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ABSTRACT

Cross-modal video and language alignment requires grounding linguistic concepts
and video to a shared space. Most work neglects explicit token-level ground-
ing, assuming masked token prediction will learn the necessary token-level cross-
modal representations. However, it does not force lexical grounding to percep-
tion and introduces a domain mismatch between pretraining and fine-tuning. This
paper introduces a simple alternative, Token-Level Contrastive loss (ToCo), in-
formed by syntactic classes (e.g., nouns and verbs) to force models to prioritize
grounding concrete words. ToCo does not mask inputs but poses both local (con-
textual token) and global (lexical type) pressures for cross-modal alignment in
a contrastive manner. Our approach enables a simple vanilla BERT-based mul-
timodal transformer to compete with or outperform existing heavily engineered
models on three benchmarks (YouCook2, MSR-VTT and CrossTask). Impor-
tantly, ToCo is a plug-n-play addition to any architecture, producing consistent
improvements across all experimental conditions and visual features.

1 INTRODUCTION

Connecting language and video is key to progress in multimodal research, as it moves beyond
grounded objects (language and images) to understanding actions and causality. The grounding
of this expanded symbol space (Harnad, 1990), allows us to imbue words with richer notions of
meaning (Bisk et al., 2020). However, naı̈vely combining both modalities does not guarantee the
creation of true joint representation, not all words can be grounded in video, and the relative im-
pact of advances in unimodal representations are difficult to disentangle. We introduce a new simple
training object ToCowhich, combined with comprehensive experiments, aims to address these three
concerns and provide a solid foundation for future work to build on in this domain.

The availability of large-scale video data (Miech et al., 2019), combined with recent advances in
language modeling (Devlin et al., 2019) have made it possible to explore large-scale self-supervised
cross-modal learning, with surprising success. Self-supervision requires a loss function that does

Figure 1: Where a Masked Language Model (left) leads to learning lexical correlations (red) and in-
troduces a domain shift by with the train-only ‘[MASK]’ token, ToCo (right) forces the cross-modal
fusion to focus on identifying which semantics bearing word differentiates between video sequences.
Additionally, note that where a global contrast forces alignment into the model to produce a single
representative ‘[CLS]’ token, ToCo explicitly guides lexical grounding (dark lines).
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not rely on annotations. The Masked-Language-Model (MLM) objective was introduced as a solu-
tion for language-only pretraining, and copied over to the cross-modal setting, with the addition of
masked features (MFM) (Li et al., 2020a; Zhu & Yang, 2020; Luo et al., 2020). This formulation
(1) by design leads to fine-tuning the language model without directly requiring the use of the video
signal, (2) it produces a domain mismatch between pretraining and inference where the latter will
not have masked inputs. In contrast, we introduce ToCo to require type and token-level grounding
in every training example, and we do so without the domain mismatch of training time mask tokens.

Fundamental to our approach is token-level contrastive losses which force the grounding of individ-
ual words. Given the relative semantic content of nouns, verbs, and adjectives we upweight their
contributions to force lexical groundings to fight to rank the correct video highest (given a caption)
among a set of NCE examples. In Figure 1, it is clear that the syntactic signals of MLM fight to fill
the blank, while in ToCo the learning pressure is specifically on Worcestershire to differentiate the
two videos. This pressure, combined with our merged global and type-token representations (§3.3)
push the model to prioritize clean grounded alignments. Note, while we provide a comprehensive
analysis on evaluation paradigms and video feature representations, nothing about our approach
limits its applicability to video and can be just as readily used in image-text transformers.

In short, this work’s contributions are: (1) A cleaner, simpler, and more effective approach to cross-
modal learning which can be extended to incorporate linguistic knowledge, (2) A systematic com-
parison across feature representations, and (3) state-of-the-art results on video benchmarks.

2 RELATED WORK

Effective cross-modal fusion is a key research question for machine learning (Baltrušaitis et al.,
2019). Such models enable language interfaces to visual data via retrieval (Lin et al., 2014a; Yu
et al., 2016), captioning (Thomason et al., 2014; You et al., 2016; Yang et al., 2016; Wang et al.,
2019; Yu et al., 2016), question answering (Antol et al., 2015; Lu et al., 2016; Lei et al., 2018), and
reasoning (Zellers et al., 2019). In this paper, we focus on the video and language domain.

