

000 EXPLOITING TREE STRUCTURE FOR CREDIT ASSIGN- 001 MENT IN RL TRAINING OF LLMs 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Reinforcement learning improves LLM reasoning, yet sparse delayed reward over
010 long sequences makes token-level credit assignment the key bottleneck. We study
011 the verifiable-reward setting, where the final answer is checkable and multiple re-
012 sponds can be drawn per prompt. Reasoning tasks in math and medical QA align
013 with this setup, where only a few decision tokens significantly impact the outcome.
014 PPO offers token-level advantages with a learned value model, but it is complex
015 to train both the actor and critic models simultaneously, and it is not easily gener-
016 alizable, as the token-level values from the critic model can make training prone
017 to overfitting. GRPO is critic-free and supports verifiable rewards, but spreads a
018 single sequence-level return across tokens and ignores branching. We introduce
019 **Prefix-to-Tree (P2T)**, a simple procedure that converts a group of responses into
020 a prefix tree and computes *nonparametric* prefix values $V(s)$ by aggregating de-
021 scendant outcomes. Built on P2T, we propose **TEMPO (Tree-Estimated Mean**
022 *Prefix Value for Policy Optimization*), a critic-free algorithm that augments the
023 group-relative outcome signal of GRPO with *branch-gated* temporal-difference
024 corrections derived from the tree. At non-branch tokens, the temporal-difference
025 (TD) term is zero, so TEMPO reduces to GRPO; at branching tokens, it supplies
026 precise token-level credit without a learned value network or extra judges/teachers.
027 On Qwen3-1.7B/4B, TEMPO outperforms PPO and GRPO on in-distribution
028 (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA,
029 MMLU-Medical) benchmarks, and reaches higher validation accuracy with less
030 wall-clock time.¹

031
032 “In chess, a tempo is a move saved at a fork; in learning, credit should fall on that move.”
033

034 1 INTRODUCTION

035 Reinforcement learning (RL) (Sutton et al., 1998) is an effective way to strengthen the reasoning
036 of large language models (LLMs) (Zhang et al., 2025). In LLM settings, rewards are sparse and
037 delayed and sequences are long (Jaech et al., 2024; Guo et al., 2025), so the key challenge is **credit**
038 **assignment**: give the outcome reward to the few tokens that really change the solution. We study
039 the *verifiable-reward* setting, where the final answer for a prompt is checkable and we can draw
040 multiple responses for the same prompt. This is common in long “thinking” or chain-of-thought
041 (CoT) tasks such as mathematics and medical QA, where most steps are low-impact and only a
042 small set of *decision tokens* (e.g., strategy choice, formula selection, diagnostic commitment) moves
043 the outcome. Aggregating multiple responses naturally induces an *implicit prefix tree*: internal nodes
044 are shared prefixes and branch nodes mark decision points with multiple plausible continuations. A
045 good learning rule should use the branching structure across responses and focus credit on those
046 decision points.

047 **Proximal Policy Optimization(PPO)** gives token-level advantages with a learned value and gen-
048 eralized advantage estimation (GAE), which mixes Monte Carlo (MC) returns with temporal-
049 difference (TD) bootstrapping (Schulman et al., 2015; 2017). However, jointly training the actor and
050 critic is complex and often fails to generalize, as critic-derived token-level values can induce over-
051 fitting Wang et al. (2025b); Chaudhari et al. (2024). **Group Relative Policy Optimization(GRPO)**

052
053 ¹Our code can be accessed at: <https://anonymous.4open.science/r/tempo-0AF2>

removes the critic and uses group-relative baselines over responses to the same prompt (Shao et al., 2024; Yu et al., 2025). It is simple and fits verifiable rewards. However, it spreads a single sequence-level signal across all tokens and overlooks mid-trajectory decisions. As a result, token-level credit is weak when reasoning branches. Recent “key-token ideas” (Wang et al., 2025a) move toward finer signals by focusing gradient updates on high-entropy tokens. This approach benefits from exploiting response structure and concentrating learning on decision-heavy positions. However, while entropy-based updates can improve exploitation within known reasoning patterns, they may struggle to acquire new domain knowledge where exploration across broader patterns of the responses is necessary.

We present **Prefix-to-Tree (P2T)** as a simple procedure that converts a group of responses into a prefix tree and computes *nonparametric* prefix values $V(s)$ by averaging descendant returns. Building on P2T, we introduce **TEMPO (Tree-Estimated Mean Prefix Value for Policy Optimization)**, a critic-free policy optimization method that restores token-level credit only where it matters. For each prompt, sampled responses form paths in the implicit prefix tree. TEMPO augments the group-relative outcome signal of GRPO with *branch-gated* temporal-difference (TD) corrections derived from the tree: at non-branching tokens $V(s_{t+1}) = V(s_t)$ and the TD error is zero, so the update reduces to GRPO, while at branching tokens it supplies precise token-level credit. TEMPO maintains the GRPO training loop and cost. It does not train a value model or add a process reward model or a judge, it also does not require a teacher or a new sampler.

Empirical scope and applicability. Across *Qwen3-1.7B* and *Qwen3-4B*, TEMPO consistently attains higher accuracy than PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), and HEPO (Wang et al., 2025a) on both in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA, MMLU-Medical) evaluations, while reaching strong validation performance in less wall-clock time. Validation curves indicate that, on math reasoning, approaches that emphasize token-level structure, such as HEPO (Wang et al., 2025a) (e.g., focusing updates on high-entropy decision tokens) already enjoy an advantage, suggesting the RL phase mainly reinforces reasoning patterns learned during pretraining and SFT. Yet, TEMPO goes further by injecting tree-gated TD credit at the exact branching points. On medical reasoning, where domain knowledge must be newly acquired, methods that rely on group-relative exploration such as GRPO (Shao et al., 2024) generalize better than purely exploitation-oriented updates; TEMPO combines this robust group baseline with branch-aware TD from P2T’s nonparametric prefix values, improving both convergence speed and final accuracy. In practice, TEMPO is most beneficial when rewards are verifiable and prompts yield meaningful branching, delivering precise token-level credit without a value network or auxiliary judges, and serving as a drop-in, efficiency-preserving upgrade to GRPO-style training. Overall, our key **contributions** include:

1. We introduce **Prefix-to-Tree (P2T)**, a simple procedure that converts each prompt’s group of responses into a prefix tree and derives *nonparametric* prefix values $V(s_t)$ by aggregating descendant outcomes.
2. Building on P2T, we propose **TEMPO**, a drop-in, GRPO-compatible algorithm that augments the group-normalized outcome signal with *branch-gated* TD corrections, providing precise token-level credit at decision points while retaining GRPO-like compute and simplicity.
3. On *Qwen3-1.7B/4B*, TEMPO improves convergence speed and final accuracy over other baselines on in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA, MMLU-Medical) benchmarks under the same hardware budget.

