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Abstract

We present a new family of information-theoretic generalization bounds, in which
the training loss and the population loss are compared through a jointly convex
function. This function is upper-bounded in terms of the disintegrated, sample-
wise, evaluated conditional mutual information (CMI), an information measure
that depends on the losses incurred by the selected hypothesis, rather than on the
hypothesis itself, as is common in probably approximately correct (PAC)-Bayesian
results. We demonstrate the generality of this framework by recovering and ex-
tending previously known information-theoretic bounds. Furthermore, using the
evaluated CMI, we derive a samplewise, average version of Seeger’s PAC-Bayesian
bound, where the convex function is the binary KL divergence. In some scenarios,
this novel bound results in a tighter characterization of the population loss of
deep neural networks than previous bounds. Finally, we derive high-probability
versions of some of these average bounds. We demonstrate the unifying nature of
the evaluated CMI bounds by using them to recover average and high-probability
generalization bounds for multiclass classification with finite Natarajan dimension.

1 Introduction

Information-theoretic generalization bounds, i.e., generalization bounds that are expressed in terms
of information-theoretic metrics such as the Kullback-Leibler (KL) divergence, mutual information,
and conditional mutual information (CMI), have emerged as useful tools to obtain an accurate
characterization of the performance of deep neural networks. To obtain such bounds, one compares
a posterior, that is, the distribution over the hypotheses induced by the learning algorithm, to a
reference distribution called the prior, an approach first introduced to provide probably approximately
correct (PAC) bounds for Bayesian classifiers [1, 2, 3, 4]. The connection between these results and
classic information-theoretic metrics was clarified in [5, 6], where the generalization gap, averaged
with respect to the joint posterior and data distribution, is bounded in terms of the mutual information
between the training data and the hypothesis. These bounds have since been extended in several
ways [7, 8,9, 10, 11, 12, 13, 14, 15].

A major step was taken in [16], in which a setting where the training set is randomly selected from a
larger supersample is considered. We refer to this setup as the CMI setting, as it leads to generalization
bounds in terms of the CMI between the hypothesis and training set selection, given the supersample.
It turns out that these bounds can be further tightened by observing that the selected hypothesis enters
the derivation only through the loss that it induces on the supersample. Using this observation, [16]
also derives bounds in terms of the information encoded in these losses rather than in the hypothesis
itself, a quantity referred to as the evaluated CMI (e-CMI). Due to the data-processing inequality,
these bounds are always tighter than the regular CMI bounds. This observation was recently further
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exploited by [17], which derived samplewise versions of these bounds.' Intriguingly, these bounds
are both easier to evaluate than their hypothesis-based counterparts, due to the lower dimensionality
of the random variables involved, and quantitatively tighter for deep neural networks. In particular,
while bounds involving information measures based on the hypothesis space tend to increase as
training progresses [11, 18], the bound of [17] remains stable.

The results that have so far been derived for the CMI setting pertain only to the (weighted) difference
between population loss and training loss, or to its squared or absolute value [8, 9, 14, 16, 17, 18]. In
the PAC-Bayesian literature, other types of discrepancy measures have been considered, and shown
to result in tighter bounds on the population loss. For example, [19, 20, 21, 22] consider the binary
KL divergence (i.e., the KL divergence between two Bernoulli distributions) with parameters given
by the training and population loss, respectively, while [23, 24] consider arbitrary jointly convex
functions. Finally, [25] allows for arbitrary functions. It should be noted that in all of these results, a
moment-generating function that depends on the selected function has to be controlled for the bound
to be computable.

Recently, the e-CMI framework was proven to be expressive enough to allow one to rederive known
results in learning theory, e.g., generalization bounds expressed in terms of algorithmic stability,
VC dimension, and related complexity measures [17, 26]. Tightening and extending e-CMI bounds,
which is the main objective of this paper, has the potential to further increase the unifying nature of
the e-CMI framework.

