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ABSTRACT

Reinforcement learning improves LLM reasoning, yet sparse delayed reward over
long sequences makes token-level credit assignment the key bottleneck. We study
the verifiable-reward setting, where the final answer is checkable and multiple re-
sponses can be drawn per prompt. Reasoning tasks in math and medical QA align
with this setup, where only a few decision tokens significantly impact the outcome.
PPO offers token-level advantages with a learned value model, but it is complex
to train both the actor and critic models simultaneously, and it is not easily gener-
alizable, as the token-level values from the critic model can make training prone
to overfitting. GRPO is critic-free and supports verifiable rewards, but spreads a
single sequence-level return across tokens and ignores branching. We introduce
Prefix-to-Tree (P2T), a simple procedure that converts a group of responses into
a prefix tree and computes nonparametric prefix values V (s) by aggregating de-
scendant outcomes. Built on P2T, we propose TEMPO (Tree-Estimated Mean
Prefix Value for Policy Optimization), a critic-free algorithm that augments the
group-relative outcome signal of GRPO with branch-gated temporal-difference
corrections derived from the tree. At non-branch tokens, the temporal-difference
(TD) term is zero, so TEMPO reduces to GRPO; at branching tokens, it supplies
precise token-level credit without a learned value network or extra judges/teachers.
On Qwen3-1.7B/4B, TEMPO outperforms PPO and GRPO on in-distribution
(MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA,
MMLU-Medical) benchmarks, and reaches higher validation accuracy with less
wall-clock time. 1

“In chess, a tempo is a move saved at a fork; in learning, credit should fall on that move.”

1 INTRODUCTION

Reinforcement learning (RL) (Sutton et al., 1998) is an effective way to strengthen the reasoning
of large language models (LLMs) (Zhang et al., 2025). In LLM settings, rewards are sparse and
delayed and sequences are long (Jaech et al., 2024; Guo et al., 2025), so the key challenge is credit
assignment: give the outcome reward to the few tokens that really change the solution. We study
the verifiable-reward setting, where the final answer for a prompt is checkable and we can draw
multiple responses for the same prompt. This is common in long “thinking” or chain-of-thought
(CoT) tasks such as mathematics and medical QA, where most steps are low-impact and only a
small set of decision tokens (e.g., strategy choice, formula selection, diagnostic commitment) moves
the outcome. Aggregating multiple responses naturally induces an implicit prefix tree: internal nodes
are shared prefixes and branch nodes mark decision points with multiple plausible continuations. A
good learning rule should use the branching structure across responses and focus credit on those
decision points.

Proximal Policy Optimization(PPO) gives token-level advantages with a learned value and gen-
eralized advantage estimation (GAE), which mixes Monte Carlo (MC) returns with temporal-
difference (TD) bootstrapping (Schulman et al., 2015; 2017). However, jointly training the actor and
critic is complex and often fails to generalize, as critic-derived token-level values can induce over-
fitting Wang et al. (2025b); Chaudhari et al. (2024). Group Relative Policy Optimization(GRPO)

1Our code can be accessed at: https://anonymous.4open.science/r/tempo-958D
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removes the critic and uses group-relative baselines over responses to the same prompt (Shao et al.,
2024; Yu et al., 2025). It is simple and fits verifiable rewards. However, it spreads a single sequence-
level signal across all tokens and overlooks mid-trajectory decisions. As a result, token-level credit
is weak when reasoning branches. Recent “key-token ideas” (Wang et al., 2025a) move toward
finer signals by focusing gradient updates on high-entropy tokens. This approach benefits from ex-
ploiting response structure and concentrating learning on decision-heavy positions. However, while
entropy-based updates can improve exploitation within known reasoning patterns, they may strug-
gle to acquire new domain knowledge where exploration across broader patterns of the responses is
necessary.

Figure 1: Comparison of credit as-
signment for RL training with ver-
ifiable rewards. GRPO: all tokens
in each sampled answer share one
sequence-level return; branching is ig-
nored so credit spreads evenly. PPO: a
learned value network estimates V (st)
and provides token-level advantages via
GAE, but requires a critic and higher
compute. TEMPO: convert the answer
group for one prompt into a prefix tree
and compute nonparametric prefix val-
ues V (s) by averaging descendant out-
comes; use branch-gated TD correc-
tions to assign credit at branches.

