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ABSTRACT

Active learning has demonstrated data efficiency in many fields. Existing active
learning algorithms, especially in the context of batch-mode deep Bayesian ac-
tive models, rely heavily on the quality of uncertainty estimations of the model,
and are often challenging to scale to large batches. In this paper, we propose
Batch-BALANCE, a scalable batch-mode active learning algorithm, which com-
bines insights from decision-theoretic active learning, combinatorial information
measure, and diversity sampling. At its core, Batch-BALANCE relies on a novel
decision-theoretic acquisition function that facilitates differentiation among differ-
ent equivalence classes. Intuitively, each equivalence class consists of hypotheses
(e.g., posterior samples of deep neural networks) with similar predictions, and
Batch-BALANCE adaptively adjusts the size of the equivalence classes as learn-
ing progresses. To scale up the computation of queries to large batches, we further
propose an efficient batch-mode acquisition procedure, which aims to maximize
a novel information measure defined through the acquisition function. We show
that our algorithm can effectively handle realistic multi-class classification tasks,
and achieves compelling performance on several benchmark datasets for active
learning under both low- and large-batch regimes. Reference code is released at
https://github.com/zhangrenyuuchicago/BALanCe.

1 INTRODUCTION

Active learning (AL) (Settles, 2012) characterizes a collection of techniques that efficiently select
data for training machine learning models. In the pool-based setting, an active learner selectively
queries the labels of data points from a pool of unlabeled examples and incurs a certain cost for each
label obtained. The goal is to minimize the total cost while achieving a target level of performance.
A common practice for AL is to devise efficient surrogates, aka acquisition functions, to assess the
effectiveness of unlabeled data points in the pool.

There has been a vast body of literature and empirical studies (Huang et al., 2010; Houlsby et al.,
2011; Wang & Ye, 2015; Hsu & Lin, 2015; Huang et al., 2016; Sener & Savarese, 2017; Ducoffe &
Precioso, 2018; Ash et al., 2019; Liu et al., 2020; Yan et al., 2020) suggesting a variety of heuris-
tics as potential acquisition functions for AL. Among these methods, Bayesian Active Learning by
Disagreement (BALD) (Houlsby et al., 2011) has attained notable success in the context of deep
Bayesian AL, while maintaining the expressiveness of Bayesian models (Gal et al., 2017; Janz
et al., 2017; Shen et al., 2017). Concretely, BALD relies on a most informative selection (MIS)
strategy—a classical heuristic that dates back to Lindley (1956)—which greedily queries the data
point exhibiting the maximal mutual information with the model parameters at each iteration. De-
spite the overwhelming popularity of such heuristics due to the algorithmic simplicity (MacKay,
1992; Chen et al., 2015; Gal & Ghahramani, 2016), the performance of these AL algorithms unfor-
tunately is sensitive to the quality of uncertainty estimations of the underlying model, and it remains
an open problem in deep AL to accurately quantify the model uncertainty, due to limited access to
training data and the challenge of posterior estimation.
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Figure 1: (a) Samples from posterior BNN via MC dropout.
The embeddings are generated by applying t-SNE on the hy-
potheses’ predictions on a random hold-out dataset. Colorbar
indicates the (approximate) test accuracy of the sampled neu-
ral networks on the MNIST dataset. See section C.2 for de-
tails of the experimental setup. (b) Probability mass (y-axis)
of equivalence classes (sorted by the average accuracy of the
enclosed hypotheses as the x-axis).

In figure 1, we demonstrate the potential
issues of MIS-based strategies introduced
by inaccurate posterior samples from a
Bayesian Neural Network (BNN) on a
multi-class classification dataset. Here,
the samples (i.e. hypotheses) from the
model posterior are grouped into equiva-
lence classes (ECs) (Golovin et al., 2010)
according to the Hamming distance be-
tween their predictions as shown in fig-
ure 1a. Informally, an equivalence class
contains hypotheses that are close in their
predictions for a randomly selected set of
examples (See section 2.2 for its formal
definition). We note from figure 1b that
the probability mass of the models sam-
pled from the BNN is centered around the
mode of the approximate posterior distri-
bution, while little coverage is seen on models of higher accuracy. Consequently, MIS tends to select
data points that reveal the maximal information w.r.t. the sampled distribution, rather than guiding
the active learner towards learning high accuracy models.

In addition to the robustness concern, another challenge for deep AL is the scalability to large
batches of queries. In many real-world applications, fully sequential data acquisition algorithms
are often undesirable especially for large models, as model retraining becomes the bottleneck of
the learning system (Mittal et al., 2019; Ostapuk et al., 2019). Due to such concerns, batch-mode
algorithms are designed to reduce the computational time spent on model retraining and increase
labeling efficiency. Unfortunately, for most acquisition functions, computing the optimal batch of
queries function is NP-hard (Chen & Krause, 2013); when the evaluation of the acquisition func-
tion is expensive or the pool of candidate queries is large, it is even computationally challenging
to construct a batch greedily (Gal et al., 2017; Kirsch et al., 2019; Ash et al., 2019). Recently, ef-
forts in scaling up batch-mode AL algorithms often involve diversity sampling strategies (Sener &
Savarese, 2017; Ash et al., 2019; Citovsky et al., 2021; Kirsch et al., 2021a). Unfortunately, these
diversity selection strategies either ignores the downstream learning objective (e.g., using clustering
as by (Citovsky et al., 2021)), or inherit the limitations of the sequential acquisition functions (e.g.,
sensitivity to uncertainty estimate as elaborated in figure 1 (Kirsch et al., 2021a)).

Motivated by these two challenges, this paper aims to simultaneously (1) mitigate the limitations of
uncertainty-based deep AL heuristics due to inaccurate uncertainty estimation, and (2) enable effi-
cient computation of batches of queries at scale. We propose Batch-BALANCE—an efficient batch-
mode deep Bayesian AL framework—which employs a decision-theoretic acquisition function in-
spired by Golovin et al. (2010); Chen et al. (2016). Concretely, Batch-BALANCE utilizes BNNs as
the underlying hypotheses, and uses Monte Carlo (MC) dropout (Gal & Ghahramani, 2016; Kingma
et al., 2015) or Stochastic gradient Markov Chain Monte Carlo (SG-MCMC) (Welling & Teh, 2011;
Chen et al., 2014; Ding et al., 2014; Li et al., 2016a) to estimate the model posterior. It then se-
lects points that can most effectively tell apart hypotheses from different equivalence classes (as
illustrated in figure 1). Intuitively, such disagreement structure is induced by the pool of unlabeled
data points; therefore our selection criterion takes into account the informativeness of a query with
respect to the target models (as done in BALD), while putting less focus on differentiating models
with little disagreement on target data distribution. As learning progresses, Batch-BALANCE adap-
tively anneals the radii of the equivalence classes, resulting in selecting more “difficult examples”
that distinguish more similar hypotheses as the model accuracy improves (section 3.1).

When computing queries in small batches, Batch-BALANCE employs an importance sampling strat-
egy to efficiently compute the expected gain in differentiating equivalence classes for a batch of
examples and chooses samples within a batch in a greedy manner. To scale up the computation of
queries to large batches, we further propose an efficient batch-mode acquisition procedure, which
aims to maximize a novel combinatorial information measure (Kothawade et al., 2021) defined
through our novel acquisition function. The resulting algorithm can efficiently scale to realistic
batched learning tasks with reasonably large batch sizes (section 3.2, section 3.3, appendix B).
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Finally, we demonstrate the effectiveness of variants of Batch-BALANCE via an extensive empiri-
cal study, and show that they achieve compelling performance—sometimes by a large margin—on
several benchmark datasets (section 4, appendix D) for both small and large batch settings.

2 BACKGROUND AND PROBLEM SETUP

In this section, we introduce useful notations and formally state the (deep) Bayesian AL problem.
We then describe two important classes of existing AL algorithms along with their limitations, as a
warm-up discussion before introducing our algorithm in section 3.

2.1 PROBLEM SETUP

Notations We consider pool-based Bayesian AL, where we are given an unlabelled dataset Dpool

drawn i.i.d. from some underlying data distribution. Further, assume a labeled dataset Dtrain and
a set of hypotheses H = {h1, . . . , hn}. We would like to distinguish a set of (unknown) target
hypotheses among the ground set of hypothesesH. Let H denote the random variable that represents
the target hypotheses. Let p(H) be a prior distribution over the hypotheses. In this paper, we resort
to BNN with parameters ω ∼ p(ω | Dtrain)

1.