Contributions Leveraging a basic inequality involving a generic convex function of two random
variables (Lemma 1), we establish several novel disintegrated, samplewise, e-CMI bounds on the
average generalization error. Specifically, we present i) a square-root bound (Theorem 1) on the
generalization error, together with a mean-squared error extension, which tightens the bound recently
reported in [17]; ii) a linear bound (Theorem 3) that tightens the bound given in [18]; iii) a binary
KL bound (Theorem 4), which is a natural extension to the e-CMI setting of a well-known bound in
the PAC-Bayes literature [22]. While the derivation of the first two bounds involves an adaptation
of results available in the literature, to obtain the binary KL bound we need a novel concentration
inequality involving independent but not identically distributed random variables (Lemma 2). As
an additional contribution, we show how to adapt the techniques presented in the paper to obtain
high-probability (rather than average) e-CMI bounds (Theorem 7). Furthermore, we illustrate the
expressiveness of the e-CMI framework by using our bounds to recover average and high-probability
generalization bounds for multiclass classification with finite Natarajan dimension (Theorem 8).
Finally, we conduct numerical experiments on MNIST and CIFAR10, which reveal that the binary
KL bound results in a tighter characterization of the population loss compared to the square-root
bound and linear bound for some deep learning scenarios.

Preliminaries and Notation

We let D(P || Q) denote the KL divergence between the two probability measures P and (). This
quantity is well-defined if P is absolutely continuous with respect to (). When P and @) are Bernoulli
distributions with parameters p and ¢ respectively, we let D(P || Q) = d(p||q) = plog(p/q) +
(1 — p)log((1 — p)/(1 — q)), and we refer to d(p||q) as the binary KL divergence. For two
random variables X and Y with joint distribution Pxy and respective marginals Py and Py, we
let I(X;Y) = D(Pxy || Px Py) denote their mutual information. Throughout the paper, we use
uppercase letters to denote random variables and lowercase letters to denote their realizations. We
denote the conditional joint distribution of X and Y given an instance Z = z by Pxy|z—. and the
corresponding conditional distribution for the product of marginals by Px|z—. Py|z—.. Furthermore,
we let I(X;Y) = D(Pxy|z= || Px|z=-Py|z=-). which is referred to as the disintegrated mutual
information [11]. Its expectation is the conditional mutual information I(X;Y'|Z) = E4 [I%(X;Y)].

CMI Setting Let Z be the sample space and let D denote the data-generating distribution. Consider
a supersample Z € Z”jQ, where each entry is generated independently from D. For convenience, we
index the columns of Z starting from 0 and the rows starting from 1. Furthermore, we denote the ith

"While [17] considers the information stored in predictions rather than losses, referred to as the f-CMI, the
derivations therein can be adapted to obtain bounds that depend on the losses, as we clarify in Section 2.2.



row of Z as Z;. Let S = (S1,...,Sn) denote a membership vector, with entries generated indepen-
dently according to a Bern(1/2) distribution, independently of Z. Let S = (1 — Sy,...,1 — S,,)
denote the modulo-2 complement of .S. We refer to S as a membership vector because it is used to
divide the supersample into an n-dimensional training vector 7 s with entries [2 sli = Z s, and an n-

dimensional test vector Z 5 with entries [Z gli = NZ-’ g, To be able to handle arbitrary learning settings,
we consider learning algorithms as maps A : Z" x R — F, where R € R is a random variable

(independent of Z and S) that captures the stochasticity of the algorithm and F is a space, for instance,

a parameter space or function space. For a fixed R = r and Zg = Z,, A(Z, ) is a deterministic
function of Z5. The quality of the learning algorithm’s output is evaluated using a bounded loss func-
tion £ : F x Z — [0,1]. We let U be a vector of size m, the elements of which are sampled without
replacement uniformly at random from (1,...,n). For a given realization U = u = (u1, ..., Um),
we let z,, denote the m X 2 matrix obtained by stacking the vectors z,,, for i = 1,...,m. Simi-
larly, £(A(Zs, R), Z,,) denotes the m x 2 matrix of losses obtained by applying ¢(A(Zs, R), -) elemen-
twise to Z,,. We denote the population loss as Lp (A, Z5,7) = Ez/ [0(A(Zs, 1), Z')], where Z' ~ D.