We present Prefix-to-Tree (P2T) as a simple procedure
that converts a group of responses into a prefix tree and
computes nonparametric prefix values V (s) by averag-
ing descendant returns. Building on P2T, we introduce
TEMPO (Tree-Estimated Mean Prefix Value for Policy
Optimization), a critic-free policy optimization method
that restores token-level credit only where it matters. For
each prompt, sampled responses form paths in the im-
plicit prefix tree. TEMPO augments the group-relative
outcome signal of GRPO with branch-gated temporal-
difference (TD) corrections derived from the tree: at non-
branching tokens V (st+1) = V (st) and the TD error is
zero, so the update reduces to GRPO, while at branch-
ing tokens it supplies precise token-level credit. TEMPO
maintains the GRPO training loop and cost. It does not
train a value model or add a process reward model or a
judge, it also does not require a teacher or a new sampler.

Empirical scope and applicability. Across Qwen3-1.7B
and Qwen3-4B, TEMPO consistently attains higher ac-
curacy than PPO (Schulman et al., 2017), GRPO (Shao
et al., 2024), and HEPO (Wang et al., 2025a) on both
in-distribution (MATH, MedQA) and out-of-distribution
(GSM-HARD, AMC23, MedMCQA, MMLU-Medical)
evaluations, while reaching strong validation perfor-
mance in less wall-clock time. Validation curves indi-
cate that, on math reasoning, approaches that emphasize
token-level structure, such as HEPO (Wang et al., 2025a)
(e.g., focusing updates on high-entropy decision tokens) already enjoy an advantage, suggesting the
RL phase mainly reinforces reasoning patterns learned during pretraining and SFT. Yet, TEMPO
goes further by injecting tree-gated TD credit at the exact branching points. On medical reason-
ing, where domain knowledge must be newly acquired, methods that rely on group-relative explo-
ration such as GRPO (Shao et al., 2024) generalize better than purely exploitation-oriented updates;
TEMPO combines this robust group baseline with branch-aware TD from P2T’s nonparametric pre-
fix values, improving both convergence speed and final accuracy. In practice, TEMPO is most
beneficial when rewards are verifiable and prompts yield meaningful branching, delivering precise
token-level credit without a value network or auxiliary judges, and serving as a drop-in, efficiency-
preserving upgrade to GRPO-style training. Overall, our key contributions include:

1. We introduce Prefix-to-Tree (P2T), a simple procedure that converts each prompt’s group
of responses into a prefix tree and derives nonparametric prefix values V (st) by aggregat-
ing descendant outcomes.

2. Building on P2T, we propose TEMPO, a drop-in, GRPO-compatible algorithm that aug-
ments the group-normalized outcome signal with branch-gated TD corrections, providing
precise token-level credit at decision points while retaining GRPO-like compute and sim-
plicity.

3. On Qwen3-1.7B/4B, TEMPO improves convergence speed and final accuracy over other
baselines on in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD,
AMC23, MedMCQA, MMLU-Medical) benchmarks under the same hardware budget.
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2 RELATED WORK

Credit assignment is central in post-training for reasoning LLMs. RLHF brought PPO with a learned
value (critic) and GAE to reduce variance (Ouyang et al., 2022; Schulman et al., 2017; 2015). This
improved alignment, however, comes at the cost of critic training, which adds complexity and tuning,
and value prediction is brittle on long chains. To avoid a critic, several lines move towards value-
free or RL-free updates that treat the entire response as a single action. DPO optimizes pairwise
preferences in an offline bandit view (Rafailov et al., 2023). Rejection-sampling methods, such
as RestEM, fine-tune only on full high-reward responses (Singh et al., 2023). RLOO, GRPO, and
DAPO compute group-normalized sequence advantages over multiple samples of the same prompt,
thereby removing the value network (Ahmadian et al., 2024; Shao et al., 2024; Yu et al., 2025).
These methods are simple and stable, but their feedback is sequence-level and credits all tokens
equally, which weakens token-level credit in long reasoning. VinePPO instead replaces the critic
with Monte Carlo estimates obtained by re-sampling continuations from each text prefix, yielding
accurate prefix values in language settings (Kazemnejad et al., 2024). However, it requires fresh
rollouts at many branch nodes and raising sampling cost when trees are wide or branch early and
still uses path-wise PPO advantages without group-normalized baselines.