Alignment. Joint video and language embeddings enable numerous applications, including re-
trieval (Lin et al., 2014b; Yu et al., 2017; 2018), captioning (Yu et al., 2016; Zhou et al., 2018), and
question answering (Jang et al., 2017; Lei et al., 2018). Compared to image-text alignment (Kiros
et al., 2014; Wang et al., 2016; 2018), video requires the model to understand movement and tem-
poral coherence. Some work has relied on attention mechanisms to extract key information from
videos (Torabi et al., 2016; Yu et al., 2017), while others preserve visual information by composing
pairwise joint representation using 3D tensors (Yu et al., 2018) or multi-level video encoders to sep-
arately encode the spatial and temporal cues (Dong et al., 2019). These models are usually equipped
with a rank or margin loss to learn the correct alignment for video-text pairs.

Pre-training. Large-scale data has been very effective in language representation learning (Devlin
et al., 2019), and seamlessly extended to the vision-and-language domain via the addition of bound-
ing box features as visual “words” (Tan & Bansal, 2019; Lu et al., 2019; Zhou et al., 2019; Li et al.,
2020b), or video clips as “tokens” (Sun et al., 2019; Zhu & Yang, 2020; Luo et al., 2020; Li et al.,
2020a). Pretraining (Miech et al., 2019) significantly improves performance on the aforementioned
video-language tasks. Most methods train auxiliary tasks (e.g. video-text alignment, and masked
language/frame prediction), but Miech et al. (2020) showed the effectiveness of noise-contrastive
estimation (NCE) for learning video and language representations from noisy instructional videos.

3 METHOD

In this section, we first briefly define the contrastive loss for video and language as background and
then introduce our own method. Additional details can be found in the Appendix.

3.1 PRELIMINARY

Given a set of video clips V = {v1, ...,vN} and the associated texts T = {t1, ..., tN}, our goal is
to learn a joint embedding such that paired video clips and texts (vi, ti),∀i ∈ {1, ..., N} are well
aligned, while distancing from all other pairs (vi, tj),∀i, j ∈ {1, ..., N}, i 6= j. This requires both
good representations x = g(v) and y = h(t) of video and text alone, respectively, and a correct joint
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alignment function f(x,y). In this paper, we assume videos and texts are already well-represented
by pre-trained models (e.g., I3D (Carreira & Zisserman, 2017), S3D (Miech et al., 2020) for videos
and BERT (Devlin et al., 2019) for text), and merely focus on the learning of f(x,y), which outputs
a scalar indicating the quality of the alignment for a video-text pair (x,y). Below, we denote the
features for a video clip by a temporal sequence of m embeddings, x = {x1, ..., xm} ∈ Rm×dx ,
while a textual narration by a sequence of n embeddings, y = {y1, ..., yn} ∈ Rn×dy .

3.2 GLOBAL CONTRAST

A good alignment requires high joint probability p(xi,yj) for positive video-text pairs, which
should be low for negative pairs. However, it is intractable due to the need to normalize over all
video-text pairs, but we can work instead with the conditional p(xj |yi) (see Appendix A.1 for de-
tails). We require p(xi|yi) > p(xj |yi),∀j 6= i. This can be achieved by incorporating a margin
s.t. f(xi,yi) > f(xj ,yi) + δ (Li et al., 2020a), optimizing binary cross-entropy s.t. f(xi,yi) = 1
and f(xi,yj) = 0, or contrastive loss and its variants (Zhu & Yang, 2020). In this paper, we take
the contrastive learning objective. Ideally, our target is p̂(xi|yi) = 1, while p̂(xj |yi) = 0,∀j 6= i.
Hence, we can derive the contrastive loss from the cross-entropy:

L(X ,Y) = −
N∑
i=1

log(p(xi|yi)) = −
N∑
i=1

log

(
expf(xi,yi)

expf(xi,yi) +
∑

j 6=i exp
f(xj ,yi)

)
(1)

∑
k 6=j expf(xk,yi) is still intractable since it sums over all videos for yi except for xi (See Appendix

A.1 for derivations). In practice, we can approximate it by sampling a subset of negative video clips
from the training data (Miech et al., 2019; Luo et al., 2020; Miech et al., 2020). It has been shown
in (Miech et al., 2020) that more negative samples is usually better.