The training loss is Lz (A, Z,,7) = £ 3" | (A(Zs,7), [Z]:). In general, for any p-dimensional
vector of data points 2, we let Lz (A, Z5,r) = % P L U(A(Zs,7),2). Since A(Z,,7) does not

depend on Zs, Lz (A, Zs,7) is a test loss. Finally, we let Lp = Ez ¢ p[Lp(A, Zq, R)] denote the

average population loss and L = E 7.5.r Lz (A Zs, R)] denote the average training loss.

2 Average Generalization Bounds

In this section, we present the main results of this paper: a new family of disintegrated samplewise
e-CMI bounds for the average population loss. High-probability versions of these bounds are given
in Section 3.

2.1 Main Lemma

We now present the generic inequality upon which the bounds in this section are based. This inequality,
which is similar in nature to the ones provided in [23] and [25], gives us a generic framework to derive
generalization bounds, as it allows for a wide choice of functions for comparing training loss and
population loss. A crucial difference compared to [23] and [25] is that our focus in this section is on
average rather than PAC-Bayesian generalization bounds, and on bounds based on the disintegrated,
samplewise e-CMI, rather than traditional KL-based bounds.

Lemma 1. Let f, : [0, 1]2 — R be a function that is jointly convex in its arguments and is
parameterized by v. Let X and Y be two random variables, and let Y' be a random variable
with the same marginal distribution as Y such that Y' and X are independent. Assume that the
joint distribution of X,Y is absolutely continuous with respect to the joint distribution of X,Y".
Let 1(X,Y) and g2(X,Y) be measurable functions with range [0, 1] and finite first moments, such
that, for all v, Ex v [f+(91(X,Y), 92(X,Y"))] is finite. Let

¢, = logEx.y- efv(gl(x,Y’xgz(X?Y'))} (1)
and assume that &, is finite. Then,
Slvlp [y (Exy[gi(X, V)], Ex y[9(X,Y)]) =& < Sgp Ex yv[f7(01(X,Y), 92(X,Y))] = &
<I(X3Y). 2

The proof, which is an application of Jensen’s inequality and Donsker-Varadhan’s variational repre-
sentation of the KL divergence, is given in Appendix A, along with the proofs of all other results
provided in this paper.

Note that we are allowed to optimize + because, in this section, we only consider average bounds. In
contrast, when we derive high-probability bounds in Section 3, we need to fix . Optimizing ~ over a
set of candidate values in the high-probability scenario incurs a union bound cost [27, Sec. 1.2.2].

To apply Lemma 1, we need to identify functions f, (-, ) for which the moment generating function
in (1) can be controlled. A theme throughout this section is that we identify functions f,(-,-) for



which there exist concentration results that imply that £, < 0. This allows us to loosen the bound
in (2) by discarding &,.

Throughout this section, we assume that the loss is bounded, so that ¢(-,-) € [0, 1]. Note that the
reported results can be extended to more general losses by use of scaling. In particular, assume that
there is a function K : F — R such that, for all f € F, sup, £(f, z) < K(f) (referred to as the
hypothesis-dependent range condition in [28]). Then, all of the results that we present for bounded
losses also hold for the scaled loss £(f, z) /K (f).

2.2 Extending (f)-CMI Bounds to e-CMI

We now apply Lemma 1 to recover the average bounds of [17, 18]. These works derive bounds using
the information contained either in the hypothesis itself or the resulting predictions, i.e., the CMI or
the f-CMI. We instead derive bounds in terms of the information captured by the matrix of losses,
i.e., the e-CMI. For parametric supervised learning algorithms, we can recover the original bounds
via the data-processing inequality. This is formalized in the following remark.