Several contemporaneous works exploit the tree structure of rollouts to densify credit assignment
and/or cut sampling cost. TreePO Li et al. (2025) reframes on-policy rollouts as a tree search with
segmented decoding and heuristic branching/fallback, amortizing shared prefixes (KV caching) and
introducing a tree-based segment-level advantage estimator; this improves stability and reduces sam-
pling compute while maintaining or improving accuracy. TreeRPO Yang et al. (2025b) extends
GRPO by performing explicit tree sampling and forming step-level sibling groups to estimate ex-
pected rewards per step, yielding dense process signals and reporting consistent gains over GRPO
with shorter responses. TreeRL Hou et al. (2025) integrates an entropy-guided sampler (EPTree) that
branches at uncertain tokens, then back-propagates leaf rewards to provide global and local (step)
advantages thereby eliminating a separate process reward model. Tree-OPO Huang et al. (2025)
leverages off-policy teacher MCTS to build prefix trees and proposes staged, prefix-conditioned ad-
vantage estimation to stabilize GRPO-style updates. Unlike methods that require dedicated tree sam-
plers (TreeRPO/TreeRL) or off-policy teacher trees (Tree-OPO), TEMPO operates in the standard
GRPO setting and treats the implicit prefix tree formed by a group of responses as a nonparametric
value baseline: it computes V (st) from all completions sharing the prefix st and adds a token-level
TD correction to the group-relative (Monte Carlo) signal. This yields branch-aware advantages
without a learned value network, extra reward/process models, or special search procedures, while
remaining fully on-policy and drop-in compatible with GRPO training loops.

3 PRELIMINARIES

We begin by reviewing the advantage estimation used in Proximal Policy Optimization and Group
Relative Policy Optimization.

PPO. PPO Schulman et al. (2017) is a policy gradient method that stabilizes updates via a clipped
objective. A key component is the estimation of the advantage function At, which measures how
much better an action at is compared to the average action at state st. PPO commonly employs
generalized advantage estimation (GAE) Schulman et al. (2017), defined as

Â
GAE(γ,λ)
t =

T−t−1∑
l=0

(γλ)l δt+l, δt = rt + γV (st+1)− V (st).

In the original formulation, γ serves as a discount factor that reduces the weight of delayed rewards
and helps stabilize infinite-horizon settings. However, in the context of large language model (LLM)
training, it is common to set γ = 1.0 so that long completions are not penalized relative to short
ones. With this setting, the GAE formula simplifies to

Â
GAE(λ)
t =

T−t−1∑
l=0

λl δt+l, δt = rt + V (st+1)− V (st).

3
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The bias–variance tradeoff is then controlled solely by the parameter λ.

Special cases.

• λ = 0 (TD(0)).
Âλ=0

t = δt = rt + V (st+1)− V (st),

the one-step temporal-difference error (lowest variance, highest bias).
• λ = 1 (Monte Carlo).

Âλ=1
t =

T−t−1∑
l=0

rt+l + V (sT )− V (st).

If sT is terminal so V (sT ) = 0, then

Âλ=1
t =

( T−t−1∑
l=0

rt+l

)
− V (st),

i.e., the full Monte Carlo return minus the baseline (unbiased, higher variance).

GRPO. GRPO Shao et al. (2024) was designed for reinforcement learning with verifiable feed-
back. Formally, for each question q, a group of G responses {o1, . . . , oG} is sampled from the old
policy πθold , and a reward model assigns scores r = {r1, . . . , rG}. These rewards are then normal-
ized by subtracting the group mean and dividing by the group standard deviation. Under outcome
supervision, the normalized reward r̃i =

ri−mean(r)
std(r) is applied uniformly to all tokens of output oi,

so that

Âi,t = r̃i =
ri − mean(r)

std(r)
, ∀t ∈ oi.

Under process supervision, the same normalization is applied at the step level, and the normalized
step rewards are distributed to the corresponding tokens. GRPO thus avoids training a separate value
model and provides efficient group-relative baselines, but it relies purely on Monte Carlo outcomes
and discards token-level temporal structure. This setup highlights the gap: PPO provides token-
level advantages but requires a value model, while GRPO is model-free but trajectory-level only.
Our method, TEMPO, combines the strengths of both.

4 METHODOLOGY

4.1 VALUE ESTIMATION FROM PREFIX TREE

Figure 2 illustrates how TEMPO derives value estimates directly from the tree structure formed
by a group of sampled responses. Each path in the tree corresponds to a response generated by
the policy, and each node represents a token prefix st up to time t. The tree branches whenever
different responses diverge at a given token. Terminal nodes are assigned rewards r ∈ {0, 1} based
on verifiable correctness (e.g., whether the final answer matches the ground truth).

Instead of training a separate value model as in PPO, TEMPO computes V (st) directly from the
group of trajectories. For a given prefix st, the value is estimated as the average normalized reward
of all descendant completions that share this prefix:

V (st) =
1

|D(st)|
∑

j∈D(st)

rj ,

where D(st) is the set of responses passing through st, and rj is the outcome reward. This provides
a value function without introducing an additional learned critic.