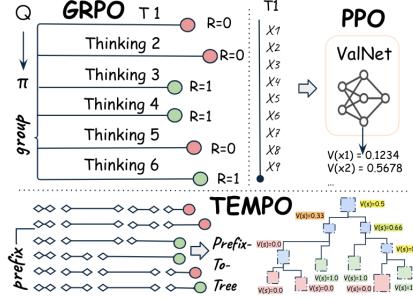


Figure 1: **Comparison of credit assignment for RL training with verifiable rewards.** GRPO: all tokens in each sampled answer share one sequence-level return; branching is ignored so credit spreads evenly. PPO: a learned value network estimates $V(s_t)$ and provides token-level advantages via GAE, but requires a critic and higher compute. TEMPO: convert the answer group for one prompt into a prefix tree and compute *nonparametric* prefix values $V(s)$ by averaging descendant outcomes; use *branch-gated* TD corrections to assign credit at branches.

108

2 RELATED WORK

110 Credit assignment is central in post-training for reasoning LLMs. RLHF brought PPO with a learned
 111 value (critic) and GAE to reduce variance (Ouyang et al., 2022; Schulman et al., 2017; 2015). This
 112 improved alignment, however, comes at the cost of critic training, which adds complexity and tuning,
 113 and value prediction is brittle on long chains. To avoid a critic, several lines move towards value-
 114 free or RL-free updates that treat the entire response as a single action. DPO optimizes pairwise
 115 preferences in an offline bandit view (Rafailov et al., 2023). Rejection-sampling methods, such
 116 as RestEM, fine-tune only on full high-reward responses (Singh et al., 2023). RLOO, GRPO, and
 117 DAPO compute group-normalized sequence advantages over multiple samples of the same prompt,
 118 thereby removing the value network (Ahmadian et al., 2024; Shao et al., 2024; Yu et al., 2025).
 119 These methods are simple and stable, but their feedback is sequence-level and credits all tokens
 120 equally, which weakens token-level credit in long reasoning. VinePPO instead replaces the critic
 121 with Monte Carlo estimates obtained by re-sampling continuations from each text prefix, yielding
 122 accurate prefix values in language settings (Kazemnejad et al., 2024). However, it requires fresh
 123 rollouts at many branch nodes and raising sampling cost when trees are wide or branch early and
 124 still uses path-wise PPO advantages without group-normalized baselines.

125 Several contemporaneous works exploit the *tree structure* of rollouts to densify credit assignment
 126 and/or cut sampling cost. TreePO Li et al. (2025) reframes on-policy rollouts as a tree search with
 127 segmented decoding and heuristic branching/fallback, amortizing shared prefixes (KV caching) and
 128 introducing a tree-based segment-level advantage estimator; this improves stability and reduces sam-
 129 pling compute while maintaining or improving accuracy. TREERPO Yang et al. (2025b) extends
 130 GRPO by performing explicit tree sampling and forming step-level sibling groups to estimate ex-
 131 pected rewards per step, yielding dense process signals and reporting consistent gains over GRPO
 132 with shorter responses. TreeRL Hou et al. (2025) integrates an entropy-guided sampler (EPTree) that
 133 branches at uncertain tokens, then back-propagates leaf rewards to provide global and local (step)
 134 advantages thereby eliminating a separate process reward model. Tree-OPO Huang et al. (2025)
 135 leverages *off-policy* teacher MCTS to build prefix trees and proposes staged, prefix-conditioned ad-
 136 vantage estimation to stabilize GRPO-style updates. Unlike methods that require dedicated tree sam-
 137 plers (TreeRPO/TreeRL) or off-policy teacher trees (Tree-OPO), TEMPO operates in the standard
 138 GRPO setting and treats the *implicit* prefix tree formed by a group of responses as a nonparametric
 139 value baseline: it computes $V(s_t)$ from all completions sharing the prefix s_t and adds a token-level
 140 TD correction to the group-relative (Monte Carlo) signal. This yields branch-aware advantages
 141 without a learned value network, extra reward/process models, or special search procedures, while
 142 remaining fully on-policy and drop-in compatible with GRPO training loops.

143

3 PRELIMINARIES

144 We begin by reviewing the advantage estimation used in Proximal Policy Optimization and Group
 145 Relative Policy Optimization.

146 **PPO.** PPO Schulman et al. (2017) is a policy gradient method that stabilizes updates via a clipped
 147 objective. A key component is the estimation of the advantage function A_t , which measures how
 148 much better an action a_t is compared to the average action at state s_t . PPO commonly employs
 149 *generalized advantage estimation* (GAE) Schulman et al. (2017), defined as

$$150 \hat{A}_t^{\text{GAE}(\gamma, \lambda)} = \sum_{l=0}^{T-t-1} (\gamma \lambda)^l \delta_{t+l}, \quad \delta_t = r_t + \gamma V(s_{t+1}) - V(s_t).$$

151 In the original formulation, γ serves as a discount factor that reduces the weight of delayed rewards
 152 and helps stabilize infinite-horizon settings. However, in the context of large language model (LLM)
 153 training, it is common to set $\gamma = 1.0$ so that long completions are not penalized relative to short
 154 ones. With this setting, the GAE formula simplifies to

$$155 \hat{A}_t^{\text{GAE}(\lambda)} = \sum_{l=0}^{T-t-1} \lambda^l \delta_{t+l}, \quad \delta_t = r_t + V(s_{t+1}) - V(s_t).$$

162 The bias-variance tradeoff is then controlled solely by the parameter λ .
 163

164 **Special cases.**

165 • $\lambda = 0$ (*TD(0)*).

166
$$\hat{A}_t^{\lambda=0} = \delta_t = r_t + V(s_{t+1}) - V(s_t),$$

168 the one-step temporal-difference error (lowest variance, highest bias).
 169

170 • $\lambda = 1$ (*Monte Carlo*).

171
$$\hat{A}_t^{\lambda=1} = \sum_{l=0}^{T-t-1} r_{t+l} + V(s_T) - V(s_t).$$

174 If s_T is terminal so $V(s_T) = 0$, then

175
$$\hat{A}_t^{\lambda=1} = \left(\sum_{l=0}^{T-t-1} r_{t+l} \right) - V(s_t),$$

178 i.e., the full Monte Carlo return minus the baseline (unbiased, higher variance).
 179

180 **GRPO.** GRPO Shao et al. (2024) was designed for reinforcement learning with verifiable feed-
 181 back. Formally, for each question q , a group of G responses $\{o_1, \dots, o_G\}$ is sampled from the old
 182 policy $\pi_{\theta_{\text{old}}}$, and a reward model assigns scores $r = \{r_1, \dots, r_G\}$. These rewards are then normal-
 183 ized by subtracting the group mean and dividing by the group standard deviation. Under outcome
 184 supervision, the normalized reward $\tilde{r}_i = \frac{r_i - \text{mean}(r)}{\text{std}(r)}$ is applied uniformly to all tokens of output o_i ,
 185 so that

186
$$\hat{A}_{i,t} = \tilde{r}_i = \frac{r_i - \text{mean}(r)}{\text{std}(r)}, \quad \forall t \in o_i.$$

188 Under process supervision, the same normalization is applied at the step level, and the normalized
 189 step rewards are distributed to the corresponding tokens. GRPO thus avoids training a separate value
 190 model and provides efficient group-relative baselines, but it relies purely on Monte Carlo outcomes
 191 and discards token-level temporal structure. This setup highlights the gap: PPO provides token-
 192 level advantages but requires a value model, while GRPO is model-free but trajectory-level only.
 193 Our method, TEMPO, combines the strengths of both.