Global alignment function f . Two common approaches for constructing f(x,y) are a dot-product
of two separate representations, i.e., f(x,y) = xyT (Miech et al., 2019; Miech et al., 2020), or
via a BERT-like architecture (Li et al., 2020a; Luo et al., 2020; Zhu & Yang, 2020). To capture
rich alignment between video and text, we adopt BERT-based architecture in this paper as shown in
Fig. 2(a). Given the video representation x ∈ Rm×dx and text representation y ∈ Rn×dy , we first
embed them separately to the same dimension, i.e., x̂ ∈ Rm×d and ŷ ∈ Rn×d, and concatenate
the sequences to produce [x̂, ŷ] ∈ R(m+n)×d. This combined inputs is passed to a multi-modal
encoder consisting of multiple self-attention layers (Vaswani et al., 2017) to produce a contextual
video-linguistic representation [x̊, ẙ]. To compute the contrastive loss in equation 1, we take the first
entry x̊1, the ‘[CLS]’ token, and project it into a scalar via a two-layer perceptron (MLP).

Key to our approach however is that in addition to the use of this “global” representation accessed
via the ‘[CLS]’ token we also encourage word-level alignment, via a token-level contrastive method.

3.3 TOKEN-LEVEL CONTRAST

As discussed above, summary representations, while common may not provide the necessary learn-
ing pressures to ground individual objects or actions as the pressures are diffuse and allow the model
to easily learn spurious correlations between phrases and individual video clips. In order to avoid
this, in addition to a global contrastive loss over (xi,yi) (discussed above), we apply an objective ty-
ing the video clip to the individual tokens. A straightforward way to impose the token-level contrast
is composing pairs (xi,y

k
i ) and apply the same contrastive learning discussed above. However, this

is prone to fail since a single token is far enough to capture the difference across different videos.
To address this, we combine the contextual-independent token representation yk

i for a single token
with the output cki = ẙki from multi-modal encoder, as shown in Fig. 2(b). Based on this, we can
learn a token-level joint alignment function f t with a contrastive loss:

Lt(X ,Y) = −
N∑
i=1

∑
k∈Ki

log

(
expft(xiyi;y

k
i )

expft(xi,yi;yk
i ) +

∑
j 6=i expft(xj ,yi;yk

i )

)
(2)

where Ki are token indices in the i-th text where we want to include the loss. Based on equation 2,
the model uses the specific token as an anchor to align with video representation. We refer to this
as a Token-Level Contrastive loss (ToCo), because it forces attention to specific tokens, which is
complementary to the global counterpart in equation 1.
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(a) An illustration of including a token-level contrast.
Note NCE losses are not applied to stop-words and are
separate from the global [CLS] based loss.
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(b) A closeup view of ToCo as applied to a single
lexical token. Node that the token’s unimodal input
ŷ61 is combined with the contextualized representa-
tion c61 prior computing the loss.

Figure 2: ToCo includes token level losses on semantic bearing words in addition to a global loss
(left). The right shows additional details of how representations are shared for a specific token.

Token-level alignment function f t. To make our model compact, we reuse most part of f to
compute f t. As shown in Fig. 2 (b), for the k-th token, we take the ẙki output of the cross-modality
encoder and concatenate it with the input token representation yki , before passing them to a two-layer
perceptron to produce an alignment score. This formulation allows for signal to propagate to both:
(1) the global lexical type yki for sharing across the data; and (2) ẙki the contextualized token which
is output from the cross-modality encoder and contains information from both video clip and text.

Token of interest. Our formulation of a token-level contrastive loss (equation 2) works on separate
tokens. This raises the question of which tokens should receive inclusion in ToCo. We start heuris-
tically by selecting nouns, verbs and adjectives as the most “groundable” tokens into the video.
Next we must determine the relative weight and importance of individual words/classes. A uniform
weighting would be equivalent to no-loss, while a very peaked distribution on nouns or verbs might
bias towards learning about specific objects or actions. Instead, we compute the TF-IDF (Jones,
1972) weighting for each token to avoid treating all types in a syntactic class the same, as different
words appear in different frequencies and thus have different importance even if they are all nouns.
The role of linguistic/syntactic prior knowledge (possibly language specific) to ideally weight the
relative importance of individual words and phrases is left as a promising exercise for future work.