In the example shown in Figure 2, some prefixes lead to correct answers (r = 1) while others lead
to incorrect ones (r = 0). TEMPO propagates these signals upward by averaging over the subtree,
yielding intermediate values (e.g., V (st) = 0.5 when half of the descendant completions are cor-
rect). As a result, branch nodes obtain informative value estimates that reflect the quality of their

4
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me try to figure 's 

out this problem. 
So, Jane bought ....

she paid $100 
in total ... So 
the answer is 

$52.

this out. So 
Jane bought 

two skirts and 
three blouses.... 

So the final 
answer should 

be $56.

see. Jane bought

try to figure out 
how much change 
Jane received. 
First, I need .... 
The final answer 

is: 56

<think>\nOkay, let   me try to figure   out this problem. So, Jane bought ....   she paid $100 in total ... So the answer is $52. ❌
<think>\nOkay, let   me try to figure   out this problem. So, Jane bought ....   the question is about ... the answer should be $44. ❌
<think>\nOkay, let   me try to figure   this out. So Jane bought two skirts and three blouses.... So the final answer should be $56. ☑
<think>\nOkay, let   's   try to figure out how much change Jane received. First, I need .... The final answer is: 56 ☑
<think>\nOkay, let   's   see. Jane bought   two skirts and three blouses. ....So the final answer should be $44 ❌

<think>\nOkay, let   's   see. Jane bought   some skirts and blouses, and she paid 100 dollars ....So the answer is $56. ☑

<think>\nOkay, let

the question is 
about ... the 

answer should 
be $44.

two skirts and 
three blouses. ....So 

the final answer 
should be $44

some skirts and 
blouses, and she paid 
100 dollars ....So the 

answer is $56.

V(s)=1.0

V(s)=1.0
V(s)=1.0

V(s)=0.0
V(s)=0.0

V(s)=0.0

V(s)=0.5

V(s)=0.66
V(s)=0.0

V(s)=0.33
V(s)=0.5

Reward=0 Reward=0 Reward=1 Reward=1 Reward=0 Reward=1

LLM

Prefix-to-Tree (P2T)

Question: Jane bought 2 skirts for $13 each. She also bought 3 blouses for $6 each. She paid the cashier $100. How much change did she receive?

TEMPO

Figure 2: Overview of prefix tree value estimation in TEMPO. Each node corresponds to a token
prefix s, with V (s) estimated by averaging over the outcomes of all descendant completions. Green
leaves denote correct responses (r = 1), red leaves denote incorrect ones (r = 0). Intermediate
nodes inherit averaged values (e.g., V (s) = 0.5), providing informative signals at branching points.

‘

continuations, while non-branch nodes naturally inherit consistent values from their unique contin-
uation. This design ensures that tokens along successful reasoning paths (green leaves) contribute
positively to the estimated value of their prefixes, tokens along failed reasoning paths (red leaves)
reduce the value of their prefixes and branching points receive discriminative signals, as the value
function captures how sibling continuations differ in correctness. By computing V (st) directly from
the tree, TEMPO provides token-level evaluative feedback while remaining model-free, combining
the efficiency of GRPO with the structured credit assignment of PPO.

4.2 BRANCH-AWARE ADVANTAGE ESTIMATION

Having defined the prefix tree value function V (st), we now describe how TEMPO constructs ad-
vantages by combining response-level Monte Carlo signals from GRPO with token-level temporal-
difference corrections derived from the tree.

Response-level (MC) signal. GRPO provides outcome-level supervision by normalizing the re-
wards across a group of G responses. For outcome supervision, each response oi receives a normal-
ized reward

r̃i =
ri − mean(r)

std(r)
,

and assigns it uniformly to all tokens of the trajectory. This yields a pure Monte Carlo signal: every
token in a response inherits the same scalar advantage r̃i. While efficient, this discards the structure
of reasoning trajectories.

Token-level (TD) correction. TEMPO augments this outcome-level signal with a token-level TD
term based on branch-aware values. For token t in trajectory i, with state prefix st and successor
st+1, we define the TD error as

δi,t = V (st+1)− V (st).

This term captures how much the estimated value changes when extending from prefix st to st+1.
Importantly, δi,t is only nonzero at branching points, since non-branch tokens have identical descen-
dant outcomes and thus V (st+1) = V (st).

5
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Figure 3: Validation accuracy of MATH and MedQA for Qwen3-1.7B and Qwen3-4B. We compare
TEMPO with PPO, GRPO, and HEPO. TEMPO consistently achieves higher accuracy and faster
convergence across both domains and model sizes.