195 **4 METHODOLOGY**

197 **4.1 VALUE ESTIMATION FROM PREFIX TREE**

199 Figure 2 illustrates how TEMPO derives value estimates directly from the tree structure formed
 200 by a group of sampled responses. Each path in the tree corresponds to a response generated by
 201 the policy, and each node represents a token prefix s_t up to time t . The tree branches whenever
 202 different responses diverge at a given token. Terminal nodes are assigned rewards $r \in \{0, 1\}$ based
 203 on verifiable correctness (e.g., whether the final answer matches the ground truth).

204 Instead of training a separate value model as in PPO, TEMPO computes $V(s_t)$ directly from the
 205 group of trajectories. For a given prefix s_t , the value is estimated as the average normalized reward
 206 of all descendant completions that share this prefix:

208
$$V(s_t) = \frac{1}{|D(s_t)|} \sum_{j \in D(s_t)} r_j,$$

210 where $D(s_t)$ is the set of responses passing through s_t , and r_j is the outcome reward. This provides
 211 a *value function* without introducing an additional learned critic.
 212

213 In the example shown in Figure 2, some prefixes lead to correct answers ($r = 1$) while others lead
 214 to incorrect ones ($r = 0$). TEMPO propagates these signals upward by averaging over the subtree,
 215 yielding intermediate values (e.g., $V(s_t) = 0.5$ when half of the descendant completions are correct). As a result, branch nodes obtain informative value estimates that reflect the quality of their

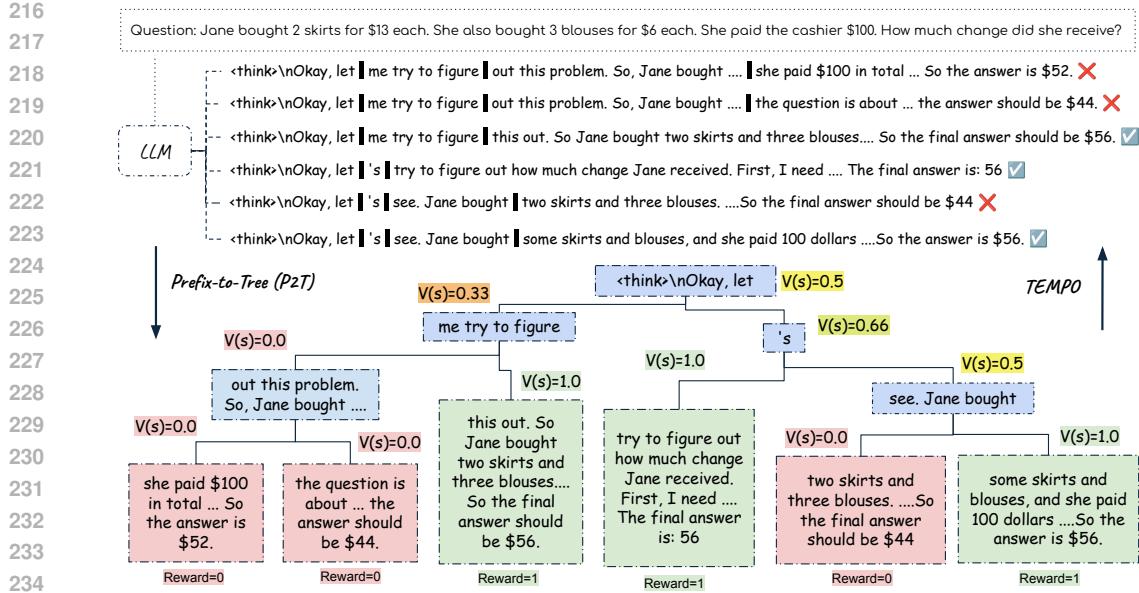


Figure 2: Overview of prefix tree value estimation in TEMPO. Each node corresponds to a token prefix s , with $V(s)$ estimated by averaging over the outcomes of all descendant completions. Green leaves denote correct responses ($r = 1$), red leaves denote incorrect ones ($r = 0$). Intermediate nodes inherit averaged values (e.g., $V(s) = 0.5$), providing informative signals at branching points.

continuations, while non-branch nodes naturally inherit consistent values from their unique continuation. This design ensures that tokens along successful reasoning paths (green leaves) contribute positively to the estimated value of their prefixes, tokens along failed reasoning paths (red leaves) reduce the value of their prefixes and branching points receive *discriminative signals*, as the value function captures how sibling continuations differ in correctness. By computing $V(s_t)$ directly from the tree, TEMPO provides token-level evaluative feedback while remaining model-free, combining the efficiency of GRPO with the structured credit assignment of PPO.

4.2 BRANCH-AWARE ADVANTAGE ESTIMATION

Having defined the prefix tree value function $V(s_t)$, we now describe how TEMPO constructs advantages by combining *response-level Monte Carlo signals* from GRPO with *token-level temporal-difference corrections* derived from the tree.

Response-level (MC) signal. GRPO provides outcome-level supervision by normalizing the rewards across a group of G responses. For outcome supervision, each response o_i receives a normalized reward

$$\tilde{r}_i = \frac{r_i - \text{mean}(r)}{\text{std}(r)},$$

and assigns it uniformly to all tokens of the trajectory. This yields a pure Monte Carlo signal: every token in a response inherits the same scalar advantage \tilde{r}_i . While efficient, this discards the structure of reasoning trajectories.

Token-level (TD) correction. TEMPO augments this outcome-level signal with a token-level TD term based on branch-aware values. For token t in trajectory i , with state prefix s_t and successor s_{t+1} , we define the TD error as

$$\delta_{i,t} = V(s_{t+1}) - V(s_t).$$

This term captures how much the estimated value changes when extending from prefix s_t to s_{t+1} . Importantly, $\delta_{i,t}$ is only nonzero at branching points, since non-branch tokens have identical descendant outcomes and thus $V(s_{t+1}) = V(s_t)$.