Remark 1. Consider a parametric supervised learning setting, where Z = X x Y and A(Zg,R) =
W € F are the parameters of a function ¢y : X — ). Let &, denote the m x 2 matrix obtained by
projecting each element of Z,, onto X, i.e., the matrix of unlabeled examples. Let ¢y (Z,,) denote the
matrix of predictions obtained by elementwise application of ¢w to T.. Then, for any fixed z and u,

T (U(W, 24); Su) < T (dw (Z); Su) < T7(W; Sy). 3)

We now use Lemma 1 to recover some of the results reported in [17]. Let A = Lgs{ (A, Zs, R) —
Lz, (A, %, R), where S; is an independent copy of S;. For a fixed Z, symmetry implies

thatlEglg [A] = 0. Furthermore, since £(-,-) € [0,1], we have that A € [-1,1]. Thus, A is 1-
sub-Gaussian. By using properties of sub-Gaussian random variables, we can control &, in Lemma 1
when choosing f (-, ) as A or yA2. The resulting bounds are given in the following theorem.

Theorem 1 (Square-root bound and squared bound). Consider the CMI setting. Then,

—ZE [\/212 A(Zs, ),Z);Si)} (4)
72\/21 A(Zs,R), Z;); Si| 2). 5)

\ N
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Furthermore,

Ej ns [(LD(A, Zs,R)~Ly_(A, ZS,R))Q} < %(J(f(A(ZS,R),ZU);SUﬁ, U)+2). 6)

In (4), the expectation over Z is taken outside of the square root, and the generalization bound is in
terms of the disintegrated mutual information. By Jensen’s inequality, this is tighter than (5).

As shown in Appendix A, one can further generalize (4) to obtain an upper bound of the form

Ezu {\/QIZ’U(E(A(ZS,R%%); Su)] : 7)

However, since (7) increases with the size m of the random subset U [17, Prop. 1], we focus only
on the case m = 1, as this leads to the tightest bound. The same holds for (5), as well as for all of
the bounds that we present in the remainder of this section, where we also focus only on m = 1. In
contrast, the choice of m = 1 in the squared bound in (6) is suboptimal and actually yields a vacuous
bound due to the 2/m term.

It is possible to obtain a bound similar to (4), but where an expectation over R is taken outside
the square root and the mutual information is also conditioned on R. We present this bound in the
following theorem.



Theorem 2 (R-conditioned square-root bound). Consider the CMI setting. Then,

IN

p—i <t >Ein Wzﬁ»W(A(ZS, R). Z:); ) ®)

I /\

72\/21 A(Zs,R), Z;); Si|Z, R). )

A similar bound, but given in terms of mutual information rather than e-CMI, is reported in [11,
Thm. 2.4]. The randomness of the learning algorithm can reduce the mutual information between its
output and the selection variable .S;. Specifically, one can show that

I*(L(A(Zs, R), 2); S;) < T*(0(A(Zs, R), 2); Si| R) (10)

which implies that the square-root bound in (5) is tighter than the R-conditioned square-root bound in
(9). However, the ordering between the disintegrated square-root bound in (4) and the disintegrated R-
conditioned square-root bound in (8) is unclear.

Next, we generalize the linear bounds of [18], which are samplewise extensions of the bounds in [16],
to the e-CMI framework. We consider two scenarios. For the first one, we assume that v = (71 ,Y2)
are positive constants that satisfy a certain constraint, and let f. (L, Lp) = vin(Lp — ’ygL) For

the second one, we assume that L = 0, the so-called interpolating setting, and let fW(L, Lp) =
nlog(2) Lp. For both of these scenarios, it can be shown that &y <0, yielding the following.

Theorem 3 (Linear bound and interpolation bound). Consider the CMI setting. Let I" C Rf_ denote
the set of parameters v = (y1,72) that satisfy y1 (1 — v2) + (€7 — 1 —41)(1 +~3) < 0. Then,
(((A(Zs, R), Z:); Si|Z)

yin

Lp < mln’ygL + Z

i=1

(1)

Furthermore, if L= 0,

. Zf(e( Zz,log)( z 2:); 5:12) 12

The interpolation bound in (12) improves on the linear bound in (11) when L = 0, as the constraint
implies that v — 4(e” — 1)(e” — 1 —~1) > 0. This means that v; < 0.37, whereas log 2 > 0.69.