Combined TEMPO advantage. The final TEMPO advantage integrates both levels of signal:

Âi,t =
1

std(r)
[ri − mean(r)︸ ︷︷ ︸

MC signal

+ V (st+1)− V (st)︸ ︷︷ ︸
TD error

]

The MC signal provides global outcome-level supervision, aligning each response relative to its
group. The TD error provides local, branch-aware token-level feedback, highlighting where reason-
ing paths diverge in quality.

4.3 POLICY UPDATE

For the policy update, TEMPO follows the same principles as DAPO Yu et al. (2025), incorporating
several practical design choices that improve stability and efficiency such as Clip-Higher (decoupled
clipping), token-level policy-gradient loss (global token averaging) and remove KL divergence.

TEMPO loss function. Combining these practices with our proposed branch-aware advantage
estimation, the loss is defined as

JTEMPO(θ) = E q,{oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ) Âi,t,

clip
(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
, (1)

5 EXPERIMENTAL SETUP

Datasets and Models We train on MATH (Hendrycks et al.) and MedQA (Jin et al., 2021) as
in-distribution tasks, and evaluate on their test sets plus OOD benchmarks (GSM-HARD, AMC23,

6
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Figure 4: TEMPO converges faster and to higher accuracy than GRPO, passes GRPO’s peak perfor-
mance in fewer iterations and less overall time.

MedMCQA, MMLU-Medical). Experiments use Qwen3-1.7B and Qwen3-4B (Yang et al., 2025a)
under identical settings(details in Appendix A.2).

Baselines Our main baseline is GRPO (Shao et al., 2024), which incorporates several practical
strategies from DAPO (Yu et al., 2025): removing the KL penalty, introducing a clip-higher mech-
anism, and applying a token-level policy gradient loss. These modifications make GRPO one of the
state-of-the-art RLVF algorithms without requiring a value network. TEMPO builds on GRPO and
improves credit assignment by exploiting the tree structure of responses. We also compare against
a GRPO variant that targets high-entropy minority tokens (Wang et al., 2025a), where gradient up-
dates are applied only to high-entropy tokens. For clarity in experiments and figures, we denote this
variant as HEPO (High Entropy Policy Optimization). Finally, we include an actor–critic baseline:
PPO (Schulman et al., 2017), where the critic model is matched in size to the actor model.

6 RESULTS

In this section, we evaluate the effect of better Credit Assignment on task performance, efficiency,
and generalization dynamics.

6.1 TASK PERFORMANCE

Figure 3 shows validation curves on MATH and MedQA for both Qwen3-1.7B&4B. Across settings,
TEMPO has the best performance in terms of convergence speed and final accuracy. On MATH,
TEMPO consistently outperforms others, followed by HEPO, then GRPO, and PPO. The fact that
HEPO performs slightly better than GRPO and PPO suggests that focusing updates on high-entropy
tokens helps exploit the reasoning structures already present in the model. Since mathematical rea-
soning knowledge is largely captured during pretraining and instruction tuning, the RL process pri-
marily reinforces existing structures rather than learning new ones. Thus, token–structure–oriented
methods, such as HEPO, gain an advantage compared with GRPO. On MedQA, however, the trend
differs. TEMPO again delivers the best results, but GRPO surpasses HEPO, and PPO lags be-
hind. We hypothesize that medical reasoning requires learning novel domain-specific knowledge,
which emphasizes exploration rather than pure exploitation of existing token-level structures. Here,
GRPO’s group-relative normalization provides stronger signals than PPO, while HEPO’s focus on
high-entropy tokens is insufficient to capture new knowledge. TEMPO combines the benefits of
GRPO with tree-structured TD guidance, enabling effective exploration while still leveraging struc-
tural signals, leading to the best generalization in the medical domain.

6.2 COMPUTATIONAL EFFICIENCY

Figure 4 reports validation accuracy against wall-clock training time on Qwen3-4B for both MATH
and MedQA, with all runs executed on identical hardware (2×NVIDIA H100 80GB). PPO shows the

7
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(a) MATH (branching tokens) (b) MedQA (branching tokens)

Figure 6: Word clouds of branching tokens (multi-child nodes) collected during TEMPO training.
Token sizes reflect frequency among branch points across training steps. In both domains, branching
tokens align with decision points where the reasoning path can fork.

