conduct an
ablation study in MPE environments. We conduct three ablation studies: i) CMT-TD(w) as CMT
with the extended TD error replaced by a standard TD error (defined as Eq. 15) used by MAPPO
and IRAT for policy optimization; ii) CMT-SP(w) is CMT with the policy approximation removed
by initially using distinct parameters between mixed and team policy networks; iii) CMT-KL(w)
represents CMT without the KL terms-based reconstruction module.

Table 3 demonstrates that the inclusion of the extended TD error exerts the most significant impact,
followed by the KL divergence-based optimization objective reconstruction model, with the policy
approximation technique showing the least influence on algorithm performance. This finding aligns
our core innovation outlined in Section 1. The extended TD error, which originates from resolving
the policy consistency constraint in the Lagrangian dual problem and the incorporation of mixed
rewards, notably contribute to CMT’s enhanced performance. Moreover, the minimal disparity be-
tween the outcomes of CMT-SP(w) and CMT suggests that eliminating the similarity assumption
does not dramatically affect algorithm performance.

The influence of scaling individual rewards on the algorithm’s performance is also investigated. In
Table 3, CMT(3×) denotes the CMT developed with individual rewards amplified three times, while
CMT(5×) indicates the CMT developed with individual rewards amplified five times. Comparing
CMT(3×) and CMT(5×) with baseline CMT across three scenarios, we observe that the perfor-
mance variation remains within 30%, indicating CMT’s robustness to individual reward scaling.

Finally, we examine CMT’s robustness to reward design by testing with random individual rewards
sampled from [−1, 1] (denoted as CMT(RD) in Table 3). The results show that with inappropriate
individual rewards, CMT(RD) performs similarly to MAPPO(Sparse), both showing limited effec-
tiveness. This indicates that even with poorly designed individual rewards, our approach maintains
a performance floor equivalent to methods without additional rewards. Additional ablation studies
investigating the impact of the initial Lagrangian multiplier λ on CMT’s performance can be found
in Appendix D.3.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on addressing the challenge of deviation in optimal policies in MARL due
to the introduction of individual rewards. To tackle this problem, we propose a novel multi-agent
constrained policy optimization procedure, which maximizes the cumulative rewards while ensur-
ing the consistency between the team policy and the mixed policy learned from the sum of team and
individual rewards. Leveraging the min-max dual objective presented in the constrained policy opti-
mization model, our approach iteratively updates the mixed and the team policies under the proposed
policy consistency constraint. Experimental results validate that CMT successfully overcomes the
policy inconsistency issue, gaining superior performance across 27 tasks on MPE, SMAC, and GRF
environments, compared to SOTA MARL algorithms.

One limitation of the proposed approach lies that we utilize the similarity assumption when simpli-
fying the optimization objectives. Although we can develop policy networks with the same parame-
ters to make this assumption hold during implementation, there may still be divergence between the
mixed and team policies during the policy learning process. Relaxing this assumption leads to an
interesting direction that is worth further exploration in future work.
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APPENDIX

A VISUAL COMPARISON OF POLICY LEARNING APPROACHES
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Figure 4: Comparison of policy convergence across different approaches. Blue and orange lines represent
learned and team policies, respectively. While approaches in (a) and (b) cannot guarantee convergence to the
optimal policy, our approach (c) ensures alignment between learned and optimal policies in terms of team
rewards.

Figure 4 comprehensively illustrates that our approach fully resolves the policy inconsistency prob-
lem compared to existing research. In Figure 4, the learning trajectories of learned and team policies
are depicted as blue and orange lines, respectively. In Figure 4a, prior research (e.g., MASER (Jeon
et al., 2022) and LAIES (Liu et al., 2023)) incorporates individual rewards into MARL while over-
looking the policy inconsistency issue. Consequently, the blue line remains parallel to the orange
line, and the optimal team policy fails to develop (shown by dashed lines). In Figure 4b, IRAT
mitigates the policy inconsistency problem but does not guarantee convergence of the learned pol-
icy to the optimal team policy. As a result, while blue and orange lines gradually approach each
other from their starting points and may eventually intersect, the team policy line deviates from its
intended direction (red line). In Figure 4c, our approach is the first to introduce the consistency
policy constraint, enforcing consistency between the mixed policy and optimal team policy’s team
rewards. Consequently, the direction of team policy remains unchanged, and the blue and orange
lines intersect precisely at the optimal team policy point.