Problem statement An AL algorithm will select samples from Dpool and query labels from ex-
perts. The experts will provide label y for given query x ∈ Dpool. We assume labeling each query x
incurs a unit cost. Our goal is to find an adaptive policy for selecting samples that allows us to find
a hypotheses with target error rate σ ∈ [0, 1] while minimizing the total cost of the queries. For-
mally, a policy π is a mapping π from the labeled dataset Dtrain to samples in Dpool. We use Dπ

train
to denote the set of examples chosen by π. Given the labeled dataset Dπ

train, we define pERR(π)
as the expected error probability w.r.t. the posterior p(ω | Dπ

train). Let the cost of a policy π be
cost(π) ≜ max |Dπ

train|, i.e., the maximum number of queries made by policy π over all possible
realizations of the target hypothesis H ∈ H. Given a tolerance parameter σ ∈ [0, 1], we seek a
policy with the minimal cost, such that upon termination, it will get expected error probability less
than σ. Formally, we seek argminπ cost(π), s.t. pERR(π) ≤ σ.

2.2 THE EQUIVALENCE-CLASS-BASED SELECTION CRITERION

As alluded in section 1 and figure 1, the MIS strategy can be ineffective when the samples from
the model posterior are heavily biased and cluttered toward sub-optimal hypotheses. We refer the
readers to appendix A.1 for details of a stylized example where a MIS-based strategy (such as
BALD) can perform arbitrarily worse than the optimal policy. A “smarter” strategy would instead
leverage the structure of the hypothesis space induced by the underlying (unlabeled) pool of data
points. In fact, this idea connects to an important problem for approximate AL, which is often cast
as learning equivalence classes (Golovin et al., 2010):

Definition 2.1 (Equivalence Class) Let (H, d) be a metric space whereH is a hypothesis class and
d is a metric. For a given set V ⊆ H and centers S = {s1, ..., sk} ⊆ V of size k, let rS : V → [k]
be a partition function over V and Di := {h ∈ V | rS(h) = i}, such that ∀i, j ∈ [k], rS(si) = i
and ∀h ∈ Di, d(h, si) ≤ d(h, sj). Each Di ⊆ V is called an equivalence class induced by si ∈ S.

Consider a pool-based AL problem with hypothesis spaceH, a sampled set V ⊆ H, and an unlabeled
dataset D̄pool which is drawn i.i.d. from the underlying data distribution. Each hypothesis h ∈ H can
be represented by a vector vh indicating the predictions of all samples in D̄pool. We can construct
equivalence classes with the Hamming distance, which is denoted as dH(h, h

′), and equivalence
class number k on sampled hypotheses V . Let dSH(V) := maxh,h′∈V:rS(h)=rS(h′) dH(h, h

′) be the
maximal diameter of equivalence classes induced by S. Therefore, the error rates of any unordered
pair of hypotheses {h, h′} that lie in the same equivalence class are at most dSH(V) away from each
other. If we construct the k equivalence-class-inducing centers (as in definition 2.1) as the solution of
the max-diameter clustering problem: C = argmin|S|=k d

S
H(V), we can obtain the minimal worst-

case relative error (i.e. difference in error rate) between hypotheses pair {h, h′} that lie in the same

1We use the conventional notation ω to represent the parameters of a BNN, and use ω and h interchangeably
to denote a hypothesis.
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equivalence class. We denote E = {{h, h′} : rC(h) ̸= rC(h′)} as the set of all (unordered) pairs of
hypotheses (i.e. undirected edges) corresponding to different equivalence classes with centers in C.

Limitation of existing EC-based algorithms Existing EC-based AL algorithms (e.g., EC2

(Golovin et al., 2010) as described in appendix A.2 and ECED (Chen et al., 2016) as in appendix A.3)
are not directly applicable to deep Bayesian AL tasks. This is because computing the acquisition
function (equation 4 and equation 5) needs to integrate over the hypotheses space, which is in-
tractable for large models (such as deep BNN). Moreover, it is nontrivial to extend to batch-mode
setting since the number of possible candidate batches and the number of label configurations for the
candidate batch grows exponentially with the batch size. Therefore, we need efficient approaches
to approximate the ECED acquisition function when dealing with BNNs in both fully sequential
setting and batch-mode setting.

3 OUR APPROACH

We first introduce our acquisition function for the sequential setting, namely BALANCE (as in
Bayesian Active Learning via Equivalence Class Annealing), and then present the batch-mode ex-
tension under both small and large batch-mode AL settings.

3.1 THE BALANCE ACQUISITION FUNCTION

We resort to Monte Carlo method to estimate the acquisition function. Given all available labeled
samples Dtrain at each iteration, hypotheses ω are sampled from the BNN posterior. We instantiate
our methods with two different BNN posterior sampling approaches: MC dropout (Gal & Ghahra-
mani, 2016) and cSG-MCMC (Zhang et al., 2019). MC dropout is easy to implement and scales
well to large models and datasets very efficiently (Kirsch et al., 2019; Gal & Ghahramani, 2016;
Gal et al., 2017). However, it is often poorly calibrated (Foong et al., 2020; Fortuin et al., 2021).
cSG-MCMC is more practical and indeed has high-fidelity to the true posterior (Zhang et al., 2019;
Fortuin et al., 2021; Wenzel et al., 2020).

In order to determine if there is an edge {ω̂, ω̂′} that connects a pair of sampled hypotheses ω̂, ω̂′

(i.e., if they are in different equivalence classes), we calculate the Hamming distance dH(ω̂, ω̂
′)

between the predictions of ω̂, ω̂′ on the unlabeled dataset D̄pool. If the distance is greater than some
threshold τ , we consider the edge {ω̂, ω̂′} ∈ Ê ; otherwise not. We define the acquisition function of
BALANCE for a set x1:b ≜ {x1, ..., xb} as:

∆BALANCE(x1:b | Dtrain) ≜ Ey1:b
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ · (1− λω,y1:b

λω′,y1:b
) (1)

where λω,y1:b
≜ p(y1:b|ω,x1:b)

maxy′
1:b

p(y′
1:b|ω,x1:b)

is the likelihood ratio2 (Chen et al., 2016), and 1dH(ω̂k,ω̂′
k)>τ

is the indicator function. We can adaptively anneal τ by setting τ proportional to BNN’s validation
error rate ε in each AL iteration.

In practice, we cannot directly compute equation 1; instead we estimate it with sampled BNN poste-
riors: We first acquire K pairs of BNN posterior samples {ω̂, ω̂′}. The Hamming distances dH(ω̂, ω̂′)
between these pairs of BNN posterior samples are computed. Next, we calculate the weight discount
factor 1 − λω̂k,y1:b

λω̂′
k,y1:b

for each possible label y and each pair {ω̂, ω̂′} where dH(ω̂, ω̂
′) > τ .

At last, we take the expectation of the discounted weight over all y1:b configurations. In summary,
∆BALANCE(x1:b) is approximated as

1

2K2

∑
y1:b

K∑
k=1

(p(y1:b | ω̂k) + p(y1:b | ω̂′
k))

K∑
k=1

1dH(ω̂k,ω̂′
k)>τ

(
1− λω̂k,y1:b

λω̂′
k,y1:b

)
. (2)

Dtrain is omitted for simplicity of notations. Note that in our algorithms we never explicitly con-
struct equivalence classes on BNN posterior samples, due to the fact that (1) it is intractable to
find the exact solution for the max-diameter clustering problem and (2) an explicit partitioning of
the hypotheses samples tends to introduce “unnecessary” edges where the incident hypotheses are

2The likelihood ratio is used here (instead of the likelihood) so that the contribution of “non-informative
examples” (e.g., p(y′

1:b | ω, x1:b) = const ∀y′
1:b, ω) is zeroed out.
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closeby (e.g., if a pair of hypotheses lie on the adjacent edge between two hypothesis partitions),
and therefore may overly estimate the utility of a query. Nevertheless, we conducted an empirical
study of a variant of BALANCE with explicit partitioning (which underperforms BALANCE). We
defer detailed discussion on this approach, as well as empirical study, to the appendix D.4.