2.3 Binary KL Bound with Samplewise e-CMI

We now derive bounds in terms of the binary KL divergence between the training loss and the test
loss. To this end, similar to [27, 29], we define

d(qllp) = vq —log(1 — p + pe”). (13)
An important property of this function is that
sup d,(q||p) = d(q||p). (14)
¥

Note that both d., (- || -) and d(- || -) are jointly convex in their arguments. For our next result, we need
the following lemma.

Lemma 2. Fori=1,...,n let X; ~ Px,, E[X;] = p;, p= 37" X and i = 237 | ps.
Assume that X; € [0, 1] almost surely and that all X; are independent. Then, for every fixed v > 0,

Efexp(nd, (|| )] < 1. (1)

This inequality, which, to the best of our knowledge, has previously been reported only for identically
distributed random variables, follows by combining [30, Lemma 1], [31, Thm. 3], and [29, Eq. (17)]
(which is a generalization of [27, Lemma 1.1.1] from binary to bounded random variables).>

2A similar result, with d(- || -) instead of d. (- || -), is established in [32, Lemma 2].



Consider a fixed z. For each ¢, ]ES; [L[gs,]i(A, Zs, R)] =(l(A(Zs, R), Zi0) + L(A(Zs, R), Zi1)) /2,
where S/ is an independent copy of S;. Thus,
Lfs (-A7 Zs) R)+L2§ (-A7 Zs, R)

ES’[LES/(Aa 25,R):| = 2

This observation allows us to bound the binary KL divergence between the training loss L and the
arithmetic mean of the training and population loss, (L + Lp)/2. Combining (15) and (2), with
appropriate choices for the variables and functions therein, we obtain the following result.

Theorem 4 (Binary KL bound). Consider the CMI setting. Then,

L L 1
(LI D+> Zl A(Zs. R), Z); Si| Z) (17)

which implies that Lp can be bounded as

Lng—l( ZI A(Zs, R), )S|Z> (18)

d (g, c) = sup {p €1[0,1]: d<q|| q—|2—p> < c}. (19)

Similar to Theorem 1, we can obtain a disintegrated version of (18) where the expectation over Zis
outside of the inversion of the binary KL divergence. We present this result in the following theorem.

Theorem 5 (Disintegrated binary KL bound). Consider the CMI setting. Then,

Lp <Ej {d1<ER,S[LZS(A,ZS, } ZIZ A(Zs, ),Z);S,»))} (20)

(16)

where

By using Pinsker’s inequality, which implies that 2(¢ —p)? < d(q|| p), one can weaken (18) to obtain

‘LD—ﬁ

< ZI A(Zs, R), Z,); i\ 2). 1)

However, since the average over ¢ is inside the square root, this bound is weaker than (5) by Jensen’s
inequality.

To establish Theorem 4, it is crucial that the supremum over v in Lemma 1 is outside the expectation
that defines ¢, . Indeed, sup., d, (¢ ||p) = d(q||p), and with the notation from Lemma 2, we have [22,

Thm. 1]

Elexp(nd(i]| 1))] = v/n. (22)
Therefore, having the supremum inside of the expectation would unavoidably lead to an additional
term greater than log(y/n)/n in the upper bound of (18).

The binary KL bound in (18) is an average, samplewise, e-CMI analogue of the PAC-Bayesian bound
with a binary KL divergence on the left-hand side, sometimes referred to as Seeger’s bound [4, 20].
However, as noted after Lemma 2, the concentration inequality needed to establish Theorem 4 is a
refinement of the result used in [20]. Also, the dependence on L and Ly in the binary KL bound is
nonstandard. As we show in Section 5, the binary KL bound in (18) is sometimes tighter than the
square-root bound in Theorem 1 and the linear bound in Theorem 3.