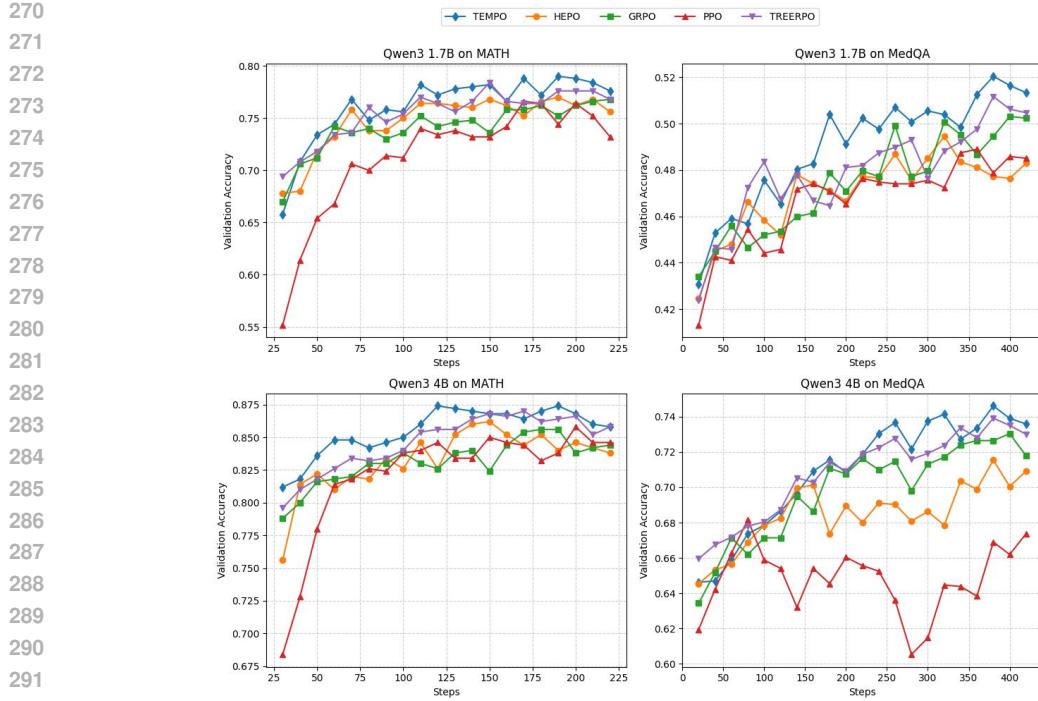


Figure 3: Validation accuracy of MATH and MedQA for Qwen3-1.7B and Qwen3-4B. We compare TEMPO with PPO, GRPO, and HEPO. TEMPO consistently achieves higher accuracy and faster convergence across both domains and model sizes.

Combined TEMPO advantage. The final TEMPO advantage integrates both levels of signal:

$$\hat{A}_{i,t} = \frac{1}{\text{std}(r)} \underbrace{[r_i - \text{mean}(r)]}_{\text{MC signal}} + \underbrace{V(s_{t+1}) - V(s_t)}_{\text{TD error}}$$

The *MC signal* provides global outcome-level supervision, aligning each response relative to its group. The *TD error* provides local, branch-aware token-level feedback, highlighting where reasoning paths diverge in quality.

4.3 POLICY UPDATE

For the policy update, TEMPO follows the same principles as DAPO Yu et al. (2025), incorporating several practical design choices that improve stability and efficiency such as Clip-Higher (decoupled clipping), token-level policy-gradient loss (global token averaging) and remove KL divergence.

TEMPO loss function. Combining these practices with our proposed branch-aware advantage estimation, the loss is defined as

$$\mathcal{J}_{\text{TEMPO}}(\theta) = \mathbb{E}_{q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \right. \right. \\ \left. \left. \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right], \quad (1)$$

5 EXPERIMENTAL SETUP

Datasets and Models We train on MATH (Hendrycks et al.) and MedQA (Jin et al., 2021) as in-distribution tasks, and evaluate on their test sets plus OOD benchmarks (GSM-HARD, AMC23,

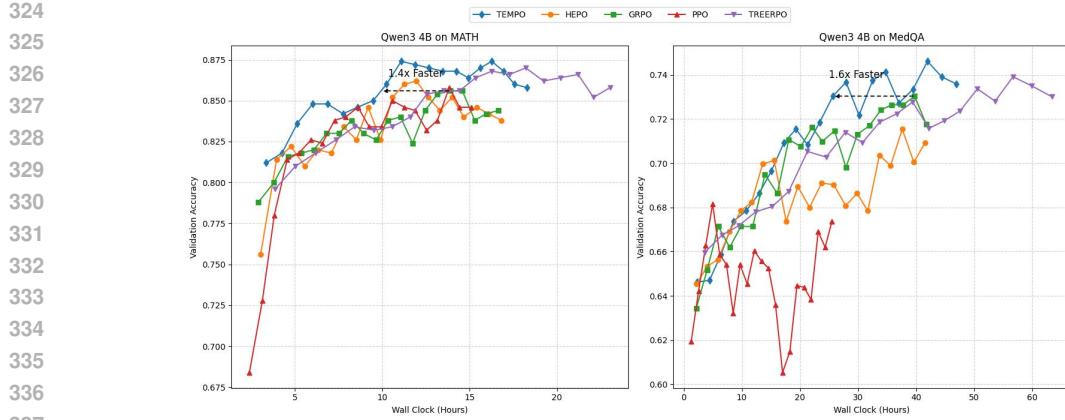


Figure 4: TEMPO converges faster and to higher accuracy than GRPO, passes GRPO’s peak performance in fewer iterations and less overall time.

MedMCQA, MMLU-Medical). Experiments use Qwen3-1.7B and Qwen3-4B (Yang et al., 2025a) under identical settings(details in Appendix A.2).

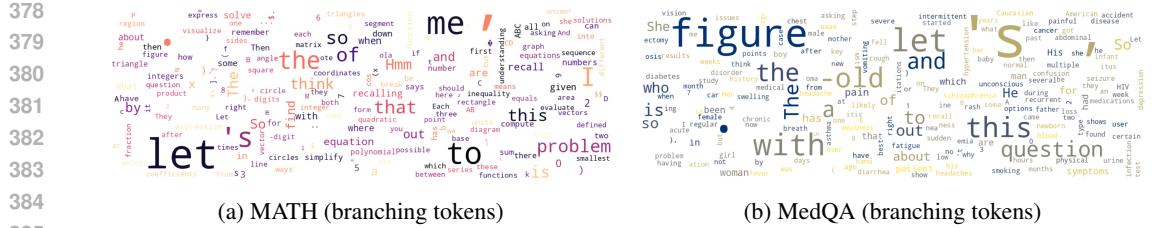
Baselines Our main baseline is GRPO (Shao et al., 2024), which incorporates several practical strategies from DAPO (Yu et al., 2025): removing the KL penalty, introducing a clip-higher mechanism, and applying a token-level policy gradient loss. These modifications make GRPO one of the state-of-the-art RLVF algorithms without requiring a value network. We further include TREERPO Yang et al. (2025b), which constructs sampled trees and computes step-level, group-relative rewards to provide denser credit signals without a separate reward model Yang et al. (2025b). TEMPO builds on GRPO and improves credit assignment by exploiting the tree structure of responses. We also compare against a GRPO variant that targets *high-entropy minority tokens* (Wang et al., 2025a), where gradient updates are applied only to high-entropy tokens. For clarity in experiments and figures, we denote this variant as HEPO (High Entropy Policy Optimization). Finally, we include an actor–critic baseline: PPO (Schulman et al., 2017), where the critic model is matched in size to the actor model.