B COMPLETE MATHEMATICAL DERIVATION

B.1 OPTIMIZATION OBJECTIVE OF MIXED POLICY

The original optimization objective for mixed policy defined in Eq. 6 is:

max
πi
E+i

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
. (16)

To address the data inefficiency issue in sampling policies πE+i and πE simultaneously, we make
an approximation of optimizing objective in training process of mixed policy network.

First, we expand the objective function as follows:
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Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
= Eτ0

[
V

πi
E+i,λ

E+i

(
τ i0
)]
− λEπi

E

[ ∞∑
t=0

γtrEt

]

= −

[
Eτ i

0

[
−V πi

E+i,λ

E+i

(
τ i0
)]

+ λEπi
E

[ ∞∑
t=0

γtrEt

]]

= −Eπi
E

[
−V

πi

E+i
,λ

E+i

(
τ i0
)
+

∞∑
t=0

λγtrEt

]
.

(17)

Since the policy πi
E has no influence on V

πi

E+i
,λ

E+i , we can merge the two components in the second
equation in Eq. 17, yielding the last equation in Eq. 17.

For simplicity, we let Vt = V
πi

E+i
,λ

E+i

(
τ it
)

and rt = λrEt . We can expand the expression within the
expectation in Eq. 16 as follows:

−V0 +

∞∑
t=0

γtrt = (r0 − V0 + γV1) + γ (r1 − V1 + γV2) + γ2 (r2 − V2 + γV3) + · · ·

=

∞∑
t=0

γt (rt − Vt + γVt)

=

∞∑
t=0

γt

(
λrEt − V

πi
E+i,λ

E+i

(
τ it
)
+ γV

πi
E+i,λ

E+i

(
τ it+1

))

: =

∞∑
t=0

γtUE+i

(
τ it , a

i
t

)
.

(18)

Therefore, the optimization objective can be rewritten as:

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
= −Eπi

E

[ ∞∑
t=0

γtUE+i

(
τ it , a

i
t

)]

= −
∞∑
t=0

∑
τ i∈({Zi}×{Ai})

γP
(
τt = τ |ρ0, πi

E

)∑
a∈A

πi
E

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
= −

∑
τ i∈({Zi}×{Ai})

d
πi
E ,γ

ρ0

(
τ i
)∑
a∈A

πi
E

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
,

(19)

where dπ
i
E ,γ

ρ0

(
τ i
)
=

∞∑
t=0

γtP
(
τ it = τ i|ρ0, πi

E

)
denotes the discounted observation-action frequency

under policy πi
E with the initial observation-action distribution ρ0.

To mitigate the data inefficiency resulting from simultaneously sampling policies πE+i and πE ,
as per the similarity assumption, we substitute πi

E with πi
E+i and approximate the optimization

objectives as follows:

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
= −

∑
τ i∈({Zi}×{Ai})

d
πi
E ,γ

ρ0

(
τ i
)∑
a∈A

πi
E+i

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
. (20)

To further simplify the computation process, we introduce the KL divergence between the mixed
policy and the team policy while preserving the equality between the original and converted opti-
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mization objectives:

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
= −

 ∑
τ i∈({Zi}×{Ai})

d
πi
E,γ

ρ0

∑
a∈A

πi
E+i

(
ait|τ it

)
UE+i

(
τ it , a

i
t

)
+DKL

(
πi
E+i ∥ πi

E

)
−DKL

(
πi
E+i ∥ πi

E

)
= −

 ∑
τ i∈({Zi}×{Ai})

d
πi
E,γ

ρ0

∑
a∈A

πi
E

(
ait|τ it

) πi
E+i

(
ait|τ it

)
πi
E (ai|τ i)

UE+i

(
τ it , a

i
t

)
+DKL

(
πi
E+i ∥ πi

E

)
−DKL

(
πi
E+i ∥ πi

E

)
= −

[
EπE

[
πi
E+i

(
ait|τ it

)
πi
E

(
ait|τ it

) UE+i

(
τ it , a

i
t

)]
−DKL

(
πi
E+i||πi

E

)]
−DKL

(
πi
E+i||πi

E

)
.