Hard-negative mining. Previous work has demonstrated that hard negative mining is effective at
learning good cross-modality alignment (Lee et al., 2018; Faghri et al., 2017). This strategy can
be effectively applied to models with light-weight cross-modality fusion layers, e.g., dot-product
layer. However, for a heavy cross-modality encoder such as BERT-like architectures, it is much
more time-consuming to compute the alignment scores for all pairs in a mini-batch. To address this
issue, we introduce a new hard-negative mining strategy as indicated by the cirled “H” in Fig. 2(b).
Assume there is a minibatch of k video-text pairs {x1, ...,xk} and {y1, ...,yk}, we simply perform
average pooling on the frame-wise video features xi to ai ∈ Rd and the token-wise text features yi

to bi ∈ Rd. Then we compute the dot-product between them, resulting in a score matrix of k × k
dimension. During training, we use this score matrix to help the upper multi-modal encoder to select
the hard negative samples. At the meaning time, we add another contrastive loss to gradually learn
a better matching scoring function. It turns out that this simple strategy works well for both global
contrastive loss and our ToCo loss.

3.4 OBJECTIVE FUNCTION

The optimal video-linguistic representation minimizes the combination of two contrastive losses:

{f, f t, h}∗ = arg min
f,ft,h

(
L(X ,Y) + λLt(X ,Y)

)
(3)

where λ is the weight for the token-level contrastive loss. We jointly learn f and f t, and fine-
tune the pre-trained language encoder h as well during the training. During inference, we compute
f(xi,yj) + λf t(xi,yj) to measure the alignment between xi and yj .
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4 EXPERIMENTS

4.1 DATASETS

In our experiments, we verify its effectiveness on standard benchmark datasets by comparing it with
previous work on text-based video retrieval and action localization. We use the three most common
datasets and tasks:
• HowTo100M (Miech et al., 2019). Howto100M is used for pretraining. It was collected by

crawling YouTube, and contains over 1.2M narrated videos associated with automatically gener-
ated transcriptions. Each video contains more than 100 video clips on average.

• YouCook2 (Zhou et al., 2017). YouCook2 is a set of cooking videos which depict routine cooking
activities covering 89 recipes and containing 2000 videos. Component video clips are annotated
with textual descriptions by human annotators, for a total of 14k (clip, description) pairs.

• MSR-VTT (Xu et al., 2016). Compared to YouCook2, MSR-VTT focuses on a more diverse set
of activities, but is similar in size with 10K video clips (3K are reserved for testing) Additionally,
each clip is associated with 10 human-annotated descriptions. Following Miech et al. (2019), we
select 1,000 video clips for the test set to evaluate the video retrieval performance.

• CrossTask. We evaluate action localization following the protocol proposed in (Zhukov et al.,
2019) and used in (Miech et al., 2019; Miech et al., 2020) to report the average recall.

4.2 VIDEO AND TEXT REPRESENTATIONS

There are three variables at play when learning joint video and language representations: unimodal
video, unimodal text, and the method for fusion. As we are introducing a new training regime and
loss for fusion, we do our best to compare against every underlying variant of video and language
presentations currently used in the literature by Miech et al. (2019); Miech et al. (2020); Zhu & Yang
(2020). We summarize these the main settings below:
• Video Representations. Miech et al. (2019) use an ImageNet (Russakovsky et al., 2015) pre-

trained Resnet-152 (He et al., 2015) model to extract a features map at 1fps before pooling to a
2048-dimensional feature vector. For 3D features, a pretrained I3D model (Miech et al., 2019;
Miech et al., 2020), R(2+1)D model Zhu & Yang (2020) or S3D model Miech et al. (2020); Luo
et al. (2020) are used to extract features from 16 adjacent frames sampled at 24 fps. Likewise,
this 3D CNN feature map is then pooled to a 2048-d (I3D) or 1024-d (S3D) feature for each 16
frames. Zhu & Yang (2020) also train an object detection model on Visual Genome (Krishna
et al., 2016) to extract objects from the video clips to augment the visual input.