6 RESULTS

In this section, we evaluate the effect of better Credit Assignment on task performance, efficiency, and generalization dynamics.

6.1 TASK PERFORMANCE

Figure 3 shows validation curves on MATH and MedQA for both Qwen3-1.7B&4B. Across settings, TEMPO has the best performance in terms of convergence speed and final accuracy. On MATH, TEMPO consistently outperforms others, followed by TREERPO, then HEPO, GRPO, and PPO. The fact that HEPO performs slightly better than GRPO and PPO suggests that focusing updates on high-entropy tokens helps exploit the reasoning structures already present in the model. Since mathematical reasoning knowledge is largely captured during pretraining and instruction tuning, the RL process primarily reinforces existing structures rather than learning new ones. Thus, token–structure–oriented methods, such as HEPO, gain an advantage compared with GRPO. On MedQA, however, the trend differs. TEMPO again delivers the best results, but GRPO surpasses HEPO, and PPO lags behind. We hypothesize that medical reasoning requires learning novel domain-specific knowledge, which emphasizes *exploration* rather than pure exploitation of existing token-level structures. Here, GRPO’s group-relative normalization provides stronger signals than PPO, while HEPO’s focus on high-entropy tokens is insufficient to capture new knowledge. TEMPO combines the benefits of GRPO with tree-structured TD guidance, enabling effective exploration while still leveraging structural signals, leading to the best generalization in the medical domain.



(a) MATH (branching tokens)

(b) MedQA (branching tokens)

Figure 6: Word clouds of *branching tokens* (multi-child nodes) collected during TEMPO training. Token sizes reflect frequency among branch points across training steps. In both domains, branching tokens align with decision points where the reasoning path can fork.

Model	Math			Medical		
	MATH	GSM-HARD	AMC23	MedQA	MedMCQA	MMLU-Medical
Qwen3-1.7B	68.5	46.85	57.5	46.11	43.17	57.85
	+ PPO	81.6	53.37	67.5	52.94	48.05
	+ GRPO	82.4	53.15	72.5	56.24	49.56
	+ HEPO	81.7	52.09	62.5	54.28	48.98
	+ TREERPO	84.6	54.82	72.5	57.42	50.23
	+ TEMPO	87.0	57.69	75.0	59.15	51.54
Qwen3-4B	71.3	54.13	75.0	65.36	56.63	78.24
	+ PPO	87.4	58.07	85.0	72.03	59.29
	+ GRPO	87.6	59.81	85.0	76.12	60.55
	+ HEPO	88.2	59.51	82.5	74.31	59.48
	+ TREERPO	88.6	60.27	87.5	77.06	60.96
	+ TEMPO	91.0	62.32	92.5	79.18	62.51

Table 1: Comparison of PPO, GRPO, HEPO, and TEMPO on mathematical and medical reasoning benchmarks using Qwen3-1.7B and Qwen3-4B as base models. MATH and MedQA are considered *in-distribution* (ID) tasks, while GSM-HARD, AMC23, MedMCQA, and MMLU-Medical are treated as *out-of-distribution* (OOD) evaluations.

6.2 COMPUTATIONAL EFFICIENCY

Figure 4 reports validation accuracy against wall-clock training time on Qwen3-4B for both MATH and MedQA, with all runs executed on identical hardware ($2 \times$ NVIDIA H100 80GB). PPO shows the slowest convergence and lowest final accuracy, while GRPO and HEPO provide more stable training but plateau earlier. In contrast, TEMPO demonstrates clear computational advantages: on MATH, TEMPO achieves GRPO’s best accuracy about $1.4 \times$ faster, and on MedQA it reaches GRPO’s peak roughly $1.6 \times$ faster. Moreover, TEMPO continues to improve beyond these points, ultimately attaining higher final accuracy. These results show that integrating tree-structured TD corrections improves both credit assignment and training efficiency under realistic hardware budgets.

6.3 EFFECT OF GROUP SIZE

An important hyperparameter in GRPO-style methods is the *group size*, i.e., the number of responses sampled per prompt during training. Larger groups provide a more reliable relative baseline, but also increase computational cost. Figure 5 shows the effect of varying group size (3, 5, 7, 9) on MATH accuracy for Qwen3-1.7B. We observe two key trends. First, increasing group size improves performance for both GRPO and TEMPO, consistent with prior findings that larger groups yield stronger learning signals. Second, TEMPO consistently outperforms GRPO across all group sizes, with gains of around 0.5–2 points in accuracy.

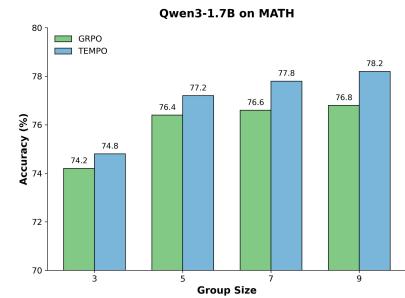


Figure 5: Effect of group size on MATH accuracy for Qwen3-1.7B. TEMPO consistently outperforms GRPO across all settings.

432 6.4 WHERE DO BRANCHES HAPPEN?
433

434 Figure 6 visualizes the tokens that most often appear at *branch nodes*—prefixes s_t with multiple
435 continuations or high next-token entropy—aggregated over TEMPO training. On Math, branching
436 tokens cluster around *planning and formalization* phrases such as “let”, “find”, “solve”, “suppose”,
437 numerals, variables, and operators (e.g., “ x ”, “equation”, “series”, “triangle”). These are the points
438 where the model chooses a solution strategy (set up variables, recall a fact, pick a formula) before
439 committing to derivations. TEMPO’s TD correction therefore acts exactly where the plan can di-
440 verge (e.g., choosing the wrong identity vs. the right one). In contrast, medical branching tokens
441 emphasize *clinical entities and constraints*: demographics (“year-old”, “man/woman”), symptoms
442 (“pain”, “fever”, “cough”), disease terms (“diabetes”, “seizure”), and linking words that steer differ-
443 entials (“with”, “who”, “which”). These tokens define the candidate diagnosis/workup branches, so
444 TEMPO focuses signal where the case interpretation can split. Across domains, branches coincide
445 with high-stakes decision tokens the junctures that determine the downstream trajectory. This qual-
446 itative evidence complements our quantitative results: the tree-aware TD signal is delivered exactly
447 where it matters most.