(21)

Leveraging the clip technique presented in Schulman et al. (2017), we finally convert the objective
to

Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

)
=− Eπi

E

min


πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

UE+i

(
τ it , a

i
t

)
,

clip

(
πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

, 1− ϵ, 1 + ϵ

)
UE+i

(
τ it , a

i
t

)



−DKL

(
πi
E+i||πi

E

)
.

(22)

The introduction of the KL-divergence term between the mixed policy and team policy in Eq. 22
not only assists in acquiring the entire optimization objective but also helps to make the similarity
assumption valid.

B.2 OPTIMIZATION OBJECTIVE OF TEAM POLICY

The original optimization objective for the team policy, as defined in Eq. 6, is:

max
πi
E

λJE
(
πi
E

)
− Ĵλ

E+i

(
πi
E+i

)
. (23)

Similar to optimizing the mixed policy, we rewrite the optimization objective for the team policy:

λJE
(
πi
E

)
− Ĵλ

E+i

(
πi
E+i

)
= Eτ i

0

[
V

πi
E

E

(
τ i0
)]
− λEπi

E+i

[ ∞∑
t=0

γtrE+i
t

]

= −

[
Eτ i

0

[
−V πi

E

E

(
τ i0
)]

+ λEπi
E+i

[ ∞∑
t=0

γtrE+i
t

]]

= −Eπi
E+i

[
−V

πi

E

E

(
τ i0
)
+

∞∑
t=0

λγtrE+i
t

]

= −Eπi
E+i

[ ∞∑
t=0

γt
(
(1 + λ) rEt + rit − λV

πi
E

E

(
τ it
)
+ γλV

πi
E

E

(
τ it+1

))]

: = −Eπi
E+i

[ ∞∑
t=0

γtUE

(
τ it , a

i
t

)]
.

(24)
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By applying the same technique used in optimizing the mixed policy, we obtain the optimization
objective for the team policy:

λJE
(
πi
E

)
− Ĵλ

E+i

(
πi
E+i

)
=− Eπi

E+i

min


πi
E(a

i
t|τ

i
t)

πi
E+i(ai

t|τ i
t)
UE

(
τ it , a

i
t

)
,

clip

(
πi
E(a

i
t|τ

i
t)

πi
E+i(ai

t|τ i
t)
, 1− ϵ, 1 + ϵ

)
UE

(
τ it , a

i
t

)



−DKL

(
πi
E ||πi

E+i

)
.

(25)

B.3 OPTIMIZING THE LAGRANGIAN MULTIPLIER λ

To update Lagrangian multiplier λ, we start by deriving the objective with respect to λ based on the
optimization objective defined in Equation 5:

∇λ

(
Ĵλ
E+i

(
πi
E+i

)
− λJE

(
πi
E

))
= JE

(
πi

E+i

)
− JE

(
πi

E

)
. (26)

To approximate the gradient, we employ a technique presented in the PPO algorithm (Schulman
et al., 2017). The gradient can be lower bounded as follows:

JE
(
πi
E+i

)
−JE

(
πi
E

)
≥ Eπi

E

 ∞∑
t=0

γt min


πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

Aπi
E

(
τ it , a

i
t

)
,

clip

(
πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

, 1− ε, 1 + ε

)
Aπi

E

(
τ it , a

i
t

)

 ,

(27)
where the advantage function Aπi

E

(
τ it , a

i
t

)
is defined as Aπi

E

(
τ it , a

i
t

)
= rEt + γV

πi
E

E

(
τ it+1

)
−

V
πi
E

E

(
τ it
)
.

Finally, the approximate gradient update step for the Lagrangian multiplier is given by:

λ← λ− αEπi
E

 ∞∑
t=0

γt min


πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

Aπi
E

(
τ it , a

i
t

)
,

clip

(
πi
E+i(a

i
t|τ

i
t)

πi
E(ai

t|τ i
t)

, 1− ε, 1 + ε

)
Aπi

E

(
τ it , a

i
t

)

 , (28)

with α denoting the step size.