The binary KL bounds in (18) and (20) can be tightened by considering affine transformations of the
arguments of d(- || -). However, this does not lead to improvements for the low training loss scenarios
that we focus on in this paper. Therefore, we relegate these extensions to Appendix B, where we
also present an analogue of Theorem 4 in terms of the samplewise mutual information between the
learning algorithm’s output and the training data, rather than the e-CMI.

While d~1(,) does not admit an analytical expression, d~1(0, ) is tractable. This leads to the
following simplified form of the disintegrated binary KL bound in (20) when L = 0.
Theorem 6 (Disintegrated interpolation binary KL bound). Assume that L = 0. Then, (20) becomes

1 n

Lp <Ej|2 - 2¢ % Zim IAEs R),2.:5) (23)



3 High-Probability Bounds

The techniques presented in Section 2 can be adapted to allow for the derivation of high-probability
bounds, in particular through the use of exponential inequalities [33, 34, 35]. To demonstrate this, we
now present two such high-probability bounds.

Theorem 7 (High-probability square-root and binary KL bounds). Let A = ¢ (A(ZS7 R), Z ). Fur-
thermore, let P)\‘ g denote the conditional distribution of A given Z and S, and let P)\‘ 5 denote the
conditional distribution of \ given Z. Then, with probability at least 1 — & over the draw of Zand S,

- ~ 2
Er[Ly, (A Zs.F) - Ly, (A Zs.B)] < ¢ 2 (pestingg v ). e

Furthermore, also with probability at least 1 — § over the draw of Z and S,

)

D(P,\\Zs I P,\\Z) + log %

n

LZS (A, ZS,R) + ng (.A, Zs, R)
2

d<ER [LZS (A, ZSvR):| I ER[

(25)

These high-probability bounds involve the empirical test loss of the learner, and not the population
loss. However, a simple use of the triangle inequality, as detailed in [34, Thm. 3], allows one to
make (24) and (25) explicit in the population loss. Note that the information measures that appear
in the bounds depend on the full training set, rather than individual samples. As proven in [36],
samplewise versions of these tail bounds are typically loose. For instance, the tail bound with
samplewise information measures in [37, Lemma 8] contains a constant term and has a detrimental
linear dependence on 1/4, instead of the benign logarithmic dependence in (24) and (25). Finally,
under a stronger technical assumption of absolute continuity, one can obtain high-probability bounds

not only with respect to the draw of Z and S, but also the randomness R of the learning algorithm.
We present this result in Appendix B.

4 Expressiveness of the e-CMI Framework

We now illustrate the unifying nature of the e-CMI framework by demonstrating its expressiveness.
Specifically, proceeding similarly to [17, 26], we use the e-CMI framework to rederive known bounds
in learning theory. In particular, we consider multiclass classification with finite Natarajan dimension.
In the next theorem, we provide a bound on the e-CMI appearing in the results reported in Section 2,
as well as a bound on the data-dependent KL divergence appearing in (24) and (25).

Theorem 8. Consider a multiclass classification setting, for which Z = X x ), where X is the
instance space and Y the label space, and assume that |)| = N. Furthermore, assume that the
learning algorithm implements a function f : X — Y where f € F belongs to a class of finite
Natarajan dimension dy [38]. Finally, assume that 2n > dy + 1. Then,

= - = N\ 2
He(AZs, 7). 2:512) < dwion( (3 ) 22 ) 26)
N
Furthermore, with probability at least 1 — 0 under the draw of Z and S,
N\ 2en 1
D(P,\|Zs||P/\\Z) Sleog<<2)dN> —|—logg. 27

To obtain generalization bounds from Theorem 8, we need to upper-bound the information terms that
appear in the bounds of Sections 2 and 3 by using either (26) or (27). While this can be done for any
of the information-theoretic generalization bounds in this paper, we present two concrete examples in
the following corollary.