Algorithm 1 Active selection w/ Batch-BALANCE

1: input: Dpool,D̄pool, aquisition batch size B, coldness parameter β, threshold τ , and downsam-
pling subset size |C|.

2: draw K random pairs of BNN posterior samples {ω̂k, ω̂
′
k}Kk=1

3: if B is sufficiently small (see section 4.1) then
4: AB ← GreedySelection(Dpool, D̄pool, {ω̂k, ω̂

′
k}Kk=1, τ, B) # see section 3.2

5: else
6: downsample subset C ⊂ Dpool with p(x) ∼ ∆BALANCE(x)

β

7: S1:B , µ1:B ← BALANCE-Clustering(C, D̄pool, {ω̂k, ω̂
′
k}Kk=1, τ, β,B) # see section 3.3

8: AB ← µ1:B

9: output: AB

In the fully sequential setting, we choose one sample x with top ∆BALANCE(x) in each AL itera-
tion. In the batch-mode setting, we consider two strategies for selecting samples within a batch:
greedy selection strategy for small batches and acquisition-function-driven clustering strategy for
large batches. We refer to our full algorithm as Batch-BALANCE (algorithm 1) and expand on the
batch-mode extensions in the following two subsections.

3.2 GREEDY SELECTION STRATEGY

To avoid the combinatorial explosion of possible batch number, the greedy selection strategy selects
sample x with maximum ∆BALANCE(x1:b−1 ∪ {x}) in the b-th step of a batch. However, the config-
uration y1:b of a subset x1:b expands exponentially with subset size b. In order to efficiently estimate
∆BALANCE(x1:b), we employ an importance sampling method. The current M configuration sam-
ples of y1:b are drawn by concatenating previous drawn M samples of y1:b−1 and M samples of
yb (samples drawn from proposal distribution). The pseudocode for the greedy selection strategy is
provided in algorithm 2. We refer the readers to appendix B.2 for details of importance sampling
and to appendix B.3 for details of efficient implementation.

Algorithm 2 GreedySelection

1: input: a set of samples D, D̄pool,
{ω̂k, ω̂

′
k}Kk=1, threshold τ , and B

2: A0 = ∅
3: for b ∈ [B] do
4: for all x ∈ D\Ab−1 do
5: sx ← ∆BALANCE(Ab−1

⋃{x})
6: xb ← argmaxx∈D\Ab−1

sx
7: Ab ← Ab−1

⋃{xb}
8: output: batch AB = {x1, . . . , xB}

Algorithm 3 BALANCE-Clustering

1: input: C ⊂ Dpool, D̄pool, {ω̂k, ω̂
′
k}Kk=1, threshold

τ , coldness parameter β, and cluster number B
2: sample initial centroids O = {µj}Bj=1 ⊂ C with

p(x) ∼ ∆BALANCE(x)
β

3: while O not converged do
4: for all x ∈ C do
5: ax ← argmaxj I∆BALANCE

(x, µj)
6: Sj ← {x ∈ C : ax = j}
7: for all j ∈ [B] do
8: µj ← argmaxy∈Sj

∑
x∈Sj

I∆BALANCE
(x, y)

9: output: S1:B , µ1:B

3.3 STOCHASTIC BATCH SELECTION WITH POWER SAMPLING AND BALANCE-CLUSTERING

A simple approach to apply our new acquisition function to large batch is stochastic batch se-
lection (Kirsch et al., 2021a), where we randomly select a batch with power distribution p(x) ∼
∆BALANCE(x)

β . We call this algorithm PowerBALANCE.

Next, we sought to further improve PowerBALANCE through a novel acquisition-function-driven
clustering procedure. Inspired by Kothawade et al. (2021), we define a novel information measure
I∆BALANCE

(x, y) for any two data samples x and y based on our acquisition function:
I∆BALANCE

(x, y) = ∆BALANCE(x) + ∆BALANCE(y)−∆BALANCE({x, y}) (3)
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Intuitively, I∆BALANCE
(x, y) captures the amount of overlap between x and y w.r.t. ∆BALANCE. There-

fore, it is natural to use it as a similarity measure for clustering, and use the cluster centroids as
candidate queries. The BALANCE-Clustering algorithm is illustrated in algorithm 3.

Concretely, we first sample a subset C ⊂ Dpool with p(x) ∼ ∆BALANCE(x)
β similar to (Kirsch et al.,

2021a). The BALANCE-Clustering then runs an Lloyd’s algorithm (with a non-Euclidean metric) to
find B cluster centroids (see Line 3-8 in algorithm 3): it takes the subset C, {ω̂k, ω̂

′
k}Kk=1, threshold

τ , coldness parameter β, and cluster number B as input. It first samples initial centroids O with
p(x) ∼ ∆BALANCE(x)

β . Then, it iterates the process of adjusting the clusters and centroids until
convergence and outputs B cluster centroids as candidate queries.

4 EXPERIMENTS

In this section, we sought to show the efficacy of Batch-BALANCE on several diverse datasets,
under both small batch setting and large batch setting. In the main paper, we focus on accuracy as
the key performance metric as is commonly used in the literature; supplemental results with different
evaluation metrics, including macro-average AUC, F1, and NLL, are provided in appendix D.

4.1 EXPERIMENTAL SETUP

Datasets In the main paper, we consider four datasets (i.e. MNIST (LeCun et al., 1998), Repeated-
MNIST (Kirsch et al., 2019), Fashion-MNIST (Xiao et al., 2017) and EMNIST (Cohen et al., 2017))
as benchmarks for the small-batch setting, and two datasets (i.e. SVHN (Netzer et al., 2011), CIFAR
(Krizhevsky et al., 2009)) as benchmarks for the large-batch setting. The reason for making the
splits is that for the more challenging classification tasks on SVHN and CIFAR-10, the performance
improvement for all baseline algorithms from a small batch (e.g., with batch size < 50) is hardly
visible. We split each dataset into unlabeled AL poolDpool, initial training datasetDtrain, validation
dataset Dval, test dataset Dtest and unlabeled dataset D̄pool. D̄pool is only used for calculating the
Hamming distance between hypotheses and is never used for training BNNs. For more experiment
details about datasets, see appendix C.

BNN models At each AL iteration, we sample BNN posteriors given the acquired training dataset
and select samples from Dpool to query labels according to the acquisition function of a chosen
algorithm. To avoid overfitting, we train the BNNs with MC dropout at each iteration with early
stopping. for MNIST, Repeated-MNIST, EMNIST, and FashionMNIST, we terminate the training
of BNNs with patience of 3 epochs. For SVHN and CIFAR-10, we terminate the training of BNNs
with patience of 20 epochs. The BNN with the highest validation accuracy is picked and used to
calculate the acquisition functions. Additionally, we use weighted cross-entropy loss for training the
BNN to mitigate the bias introduced by imbalanced training data. The BNN models are reinitialized
in each AL iteration similar to Gal et al. (2017); Kirsch et al. (2019). It decorrelates subsequent
acquisitions as the final model performance is dependent on a particular initialization. We use Adam
optimizer (Kingma & Ba, 2017) for all the models in the experiments.

For cSG-MCMC, we use ResNet-18 (He et al., 2016) and run 400 epochs in each AL iteration. We
set the number of cycles to 8 and initial step size to 0.5. 3 samples are collected in each cycle.

Acquisition criterion for Batch-BALANCE under different bach sizes For small AL batch with
B < 50, Batch-BALANCE takes the greedy selection approach. For large AL batch with B ≥ 50,
BALANCE takes the clustering approach described in section 3.3. In the small batch-mode setting,
if b < 4, Batch-BALANCE enumerates all y1:b configurations to compute the acquisition function
∆(Batch−)BALANCE according to equation 2; otherwise, it uses M = 10, 000 MC samples of y1:b and
importance sampling to estimate ∆Batch−BALANCE according to equation 6. All our results report the
median of 6 trials, with lower and upper quartiles.

Baselines For the small-batch setting, we compare Batch-BALANCE with Random, Variation
Ratio (Freeman & Freeman, 1965), Mean STD (Kendall et al., 2015) and BatchBALD. To the best of
the authors’ knowledge, Batch-BALD still achieves state-of-the-art performance for deep Bayesian
AL with small batches. For large-batch setting, it is no longer feasible to run BatchBALD (Citovsky
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et al., 2021); we consider other baseline models both in Bayesian setting, e.g., PowerBALD, and
Non-Bayesian setting, e.g., CoreSet and BADGE.