Model Math Medical
MATH GSM-HARD AMC23 MedQA MedMCQA MMLU-Medical

Qwen3-1.7B 68.5 46.85 57.5 46.11 43.17 57.85
+ PPO 81.6 53.37 67.5 52.94 48.05 70.16
+ GRPO 82.4 53.15 72.5 56.24 49.56 71.53
+ HEPO 81.7 52.09 62.5 54.28 48.98 71.35
+ TEMPO 87.0 56.71 75.0 59.15 51.54 73.37

Qwen3-4B 71.3 54.13 75.0 65.36 56.63 78.24
+ PPO 87.4 58.07 85.0 72.03 59.29 83.10
+ GRPO 87.6 59.81 85.0 76.12 60.55 83.19
+ HEPO 88.2 59.51 82.5 74.31 59.48 82.37
+ TEMPO 91.0 62.32 92.5 79.18 62.51 85.49

Table 1: Comparison of PPO, GRPO, HEPO, and TEMPO on mathematical and medical reasoning
benchmarks using Qwen3-1.7B and Qwen3-4B as base models. MATH and MedQA are consid-
ered in-distribution (ID) tasks, while GSM-HARD, AMC23, MedMCQA, and MMLU-Medical are
treated as out-of-distribution (OOD) evaluations.

slowest convergence and lowest final accuracy, while GRPO and HEPO provide more stable training
but plateau earlier. In contrast, TEMPO demonstrates clear computational advantages: on MATH,
TEMPO achieves GRPO’s best accuracy about 1.4× faster, and on MedQA it reaches GRPO’s
peak roughly 1.6× faster. Moreover, TEMPO continues to improve beyond these points, ultimately
attaining higher final accuracy. These results show that integrating tree-structured TD corrections
improves both credit assignment and training efficiency under realistic hardware budgets.

6.3 EFFECT OF GROUP SIZE

Figure 5: Effect of group size on MATH
accuracy for Qwen3-1.7B. TEMPO
consistently outperforms GRPO across
all settings.

An important hyperparameter in GRPO-style methods is
the group size, i.e., the number of responses sampled per
prompt during training. Larger groups provide a more re-
liable relative baseline, but also increase computational
cost. Figure 5 shows the effect of varying group size
(3, 5, 7, 9) on MATH accuracy for Qwen3-1.7B. We ob-
serve two key trends. First, increasing group size im-
proves performance for both GRPO and TEMPO, consis-
tent with prior findings that larger groups yield stronger
learning signals. Second, TEMPO consistently outper-
forms GRPO across all group sizes, with gains of around
0.5−2 points in accuracy.

6.4 WHERE DO BRANCHES HAPPEN?

Figure 6 visualizes the tokens that most often appear at branch nodes—prefixes st with multiple
continuations or high next-token entropy—aggregated over TEMPO training. On Math, branching
tokens cluster around planning and formalization phrases such as “let”, “find”, “solve”, “suppose”,
numerals, variables, and operators (e.g., “x”, “equation”, “series”, “triangle”). These are the points
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where the model chooses a solution strategy (set up variables, recall a fact, pick a formula) before
committing to derivations. TEMPO’s TD correction therefore acts exactly where the plan can di-
verge (e.g., choosing the wrong identity vs. the right one). In contrast, medical branching tokens
emphasize clinical entities and constraints: demographics (“year-old”, “man/woman”), symptoms
(“pain”, “fever”, “cough”), disease terms (“diabetes”, “seizure”), and linking words that steer differ-
entials (“with”, “who”, “which”). These tokens define the candidate diagnosis/workup branches, so
TEMPO focuses signal where the case interpretation can split. Across domains, branches coincide
with high-stakes decision tokens the junctures that determine the downstream trajectory. This qual-
itative evidence complements our quantitative results: the tree-aware TD signal is delivered exactly
where it matters most.

6.5 EFFECT OF BRANCH COUNT

Figure 7: Training accuracy vs. epochs for differ-
ent numbers of preserved branches k at group size
G=7.

To study the effect of branching toward train-
ing performance, we build the prefix tree at the
first epoch and record the number of branches
k. Responses prefix trees are then grouped
by their initial k ∈ {7, 8, 9, 10, 11}, and we
track their training accuracy over subsequent
epochs. As shown in Figure 7, responses
that begin with more branches learn faster and
reach higher accuracy, reflecting the availabil-
ity of more branch tokens where TEMPO ap-
plies non-zero TD corrections. When the ob-
served branching is minimal (k=G=7), the TD
signal largely vanishes and TEMPO behaves
like GRPO, yielding the slowest improvement
among the others.