448 6.5 EFFECT OF BRANCH COUNT
449

450 To study the effect of branching toward train-
451 ing performance, we build the prefix tree at the
452 first epoch and record the number of branches
453 k . Responses prefix trees are then grouped
454 by their initial $k \in \{7, 8, 9, 10, 11\}$, and we
455 track their training accuracy over subsequent
456 epochs. As shown in Figure 7, responses that
457 begin with more branches learn faster and
458 reach higher accuracy, reflecting the availabil-
459 ity of more branch tokens where TEMPO ap-
460 plies non-zero TD corrections. When the ob-
461 served branching is minimal ($k=G=7$), the TD
462 signal largely vanishes and TEMPO behaves
463 like GRPO, yielding the slowest improvement
464 among the others.

465 6.6 ABLATION STUDY

466 We decompose TEMPO into two increments over
467 GRPO: (i) P2T, which computes a nonparametric
468 prefix value by aggregating descendant outcomes
469 in the response-group prefix tree, and (ii) branch-
470 gated TD, which injects token-level TD corrections
471 only at branch tokens. As shown in Table 2, P2T
472 alone yields a clear gain over GRPO (75.2% \rightarrow
473 77.0%), indicating that tree-derived prefix values al-
474 ready sharpen credit. Adding the TD term further
475 improves performance (77.0% \rightarrow **78.4%**), confirming
476 that localized TD at decision points comple-
477 ments the group-normalized signal without introduc-
478 ing a learned value network or extra supervision.

479 6.7 GENERALIZATION
480

481 Table 1 summarizes performance on both in-distribution (ID) and out-of-distribution (OOD) bench-
482 marks for mathematics and medicine. On the ID tasks (MATH and MedQA), TEMPO consistently
483 achieves the highest accuracy, surpassing TREERPO, PPO, GRPO, and HEPO across both Qwen3-
484 1.7B and Qwen3-4B. For example, TEMPO improves MedQA accuracy from 76.1% (GRPO, 4B)
485 to 79.2%, and raises MATH accuracy from 87.6% to 91.0%. On OOD evaluations, TEMPO also
establishes clear gains. In the math domain, it pushes GSM-HARD accuracy from 59.8% (GRPO,

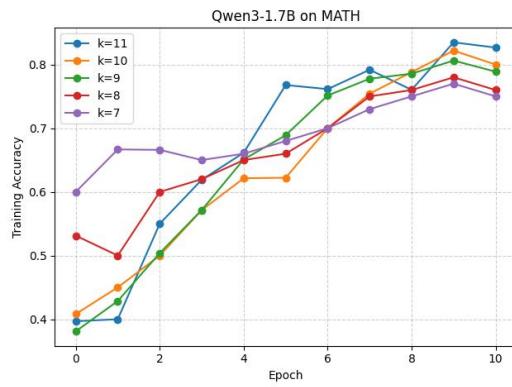


Figure 7: Training accuracy vs. epochs for different numbers of preserved branches k at group size $G=7$.

Method	Accuracy (%)
GRPO	75.2
+ P2T	77.0
+ P2T + TD(TEMPO)	78.4

Table 2: Ablation study for Qwen3 1.7B on MATH. Adding the prefix-to-tree baseline (P2T) to GRPO improves accuracy; adding branch-gated TD on top yields the full method (TEMPO) with the best performance.

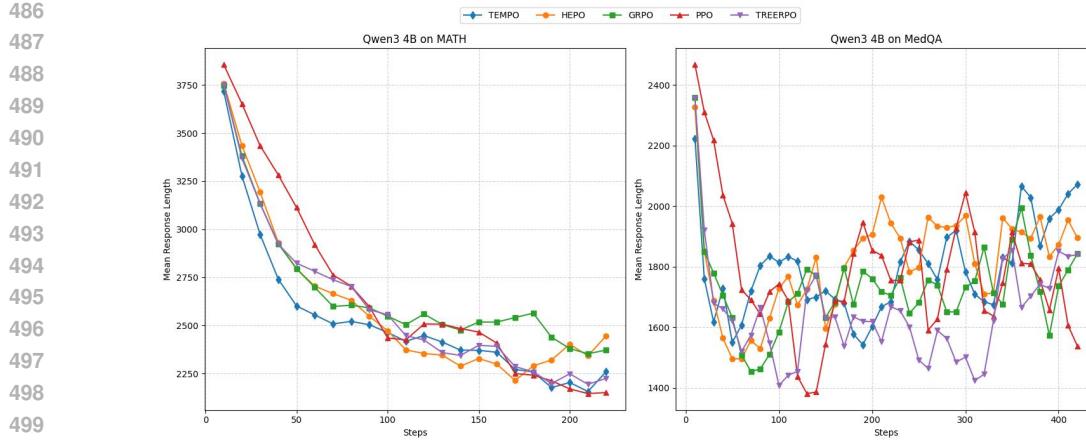


Figure 8: Mean Responses Length of MATH and MedQA for Qwen3- Qwen3-4B accross training.

4B) to 62.3%, and AMC23 from 85.0% to 92.5%. In the medical domain, it improves MedMCQA from 60.55% to 62.51% and MMLU-Medical from 83.2% to 85.5%. These improvements across unseen distributions highlight that TEMPO not only enhances in-distribution learning efficiency but also yields stronger generalization to harder and more diverse reasoning tasks.

7 CONCLUSION

In this work, we introduced TEMPO, a reinforcement learning algorithm for LLM alignment that integrates temporal-difference (TD) signals into group-relative optimization by exploiting the tree structure of sampled responses. Unlike PPO, which requires training a separate value network, and GRPO, which discards token-level information by relying purely on Monte Carlo signals, TEMPO unifies the strengths of both approaches without additional model components. By deriving value estimates directly from the response tree, TEMPO enables token-level TD corrections on top of group-relative normalization, yielding more fine-grained and stable credit assignment. Our experiments across mathematics and medicine demonstrate two key findings. First, TEMPO achieves higher accuracy than PPO, GRPO, and HEPO on both in-distribution and out-of-distribution benchmarks, showing strong generalization. Second, TEMPO converges significantly faster in wall-clock time, achieving comparable or better accuracy up to $1.6\times$ earlier under the same hardware configuration. Overall, TEMPO establishes a practical and scalable approach to reinforcement learning with verifiable feedback. It provides fine-grained credit assignment without the overhead of a value model, improves training efficiency, and enhances robustness across domains.

ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. We acknowledge that the Code applies to all aspects of conference participation (submission, reviewing, discussion).

Scope and compliance. This work studies RL for LLM reasoning using public benchmarks only. No human subjects were recruited and no new personal data were collected; therefore, IRB approval was not required.