4.2 COMPUTATIONAL COMPLEXITY ANALYSIS

Table 1 shows the computational complexity of the batch-mode AL algorithms evaluated in this pa-
per. Here, C denotes the number of classes, B denotes the acquisition size, K is the pair number
of posterior samples and M is the sample number for y1:b configurations. We assume the number
of the hidden units is H . T is # iterations for BALANCE-Clustering to converge and is usually less
than 5. In figure 2 we plot the computation time for a single batch (in seconds) by different algo-
rithms. As the batch size increases, variants of Batch-BALANCE (including Batch-BALANCE and
PowerBALANCE as its special case) both outperforms CoreSet in run time. In later subsections, we
will demonstrate that this gain in computational efficiency does not come at a cost of performance.
We refer interested readers to section B.4 for extended discussion of computational complexity.

AL algorithms Complexity
Mean STD O (|Dpool|(CK + logB))

Variation Ratio O (|Dpool|(CK + logB))
PowerBALD O (|Dpool|(CK + logB))
BatchBALD O (|Dpool|BMK)

CoreSet (2-approx) O(|Dpool|HB)
BADGE O(|Dpool|HCB2)

PowerBALANCE O (|Dpool|(C · 2K + logB))
Batch-BALANCE O (|Dpool|BM · 2K)(GreedySelection)
Batch-BALANCE O(|Dpool|C · 2K + |C|2(C2 · 2K + T ))(BALANCE-Clustering)

Table 1: Computational complexity of AL algorithms.
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Figure 2: Run time vs. batch size.

4.3 BATCH-MODE DEEP BAYESIAN AL WITH SMALL BATCH SIZE

We compare 5 different models with acquisition sizes B = 1, B = 3 and B = 10 on MNIST
dataset. K = 100 for all the methods. The threshold τ for Batch-BALANCE is annealed by setting
τ to ε/2 in each AL loop. Note that when B = 3, we can compute the acquisition function with
all y1:b configurations for b = 1, 2, 3. When b ≥ 4, we approximate the acquisition function with
importance sampling. Figure 3 (a)-(c) show that Batch-BALANCE are consistently better than other
baseline methods for MNIST dataset.

We then compare Batch-BALANCE with other baseline methods on three datasets with balanced
classes—Repeated-MNIST, Fashion-MNIST and EMNIST-Balanced. The acquisition size B for
Repeated-MNIST and Fashion-MNIST is 10 and is 5 for EMNIST-Balanced dataset. The threshold
τ of Batch-BALANCE is annealed by setting τ = ε/43. The learning curves of accuracy are shown
in figure 3 (d)-(f). For Repeated-MNIST dataset, BALD performs poorly and is worse than random
selection. BatchBALD is able to cope with the replication after certain number of AL loops, which
is aligned with result shown in Kirsch et al. (2019). Batch-BALANCE is able to beat all the other
methods on this dataset. An ablation study about repetition number and performance can be found
in appendix D.2. For Fashion-MNIST dataset, Batch-BALANCE outperforms random selection but
the other methods fail. For EMNIST dataset, Batch-BALANCE is slightly better than BatchBALD.

We further compare different algorithms with two unbalanced datasets: EMNIST-ByMerge and
EMNIST-ByClass. The τ for Batch-BALANCE is set ε/4 in each AL loop. B = 5 and K = 10 for
all the methods. As pointed out by Kirsch et al. (2019), BatchBALD performs poorly in unbalanced
dataset settings. BALANCE and Batch-BALANCE can cope with the unbalanced data settings. The
result is shown in figure 3 (g) and (h). Further results on other datasets and under different metrics
are provided in appendix D.

4.4 BATCH-MODE DEEP BAYESIAN AL WITH LARGE BATCH SIZE

Batch-BALANCE with MC dropout We test different AL models on two larger datasets with
larger batch size. The acquisition batch size B is set 1,000 and τ = ε/8. We use VGG-11 as the
BNN and train it on all the labeled data with patience equal to 20 epochs in each AL iteration. The

3Empirically we find that τ ∈ [ε/8, ε/2] works generally well for all datasets.
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(a) MNIST
B = 1, K = 100

50 100 150 200 250

number of labeled samples

0.70

0.75

0.80

0.85

0.90

0.95

A
C

C

Random
BatchBALD
Mean STD
Variation Ratio
Batch-BALanCe

(b) MNIST
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(c) MNIST
B = 10, K = 100
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(d) Repeated-MNIST
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(e) Fashion-MNIST
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(f) EMNIST-Balanced
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(g) EMNIST-ByMerge
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Figure 3: Experimental results on MNIST, Repeated-MNIST, Fashion-MNIST, EMNIST-Balanced,
EMNIST-ByClass and EMNIST-ByMerge datasets in the small-batch regime. For all plots, the y-
axis represents accuracy and x-axis represents the number of queried examples.
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(b) ACC, MC dropout, CIFAR-10
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Figure 4: Performance on SVHN and CIFAR-10 datasets in the large-batch regime.

VGG-11 is trained using SGD with fixed learning rate 0.001 and momentum 0.9. The size of C
for Batch-BALANCE is set to 2B. Similar to PowerBALD (Kirsch et al., 2021a), we also find that
PowerBALanCe and BatchBALanCe are insensitive to β and β = 1 works generally well. We thus
set the coldness parameter β = 1 for all algorithms.

The performance of different AL models on these two datasets is shown in figure 4 (a) and
(b). PowerBALD, PowerBALANCE, BADGE, and BatchBALANCE get similar performance on
SVHN dataset. For CIFAR-10 dataset, BatchBALANCE shows compelling performance. Note that
PowerBALANCE also performs well compared to other methods.

Batch-BALANCE with cSG-MCMC We test different AL models with cSG-MCMC on CIFAR-
10. The acquisition batch size B is 5,000. The size of C for Batch-BALANCE is set to 3B. In
order to apply CoreSet algorithm to BNN, we use the average activations of all posterior samples’
final fully-connected layers as the representations. For BADGE, we use the label with maximum
average predictive probability as the hallucinated label and use the average loss gradient of the last
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layer induced by the hallucinated label as the representation. We can see from figure 4 (c) that
Batch-BALANCE achieve the best performance.

5 RELATED WORK

Pool-based batch-mode active learning Batch-mode AL has shown promising performance for
practical AL tasks. Recent works, including both Bayesian (Houlsby et al., 2011; Gal et al., 2017;
Kirsch et al., 2019) and non-Bayesian approaches (Sener & Savarese, 2017; Ash et al., 2019;
Citovsky et al., 2021; Kothawade et al., 2021; Hacohen et al., 2022; Karanam et al., 2022), have
been enormous and we hardly do it justice here. We mention what we believe are most relevant in
the following. Among the Bayesian algorithms, Gal et al. (2017) choose a batch of samples with
top acquisition functions. These methods can potentially suffer from choosing similar and redun-
dant samples inside each batch. Kirsch et al. (2019) extended Houlsby et al. (2011) and proposed
a batch-mode deep Bayesian AL algorithm, namely BatchBALD. Chen & Krause (2013) formal-
ized a class of interactive optimization problems as adaptive submodular optimization problems and
prove a greedy batch-mode approach to these problems is near-optimal as compared to the optimal
batch selection policy. ELR (Roy & McCallum, 2001) focuses on a Bayesian estimate of the re-
duction in classification error and takes a one-step-look-ahead startegy. Inspired by ELR, WMOCU
(Zhao et al., 2021) extends MOCU (Yoon et al., 2013) with a theoretical guarantee of convergence.
However, none of these algorithms extend to the batch setting.

Among the non-Bayesian approaches, Sener & Savarese (2017) proposed a CoreSet approach to
select a subset of representative points as a batch. BADGE (Ash et al., 2019) selects samples by
using the k-MEAMS++ seeding algorithm on the Dpool representations, which are the gradient
embeddings of DNN’s last layer induced by hallucinated labels. Contemporary works propose AL
algorithms that work for different settings including text classification (Tan et al., 2021), domain
shift and outlier (Kirsch et al., 2021b), low-budget regime (Hacohen et al., 2022), very large batches
(e.g., 100K or 1M) (Citovsky et al., 2021), rare classes and OOD data (Kothawade et al., 2021).