6.6 GENERALIZATION

Table 1 summarizes performance on both in-distribution (ID) and out-of-distribution (OOD) bench-
marks for mathematics and medicine. On the ID tasks (MATH and MedQA), TEMPO consistently
achieves the highest accuracy, surpassing PPO, GRPO, and HEPO across both Qwen3-1.7B and
Qwen3-4B. For example, TEMPO improves MedQA accuracy from 76.1% (GRPO, 4B) to 79.2%,
and raises MATH accuracy from 87.6% to 91.0%. On OOD evaluations, TEMPO also establishes
clear gains. In the math domain, it pushes GSM-HARD accuracy from 59.8% (GRPO, 4B) to 62.3%,
and AMC23 from 85.0% to 92.5%. In the medical domain, it improves MedMCQA from 60.55%
to 62.51% and MMLU-Medical from 83.2% to 85.5%. These improvements across unseen distri-
butions highlight that TEMPO not only enhances in-distribution learning efficiency but also yields
stronger generalization to harder and more diverse reasoning tasks.

7 CONCLUSION

In this work, we introduced TEMPO, a reinforcement learning algorithm for LLM alignment that
integrates temporal-difference (TD) signals into group-relative optimization by exploiting the tree
structure of sampled responses. Unlike PPO, which requires training a separate value network, and
GRPO, which discards token-level information by relying purely on Monte Carlo signals, TEMPO
unifies the strengths of both approaches without additional model components. By deriving value
estimates directly from the response tree, TEMPO enables token-level TD corrections on top of
group-relative normalization, yielding more fine-grained and stable credit assignment. Our exper-
iments across mathematics and medicine demonstrate two key findings. First, TEMPO achieves
higher accuracy than PPO, GRPO, and HEPO on both in-distribution and out-of-distribution bench-
marks, showing strong generalization. Second, TEMPO converges significantly faster in wall-clock
time, achieving comparable or better accuracy up to 1.6× earlier under the same hardware config-
uration. Overall, TEMPO establishes a practical and scalable approach to reinforcement learning
with verifiable feedback. It provides fine-grained credit assignment without the overhead of a value
model, improves training efficiency, and enhances robustness across domains.
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A APPENDIX

A.1 GENERALIZATION ANALYSIS

Figure 8: Training vs. validation accuracy on MedQA
with Qwen3-4B. PPO overfits to training data, while
TEMPO maintains better generalization.

To further investigate the gap, we analyze
the relationship between training and val-
idation accuracy on MedQA for Qwen3-
4B (Figure 8). We find that PPO ex-
hibits clear overfitting: its training accu-
racy continues to increase while validation
accuracy plateaus, indicating weak gen-
eralization. In contrast, both GRPO and
TEMPO improve training and validation
accuracy in tandem, with TEMPO achiev-
ing the highest performance on both, sug-
gesting more reliable generalization rather
than memorization of the training distribu-
tion. This analysis explains why PPO lags
behind in final MedQA accuracy and un-
derscores TEMPO’s advantage when scal-
ing to larger models and more challenging
domains.

A.2 DATASETS AND MODELS

We consider two domains: mathemat-
ics and medicine. For training, we adopt one representative dataset from each domain:
MATH (Hendrycks et al.) for mathematical reasoning and MedQA (Jin et al., 2021) for medical
question answering. These serve as the in-distribution (ID) training tasks. For evaluation, we test
on both the in-distribution test sets of MATH and MedQA, as well as multiple out-of-distribution
(OOD) benchmarks to assess generalization. In the math domain, OOD benchmarks include GSM-
HARD (Gao et al., 2023), a challenging variant of GSM8K with harder grade-school problems, and
AMC232, a set of recent American Mathematics Competition problems. In the medical domain,
OOD benchmarks include MedMCQA (Pal et al., 2022), a dataset con- sisting of multiple-choice
medical questions designed to test clinical knowledge, and MMLU-Medical (Singhal et al., 2023), a
medical subset of the Massive Multitask Language Understanding (MMLU) benchmark focusing on
diverse topics in the medical field. We adopt two publicly available models from the Qwen 3 (Yang
et al., 2025a) family: Qwen3-1.7B and Qwen3-4B. Both models are fine-tuned in our experiments
under identical settings to ensure fair comparison.

A.3 IMPLEMENTATION DETAILS

To ensure our GRPO implementation is robust, and our evaluation reflects its full potential, we have
applied a set of wellestablished techniques and best practices from the literature Yu et al. (2025).
Below, we outline the key implementation details that were most effective in our experiments:

• Clip-Higher (decoupled clipping). We decouple the clipping bounds and raise the upper
cap (1 + εhigh) while keeping the lower cap (1 − εlow), which allows low-probability “ex-
ploration” tokens to increase more freely and helps prevent entropy collapse.