Corollary 1. Consider a multiclass classification setting, for which Z = X x ), where X is the
instance space and Y the label space, and assume that |)| = N. Furthermore, assume that the
learning algorithm implements a function f : X — Y where f € F belongs to a class of finite
Natarajan dimension dy [38]. Finally, assume that 2n > dy + 1. Then,

R 2dp log (N) Zen
’LDfL’g (G d”). 28)
n
Furthermore, with probability at least 1 — 6 under the draw of Z and S,
_ L; (A, Zs,R)+ Ly (A, Zs,R)
d(ER L7, (A Zs B | ER[ & T
N\ 2en 2 4/n

n

The scaling behavior of (28) with respect to n recovers the standard rate found in the literature [39].
This is minimax optimal up to a logarithmic term [40, Thm. 29.3].

5 Comparing the Bounds

We now perform some comparisons between the bounds obtained in Section 2. As it turns out,
there is no clear ordering between the different bounds in general. For a first comparison, we
consider the interpolating setting, where the training loss is zero. We focus on the case where
the size m of the random subset U equals 1. Since the squared bound in (6) is vacuous for this
choice, it is not considered for this comparison. Moreover, we assume that the learning algorithm
is, on average, indifferent to permutations of the training set. Specifically, we assume that the value

of I(¢(A(Zs, R), Z;); S;|Z) equals a constant B that does not depend on the index . For a more
straightforward comparison, we also exclude the disintegrated bounds in (4) and (20), and postpone
their evaluation to Section 6. Thus, in this section, we compare the square-root bound in (5), the linear
bound in (11), the interpolation bound in (12), and the binary KL bound in (18). In the following
proposition, we establish an ordering between these bounds. The result follows by straightforward
arithmetic.

Proposition 1. Assume that I(((A(Zs, R), Z;); S;|Z) = B for all i and that L = 0. Let V1,0pt De
the largest yy such that v¢ — 4(e" —1)(e™ — 1 — 1) > 0, and assume that B < 273, ~ 0.27.
Then, the upper bounds on Lp are, in increasing order, the interpolation bound in (12), the binary
KL bound in (18), the linear bound in (11), and the square-root bound in (5). If B > 2712’0},[, the
ordering between the square-root bound in (11) and the linear bound in (5) is inverted.

While Proposition 1 gives the ordering between the bounds for the interpolating scenario, the
quantitative difference between them is not clear. A numerical illustration is given in Figure la,
under the same assumptions as in Proposition 1. As established in Proposition 1, the interpolation
bound in (12) is superior across the range of values for B, and the binary KL bound in (18) is slightly
looser. However, while the constant log 2 in (12) is sharp, the derivation is valid only for interpolating
learning algorithms. In contrast, the other bounds are only marginally affected when we allow for a
small, non-zero training loss. This added flexibility shows the usefulness of (18) as compared to (12).

To obtain a more complete picture, we numerically evaluate the bounds for a range of values for L
and B. This is illustrated in Figure 1b. While the binary KL bound in (18) is tightest for most small
values of B and L, a region of this space is dominated by the linear bound in (11). When both B
and L grow larger, the square-root bound in (5) is the tightest. Thus, the picture that emerges from
these comparisons is that, when the training loss is zero, it is best to use (12), while we need (18) for
the case of a small, but non-zero, training loss. However, if the training loss is high, one needs to
evaluate all three bounds and take the minimum.
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Figure 1: (a): A quantitative comparison between the square-root bound in (5), the linear bound
in (11), the interpolation bound in (12), and the binary KL bound in (18) under the assumptions of
Proposition 1. (b): A comparison between the square-root bound in (5), the linear bound in (11) and
the binary KL bound in (18) under the assumptions of Proposition 1, but with non-zero L. Each point
in the figure is color-coded according to which bound gives the tightest characterization of Lp for the
given parameters. For the region labeled Trivial, no bound performs better than the trivial Lp < 1.
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Figure 2: Numerical evaluation of the test error in three deep learning scenarios, along with the upper
bounds provided by the square-root bound in (4), the binary KL bound in (20) and, when applicable,
the interpolation bound in (12) and the SGLD bound in [11, Eq. 6].