Bayesian neural networks Bayesian methods have been shown to improve the generalization
performance of DNNs (Hernández-Lobato & Adams, 2015; Blundell et al., 2015; Li et al., 2016b;
Maddox et al., 2019), while providing principled representations of uncertainty. MCMC methods
provides the gold standard of performance with smaller neural networks (Neal, 2012). SG-MCMC
methods (Welling & Teh, 2011; Chen et al., 2014; Ding et al., 2014; Li et al., 2016a) provide a
promising direction for sampling-based approaches in Bayesian deep learning. cSG-MCMC (Zhang
et al., 2019) proposes a cyclical stepsize schedule, which indeed generates samples with high fidelity
to the true posterior (Fortuin et al., 2021; Izmailov et al., 2021). Another BNN posterior approx-
imation is MC dropout (Gal & Ghahramani, 2016; Kingma et al., 2015). We investigate both the
cSG-MCMC and MC dropout methods as representative BNN models in our empirical study.

Semi-supervised learning Semi-supervised learning leverages both unlabeled and labeled exam-
ples in the training process (Kingma et al., 2014; Rasmus et al., 2015). Some work has combined
AL and semi-supervised learning (Wang et al., 2016; Sener & Savarese, 2017; Sinha et al., 2019).
Our methods are different from these methods since our methods never leverage unlabeled data to
train the models, but rather use the unlabeled pool to inform the selection of data points for AL.

6 CONCLUSION AND DISCUSSION

We have proposed a scalable batch-mode deep Bayesian active learning framework, which lever-
ages the hypothesis structure captured by equivalence classes without explicitly constructing them.
Batch-BALANCE selects a batch of samples at each iteration which can reduce the overhead of
retraining the model and save labeling effort. By combining insights from decision-theoretic ac-
tive learning and diversity sampling, the proposed algorithms achieve compelling performance ef-
ficiently on active learning benchmarks both in small batch- and large batch-mode settings. Given
the promising empirical results on the standard benchmark datasets explored in this paper, we are
further interested in understanding the theoretical properties of the equivalence annealing algorithm
under controlled studies as future work.
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A PRELIMINARY WORKS

A.1 THE MOST INFORMATIVE SELECTION CRITERION

BALD uses mutual information between the model prediction for each sample and parameters of the
model as the acquisition function. It captures the reduction of model uncertainty by receiving a label
y of a data point x: I (y;ω | x,Dtrain) = H (y | x,Dtrain)−Ep(ω|Dtrain) [H (y | x, ω,Dtrain)] where
H denotes the Shannon entropy (Shannon, 1948). Kirsch et al. (2019) further proposed BatchBALD
as an extension of BALD whereby the mutual information between a joint of multiple data points
and the model parameters is estimated as

∆BatchBALD(x1:b | Dtrain) ≜ I(y1:b;ω | x1:b,Dtrain).

Limitation of the BALD algorithm BALD can be ineffective when the hypothesis samples are
heavily biased and cluttered towards sub-optimal hypotheses. Below, we provide a concrete example
where such selection criterion may be undesirable.
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Figure 5: A stylized example where the most informative selection criterion underperforms the
equivalence-class-based criterion.

Consider the problem shown in figure 5. The hypothesis classH = {h1, . . . , hn} is structured such
that

dH(hi, hj) =

{
21−i − 21−j if i < j,
21−j − 21−i o.w.

where dH(hi, hj) denotes the fraction of labels hi and hj disagree upon when making predictions
on i.i.d. samples of data points. We further assume that for any subset of hypotheses S ⊆ H, there
exists a data point whose label they agree upon. Assume each hypothesis hi has an equal probability
and the target error rate is σ. On the one hand, note that BALD does not consider dH(hi, hj),
and therefore on average it requires log n examples to identify any target hypothesis. On the other
hand, to achieve a target error rate of σ, one only needs to differentiate all pairs of hypotheses
hi, hj of distance dH(hi, hj) > σ (i.e., by selecting training examples to rule out at least one of hi,
hj). Therefore, a “smarter” AL policy could query examples to sequentially check the consistency
of h1, h2, . . . , hn until all remaining hypotheses are within distance σ. It is easy to check that this
requires log(1/σ) examples before reaching the error rate σ. The gap between BALD and the above
policy logn

log(1/σ) could be large as n increases.

A.2 EQUIVALENCE CLASS EDGE CUTTING

Consider the problem statement in section 2.1. If σ = 0 and tests are noise-free, this problem can
be solved near-optimally by the equivalence class edge cutting (EC2) algorithm (Golovin et al.,
2010). EC2 employs an edge-cutting strategy based on a weighted graph G = (H, E), where
vertices represent hypotheses and edges link hypotheses that we want to distinguish between. Here
E ≜ {{h, h′} : r(h) ̸= r(h′)} contains all pairs of hypotheses that have different equivalence
classes. We define a weight function W : E → R≥0 by W ({h, h′}) ≜ p(h) · p(h′). A sample
x with label y is said to "cut" an edge, if at least one hypothesis is inconsistent with y. Denote
E(x, y) ≜ {{h, h′} ∈ E : p(y | x, h) = 0 ∨ p(y | x, h′) = 0} as the set of edges cut by labeling
x as y. The EC2 objective is then defined as the total weight of edges cut by the current Dtrain:
fEC2 (Dtrain) ≜ W

(⋃
(x,y)∈Dtrain

E (x, y)
)

. EC2 algorithm greedily maximizes this objective per

iteration. The acquisition function for EC2 is

∆EC2 (x | Dtrain) ≜ Ey [f (Dtrain ∪ {(x, y)})− f(Dtrain) | Dtrain] . (4)
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A.3 THE EQUIVALENCE CLASS EDGE DISCOUNTING ALGORITHM

In the noisy setting, the acquisition function of Equivalence Class Edge Discounting algorithm
(ECED) (Chen et al., 2016) takes undesired contribution by noise into account. Given a data
point and its label (x, y), ECED discounts all model parameters by their likelihood ratio: λh,y ≜

p(y|h,x)
maxy′ p(y′|h,x) . After we get Dtrain, the value of assigning label y to a data point x is defined as the

total amount of edge weight discounted: δ(x, y | Dtrain) ≜
∑

{h,h′}∈E p(h,Dtrain)p(h
′,Dtrain) ·

(1 − λh,yλh′,y), where E = {{h, h′} : r(h) ̸= r(h′)} consists of all unordered pairs of hypothesis
corresponding to different equivalence classes. Further, ECED augments the above value function δ
with an offset value such that the value of a non-informative test is 0. The offset value of labeling x
as label y is defined as: ν(x, y | Dtrain) ≜

∑
{h,h′}∈E p(h,Dtrain)p(h

′,Dtrain) · (1−maxh λ
2
h,y).

The overall acquisition function of ECED is:

∆ECED(x | Dtrain) ≜ Ey [δ(x, y | Dtrain)− ν(x, y | Dtrain)] . (5)

B ALGORITHMIC DETAILS

B.1 DERIVATION OF ACQUISITION FUNCTIONS OF BALANCE AND BATCH-BALANCE

In each AL loop, the ECED algorithm selects a sample from AL pool according to the acquisition
function

∆ECED(x | Dtrain) ≜ Ey

 ∑
{ω,ω′}∈E

Wω,ω′

(
1− λω,yλω′,y −

(
1−max

ω
λ2
ω,y

)) ,

where E is the total edges with adjacent nodes in different equivalence classes and λω,y =
p(y|ω)

maxy′ p(y′|ω) . Wω,ω′ is the weight for edge {ω, ω′} which is maintained by ECED algorithm. After
we observe y of selected x, we update the weights of all edges with Wω,ω′ = Wω,ω′ · p(y | ω)p(y |
ω′). In the deep Bayesian AL setting, the offset term 1 −maxω λ2

ω,y can be removed when we use
deep BNN. However, we can not enumerate all {ω, ω′} ∈ E in this setting since there are an infinite
number of hypotheses in the hypothesis space. Moreover, we can not even estimate the acquisition
function of ECED on a subset of sampled hypotheses by MC dropouts since building equivalence
classes with best ϵ is NP-hard.