Data, privacy, and licensing. We use publicly available datasets (MATH, MedQA, GSM-HARD, AMC23, MedMCQA, MMLU-Medical) under their licenses. To the best of our knowledge, these datasets do not contain personally identifiable information. Evaluation relies on programmatic, verifiable feedback (e.g., exact match), not human raters or proprietary judges.

Safety and misuse. Models are research artifacts and *not* clinical decision tools. Medical benchmarks are knowledge tests; deploying models downstream for healthcare or other high-stakes uses requires additional validation, domain oversight, and regulatory compliance.

540 **Fairness and limitations.** Benchmarks may encode societal or domain biases. We report results
 541 across multiple tasks and discuss limitations (e.g., distribution shift, overfitting risk). We encourage
 542 cautious interpretation beyond the evaluated settings.

543 **Transparency and reproducibility.** We document training settings, hardware, and evaluation pro-
 544 tocols; we intend to release code/configs subject to third-party licenses. No hidden reward/process
 545 models, teachers, or special samplers were used. For details on LLM usage in paper writing, see
 546 Appendix A.8.

547 **Conflicts of interest.** Any potential conflicts, sponsorships, or competing interests will be disclosed
 548 in the author checklist.

550 **REPRODUCIBILITY STATEMENT**

553 We provide full details to ensure reproducibility. Dataset sources and splits are in Appendix A.2;
 554 implementation details and training practices are in Appendix A.3; hyperparameters are listed in
 555 Appendix A.4 and Table 3; compute setup is described in Appendix A.5; and the software stack is
 556 documented in Appendix A.6. We also include an anonymized code repository link in Appendix A.7.

558 **REFERENCES**

560 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
 561 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
 562 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

563 Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan,
 564 Karthik Narasimhan, Ameet Deshpande, and Bruno Castro da Silva. Rlhf deciphered: A criti-
 565 cal analysis of reinforcement learning from human feedback for llms. *ACM Computing Surveys*,
 566 2024.

567 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 568 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine*
 569 *Learning*, pp. 10764–10799. PMLR, 2023.

571 Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
 572 estimates in reinforcement learning. *Journal of Machine Learning Research*, 5(Nov):1471–1530,
 573 2004.

574 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 575 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 576 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

578 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 579 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 580 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 581 *Track (Round 2)*.

582 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforce-
 583 ment learning with on-policy tree search. *arXiv preprint arXiv:2506.11902*, 2025.

585 Bingning Huang, Tu Nguyen, and Matthieu Zimmer. Tree-opo: Off-policy monte carlo tree-guided
 586 advantage optimization for multistep reasoning. *arXiv preprint arXiv:2509.09284*, 2025.

587 Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
 588 Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
 589 *arXiv preprint arXiv:2403.17031*, 2024.

591 Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
 592 Noah A Smith, Yejin Choi, and Hanna Hajishirzi. Unpacking dpo and ppo: Disentangling best
 593 practices for learning from preference feedback. *Advances in neural information processing sys-
 tems*, 37:36602–36633, 2024.

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 596 *preprint arXiv:2412.16720*, 2024.

597 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
 598 ease does this patient have? a large-scale open domain question answering dataset from medical
 599 exams. *Applied Sciences*, 11(14):6421, 2021.

600

601 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 602 Aaron Courville, and Nicolas Le Roux. Vineppo: Refining credit assignment in rl training of
 603 llms. *arXiv preprint arXiv:2410.01679*, 2024.

604

605 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 606 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 607 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 608 ciples*, pp. 611–626, 2023.

609

610 Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
 611 Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
 612 tion and efficacy and inference efficiency with heuristic tree-based modeling. *arXiv preprint
 613 arXiv:2508.17445*, 2025.

614

615 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 616 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 617 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 618 27730–27744, 2022.

619

620 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 621 multi-subject multi-choice dataset for medical domain question answering. In *Conference on
 622 health, inference, and learning*, pp. 248–260. PMLR, 2022.

623

624 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 625 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 626 in neural information processing systems*, 36:53728–53741, 2023.

627

628 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 629 dimensional continuous control using generalized advantage estimation. *arXiv preprint
 630 arXiv:1506.02438*, 2015.

631

632 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 633 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

634

635 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 636 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 637 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

638

639 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
 640 Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
 641 for problem-solving with language models. *arXiv preprint arXiv:2312.06585*, 2023.

642

643 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 644 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfahl, et al. Large language models encode
 645 clinical knowledge. *Nature*, 620(7972):172–180, 2023.

646

647 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 648 press Cambridge, 1998.

649

650 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 651 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 652 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.

653

654 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 655 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 656 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025b.

648 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
649 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
650 *arXiv:2505.09388*, 2025a.

651

652 Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
653 Tree relative policy optimization. *arXiv preprint arXiv:2506.05183*, 2025b.

654

655 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
656 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
657 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

658

659 Chi Zhang, Guangming Sheng, Siyao Liu, Jiahao Li, Ziyuan Feng, Zherui Liu, Xin Liu, Xiaoying
660 Jia, Yanghua Peng, Haibin Lin, et al. A framework for training large language models for code
661 generation via proximal policy optimization. In *NL2Code Workshop of ACM KDD*, 2024.

662

663 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
664 Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
665 *arXiv preprint arXiv:2509.08827*, 2025.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704
705

A APPENDIX

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

A.1 GENERALIZATION ANALYSIS

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
To further investigate the gap, we analyze the relationship between training and validation accuracy on MedQA for Qwen3-4B (Figure 9). We find that PPO exhibits clear overfitting: its training accuracy continues to increase while validation accuracy plateaus, indicating weak generalization. In contrast, both GRPO and TEMPO improve training and validation accuracy in tandem, with TEMPO achieving the highest performance on both, suggesting more reliable generalization rather than memorization of the training distribution. This analysis explains why PPO lags behind in final MedQA accuracy and underscores TEMPO’s advantage when scaling to larger models and more challenging domains.724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.2 DATASETS AND MODELS

746
747
748
749
750
751
752
753
754
755
We consider two domains: mathematics and medicine. For training, we adopt one representative dataset from each domain: MATH (Hendrycks et al.) for mathematical reasoning and MedQA (Jin et al., 2021) for medical question answering. These serve as the *in-distribution (ID)* training tasks. For evaluation, we test on both the in-distribution test sets of MATH and MedQA, as well as multiple *out-of-distribution (OOD)* benchmarks to assess generalization. In the math domain, OOD benchmarks include GSM-HARD (Gao et al., 2023), a challenging variant of GSM8K with harder grade-school problems, and AMC23², a set of recent American Mathematics Competition problems. In the medical domain, OOD benchmarks include MedMCQA (Pal et al., 2022), a dataset consisting of multiple-choice medical questions designed to test clinical knowledge, and MMLU-Medical (Singhal et al., 2023), a medical subset of the Massive Multitask Language Understanding (MMLU) benchmark focusing on diverse topics in the medical field. We adopt two publicly available models from the Qwen 3 (Yang et al., 2025a) family: Qwen3-1.7B and Qwen3-4B. Both models are fine-tuned in our experiments under identical settings to ensure fair comparison.746
747
748
749
750
751
752
753
754
755