• Token-level policy-gradient loss: Token-level policy-gradient loss (global token averag-
ing): We optimize a token-level surrogate averaged over all tokens in the batch, broadcast-
ing each response’s group-normalized outcome reward to its tokens since sample-level av-
eraging underweights long responses and fails to penalize low-quality long patterns, which
destabilizes training; token-level loss restores balanced credit assignment and yields health-
ier length/entropy dynamics.

2https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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• Remove KL divergence: In long-CoT reasoning, the online policy can beneficially diverge
from the initialization; thus we omit an explicit KL regularizer and rely on clipping for
stability.

Training Details and Hyperparameters We adopt a binary task reward R that evaluates final
answer correctness against ground truth, following previous work Huang et al. (2024); Ivison et al.
(2024). To ensure fair comparison, all methods consume the same number of episodes during train-
ing: for each question, we sample 6 episodes and go over the dataset 10 times, yielding 60 episodes
per question across all methods.

A.4 HYPERPARAMETERS

In this section, we provide a comprehensive overview of the hyperparameters used in our experi-
ments. The number of training episodes was carefully selected to ensure that the amount of training
data remained consistent across all methods.

PPO Finetuning LLMs with PPO is known to be highly sensitive to hyperparameter choices, mak-
ing optimal selection critical for strong performance. To ensure robustness, we considered hyperpa-
rameter values reported in prior studies Shao et al. (2024) and performed extensive sweeps across
a wide range of candidate values. Specifically, we first identified the set of hyperparameters that
achieved the best performance across both the MATH and MedQA tasks using the Qwen3 1.7B
model. This optimal configuration was then employed for the remainder of our experiments. The
complete list of PPO hyperparameters, along with their respective search spaces, is shown in Table 2.

GRPO, HEPO, and TEMPO Since policy optimization in RLOO and GRPO closely resembles
PPO, we initialized their hyperparameters using the PPO configuration. This ensures a strong start-
ing point while enabling a systematic comparison among the algorithms. We note that the absence of
explicit credit assignment in these methods may result in high-variance policy gradient updates, po-
tentially leading to instability Greensmith et al. (2004). The full list of hyperparameters for GRPO,
HEPO, and TEMPO is provided in Table 2.

A.5 COMPUTE

All experiments were conducted using multi-GPU training to efficiently handle the computational
demands of large-scale models. For the Qwen3-1.7B model, we utilized a node with 1 × Nvidia
H100 80GB GPUs to train both TEMPO and all the baselines. For the larger Qwen3-4B model, we
employed a more powerful setup, using a node with 2 × Nvidia H100 80GB GPUs.

A.6 SOFTWARE STACK

For model implementation, we utilize the Huggingface library. Training is carried out using the
VERL Zhang et al. (2024) distributed training library, which offers efficient multi-GPU support.
For trajectory sampling during RL training, we rely on the vLLM library Kwon et al. (2023), which
provides optimized inference for LLMs.

A.7 REPRODUCITY

In this study, all experiments were conducted using open-source libraries, publicly available datasets,
and open-weight LLMs. To ensure full reproducibility, we will make our codebase publicly available
on GitHub at https://anonymous.4open.science/r/tempo-958D.

A.8 LLM USAGE

In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
this work. LLMs were employed to assist with grammar polishing, wording improvements, and
drafting text during paper preparation. All technical content, proofs, experiments, and analyses
were conceived, implemented, and validated by the authors. Authors remain fully responsible for
the correctness of the claims and results.
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Parameter Value Notes

Training

Optimizer AdamW
Adam parameters (β1, β2) (0.9, 0.999)

Learning rate 1× 10−6

Weight decay 0.0

Warmup 0% of training steps
# Train steps (MATH) 220 steps ∼10 dataset epochs
# Train steps (MedQA) 420 steps ∼10 dataset epochs

General

Maximum response length 1024 tokens
Max seq length 2048 tokens

PPO

Mini-batch size 64
# Inner epochs per PPO step 2
Discount factor γ 1.0
GAE parameter λ 1.0
KL penalty coefficient β 1×10−4

GRPO/HEPO/TEMPO

# Responses per prompt 6
Mini-batch size 64
Discount factor γ 1.0
KL penalty coefficient β 0.0
Policy clipping parameter ϵ 0.28, 0.2

HEPO

ρ 0.2 Only do gradient update on top 20% high entroy tokens

Table 2: Summary of hyperparameters used in the experiments.

No LLMs were used to generate research ideas, write code for experiments, or produce results. No
confidential information was shared with LLMs, and no prompt injections or other inappropriate
uses were involved.

This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
accountability and verification rest entirely with the human authors.
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