If we sample {ω, ω′} according to posterior p(ω | Dtrain) and check whether {ω, ω′} ∈ Ê by
Hamming distance in the way we describe in section 3.1, we will get

∆ECED(x | Dtrain)

≈Ey

 ∑
{ω,ω′}∈E

Wω,ω′ (1− λω,yλω′,y)


≈Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·

Wω,ω′

p(ω | Dtrain)p(ω′ | Dtrain)
· (1− λω,yλω′,y)

]
∝Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ · (1− λω,yλω′,y)

]
.

Inspired by the weight discounting mechanism of ECED, we define the acquisition function of BAL-
ANCE ∆BALANCE(x | Dtrain) as

∆BALANCE(x | Dtrain) ≜ Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ · (1− λω,yλω′,y)

]
.

After we get K pairs of MC dropouts, the acquisition function ∆BALANCE(x | Dtrain) can be ap-
proximated as follows:

∆BALANCE(x | Dtrain)

=Ep(ω|Dtrain)Ep(y|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ (1− λω,yλω′,y)

]
≈
∑
ŷ

(
1

2K

K∑
k=1

p(ŷ | ω̂k) + p(ŷ | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂′
k)>τ

(
1− λω̂k,ŷλω̂′

k,ŷ

)]
.
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In batch-mode setting, the acquisition function of Batch-BALANCE for a batch x1:b is

∆Batch−BALANCE(x1:b | Dtrain) ≜ Ey1:b

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ · (1− λω,y1:b

λω′,y1:b
)
]
.

Similar to the fully sequential setting, we can approximate ∆Batch−BALANCE(x1:b | Dtrain) with K
pairs of MC dropouts. The x1:b are chosen in a greedy manner. For iteration b inside a batch, the
x1:b−1 are fixed and xb is selected according to

∆Batch−BALANCE(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ (1− λω,y1:b

λω′,y1:b
)
]

≈
∑
ŷ1:b

(
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂′
k)>τ

(
1− λω̂k,ŷ1:b

λω̂′
k,ŷ1:b

)]
.

B.2 IMPORTANCE SAMPLING OF CONFIGURATIONS

When b becomes large, it is infeasible to enumerate all label configurations y1:b. We use M MC
samples of y1:b to estimate the acquisition function and importance sampling to further reduce the
computational time4. Given that p(y1:b | ω) can be factorized as p(y1:b−1 | ω) · p(yb | ω), the
acquisition function can be written as:

∆Batch−BALANCE(x1:b | Dtrain)

≜Ey1:b

[
Ep(ω|Dtrain)1dH(ωk,ω′

k)>τ (1− λω,y1:b
λω′,y1:b

)
]

=Ep(ω|Dtrain)Ep(y1:b|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ωk,ω′

k)>τ (1− λω,y1:b
λω′,y1:b

)
]

=Ep(ω|Dtrain)Ep(y1:b−1|ω)Ep(yb|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ωk,ω′

k)>τ (1− λω,y1:b
λω′,y1:b

)
]

Suppose we have M samples of y1:b−1 from p(y1:b−1), we perform importance sampling using
p(y1:b−1) to estimate the acquisition function:
∆Batch−BALANCE(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b−1)
p(y1:b−1 | ω)
p(y1:b−1)

Ep(yb|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ (1− λω,y1:b

λω′,y1:b
)
]

=Ep(y1:b−1)Ep(ω|Dtrain)Ep(yb|ω)
p(y1:b−1 | ω)
p(y1:b−1)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ (1− λω,y1:b

λω′,y1:b
)
]

≈ 1

M

M∑
ŷ1:b−1

∑
ŷb

1
K

∑K
k=1 p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′

k)p(ŷb | ω̂′
k)

p(ŷ1:b−1)
·

[
1

K

K∑
k=1

1dH(ω̂k,ω̂′
k)>τ

(
1− λω̂k,ŷ1:b

λω̂′
k,ŷ1:b

)]

=

(
1

K
1dH(ω̂k,ω̂′

k)>τ

)⊤(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙ P̂ ′
1:b−1 ⊗ P̂ ′

b

Â′
1:b

) 1

M

P̂⊤
1:b−1P̂b + P̂ ′⊤

1:b−1P̂
′
b

1⊤
(
P̂1:b−1 + P̂ ′

1:b−1

)
⊤

.

(6)

Here we save p(ŷ1:b−1 | ω̂k) and p(ŷ1:b−1 | ω̂′
k) for M samples in P̂1:b−1 and P̂ ′

1:b−1. The shape
of P̂1:b−1 and P̂ ′

1:b−1 is K × M . ⊙ is element-wise matrix multiplication and ⊗ is the outer-
product operator along first dimension. After the outer product operation, we can reshape the matrix
by flattening all the dimensions after the 1st dimension. 1 is a matrix of 1s with shape K × 1.
P̂⊤
1:b−1P̂b and P̂ ′⊤

1:b−1P̂
′
b are of shape M × C and their sum is reshape to 1 ×MC after divided by

1
⊤
(
P̂1:b−1 + P̂ ′

1:b−1

)
.

4A similar importance sampling procedure was proposed in Kirsch et al. (2019) to estimate the mutual
information. Here, we show how one can adapt the strategy to enable efficient estimation of ∆Batch−BALANCE.
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B.3 EFFICIENT IMPLEMENTATION FOR GREEDY SELECTION

In algorithm 2, we can store p(ŷ1:b−1 | ω̂k) in a matrix P̂1:b−1 and p(ŷ1:b−1 | ω̂′
k) in matrix P̂1:b−1

for iteration b − 1. The shape of P̂1:b−1 and P̂ ′
1:b−1 is K × Cb−1. p(ŷb | ω̂k) can be stored in P̂b

and p(ŷb | ω̂′
k) in P̂ ′

b. The shape of P̂b and P̂ ′
b is K × C. Then, we compute probability of p(ŷ1:b)

as follows:

p(ŷ1:b) =
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

=
1

2K

K∑
k=1

p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′
k)p(ŷb | ω̂′

k)

=
1

2K
(P̂⊤

1:b−1P̂b + P̂ ′⊤
1:b−1P̂

′
b).

The P̂⊤
1:b−1P̂b and P̂ ′⊤

1:b−1P̂
′
b can be flattened to shape 1 × Cb after matrix multiplication. We store

maxŷ1:b−1
p(ŷ1:b−1 | ω̂k) in a matrix Â1:b−1 and maxŷ′

1:b−1
p(ŷ′1:b−1 | ω̂′

k) in a matrix Â′
1:b−1.

The shape of Â1:b−1 and Â′
1:b−1 is K × 1. We can compute λω̂,ŷ1:b

inside edge weight discount
expression by

Â1:b = Â1:b−1 ⊙max
ŷb

P̂b;

p(ŷ1:b | ω̂k) = p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) = P̂1:b−1 ⊗ P̂b;

λω̂,ŷ1:b
=

p(ŷ1:b | ω̂k)

maxŷ1:b
p(ŷ1:b | ω̂k)

=
P̂1:b−1 ⊗ P̂b

Â1:b

.

⊙ is element-wise matrix multiplication and ⊗ is the outer-product operator along the first dimen-
sion. After the outer product operation, we can reshape the matrix by flattening all the dimensions
after 1st dimension to maintain consistency. Similarly, we can compute Â′

1:b, p(ŷ1:b | ω̂′
k) and

λω̂′,ŷ1:b
with matrix operations. The indicator function 1dH(ω̂k,ω̂′

k)>τ can be stored in a matrix with
shape K × 1. The acquisition function can be computed with all matrix operations as follows:

∆Batch−BALANCE(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ (1− λω,y1:b

λω′,y1:b
)
]

≈
∑
ŷ1:b

(
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂′
k)>τ

(
1− λω̂k,ŷ1:b

λω̂′
k,ŷ1:b

)]

=

(
1

K
1D(ω̂k,ω̂′

k)>τ

)⊤(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙ P̂ ′
1:b−1 ⊗ P̂ ′

b

Â′
1:b

)[
1

2K
(P̂⊤

1:b−1P̂b + P̂ ′⊤
1:b−1P̂

′
b)

]⊤
.