C IMPLEMENTATION DETAILS

C.1 AUXILIARY OBJECTIVES

With the MAPPO algorithm as the backbone, CMT adds an auxiliary objective from MAPPO into
the entire optimization objectives of mixed policy and policy, respectively.

When updating the mixed policy, an auxiliary objective from MAPPO is added to maximize
ĴE+i

(
πi
E+i

)
for agent i as follows:

maxE

[
min

{
πi
E+i

(
aiτ |oiτ

)
πi,old
E+i (a

i
τ |oiτ )

Ai,old
E+i

(
aiτ |oiτ

)
, clip

(
πi
E+i

(
aiτ |oiτ

)
πi,old
E+i (a

i
τ |oiτ )

, 1− ϵ, 1 + ϵ

)
Ai,old

E+i

(
aiτ |oiτ

)}]
(29)

where the advantage function for mixed policy Aπi
E+i
(
τ it , a

i
t

)
is defined as Aπi

E+i
(
τ it , a

i
t

)
= r̂it +

γV
πi
E+i

E+i

(
τ it+1

)
− V

πi
E+i

E+i

(
τ it
)
.

Similarly, when updating the team policy, an auxiliary objective is added to maximize ĴE
(
πi
E

)
for

agent i as follows:
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maxE

[
min

{
πi
E

(
aiτ |oiτ

)
πi,old
E (aiτ |oiτ )

Ai,old
E

(
aiτ |oiτ

)
, clip

(
πi
E

(
aiτ |oiτ

)
πi,old
E (aiτ |oiτ )

, 1− ϵ, 1 + ϵ

)
Ai,old

E

(
aiτ |oiτ

)}]
(30)

C.2 THE UPDATE OF CRITIC NETWORK

The critic network of the mixed policy for agent i is updated in the direction of minimizing the loss
function,

L
(
ϕi
E+i

)
= E

max


(
V i
ϕi
E+i

(τt)−RE+i
t

)2
,(

clip
(
V i
ϕi
E+i

(τt) , V
i
ϕi
E+i

(τt)− ϵ, V i
ϕi
E+i

(τt) + ϵ
)
−RE+i

t

)2

 ,

(31)
where RE+i

t denotes the discounted reward-to-go of agent i’s mixed reward, which is the cumulative
reward obtained by agent i in the mixed policy.

The critic network of team policy for agent i is updated in the direction of minimizing the loss
function,

L
(
ϕi
E

)
= E

[
max

[(
V i
ϕi
E
(τt)−RE

t

)2
,
(
clip

(
V i
ϕi
E
(τt) , V

i
ϕi
E
(τt)− ϵ, V i

ϕi
E
(τt) + ϵ

)
−RE

t

)2]]
,

(32)
where RE

t denotes the discounted reward-to-go of agent i’s team reward.

D EXPERIMENT DETAILS

D.1 CODE BASE

Our approach is implemented with two versions: CMT with MAPPO and CMT with IPPO. When
comparing our method with IRAT, MAPPO and QMIX algorithms, since IRAT is implemented with
MAPPO algorithm, we implement our approach with MAPPO, and all implementing details are kept
consistent with IRAT (Wang et al., 2022). When comparing our method with LAIES and MASER
algorithms, since LAIES is implemented with IPPO algorithm, we implement our approach with
IPPO, and all implementing details are kept consistent with LAIES (Liu et al., 2023). We sincerely
thanks the authors of IRAT and LAIES research for their excellent work producing the codebase.

D.2 TEST ON MPE ENVIRONMENTS

The experiments were conducted on a computing platform equipped with an AMD Ryzen 9 7950X
CPU and a Nvidia 4090 GPU with 96GB of memory. The common parameters for the CMT algo-
rithm and baselines in the MPE environment are summarized in Table 4. The parameters for the
IRAT baseline are identical to those reported in Wang et al. (2022). The specific parameters used
for the CMT algorithm in the MPE environment are listed in Table 5.