• Text Representations. There are primarily two variants of text features: 1) GoogleNews pre-
trained word2vec (Mikolov et al., 2013) embeddings are used in (Miech et al., 2019; Miech et al.,
2020); 2) BERT (Devlin et al., 2019) is used as the backbone for (Zhu & Yang, 2020; Luo et al.,
2020). The latter approach is also more common in image-based vision-and-language tasks.

As it is unclear whether the architectures, losses, or features are responsible for the different perfor-
mances seen on these tasks, to provide fair comparisons to each, we perform separate experiments
with each of the the following video representations:
• I3D-Resnext101: I3D with Resnext-101 backbone pre-trained on Kinetics-400 (Kay et al., 2017).

Miech et al. (2019) and Luo et al. (2020) also concatenated a 2D-Resnet152 feature.
• I3D-Resnet152: I3D with Resnet-152 backbone pre-trained on Kinetics-700 (Carreira et al.,

2019) used by (Miech et al., 2020) has comparable capacity to R(2+1)D in (Zhu & Yang, 2020).
• S3D-Howto100M: S3D pretrained on Howto100M. Miech et al. (2020) demonstrated that S3D

significantly outperforms the above features on both video-only and video-text tasks and was
integrated into the latest version of (Luo et al., 2020).

We use the off-the-shelf weights of I3D-Resnext101 and I3D-Resnet152 provided by (Hara et al.,
2018) and S3D-Howto100M as provided by (Miech et al., 2020), respectively. For all experiments,
the maximum number of video and text tokens are set to 48 and 30, respectively. To extract 2D video
features, we sample video frames at 1 fps, resulting in one 2048-d 2D-Resnet152 feature per second.
For 3D CNN features, we follow Miech et al. (2019) and sample video frames at 24 fps to extract
I3D features in a window size of 16, obtaining one and half 2048-d features per second. The textual
tokens are first uncased and then fed to a pre-trained BERT-base model. The 768-d outputs of the
embedding layer in the BERT-base model are used as the raw token embeddings yi in equation 2.
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Model Lang. Video YouCook2 MSR-VTT

2D 3D R@1 R@5 R@10 Med. R R@1 R@5 R@10 Med. R

JSFusion (Yu et al., 2018) BiLSTM R-152 - - - - - 10.2 31.2 43.2 13
TVJE (Miech et al., 2019) w2v R-152 I-101 4.2 13.7 21.5 65 12.1 35.0 48.0 12

UniVL-v1 (Luo et al., 2020) Bert R-152 I-101 3.4 10.8 17.8 76 14.6 39.0 52.6 10
Our Baseline Bert R-152 I-101 3.2 11.1 17.7 81 14.8 41.0 55.8 8
ToCo (λ = 0) Bert R-152 I-101 3.9 12.4 19.1 78 16.8 43.8 57.9 7
ToCo (λ = 0.2) Bert R-152 I-101 4.6 13.3 20.0 75 17.4 45.1 58.5 7
ToCo (λ = 0.5) Bert R-152 I-101 4.6 14.1 20.8 72 18.4 46.6 59.5 6
ToCo (λ = 1.0) Bert R-152 I-101 4.3 13.5 19.9 71 18.1 45.7 59.1 7

Our Baseline Bert R-152 I-152 3.8 13.9 21.3 60 16.5 43.5 56.8 7
ToCo (λ = 0) Bert R-152 I-152 4.1 14.0 21.7 57 16.3 44.7 58.6 7
ToCo (λ = 0.5) Bert R-152 I-152 4.9 15.2 22.5 55 18.0 47.3 60.3 6

Our Baseline Bert - S-100 12.4 35.6 48.7 11 18.3 45.3 59.6 7
ToCo (λ = 0) Bert - S-100 14.9 39.3 52.2 9 19.4 46.3 58.8 6
ToCo (λ = 0.5) Bert - S-100 15.9 39.7 51.9 9 21.1 47.9 60.5 6

Table 1: Comparing with previous works and baselines under task-specific setting. R-152, I-101 and
I-152 are in short of Resnet-152, I3D-Resnext101 and I3D-Resnet152, respectively.
4.3 SETTINGS AND IMPLEMENTATION DETAILS