B.4 DETAILED COMPUTATIONAL COMPLEXITY DISCUSSION

As demonstrated in figure 2, figure 6, and table 1, the computational complexity of our algorithm
PowerBALANCE shares is comparable to PowerBALD. They all need to estimate the acquisition
function value for each data point in the AL pool and then choose the top B data points after adding
Gumbel-distributed noise to the log values. However, the power sampling-based methods have
limited performance due to the lack of interaction between selected samples and non-selected sam-
ples during sampling. We can further improve the performance of PowerBALANCE with Batch-
BALANCE. The computation complexity of Batch-BALANCE for large batch setting are propor-
tional to B2 when downsampled with subset size |C| = cB and c is a small constant. Its computa-
tional complexity is similar to that of BADGE and CoreSet.
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Figure 6: Computation time (in seconds) vs. batch size for different AL algorithms

C EXPERIMENTAL SETUP: DATASETS AND IMPLEMENTATION DETAILS

C.1 DATASETS USED IN THE MAIN PAPER

MNIST. We randomly split MNIST training dataset into Dval with 10,000 samples, D̄pool with
10,000 samples and Dpool with the rest. The initial training dataset contains 20 samples with 2
samples in each class chosen from the AL pool. The BNN model architecture is similar to Kirsch
et al. (2019). It consists of two blocks of [convolution, dropout, max-pooling, relu] followed by a
two-layer MLP that a two-layer MLP and one dropout between the two layers. The dropout proba-
bility is 0.5 in the dropout layers.

Repeated-MNIST. Kirsch et al. (2019) show that applying BALD to a dataset that contains many
(near) replicated data points leads to poor performance. We again randomly split the MNIST training
dataset similar to the settings used on MNIST dataset. We replicate all the samples in AL pool two
times and add isotropic Gaussian noise with a standard deviation of 0.1 after normalizing the dataset.
The BNN architecture is the same as the one used on MNIST dataset.

EMNIST. We further consider the EMNIST dataset under 3 different settings: EMNIST-Balanced,
EMNIST-ByClass, and EMNIST-ByMerge. The EMNIST-Balanced contains 47 classes with bal-
anced digits and letters. EMNIST-ByMerge includes digits and letters for a total of 47 unbalanced
classes. EMNIST-ByClass represents the most useful organization for classification as it contains
the segmented digits and characters for 62 classes comprising [0-9],[a-z], and [A-Z]. We randomly
split the training set intoDval with 18,800 images, D̄pool with 18,800 images andDpool with the rest
of the samples. Similar to Kirsch et al. (2019), we do not use an initial dataset and instead perform
the initial acquisition step with the randomly initialized model. The model architecture contains
three blocks of [convolution, dropout, max-pooling, relu], with 32, 64, and 128 3x3 convolution
filters and 2x2 max pooling. We add a two-layer MLP following the three blocks. 4 dropout layers
in total are in each block and MLP with dropout probability 0.5.

Fashion-MNIST. Fashion-MNIST is a dataset of Zalando’s article images that consists of a training
set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. We randomly split Fashion-MNIST training dataset into
Dval with 10,000 samples, D̄pool with 10,000 samples, and Dpool with the rest of samples. We
obtain the initial training dataset that contains 20 samples with 2 samples in each class randomly

19



Published as a conference paper at ICLR 2023

chosen from the AL pool. The model architecture is similar to the one used on EMNIST dataset
with 10 units in the last MLP.

SVHN. We randomly select initial training dataset with 5,000 samples, D̄pool with 2,000 samples,
and validation dataset Dval with 5,000 samples. Similarly for CIFAR-10 dataset,

CIFAR-10. we random select initial training dataset with 5,000 samples, D̄pool with 5,000 samples,
and validation dataset Dval with 5,000 samples.

C.2 IMPLEMENTATION DETAILS ON THE EMPIRICAL EXAMPLE IN FIGURE 1

We show an empirical example in figure 1 to provide some intuition as to why BALANCE and
Batch-BALANCE are effective in practice. We train a BNN with an imbalanced MNIST training
subset that contains 28 images for each digit in [1-8] and 1 image for digits 0 and 9. The cross-
entropy loss is reweighted to balance the training dataset during training. We obtain 200 posterior
samples of BNN and use them to get the predictions on D̄pool. We compute the Hamming distances
for predictions all sample pairs and use these precomputed distances to plot the predictions with
t-SNE (Van der Maaten & Hinton, 2008). The equivalence classes are approximated by farthest-first
traversal algorithm (FFT) (Gonzalez, 1985). In figure 1, the equivalence classes are highly imbal-
anced. The ground truth D̄pool dataset labels represent the target hypotheses embedding. This figure
highlights the scenario where the equivalence class-based methods, e.g. ECED and BALANCE are
better than BALD.

D SUPPLEMENTAL EMPIRICAL RESULTS

In this section, we provide additional experimental details and supplemental results to demonstrate
the competing algorithms.

D.1 EFFECT OF DIFFERENT CHOICES OF HYPERPARAMETERS

We compare BALD and BALANCE with batch size B = 1 and different K’s on an imbalanced
MNIST dataset which is created by removing a random portion of images for each class in the
training dataset. figure 7 (a) shows that BALANCE performs the best with a large margin to the
curve of BALD. Note that BALANCE with K = 50 is also better than BALD with K = 100.
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(a) ACC vs. # samples for different K’s.
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Figure 7: Learning curves of different K and τ for BALANCE.
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Figure 8: Estimated acquisition function values ∆BALANCE of BALANCE vs. posterior sample num-
ber K

We also study the influence of τ for BALANCE on MNIST dataset. Denote the validation error rate
of BNN model by ε. BALANCE with fixed τ = 0.05, 0.15, 0.3 and annealing τ = ε/2, ε/4, ε/8 are
run on MNIST dataset and the learning curves are shown in figure 7 (b). The BALANCE is robust
to τ . However, when τ is set 0.3 and the test accuracy gets around 0.88, the accuracy improvement
becomes slow. The reason for this slow improvement is that the threshold τ is too large and all the
pairs of posterior samples are treated as in the same equivalence class and the acquisition functions
for all the samples in the AL pool are zeros. In another word, the BALANCE degrades to random
selection when τ is too large.

We further pick an data point from this imbalanced MNIST dataset and gradually increase the pos-
terior sample number K to estimate the acquisition function value ∆BALANCE for this data point. For
each posterior sample number K, we estimate the acquisition function ∆BALANCE 10 times with 10
sets of posterior sample pairs. The mean and std for this K are calculated and shown in figure 8.

D.2 EXPERIMENTS ON OTHER DATASETS

We compare different AL algorithms on tabular datasets including Human Activity Recognition
Using Smartphones Data Set (Anguita et al., 2013) (HAR), Gas Sensor Array Drift (Vergara et al.,
2012) (DRIFT), and Dry Bean Dataset (Koklu & Ozkan, 2020), as well as a more difficult dataset
CINIC-10 (Darlow et al., 2018).

HAR, DRIFT and Dry Bean Dataset We run 6 AL trials for each dataset and algorithm. In
each iteration, the BNNs are trained with a learning rate of 0.01 and patience equal to 3 epochs.
The BNNs all contain three-layer MLP with ReLU activation and dropout layers in between. The
datasets are all split into starting training set, validation set, testing set, and AL pool. The AL pool
is also used as D̄pool. The τ for Batch-BALANCE is set ε/4 in each AL loop. See table 2 for more
experiment details of these 3 datasets.

dataset val set size test set size hidden unit # sample # per epoch K B
HAR 2K 2,947 (64,64) 4,096 20 10

DRIFT 2K 2K (32,32) 4,096 20 10
Dry Bean 2K 2K (8,8) 8,192 20 10

Table 2: Experment details for HAR, DRIFT and Dry Bean Dataset
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The learning curves of all 5 algorithms on these 3 tabular datasets are shown in figure 9. Batch-
BALANCE outperforms all the other algorithms for these 3 datasets. For HAR dataset, both Batch-
BALANCE and BatchBALD work better than random selection. In figure 9 (b) and (c), Mean STD,
Variation Ratio and BatchBALD perform worse than random selection. We find similar effect for
some other imbalanced datasets.
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(a) ACC, HAR dataset
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(b) ACC, DRIFT dataset
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(c) ACC, Dry Bean Dataset

Figure 9: Experimental results on 3 tabular datasets. For all plots, the y-axis represents accuracy
and x-axis represents the number of queried examples.