To deeply investigate the CMT algorithm, we conduct more ablation studies to examine the impact
of the initial Lagrangian multiplier value selection. Using the Predator-Prey environment of MPE
as examples, Figure 5 reveals that the selection of initial values for the Lagrangian multiplier has a
significant impact on the algorithm’s performance. Notably, positive values of λ tend to yield better
policy performance compared to negative values of λ, providing valuable guidance for applying the
CMT algorithm in real-world scenarios.

D.3 TEST ON SMAC ENVIRONMENTS

We employ the SC2.4.10 version as the benchmark to evaluate the performance of all algorithms
in the SMAC environment. The parameters of the CMT algorithm on the SMAC environment are
provided in Table 6. Full experimental training curves of five algorithms on rule-based individual
reward setting on 11 maps are provided in Figure 6, and the training curves of three algorithms on
heuristic individual reward setting on 5 maps are provided in Figure 7.
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Table 4: The common hyper-parameters of all algorithms on MPE environment.

Hyper-parameter Value
Number of fully-connected layers 2
Dim of fully-connected layer 2
Number of GRU layers 1
Dim of RNN hidden layer 64
Optimizer Adam
Value loss huber loss
Huber delta 10
Batch Size Number of Envs*Number of Agents*Buffer Length
Discount factor γ 0.99
Activation ReLU
Use reward normalization True
Use feature normalization True
Learning rate of Actor Network 5e-4
Learning rate of Critic Network 5e-4

Table 5: The hyper-parameters of CMT algorithm on MPE environment.

Hyper-parameter Value
Initial Policy Clipping Ratio in mixed policy 3.0
Final Policy Clipping Ratio in mixed policy 0.5
Decaying time range of Policy Clipping Ratio 2.0 million training steps
Policy Clipping Ratio in team policy 0.2
Learning Rate of Lagrangian multiplier 0.01
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Figure 5: Initial λ value ablation

Table 6: The hyper-parameters of CMT algorithm on SMAC environment.

Hyper-parameter Value
Initial Policy Clipping Ratio in mixed policy 1.0
Final Policy Clipping Ratio in mixed policy 0.5
Decaying time range of Policy Clipping Ratio 0.4 million training steps
Policy Clipping Ratio in team policy 0.05
Learning Rate of Lagrangian multiplier 0.01
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Figure 6: Training curves of five algorithms on rule-based individual reward setting evaluated on 11 maps of
SMAC.
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Figure 7: Training curves of three algorithms on heuristic individual reward setting evaluated on 5 maps of
SMAC.
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D.4 TEST ON FOOTBALL ENVIRONMENTS

Table 7: The hyper-parameters of CMT algorithm on GRF environment.

Hyper-parameter Value
Initial Policy Clipping Ratio in mixed policy 0.5
Final Policy Clipping Ratio in mixed policy 0.2
Decaying time range of Policy Clipping Ratio 0.5 million training steps
Policy Clipping Ratio in team policy 0.2
Learning Rate of Lagrangian multiplier 0.01

Under GRF environment, we benchmark the proposed approach on the academy counterattack and
academy 3_vs_1 with keeper scenarios. The parameters of the CMT algorithm on the GRF environ-
ment are listed in Table 6.

Overall, our experimental results on MPE, SMAC, and GRF environments demonstrate that al-
though the CMT algorithm may not perform the best in the early stages of policy learning, it keeps
improving performance as learning progresses. Ultimately, the CMT algorithm achieves the best
performance in most benchmarks. These findings demonstrate that the proposed approach can ef-
fectively align the learned policy with the optimal policy.

E BROADER IMPACT

Our approach, which enables the development of policies that align with the optimal team policy
in multi-agent environments with mixed rewards, has far-reaching implications for various real-
world applications. For example, in power grid management, unmanned aerial vehicles control, and
robotics, where sparse reward functions are prevalent, our approach can be leveraged to efficiently
develop policies that ensure consistency with the optimal policy. As such, the proposed approach
has the potential to significantly enhance the efficiency and safety performance of MARL algorithms
in real-world scenarios.

Furthermore, we are confident that our work has no negative societal implications. Our proposed
approach is designed to be benign, with no potential for malicious or unintended uses, and does not
raise any concerns related to fairness or privacy.
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