A.3 IMPLEMENTATION DETAILS

746
747
748
749
750
751
752
753
754
755
To ensure our GRPO implementation is robust, and our evaluation reflects its full potential, we have applied a set of well-established techniques and best practices from the literature Yu et al. (2025). Below, we outline the key implementation details that were most effective in our experiments:746
747
748
749
750
751
752
753
754
755

- Clip-Higher (decoupled clipping). We decouple the clipping bounds and raise the upper cap ($1 + \varepsilon_{\text{high}}$) while keeping the lower cap ($1 - \varepsilon_{\text{low}}$), which allows low-probability “exploration” tokens to increase more freely and helps prevent entropy collapse.
- Token-level policy-gradient loss: Token-level policy-gradient loss (global token averaging): We optimize a token-level surrogate averaged over *all* tokens in the batch, broadcasting each response’s group-normalized outcome reward to its tokens since sample-level averaging underweights long responses and fails to penalize low-quality long patterns, which destabilizes training; token-level loss restores balanced credit assignment and yields healthier length/entropy dynamics.

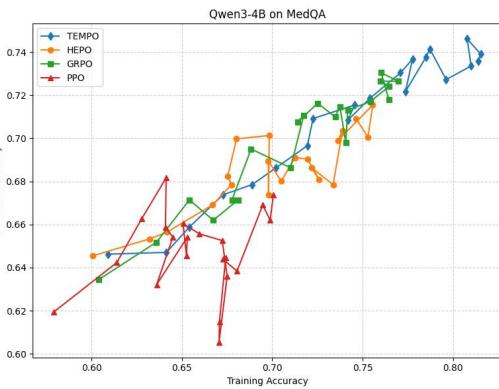
746
747
748
749
750
751
752
753
754
755

Figure 9: Training vs. validation accuracy on MedQA with Qwen3-4B. PPO overfits to training data, while TEMPO maintains better generalization.

746
747
748
749
750
751
752
753
754
755

²<https://huggingface.co/datasets/AI-MO/aimo-validation-amc>

756 • Remove KL divergence: In long-CoT reasoning, the online policy can beneficially diverge
 757 from the initialization; thus we omit an explicit KL regularizer and rely on clipping for
 758 stability.

760 **Training Details and Hyperparameters** We adopt a binary task reward R that evaluates final
 761 answer correctness against ground truth, following previous work Huang et al. (2024); Ivison et al.
 762 (2024). To ensure fair comparison, all methods consume the same number of episodes during train-
 763 ing: for each question, we sample 6 episodes and go over the dataset 10 times, yielding 60 episodes
 764 per question across all methods.

765 A.4 HYPERPARAMETER

766 In this section, we provide a comprehensive overview of the hyperparameters used in our experi-
 767 ments. The number of training episodes was carefully selected to ensure that the amount of training
 768 data remained consistent across all methods.

769 **PPO** Finetuning LLMs with PPO is known to be highly sensitive to hyperparameter choices, mak-
 770 ing optimal selection critical for strong performance. To ensure robustness, we considered hyperpa-
 771 rameter values reported in prior studies Shao et al. (2024) and performed extensive sweeps across
 772 a wide range of candidate values. Specifically, we first identified the set of hyperparameters that
 773 achieved the best performance across both the MATH and MedQA tasks using the Qwen3 1.7B
 774 model. This optimal configuration was then employed for the remainder of our experiments. The
 775 complete list of PPO hyperparameters, along with their respective search spaces, is shown in Table 3.

776 **GRPO, HEPO, and TEMPO** Since policy optimization in RLOO and GRPO closely resembles
 777 PPO, we initialized their hyperparameters using the PPO configuration. This ensures a strong start-
 778 ing point while enabling a systematic comparison among the algorithms. We note that the absence of
 779 explicit credit assignment in these methods may result in high-variance policy gradient updates, po-
 780 tentially leading to instability Greensmith et al. (2004). The full list of hyperparameters for GRPO,
 781 HEPO, and TEMPO is provided in Table 3.

782 A.5 COMPUTE

783 All experiments were conducted using multi-GPU training to efficiently handle the computational
 784 demands of large-scale models. For the Qwen3-1.7B model, we utilized a node with $1 \times$ Nvidia
 785 H100 80GB GPUs to train both TEMPO and all the baselines. For the larger Qwen3-4B model, we
 786 employed a more powerful setup, using a node with $2 \times$ Nvidia H100 80GB GPUs.

787 A.6 SOFTWARE STACK

788 For model implementation, we utilize the Huggingface library. Training is carried out using the
 789 VERL Zhang et al. (2024) distributed training library, which offers efficient multi-GPU support.
 790 For trajectory sampling during RL training, we rely on the vLLM library Kwon et al. (2023), which
 791 provides optimized inference for LLMs.

792 A.7 REPRODUCITY

793 In this study, all experiments were conducted using open-source libraries, publicly available datasets,
 794 and open-weight LLMs. To ensure full reproducibility, we will make our codebase publicly available
 795 on GitHub at <https://anonymous.4open.science/r/tempo-0AF2>.

796 A.8 LLM USAGE

797 In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
 798 this work. LLMs were employed to assist with grammar polishing, wording improvements, and
 799 drafting text during paper preparation. All technical content, proofs, experiments, and analyses
 800 were conceived, implemented, and validated by the authors. Authors remain fully responsible for
 801 the correctness of the claims and results.

Parameter	Value	Notes
Training		
Optimizer	AdamW	
Adam parameters (β_1, β_2)	(0.9, 0.999)	
Learning rate	1×10^{-6}	
Weight decay	0.0	
Warmup	0% of training steps	
# Train steps (MATH)	220 steps	~ 10 dataset epochs
# Train steps (MedQA)	420 steps	~ 10 dataset epochs
General		
Maximum prompt length	1024 tokens	
Maximum response length	8192 tokens	
Training batch size	512	
PPO		
Mini-batch size	64	
# Inner epochs per PPO step	2	
Discount factor γ	1.0	
GAE parameter λ	1.0	
KL penalty coefficient β	1×10^{-4}	
GRPO/HEPO/TEMPO		
# Responses per prompt	6	
Mini-batch size	64	
Discount factor γ	1.0	
KL penalty coefficient β	0.0	
Policy clipping parameter ϵ	0.28, 0.2	
HEPO		
ρ	0.2	Only do gradient update on top 20% high entropy tokens

Table 3: Summary of hyperparameters used in the experiments.

No LLMs were used to generate research ideas, write code for experiments, or produce results. No confidential information was shared with LLMs, and no prompt injections or other inappropriate uses were involved.

This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while accountability and verification rest entirely with the human authors.