CINIC-10 CINIC-10 is a large dataset with 270K images from two sources: CIFAR-10
(Krizhevsky et al., 2009) and ImageNet (Rasmus et al., 2015). The training set is split into an
AL pool with 120K samples, 40K D̄pool samples, 20K validation samples, and 200 starting training
samples with 20 samples in each class. We use VGG-11 as the BNN. The number of sampled MC
dropout pairs is 50 and the acquisition size is 10. We run 6 trials for this experiment. The learning
curves of 5 algorithms are shown in figure 10. We can see from figure 10 that Batch-BALANCE
performs better than all the other algorithms by a large margin in this setting.
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Figure 10: ACC vs. # samples on the CINIC-10 dataset.

Repeated-MNIST with different amounts of repetitions In order to show the effect of redundant
data points on BathBALD and Batch-BALANCE, we ran experiments on Repeated-MNIST with
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an increasing number of repetitions. The learning curves of accuracy for Repeated-MNIST with
different repetition numbers can be seen in figure 11. A detailed model accuracy on the test dataset
when the acquired training dataset size is 130 is shown in table 3. Even though Batch-BALANCE
can improve data efficiency (Kirsch et al., 2019), there are still large gaps between the learning
curves of Batch-BALD and Batch-BALANCE and the gaps become larger when the number of
repetitions increases.
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Figure 11: Performance of Random selection, BatchBALD, and Batch-BALANCE on Repeated-
MNIST for an increasing number of repetitions. For all plots, the y-axis represents accuracy and
x-axis represents the number of queried examples. We can see that BatchBALD also performs
worse as the number of repetitions is increased. Batch-BALANCE outperforms BatchBALD with
large margins and remains similar performance across different numbers of repetitions.

In order to compare our algorithms with other AL algorithms in this small batch size regime, we fur-
ther run PowerBALANCE, PowerBALD, BADGE and CoreSet on the Repeated-MNIST with repeat
number 3. As shown in figure 12, Batch-BALANCE achieves the best performance. Note that both
PowerBALD and PowerBALANCE are efficient to select AL batch and show similar performance
compared to BADGE algorithm.

CIFAR-100 For CIFAR-100, we use 100 fine-grained labels. The dataset is split into initial train-
ing dataset with 5,000 samples, D̄pool with 5,000 samples, and validation dataset Dval with 5,000
samples. Experiment is conducted with batch size B = 5, 000 and budget 25,000. The cSG-MCMC
is used for BNN with epoch number 200, initial step size 0.5, and cycle number 4. We can see in
figure 13 that both PowerBALANCE and Batch-BALANCE perform well in this dataset.
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Figure 12: ACC vs. # samples on RepeatedMNIST dataset with repeat number 3.
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Figure 13: ACC vs. # samples, cSG-MCMC, CIFAR-100

D.3 ADDITIONAL EVALUATION METRICS

Besides accuracy, we compared macro-average AUC, macro-average F1, and NLL for 5 different
methods on EMNIST-Balanced and EMNIST-ByMerge datasets in figure 14. The acquisition size
for all the AL algorithms is 5. Batch-BALANCE is annealed by setting τ = ε/4. A macro-average
AUC computes the AUC independently for each class and then takes the average. Both macro-
average AUC and macro-average F1 take class imbalance into account. As shown in figure 14,
Batch-BALANCE attains better data efficiency compared with baseline models on both balanced
and imbalanced datasets.
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(a) Macro-average AUC (b) Macro-average F1 (c) NLL

Figure 14: Compare different metrics for EMNIST-Balanced and EMNIST-Bymerge

We also evaluated the negative log-likelihood (NLL) for different AL algorithms. NLL is a popular
metric for evaluating predictive uncertainty (Quinonero-Candela et al., 2005). As shown in figure 14,
Batch-BALANCE maintains a better or comparable quality of predictive uncertainty over test data.

D.4 BALANCE VIA EXPLICIT PARTITIONING OVER THE HYPOTHESIS POSTERIOR SAMPLES

Another way of estimating the acquisition function is to construct the equivalence classes explicitly
first (e.g. by partitioning the hypothesis spaces into k Voronoi cells via max-diameter clustering and
calculate the weight discounts of edges that connect different equivalence classes. Intuitively, explic-
itly constructing equivalence classes may introduce unnecessary edges as two closeby hypotheses
can be partitioned into different equivalence classes; therefore leading to an overestimate of the edge
weight discounted. We call this algorithm BALANCE-Partition.

In order to compare with BALANCE and Batch-BALANCE, we sampled K pairs of MC dropouts
to estimate the acquisition function of BALANCE-Partition. All the representations of 2K MC
dropouts on D̄pool are generated. We run FFT (Gonzalez, 1985) with Hamming distances and thresh-
old τ on these representations to get approximated ECs. Each data point has at most τ Hamming
distance to the corresponding cluster center. FFT is a 2-approx algorithm and the optimal solution
with the same cluster number has cluster diameter ≥ τ

2 . After equivalence classes are returned,
BALANCE-Partition calculates the edges discounts of all edges that connect different equivalence
classes and estimates the acquisition function values of each data sample in the AL pool.

Although a faster method that utilizes complete homogeneous symmetric polynomials (Javdani
et al., 2014) can be implemented to estimate the acquisition function values for BALANCE-Partition,
experiments in figure 15 show that BALANCE-Partition can not achieve better performance than
BALANCE and increasing the MC dropout number does not improve performance significantly.

Method repeat 1 time repeat 2 times repeat 3 times repeat 4 times
Random 0.887± 0.017 0.883± 0.012 0.881± 0.013 0.895± 0.009

BatchBALD 0.917± 0.005 0.892± 0.023 0.883± 0.025 0.881± 0.014
Batch-BALANCE 0.926± 0.008 0.923± 0.008 0.929± 0.004 0.927± 0.010

Table 3: Mean±STD of test accuracies when acquired training set size is 130
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Figure 15: ACC vs. # samples for BALANCE-Partition and BALANCE.

D.5 COEFFICIENT OF VARIATION

To gain more insight into why BALANCE and Batch-BALANCE work consistently better than
BALD and BatchBALD, we further investigate the dispersion of the estimated acquisition function
values for those methods. Since Batch-BALANCE and BatchBALD extend their fully sequential
algorithms similarly in a greedy manner, we only compare the acquisition functions of BALANCE
and BALD.

The coefficient of variation (CV) is chosen for the comparison of dispersion. It is defined as the
ratio of the standard deviation to the mean. CV is a standardized measure of the dispersion of a
probability distribution or frequency distribution. The value of CV is independent of the unit in
which it is taken.

We conduct the experiment on the imbalanced MNIST dataset in the setting of appendix C.2. We
estimate the acquisition function values of BALANCE and BALD 5 times with 5 sets of K MC
dropouts for each sample in the AL pool. Then, the CVs are calculated for these estimations. In
figure 16, we show histograms of CVs for both methods. The estimated acquisition function values
of BALANCE are less dispersed, which shows potential for better performance.

D.6 PREDICTIVE VARIANCE

In order to directly compare the accuracy improvement of batches selected by different algorithms,
instead of along the course of an AL trial, we conduct experiments with training sets of various sizes
and compare the accuracy improvement of batches selected by AL algorithms with the same training
set. The initial training set has 10 sampled randomly from Repeated-MNIST. In each step, we select
10 random samples and add them to training set. Hypotheses are drawn from BNN posterior given
the current training set. We perform different AL algorithms and select batches with batch size
20. After each batch is added to training set, we can estimate the accuracy improvement of the
batch. In each step, we perform each AL algorithm 20 times and estimate the mean and std of
accuracy improvement. The mean and std of BNNs’ accuracy are shown in figure 17. We can see in
figure 17 that our algorithms consistently select batches that have high accuracy improvement and
low variance.

D.7 BATCH-BALANCE WITH MULTI-CHAIN CSG-MCMC

cSG-MCMC can be improved by sampling with multiple chains (Zhang et al., 2019). In order
to evaluate different AL algorithms with this improved parallel cSG-MCMC method, we conduct
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Figure 16: Histograms for coefficient of variation.
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Figure 17: We empirically show AL algorithms’ predictive variance.

experiment on CIFAR-10 dataset with batch size B = 5, 000. We sample posteriors with 3 chains.
Each chain trains the model 200 epochs. The cycle number for each chain is 4 and 3 posterior
samples are collected in each cycle. The result is shown in figure 18, Batch-BALANCE achieves
better performance than BADGE.
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Figure 18: ACC vs. # samples, multi-chain cSG-MCMC, CIFAR-10
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