Training on separate datasets. In this setting, we train video retrieval models from scratch (100K
iterations) using the training set provided in YouCook2 (Zhou et al., 2017) and MSR-VTT (Xu et al.,
2016). We use 64 video-text pairs and sample 8 negative samples either using random sampling or
our hard sample mining techniques. We use Adam (Kingma & Ba, 2014) as the optimizer (learning
rate of 1e−4). A linear decay for the learning rate is applied after a warm up of 10k iterations. The
weight decay is set to 1e−5. Training on 4 Nvidia V100 GPUs takes approximately 5 hours.

Pre-training and Finetuning. For pre-training, we make use of all the available videos provided in
Howto100M (Miech et al., 2019). We use Adam (Kingma & Ba, 2014) as the optimizer (learning
rate of 1e−4). We train the model for 1M iterations with the same batch size as above, but using 16
negative samples for each pair. We take the final checkpoint and use it for the fine-tuning on separate
datasets. We use the same setting as above except for lowering the initial learning rate to 2e−5.

In the next section, we present experimental results and fair comparisons as possible as wen can to
verify the effectiveness of our proposed method.

5 RESULTS

5.1 TASK-SPECIFIC TRAINING

We begin this investigation by exploring the simplest setting of task-specific training only. Here,
models do not have access to large-scale pretraining and therefore must use the limited training data
effectively. Note, the pretrained unimodal feature representations “bring knowledge” with them, so
even in this task-specific setting, like all prior work, the models are not tabula rasa learners. Our first
result, in Table 1, is that ToCo outperforms all existing models across all three video representations.

Weighting ToCo loss. First we explore the importance of our loss by varying the λ of equation 3.
We show that the task performance is not simply a function of the transformer architecture, as our
baseline result (λ = 0) performs similarly to previous work, it is the inclusion of the token losses
that leads to gains. In the simplest condition (I-101) we do a basic sweep over λ weighting. Note,
that while we do see gains from exclusive use of the token loss and no global component (λ = 1),
best performance balances the two. Based on the results in Table 1, we set λ = 0.5 for all the
following experiments. The ideal setting or schedule for this parameter is left to future work.

Video Features The second result to note is the key role video features play in overall performance.
Note that improvements in the video features directly correlate to downstream performance, but
ToCo shows consistent gains regardless of the underlying representation. The most extreme jump is
seen in the move to S3D features. This result is present throughout our experiments and so we will
continue to provide results on all feature representations to ablate their relative importance.
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Baseline

Query: a woman is stirring food
ToCo

Query: a car is racing on road
Baseline ToCo

Figure 3: Qualitative examples of our baseline implementation’s rankings of two queries, versus
full token-level losses applied (right). Note the down-weighting of videos that are not stirring and
up-weighting the presence of a car racing.

Model FT. #L Video YouCook2 MSR-VTT

2D 3D R1 R5 R10 MR R1 R5 R10 MR

I3
D

-R
es

ne
xt

10
1

TJVE (Miech et al., 2019) 7 n/a R-152 I-101 6.1 17.3 24.8 46 7.5 21.2 29.6 38

UniVL-v1 (Luo et al., 2020) 7 1-2 R-152 I-101 5.5 17.7 27.4 42 2.9 8.3 12.4 173
ToCo (λ = 0) 7 1-2 R-152 I-101 8.3 22.7 31.0 34 3.3 12.3 17.8 87
ToCo (λ = 0.5) 7 1-2 R-152 I-101 11.1 25.9 35.4 27 3.8 14.0 19.5 79

TJVE (Miech et al., 2019) 3 n/a R-152 I-101 8.2 24.5 35.3 24 14.9 40.2 52.8 9
UniVL-v1 (Luo et al., 2020) 3 1-2 R-152 I-101 11.5 29.1 40.1 17 15.4 39.5 52.3 9
ToCo (λ = 0) 3 1-2 R-152 I-101 11.4 29.9 41.0 18 14.9 41.4 57.2 7.5
ToCo (λ = 0.5) 3 1-2 R-152 I-101 12.6 30.9 42.0 16 17.6 45.5 59.0 7