6 Numerical Results

We now consider three deep learning settings and evaluate the bounds derived in Section 2. To the
best of our knowledge, the tightest average generalization bounds available in the literature for typical
deep learning scenarios, such as CNNs trained on MNIST [41] or CIFAR10 [42], are found in [17].
These numerical results are based on [17, Eq. 22], which is a version of (4) where the e-CMI is
replaced by the f-CMI. In order to perform a direct comparison, we consider the same experimental
setups. The code for our experiments is largely based on the code from [17].> Additional numerical
results for a setting with randomized labels are given in Appendix C. A detailed description of the
training methods, network architectures, and experimental setup is given in Appendix D.

The previous section indicated that the interpolation bound in (12) and the binary KL bound in (20)
are the superior bounds when the training loss is zero or low, respectively, which is common for
deep learning. Hence, we focus on these bounds, as well as on the square-root bound in (4). When
evaluating the bounds, we use the classification error as the loss function. We consider two learning
algorithms, namely stochastic gradient descent (SGD) with a fixed random seed and stochastic
gradient Langevin dynamics (SGLD). The first is a deterministic learning algorithm with high
relevance for current practice. For deterministic learning algorithms, generalization bounds based
on the information captured by the weights of a neural network are vacuous, but as noted by [17],
bounds based on the information contained in the predictions (or the losses they induce) are typically
nonvacuous. The second is a randomized learning algorithm, which allows for comparison to weight-
based information-theoretic generalization bounds. For this setting, we also evaluate the SGLD bound
of [11, Eq. 6].

3 Available: https://github.com/hrayrhar/f-CMI.



First, we consider a CNN trained with Adam (a variant of SGD) on a binarized version of MNIST,
where we only consider the digits 4 and 9. The results are reported in Figure 2a. In binary classifi-
cation, there is a one-to-one mapping between predictions and losses. Hence, for this scenario, the
information captured by the matrix of losses is the same as the information captured by the matrix of
predictions. For this scenario, the binary KL bound in (20) significantly improves on the square-root
bound in (4). For n = 75, 250, and 1000, all of the neural networks that we trained achieved zero
training error, making the interpolation bound in (12) a valid bound. This bound results in the tightest
characterization of the test error. However, for n = 4000, the training error was non-zero for some
neural networks. As a consequence, the interpolation bound in (12) was not applicable.

Next, in Figure 2b, we look at ResNet-50 pretrained on ImageNet and fine-tuned using SGD on
CIFARI10. In multi-class classification, the map from predictions to losses is no longer one-to-one.
Thus, this is a setting where the e-CMI is potentially lower than the f-CMI. Again, the binary KL
bound in (20) significantly improves on the square-root bound in (4).

Finally, as an example of a randomized learning algorithm, we consider a CNN trained with SGLD
on the binarized MNIST data set. This is shown in Figure 2c. As training progresses, both (20)
and (4) improve on the SGLD bound in [11, Eq. 6]. However, the latter is lower for the initial epochs.
While (20) reduces the magnitude of this discrepancy, which was also observed in [17], it does
not fully close the gap. This may partially be due to the fact that the bound in [11, Eq. 6] has an
expectation over R outside of the square root, similar to (8), which may be beneficial during early
epochs. Another possibility is that the value that we compute for the mutual information may be
an overestimate, especially for low values of the true mutual information. This is an effect of the
non-negativity of the mutual information.

7 Discussion and Limitations

In this paper, we presented several generalization bounds in terms of the evaluated CMI. While the
results hold for a generically formulated learning problem, they are derived under the assumption of
a bounded loss function and independent and identically distributed (i.i.d.) training data. While the
boundedness assumption can be alleviated to some degree by using the same type of argument as
in [16, Thm. 5.1], it is unclear to what extent the i.i.d. assumption can be relaxed.

Our experiments demonstrate that some of the derived bounds are numerically accurate for several
deep learning scenarios. As shown in Appendix C, this remains true also when one considers
randomized labels and varies the width, depth, and learning rate of the neural network. These results
indicate that this family of bounds is potentially powerful enough to guide the design of deep neural
networks. This is an intriguing avenue for future research.
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