MIL-NCE-t (Miech et al., 2020) 7 n/a n/a I-152 11.4 30.6 42.0 16 9.4 22.2 30.0 35
ActBERT (Zhu & Yang, 2020) 7 0-12 O-101 R(2+1)D 9.6 26.7 38.0 19 8.6 23.4 33.1 36
ToCo (λ = 0.0) 7 1-2 R-152 I-152 9.6 25.0 34.3 27 4.3 12.8 21.4 72
ToCo (λ = 0.5) 7 1-2 R-152 I-152 10.9 27.7 37.2 23 4.9 14.7 23.4 60

ToCo (λ = 0) 3 1-2 R-152 I-152 11.7 28.3 37.6 21 19.3 44.7 59.3 7

I3
D

-R
es

ne
t1

52

ToCo (λ = 0.5) 3 1-2 R-152 I-152 16.0 36.7 48.5 11 19.5 46.6 60.6 6

MIL-NCE-t (Miech et al., 2020) 7 n/a n/a S-100 15.1 38.0 51.2 10 9.9 24.0 32.4 29.5
MIL-NCE-g (Miech et al., 2020) 7 n/a n/a S-100 8.8 24.3 34.6 23 8.2 21.5 29.5 40
ToCo (λ = 0) 7 2-2 n/a S-100 13.7 32.0 43.4 15 6.1 16.5 23.1 62.5
ToCo (λ = 0.5) 7 2-2 n/a S-100 15.4 33.8 44.9 14 6.5 18.5 25.0 56.5

UniVL-v3 (Luo et al., 2020) 3 6-2 n/a S-100 28.9 57.6 70.0 4 21.2 49.6 63.1 6
ToCo (λ = 0) 3 2-2 n/a S-100 24.3 51.2 64.4 5 21.5 48.4 61.6 6

S3
D

-H
ow

To
10

0M

ToCo (λ = 0.5) 3 2-2 n/a S-100 26.1 53.4 66.3 5 20.8 50.3 64.3 5

Table 2: A complete comparison of ToCo under zero-shot(7) and fine-tuned(3) evaluation
paradigms, with (λ = 0.5) and without (λ = 0) token-NCE, using three video representations,
on both the YouCook2 and MSR-VTT retrieval benchmarks. For completeness, we also include
comparisons to work with larger models and compute in gray.

5.2 PRE-TRAINING RESULTS

Next we explore the role of ToCo when pretraining is included. This is made possible by the
HowTo100M dataset of Miech et al. (2019). Pretraining introduces two evaluation settings: (1)
Zero-shot, and (2) Fine-tuned. Both settings are presented in Table 2, again broken up by feature
representation and comparing both our baseline model (λ = 0) and ToCo-balanced (λ = 0.5).

Zero-shot In the zero-shot setting, no in-domain training data is used from the task. Instead, the rep-
resentations and scores built during pretraining are directly applied to the evaluation to test to their
generalization. This leads to a number of domain shift issues. First, while all the videos originated
on YouTube, the downstream task is curated and annotated. This means the quality of the videos
may be different, the specific topics narrow, and the language includes full punctuated sentences.
Second, the clips differ in length (both visual frames and linguistic tokens). Despite this, it is im-
portant to test the generality of the approach so all rows marked with 7 compare our performance
to other zero-shot results when available. In addition to the primary retrieval benchmarks we also

7
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Method Recall

Alayrac et al. (2016) 13.3
Zhukov et al. (2019) 22.4
Supervised (Zhukov et al., 2019) 31.6
TVJE (Miech et al., 2019) 33.6
MIL-NCE (Miech et al., 2020) 40.5
ActBert Zhu & Yang (2020) 41.4
UniVL-v3 (Luo et al., 2020) 42.0

Ours 42.3

Table 3: Average recall for ac-
tion localization on CrossTask.

Figure 4: Ave. Re-
call@{1,5,10} for different
features. ToCo-base-masked
uses MLM.

Figure 5: Ave. re-
call@{1,5,10} with λ=0
vs two variants of weighting:
noun/verb/adj vs det/adp/aux.

present results on the task of Action Localization on the CrossTask dataset in Table 3. As we can
see, our approach achieved the best recall though it merely uses two layer of video encoders.

Fine-tuning. In contrast, fine-tuning, allows us to continue training on in-domain data. For both
pretraining and fine-tuning, it is unclear in general when to stop training, which is likely a function
of the amount of data available (Gururangan et al., 2020). In our setup, we consistently fine-tune for
100k iterations with initial learning rate 1e−5 before evaluation. Rows with a 3 include fine-tuning.

Table 2 presents a comprehensive set of results across three feature representations, zero-shot and
fine-tuning, for both the YouCook2 and MSR-VTT datasets. We see that in the first setting (I3D-101)
ToCo outperforms all models on both datasets with and without fine-tuning. In the richer feature
domains ToCo performs competitively or outperforms comparable models. performs competitively
or outperforms comparable models.

Model Complexity and Computational Resources As noted previously, results in this domain
conflate feature representations, pretraining, and loss functions. We have therefore tried to provide
coverage of these comparisons, but compute and model size are additional, important factors, we
leave to future work. For completeness, we include two such innovations in our full table of results.
Specifically, the concurrent and larger UniVL-v3 model of (Luo et al., 2020), and the TPU based
end-to-end training of MIL-NCE-t (Miech et al., 2020). Specifically, UniVL-v3 uses three times as
many video encoding layers which proved prohibitive on our hardware. Relatedly, MIL-NCE-t uses
TPUs to perform full end-to-end feature fine-tuning with a large batch size of 8192. In contrast,
ToCo was trained with batches of 64 and precomputed features.

5.3 INSPECTING THE LOSS

We further probe the proposed ToCo from two angles: (1) against MLM and, (2) syntactic class.

Masked Language Prediction. In this experiment, we replace ToCo loss with the masked language
prediction loss (ToCo-base-masked), and then train on YouCook2 and MSR-VTT. As shown in
Fig. 4, masked language prediction under-performs ToCo under different settings. Along with the
comparisons above, we believe ToCo has learned a better grounding between text to video.

Token type matters. As we mentioned above, we extract the noun, verb and adjective to impose
our ToCo loss. Fro comparison, we instead add our loss on top of the complementary tokens in a
sentence, such as adposition and determiner, whcih is denoted by ToCo-bt In Fig. 5, we can see that
adding our loss on the tokens which have meaningful grounding on the video contents is better.

6 CONCLUSION

In this work we introduce ToCo as an alternative training paradigm for cross-modal learning, and
a nearly exhaustive comparison of its use on a simple, vanilla transformer to achieve competitive
or state-of-the-art results on standard benchmarks. There are several natural open questions. We
expect that the complementary nature of our contribution to advances in features, end-to-end train-
ing, or large scale modeling will allow it to function as a drop-in replacement to improve existing
techniques. We anticipate similar trends to hold within images as well.
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A APPENDIX

A.1 CONTRASTIVE LOSS

The joint probability p(xi,yj) for a video-text pair (xi,yj) is approximated by:

p(xi,yj) ∼
expf(xi,yj)∑N

k=1

∑N
l=1 expf(xk,yl)

(4)

Based on equation 4, estimating a good joint probability is equivalent to the learning of a good
joint representation f , such that p(xi,yi) > p(xj ,yi),∀j 6= i and p(xi,yi) > p(xi,yj),∀j 6=
i. In the following, we describe how a contrastive loss can be derived to learn the desired joint
representations, and how our proposed token-wise weighting is applied.

The denominator of equation 4 requires an intractable sum over all possible video-text pairs. Note
that p(xi,yi) > p(xj ,yi),∀j 6= i is identical to p(xi|yi) > p(xj |yi),∀j 6= i according to Bayes’
theorem. Hence, we instead estimate the conditional probabilities p(xj |yi) and p(xi|yj). Where:

p(xj |yi) =
p(xj ,yi)

p(yi)
∼ p(xj ,yi)∑N

k=1 p(xk,yi)
(5)

where
∑N

k=1 p(xk,yi) is an approximation of the marginal distribution p(yi). Substituting equa-
tion 4 into equation 5, the denominator in equation 4 cancels, leaving:

p(xj |yi) ∼
expf(xj ,yi)

expf(xj ,yi) +
∑

k 6=j expf(xk,yi)
(6)
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